
Locus: Locating Bugs from Software Changes

Ming Wen Rongxin Wu Shing-Chi Cheung
{mwenaa,wurongxin, scc}@cse.ust.hk

ASE 2016, 6th Sept, Singapore
1

2

Debugging is Painful!!

IR-Based Fault Localization

Bug Report

.java

Source Files

Information
Retrieval
Models

Ranked List
of Suspicious
Files

A.java

B.java

……

Inspection

3

Limitations

4

 [
Source file results are coarse-
grained [Wang et al. ISSTA’15].

 [
Lack of contextual clues [Parnin et al.

ISSTA’11].

Limit#1 Granularity

Limit#2 Context

Comments of Bug Report

5

Comments of Bug Report

6

“This regression was caused by Bugzilla 257440.

That patch was reverted and this is now fixed. 1”

“Ouch, that's my fault. . . .We should revert

revision 484642 ASAP. 2 ”

Reverting to

the change

that induced

the bug.

Developers’ Feedback

7

“It can be a eureka moment for the developer, where

they see the inducing change and say ‘I know exactly

why this is happening’, thus resulting in a fix typically in

a matter of days, even hours. It really is a critical piece

of the puzzle.”

“The action taken is usually getting the responsible

developer to either A) back out the change or B)

code and land a follow-up fix as soon as possible.”

Is the information of inducing changes useful?

What actions will be taken if inducing change is available?

Bug Inducing Change

Initial Code

.java.java

Log

Change #1

Log

Change #N Source File

8

 Changes are committed to fix bugs, introduce new features or refactor.

 Changes can induce new bugs, and those changes are regarded as

bug-inducing changes.

9

Commit #2653cea

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy

method. Destroy the thread group on shutdown. Log a warning if

the thread group can't be destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();

+ try {

+ threadGroup.destroy();

+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

@@ -550,11 +563,18 @@ public void toString()

Change A(#2653cea) of Tomcat
WsServerContainer.java

9

Commit #2653cea

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy
method. Destroy the thread group on shutdown. Log a warning if

the thread group can't be destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();

+ try {

+ threadGroup.destroy();

+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

@@ -550,11 +563,18 @@ public void toString()

Change #2653cea of Tomcat
WsServerContainer.java

Developer
Log Message

Change #2653cea of Tomcat
WsServerContainer.java

9

Commit #2653cea

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy

method. Destroy the thread group on shutdown. Log a warning if

the thread group can't be destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();

+ try {

+ threadGroup.destroy();

+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

@@ -550,11 +563,18 @@ public void toString()

Hunk
A group of continuous lines that are changed
along with contextual unchanged lines.
A change may contain multiple hunks.

10

Bug #56905
Summary: Unable to destroy WebSocket thread group when

reloading webapp …… generally there might be threads that are

still running,…,threadGroup.enumerate() have not returned

Commit #2653cea (inducing change)

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy

method. Destroy the thread group on shutdown. Log a warning if

the thread group can't be destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();

+ try {

+ threadGroup.destroy();

+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

@@ -550,11 +563,18 @@ public void toString()

Commit #a027afd (fixing change)

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Wed Sep 03 13:36:43 2014 +0000

Log: Fix https://issues.apache.org/bugzilla/show_bug.cgi?id=56905

@@ -273,14 +273,42 @@ public void addEndpoint(Class<?> pojo)

+ int threadCount = threadGroup.activeCount();

+ boolean success = false;

try {

- threadGroup.destroy();

- } catch (IllegalThreadStateException itse) {

+ while (true) {

+ int oldThreadCount = threadCount;

+ synchronized (threadGroup) {

Change A (#2653cea)
WsServerContainer.java

Change B (#a027afd)
WsServerContainer.java

Fixing Change

Refactoring and
adding new features

by the same developer
of the inducing change

Mark Emlyn David Thomas

Mark Emlyn David Thomas

Bug Report
#56905 of Tomcat

Bug #56905 is
reported

Changes are Useful

11

Reverting Bug
Inducing Change

 Facilitating Bug
Triaging

 Fine Granularity

Limit#2 Context

Limit#1 Granularity

Limit#2 Context : #761

: #1733

Inspected many bug reports.

Changes are Useful

12

Triaging bugs to the committer of the

inducing change.

Ratio of Bug Reports Whose Fixing Developer is the Same as

the Developer of the Bug Inducing Change

77.86% of the bugs are fixed by the

committer of the inducing change.

Reverting Bug
Inducing Change

 Facilitating Bug
Triaging

 Fine Granularity

Limit#2 Context

Limit#1 Granularity

Limit#2 Context

Subject #Dev #Bugs #Same Ratio (%)

SWT 3.1 86 97 65 67.00%

JDT 4.5 95 94 67 71.30%

Tomcat 8.0 29 193 167 86.50%

Changes are Useful

13

Bug Triage Time for JDT and SWT (days)

Triaging bugs to the committer of the

inducing change.

Many manual efforts are required to triage bugs.

Reverting Bug
Inducing Change

 Facilitating Bug
Triaging

 Fine Granularity

Limit#2 Context

Limit#1 Granularity

Limit#2 Context

Changes are Useful

14

Debugging at the change level can significantly

save effort when compared with source level

[Kamei et al. TSE’13].

Comparison of Lines of Codes among Hunks, Changes and

Source Files

Reverting Bug
Inducing Change

 Facilitating Bug
Triaging

 Fine Granularity

Limit#2 Context

Limit#1 Granularity

Limit#2 Context

15

Using Software Changes in IR-
Based Fault Localization

Information
Retrieval
Models

Bug Report

.java

Source File

15

Using Software Changes in IR-
Based Fault Localization

Information
Retrieval
Models

Bug Report

.java

Source File Software Changes

16

Benefits of Using Software Changes

Log MessageLogLog 1. Informative Change Logs

2. Highly Correlated
Contents

3. Change Histories

17

Bug #56905
Summary: Unable to destroy WebSocket thread group when

reloading webapp …… generally there might be threads that are

still running,…,threadGroup.enumerate() have not returned

Commit #2653cea (inducing change)

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy

method. Destroy the thread group on shutdown. Log a warning if

the thread group can't be destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();

+ try {

+ threadGroup.destroy();

+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

@@ -550,11 +563,18 @@ public void toString()

Commit #a027afd (fixing change)

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Wed Sep 03 13:36:43 2014 +0000

Log: Fix https://issues.apache.org/bugzilla/show_bug.cgi?id=56905

@@ -273,14 +273,42 @@ public void addEndpoint(Class<?> pojo)

+ int threadCount = threadGroup.activeCount();

+ boolean success = false;

try {

- threadGroup.destroy();

- } catch (IllegalThreadStateException itse) {

+ while (true) {

+ int oldThreadCount = threadCount;

+ synchronized (threadGroup) {

Bug Report
#56905 of Tomcat

Inducing Change
Refactoring and adding
new features
Inducing bug #56905

Fixing Change
by the same developer
of the inducing change

Inducing Change
Refactoring and adding
new features
Inducing bug #56905

Fixing Change
by the same developer
of the inducing change

17

Bug #56905

Summary: Unable to destroy WebSocket thread group

when reloading webapp …… generally there might be threads

that are still running,…,threadGroup.enumerate() have not

Commit #2653cea (inducing change)

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy

method. Destroy the thread group on shutdown. Log a

warning if the thread group can't be destroyed
@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();
+ try {

+ threadGroup.destroy();
+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

Commit #a027afd (fixing change)

Author : Mark Emlyn David Thomas <markt@apache.org>

Date : Wed Sep 03 13:36:43 2014 +0000

Log: Fix https://issues.apache.org/bugzilla/show_bug.cgi?id=56905

@@ -273,14 +273,42 @@ public void addEndpoint(Class<?> pojo)

+ int threadCount = threadGroup.activeCount();

+ boolean success = false;

try {

- threadGroup.destroy();
- } catch (IllegalThreadStateException itse) {

+ while (true) {

+ int oldThreadCount = threadCount;

+ synchronized (threadGroup) {

Lots of common tokens are

shared between the bug

report and the log messages

of the change.

Bug Report
#56905 of Tomcat

Benefits of Using Software Changes

18

 Informative
Change Logs

Highly Correlated
Contents

Change History Text Similarities between Bug Reports and the Buggy

Files as well as the Change Logs

Change logs share a substantial number of

common tokens with bug reports.

Benefits of Using Software Changes

19

 Informative
Change Logs

Highly Correlated
Contents

Change History

• Large source files are susceptive to noise due to
the fuzziness arising from information retrieval
[Wong et al. ICSME’14, Ye et al. FSE’14].

Bug Report #56905 and its Cosine Similarity of

Source File WsServerContainer.java

Benefits of Using Software Changes

20

 Informative
Change Logs

Highly Correlated
Contents

Change History

• Segmenting source files into equal-sized

segments [Wong et al. ICSME’14].

• Segmenting source files into methods [Ye

et al. FSE’14].

Benefits of Using Software Changes

21

 Informative
Change Logs

Highly Correlated
Contents

Change History

Highly correlated and small pieces of

code are desired in retrieval models.

Inducing Change

#2653cea

Bug Report

#56905

Source File

WsServerContainer.java
0.275

0.656

Change hunks are intrinsically small in size

and correlated in contents.[Alali et al. ICPC’08].

Benefits of Using Software Changes

22

 Informative
Change Logs

Highly Correlated
Contents

Change History

Software changes capture the history of

source files (e.g. ownership, fixing history),

which indicate the proneness of source

files to contain faults.

• Defect prediction [Moser ICSE’08, Rahman FSE’11]

• Fault Localization [Ye. FSE’14, Wang ICPC’14]

• Google1

Locus

23

Bug #56905

Summary: Unable to destroy WebSocket thread group
when reloading webapp …… generally there might be

threads that are still

running,…,threadGroup.enumerate() have not returned

Commit #2653cea
Log: Refactor server container shutdown into the

destroy method. Destroy the thread group on

shutdown. Log a warning if the thread group can't be

destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?> pojo)

+ shutdownExecutor();

+ super.destroy();
+ try {

+ threadGroup.destroy();
+ } catch (IllegalThreadStateException itse) {

...

boolean areEndpointsRegistered() {

return endpointsRegistered;

}

Bug Report: Summary + Description

 Index Natural Language Tokens (NL)

e.g. destroy, web, socket, group, thread,…

Hunk: Log Message + Changed Lines + Contextual Lines

Locus

23

Bug #56905

Summary: Unable to destroy WebSocket thread group when

reloading webapp …… generally there might be threads that

are still running,…,threadGroup.enumerate() have not
returned

Commit #2653cea
Log: Refactor server container shutdown into the destroy

method. Destroy the thread group on shutdown. Log a warning

if the thread group can't be destroyed

@@ -270,6 +275,21 @@ public void addEndpoint(Class<?>
pojo)

+ shutdownExecutor();

+ super.destroy();

+ try {

+ threadGroup.destroy();

+ } catch (IllegalThreadStateException itse)

{

...

boolean areEndpointsRegistered() {
return endpointsRegistered;

}

Bug Report: Summary + Description

Hunk: Log Message + Changed Lines + Contextual Lines

 Index Natural Language Tokens (NL)

 Index Code Entity Names (CE)

e.g. destroy, web, socket, group, thread,…

e.g. addEndpoint, threadGroup, …

 Leverage Change History (Boosting)

e.g. fixing history, change time

Query

Construction

24

 Vector Space

Model

Software

Change

Repository

Bug

Report

ExtractAll

Hunks

Selected

Hunks

Preprocess

Corpus

Creation

& Indexing

Locus Overview

CE Index
CE Query

CE Model

24

Software

Change

Repository

ExtractAll

Hunks

Bug

Report

Preprocess

Selected

Hunks

Corpus

Creation

& Indexing

Query

Construction

NL Index NL Query

NL Model

Fixing History

Change Property

Boosting Model

 Vector Space

Model

 Three Models

NL / CE /

Boosting

Locus Overview

24

Software

Change

Repository

ExtractAll

Hunks

Bug

Report

Preprocess

Selected

Hunks

Corpus

Creation

& Indexing

NL Index

CE Index

Combine&

Retrieval&

Ranking

Ranked Entities

Query

Construction

NL Query

CE Query

Fixing History

Change Property

NL Model

CE Model

Boosting Model

Source File Level

A.java

Change Level

aa45a74:A.java

 Vector Space

Model

 Three Models

NL / CE /

Boosting

Combing Results

Source Leve

Change Level

Locus Overview

25

Experiment Setup

Dataset

Tomcat

SWT, PDE, JDT, AspectJ

ZXing

Subject Num Bugs Num Files K Loc K Changes

ZXing 20 391 49.6 3.14

SWT 3.1 98 484 141.9 11.9

AspectJ 244 6,485 511.9 7.7

PDE 4.4 60 5,273 565.2 11.3

JDT 4.5 94 6,775 1,675.30 21.7

Tomcat 8.0 193 2,042 485.7 16.1

Benchmark dataset

from BugLocator

Collected by us

All the bugs with valid links

to fix changes

26

Experiment Setup

 Evaluation Metrics

 Top@N (N = 1, 5, 10…)
The percentage of bugs whose relevant files can be listed in the top N of

the ranked list.

 (MRR) Mean Reciprocal Rank

How well the first relevant files are ranked, the higher the better.

 (MAP) Mean Average Precision

How well all relevant files are ranked, the higher the better

27

Research Questions

 [RQ1] Software Changes VS. Source Files

 [RQ2] Locus VS. Baselines

 [RQ3] Contributions of Each Model

Can the text tokens extracted from software changes effectively locate

bugs in IR-based techniques?

How is the performance of Locus compared with state-of-the-art

approaches.

Can each model we proposed improves the final performance?

28

[RQ1] Software Changes VS. Source Files

• Compare the localization results using the text tokens
extracted from software changes with those from source files.

• Keeping only the natural language tokens.
• Keeping only the tokens of code entity names.
• Using both of them.

29

[RQ1] Software Changes VS. Source Files

0.000

0.100

0.200

0.300

0.400

0.500

0.600

ZXing SWT AspectJ PDE JDT Tomcat

NL MAP

0.000

0.100

0.200

0.300

0.400

0.500

0.600

ZXing SWT AspectJ PDE JDT Tomcat

NL MRR

Hunk Source

The MAP has been improved by 89.43%.

The MRR has been improved by 75.20%.

Tomcat

0.000

0.100

0.200

0.300

0.400

0.500

0.600

ZXing SWT AspectJ PDE JDT Tomcat

NL MAP

0.000

0.100

0.200

0.300

0.400

0.500

0.600

ZXing SWT AspectJ PDE JDT Tomcat

NL MRR

30Hunk

0.000

0.100

0.200

0.300

0.400

0.500

ZXing SWT AspectJ PDE JDT Tomcat

CE MAP

0.000

0.100

0.200

0.300

0.400

0.500

0.600

ZXing SWT AspectJ PDE JDT Tomcat

CE MRR

Source

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

ZXing SWT AspectJ PDE JDT Tomcat

NL+CE MAP

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

ZXing SWT AspectJ PDE JDT Tomcat

NL+CE MRR

Hunk Source

Leveraging the text tokens extracted from

software changes in IR-based

models achieves better results than that

from source files.

Hunk Source

[RQ1] Software Changes VS. Source Files

[RQ2] Locus VS. Baselines

31

Three state-of-the-art IR-based approaches:

• BRTracer [Wong et al. ICSME’2014]
Leveraging stack traces and segmenting source files

• BLUiR [Saha et al. ASE’2013]
Leveraging code structures information

• AmaLgam [Wang et al. ICPC’2014]
Combining similar bugs, code structures and fixing histories together.

32

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

Top1 Top5 Top10

Tomcat

Tomcat

Locus AmaLgam BRTracer BLUiR

Tomcat

Locates 56.6% of the bugs and rank

them at Top 1.

Locates 77.7% of the bugs and rank

them at Top 5.

Locates 81.9% of the bugs and rank

them at Top 10.

27 more bugs

11 more bugs

7 more bugs

[RQ2] Locus VS. Baselines

0.000

0.200

0.400

0.600

0.800

1.000

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

ZXing SWT AspectJ PDE JDT Tomcat

Top@N

Locus AmaLgam BRTracer BLUiR

 Locus locates the buggy files and rank them as top 1 for 41.0% of the bugs.

 Locus outperforms the three baselines works for all subjects under all

Top@N metrics.

33

[RQ2] Locus VS. Baselines

34

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

MAP MRR

Tomcat

Locus BLUiR

BRTracer AmaLgam

Tomcat

Achieves an MAP and MRR of 0.566

and 0.638.

The MAP and MRR have outperform the

best baseline for 19.7% and 21.9%

respectively.

[RQ2] Locus VS. Baselines

0.000

0.100

0.200

0.300

0.400

0.500

0.600

ZXing SWT AspectJ PDE JDT Tomcat

MAP

Locus BLUiR

BRTracer AmaLgam

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

ZXing SWT AspectJ PDE JDT Tomcat

MRR

Locus BLUiR

BRTracer AmaLgam

 Locus achieves an average

MAP of 0.468 and MRR of

0.546.

MAP MRR

AmaLgam 20.1% 20.5%

BLUiR 22.4% 25.3%

BRTracer 31.9% 32.4%

 The average improvements

35

[RQ2] Locus VS. Baselines

[RQ2] Change Level Results

Results of MAP, MRR and Top@N at the Change Level

Comparison between Locus and Amalgam,

in terms of the Effort-Based Evaluation.

 Locus achieves an average

MAP of 0.205 and MRR of

0.256.

 Locus locates the inducing

changes and rank them within

top5 for 41.0% of the bugs.

 The debugging efforts can be

significantly saved.

 The lines of codes needing to

be inspected has been reduced

by an order of magnitude.

36

Subject MAP MRR Top@1 Top@5 Top@10 Top@20

ZXing 0.262 0.333 0.200 0.400 0.500 0.900

SWT 0.14 0.224 0.141 0.308 0.436 0.551

AspectJ 0.217 0.315 0.228 0.406 0.506 0.628

PDE 0.219 0.33 0.208 0.479 0.604 0.667

JDT 0.103 0.223 0.162 0.275 0.385 0.474

Tomcat 0.268 0.390 0.276 0.511 0.598 0.701

[RQ2] Change Level Results – Case Study

Bug #56905 of Tomcat Locus : ranked the inducing change at 1st

58 lines including contextual lines

AmaLgam : ranked the buggy file as 21st

Bug #56199 of Tomcat

Both Locus and AmaLgam ranked as Top 1

37

The inducing change contains 32 lines

of code while the whole file contains

864 lines.

[RQ3] Contributions of Each Model

Contributions of Each Model at Source Level

 NL Model

0.348 0.402

MAP MRR

38

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ZXing
SWT

AspectJ
PDE
JDT

Tomcat

MAP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ZXing
SWT

AspectJ
PDE
JDT

Tomcat

MRR

[RQ3] Contributions of Each Model

Contributions of Each Model at Source Level

 NL Model

 NL + CE

0.348 0.402

23.6% 23.7%

MAP MRR

38

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ZXing
SWT

AspectJ
PDE
JDT

Tomcat

MAP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ZXing
SWT

AspectJ
PDE
JDT

Tomcat

MRR

[RQ3] Contributions of Each Model

Contributions of Each Model at Source Level

 NL Model

 NL + CE + Boosting

0.348 0.402

5.1% 5.7%

MAP MRR

38

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ZXing
SWT

AspectJ
PDE
JDT

Tomcat

MAP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ZXing
SWT

AspectJ
PDE
JDT

Tomcat

MRR

 NL + CE

23.6% 23.7%

Conclusions

 Bug inducing changes can help developers in debugging.

 Software changes can benefit IR-based bug localization

techniques.

We propose Locus based on our observations, the evaluation

results show that Locus outperforms the state-of-the-art

approaches.

39

Future Work

We plan to leverage more properties of software changes

(e.g. ownership, change patterns) to improve the performance

at the change level.

We plan to conduct user studies to evaluate the practical

usefulness.

40

Q & A

41

