
Metamorphic Testing/

A New Approach for Generating Next Test Cases y

T! Y! Chen

Department of Computer Science3 The University of Melbourne

Parkville =>?@3 Australia

BtycCcs!mu!oz!auE

S! C! Cheungx

Department of Computer Science3 The Hong Kong University of Science and Technology

Clear Water Bay3 Kowloon3 Hong Kong

BsccCcs!ust!hkE

S! M! Yiu

Department of Computer Science3 The University of Hong Kong

Pokfulam Road3 Hong Kong

BsmyiuCcs!hku!hkE

Abstract

In software testing, a set of test cases is constructed according to some prede2ned selection

criteria4 The software is then examined against these test cases4 Three interesting observations

have been made on the current artifacts of software testing4 Firstly, an error#revealing test case is

considered useful while a successful test case which does not reveal software errors is usually not

further investigated4 Whether these successful test cases still contain useful information for revealing

software errors has not been properly studied4 Secondly, no matter how extensive the testing has

been conducted in the development phase, errors may still exist in the software >?@4 These errors, if

left undetected, may eventually cause damage to the production system4 The study of techniques

for uncovering software errors in the production phase is seldom addressed in the literature4 Thirdly,

as indicated by Weyuker in >C@, the availability of test oracles is pragmatically unattainable in most

situations4 However, the availability of test oracles is generally assumed in conventional software

testing techniques4 In this paper, we propose a novel test case selection technique that derives new

test cases from the successful ones4 The selection aims at revealing software errors that are possibly

left undetected in successful test cases which may be generated using some existing strategies4 As

such, the proposed technique augments the eFectiveness of existing test selection strategies4 The

yThis project was partially supported by a grant from the Australian Research Council and the Hong Kong Research

Grant Council<
xCorresponding Author

G

Published as Technical Report HKUST-CS98-01, Department of Computer Science

The Hong Kong University of Science and Technology, 1998.



technique also helps uncover software errors in the production phase and can be used in the absence

of test oracles3

Keywords4 Selection of Test Cases8 Software Quality8 Software Testing

 Introduction

Although errors exist in most software systems8 they cannot be tolerated in general3 This is partic?

ularly the case if software systems are deployed for safety?critical applications3 Improving software

reliability has been a major issue in software engineering3 Software Testing is by far the most widely

used approach to examine the correctness of a piece of software before it is released for production3

In software testing8 a piece of software is tested against a set of test cases generated by a predeBned

test selection strategy3 A test case is error-revealing if it detects a software errorC otherwise it is

called successful DEF3 Error?revealing test cases are generally regarded to be more informative than

the successful ones as they demonstrate the existence of software errors3 Correction of such errors

improves the software reliability3

No matter how extensive testing has been conducted in the testing phase during software de?

velopment8 errors may still exist in a software system after it has been released for production DIF3

Due to the massive volume of production data8 outputs of a system in the production phase are

not normally veriBed3 If these errors remain undetected in the production phase8 they can have

catastrophic consequences3 Hence8 new techniques for identifying program errors in the production

phase should be developed3 In view of this8 Blum DM8 NF recently introduced the concept of program

checking 3 A program checker is another program specially written to verify the output of a given

program3 This checker can be PembeddedQ in a system for automatic output veriBcation in both

the testing and production phases3 A program output is deBnitely incorrect if it is rejected by the

checker3 However8 acceptance of the output does not guarantee its correctness3 In other words8 not

all incorrect outputs can be identiBed and there may still be program errors which are not revealed

by the current input3 Obviously8 more should be done in enhancing the conBdence of the software

in the production phase3

Software testing techniques generally assume the availability of a test oracle3 However8 as indi?

cated by Weyuker DTF8 this assumption may not hold in practice3 For example8 it is diVcult to check

if a path in a non?trivial graph is the shortest3 This is particularly the case for applications in their

production phases3 It is therefore useful to have a technique which does not assume the availability

of such oracles3 In this paper8 a novel technique for test cases selection is proposed which constructs

new test cases from successful test cases8 aiming at revealing further software errors3 The technique

also helps uncover software errors in the production phase and can be used in the absence of test

oracles3 As our method is applicable to applications in both development and production phases8

for simplicity8 the inputs in the production phase will hereafter be referred to as test cases3 A test

case together with its test result will be referred to as an input?output pair3 In our approach8 the

generation of new test cases is based on the input?output pairs of previous test cases Win particular

on the successful onesX and the types of errors usually associated with that particular type of appli?

cations3 In other words8 we always assume that there are errors inside the software in spite of the

apparently correct output produced from the current input3 The approach is considered fault-based

N



as new test cases aim at uncovering speci/c errors which left undetected in previous successful test

cases4 We call this approach Metamorphic Testing because new test cases are evolved from the old

ones that are normally selected according to some existing selection criteria including the random

selection strategy4

We wish to point out that metamorphic testing is to be used with other test case selection

strategies4 Based on each test case selected according to a speci/c strategy and its output result: a

number of new test cases can be designed to further test the software and increase our con/dence

in the software4 Furthermore: metamorphic testing can also be combined with Blum<s program

checker which stops after the veri/cation of the corresponding output is done but does not suggest

further testing4 There is a practical consideration in Blum<s checker4 The execution time taken by

the checker must be less than that taken by the program being checked4 Checkers satisfying this

constraint are said to have the oh property @ABCD Otherwise: the checker may be impractical4 In some

cases: under this time constraint: an aGrmative answer of whether the output is correct may not

be possible4 Sorting is one of the examples that Blum used to illustrate this situation4 In order to

have an aGrmative answer of whether the output is correct: O@n lognD time is required but it is too

expensive4 Randomized checking can be used to give a probabilistic con/dence on the correctness

of the result4 Our method: on the other hand: can still be applied even when it is computationally

expensive to do the checking4 Like program checkers: metamorphic testing can be applied in both

the testing and production phases4

As metamorphic testing generally requires the use of problem domain knowledge: the approach

is illustrated using several program examples4 Section B states the preliminaries and examples are

presented in Section N4 Concluding remarks are presented in Section O4

 Preliminaries

Given a program P and a test case x: the corresponding output is denoted by P @xD4 Assume x is

a test case with output P @x D4 Our approach is to construct a number of new test cases x!: x": $ $ $:

xk based on the inputQoutput pair @that is: @x : P @x DDD and the errors usually associated with P 4

These new test cases are designed to reveal the errors which go undetected by the test case x 4

The time for the construction of each new test case and the checking on the corresponding output

are assumed to be strictly less than the execution time of the program4 This requirement is in line

with Blum<s oh property of program checkers4 In practical situations: we should try to minimize the

time for the construction and checking4 Access to individual elements in the database or the data

structure is allowed as long as the overall construction time and the checking time satisfy the above

constraint4 For example: if the program searches for a target in an array A: an inspection of AAiC

is allowed to design the next test case4 There is another practical concern of the newly constructed

test cases4 In the production phase: these test cases should not modify the production database4

However: in the testing phase: this is allowed4 In other words: test cases which modify the content

of databases should not be performed in the production phase4 In section N: a number of examples

are given to illustrate this idea4

N



 Examples

 !" Example "* Binary Search on Sorted Array

Consider a program which locates the position of a given key in a sorted array with distinct elements

using binary search7 The program should return the position of the key if it exists or a value of :;

otherwise7

Let us assume that the input is =x> A?i##j@A and the output is k7 Depending on the input:output

pair> we have the following casesC

Case $ C Suppose A?k@  E x7 Obviously> there is an error in the program7

Case % C Suppose k E :;7 Either x does not exist in A or there is a program bug that makes the

program report non:existence7 If A is known> this can be veriIed easily7 However> under a production

environment> A is usually a huge database and it is impractical to scan the entire database in order

to conIrm that x does not exist in A7 To increase the conIdence that the program does not commit

this type of error> randomly select an entry> A?p@> and rerun the program using the test case =A?p@>

A?i##j@A for which the expected output is p7 This can be considered as program checking7 As a

remark> in subsequent discussion> some of the test cases are useful in both testing and production

environments while others may be more appropriate in only one of them7

Case & C Suppose A?k@ E x7 Under the assumption that the program still has bugs despite this

apparently correct output> there are at least two possible errors7

The NcorrectN output is due to a program bug which overwrites the content of A?k@ with x7 Before

designing a test case to detect this error> check A?k ! ;@ ' x ' A?k P ;@7 If this is not correct> an

error is revealed7 Replace A?k ! ;@ and A?k P ;@ with !" and P" respectively if either of them

does not exist7 Otherwise> choose a y such that A?k ! ;@ ' y  E x ' A?k P ;@7 Rerun the program

with the test case =y> A?i##j@A for which the expected value is :;7 If it is not feasible to get a y

within this range> then try to choose a y such that A?k ! r@ ' y  E z ' A?k P r@ where z  E A?j@ for

k! r ' j ' kP r from r E R onwards until either such a y is found> or it is not feasible to Ind such

a y> or a reasonable number of unsuccessful attempts have been tried7 Similarly> if either A?k ! r@

or A?k P r@ does not exist> replace it by !" and P" respectively7

The output is correct but there is a splitting error which is not revealed by this test case7 Rerun

the program using test cases> =A?k! ;@> A?i##j@A and =A?kP;@> A?i##j@A> which aim at uncovering this

type of error7 The expected results are k ! ; and k P ; respectively7 If either A?k ! ;@ or A?k P ;@

does not exist> replace it by A?b i j

!
c ! ;@ and A?b i j

!
c P ;@ respectively7 The reason for choosing

=A?b i j

!
c ! ;@+ A?i##j@A and =A?b i j

!
cP;@+ A?i##j@A as test cases is that A?b i j

!
c@ is guaranteed to exist

and if there is a splitting error> both of these test cases have a similar capability as A?k ! ;@ and

A?kP;@ in revealing this bug7 If both of them do not exist> A has only one element7 Hence> no more

testing is required7 As an illustration> the following shows an incorrect function with a splitting

error at line ;S7 The parameter passed to the recursive call is incorrect> the element A?mid P ;@ is

missing7

 ! int BinSearch,x.A.i.j1

2! 3

4! if ,i 6 j1

7! return 9 

T



 ! else

%! &

'! mid + floor//i0j23425

6! if /A8mid9++x2

;! return mid5

?@! if /A8mid9 A x2

??! BinSearch/xGAGiGmidH?25

?4! else

?I! BinSearch/xGAGmid04Gj25 3J correct statement isK J3

?L! M 3J BinSearch/xGAGmid0?Gj25 J3

? ! M

Let the input arrayA be ,- .- /0- /1- /2- 31- ,0 and the key x be 31- the function call BinSearch<x-

A- /- => will return a value of .A The output is correct with respect to this particular test caseA

Using the above constructed test cases- both the test cases </2- A- /- => and <,0- A- /- => will reveal

this errorA

Table / summarizes these possible cases with the exceptional handling left outA Since the purpose

of the examples is to illustrate the idea- the errors listed in each example are by no means exhaustiveA

Also- the array A used in the examples is for illustration purposes only- it can represent a production

database and need not be passed to the function by parameterA

New Test Case
Condition Inputs Suspected Error Expected Result

Incorrect
A6k7  8 x None position returned N9A9

Report non;existence
k 8 ;< =A6p7> A6i%%j7? for any p even if the key exists return p
x ' A6kE <7 or x ( A6k ! <7 None Overwriting error N9A9

=y> A6i%%j7? where
A6k!<7 ( A6k7 8 x ( A6kE<7 A6k ! <7 ( y  8 x ( A6k E <7 Overwriting error return ;<

return k ! < and
=A6k! <7> A6i%%j7? and =A6kE <7>
A6i%%j7?

Splitting error k E < respectively

Table /J Possible Test Cases for Example /

 !" Example "* kth Occurrence of x in Unsorted Array

Given an input <x- k- AOi$$jP>- the problem is to locate the kth occurrence of a key x from an unsorted

array AOi$$jP where j  iQ / ! k ! /A The output should be the position of the kth occurrence of x

if it exists or R/ otherwiseA

Assuming that the output is p- consider the following casesJ

Case $ J Suppose AOpP "S xA A program error is revealedA

Case % J Suppose p S  /A To increase our conTdence that the program will not report nonR

existence if the key does exist- randomly choose an element AOrP and rerun the program with the

test case <AOrP- /- AOi$$jP>A Since AOrP is in the array- the expected result must be any valid index

other than R/ and p # rA

1



Case $  Suppose A'p( ) x* That is0 the output looks correct* There may be at least two possible

errors*

One possible error is due to overwriting* The content of A'p( may be overwritten by x0 or the

program starts overwriting the subsequent array entries only after it hits the @rst occurrence of x*

For the former case0 design two new test cases as follows* One is By0 C0 A'p$$p(D and the other is By0

C0 A'p  C$$p E C(D where y !) A'p  C(% x% orA'p E C(* If either A'p  C( or A'p E C( does not exist0

ignore it when choosing the value of y and change the second test case to By0 C0 A'p$$p E C(D or By0

C0 A'p C$$p(D respectively* The expected results for both test cases are HC* The reason we need the

second test case is that some of the loops inside the program may not be executed if A has only

one element* For the latter case0 scan A starting from the element A'p( until an element A'r( !) x*

Rerun the program with the test case Bx0 J0 A'r C$$j(D for which the expected value is either greater

than r or is HC* However0 if the scanning process takes too long or such an r cannot be found Bthat

is0 A'q( ) x for all p " q " jD0 the construction of such a test case should be abandoned since the

construction becomes impractical*

If there is no overwriting error0 the program may report the qth occurrence of x where q !) k*

The two test cases0 Bx0 C0 A'p$$p(D and Bx0 C0 A'p$$j(D0 are designed to reveal this error* The expected

results for both cases should be p*

Table J summarizes these possible cases*

New Test Case
Condition Inputs Suspected Error Expected Result

Incorrect
A6p7  8 x None position returned N9A9

Report nonexistence return m
p 8 ;< =A6r7> <> A6i&&j7? for any r despite the key exists m ! r

Report qth occurrence
=x) <) A6p&&j7? or =x> <> A6p&&p7? where q  8 k return p

A6p7 8 x =y> <> A6p&&p7? or =y> k> A6p" <&&pD <7?
where y  8 A6p" <7) x)A6pD <7 Overwriting error return ;<

return ;< or
=x) H) A6r " <&&j7? m where m , r

Table J Possible Test Cases for Example J

The function given below has an initialization error at line P* The variablem should be initialized

to C0 so the position returned by the function is0 in fact0 the Bk E CDth occurrence of x* Under the

test case BC0 J0 C0 P0 C0 R0 C0 P0 JD0 the output is S* With the test case BC0 C0 C0 P0 JD0 the error can be

revealed*

 ! int search+x-k-A-i-j1

2! 3

4! int p6i- m689 :; correct initialization? m6 9 ;:

@! int found689

D! while ++pF6j1 GG +Hfound1 GG +mF6k11

I! 3

J! if +AKpL 66 x1

M! mNN9

O! if +m66k1

 Refer to the description for how to determine r9

U



 !" found( )

  " else

 -" p//)

 0" 1

 2" if 4found5

 6" return p9 )

 :" else

 ;" return 9 )

 <" 1

 ! Example  ) Shortest Path in an Undirected Graph

Given a weighted graph G- a source node x- and the destination node y in G- the problem is to

output the shortest path and the shortest distance from x to y6

Let us assume that the output path is x# v # v!# % % % # vk# y and the corresponding distance is p6

This output is di9cult to check even in the testing phase if the input graph G is non;trivial6 The

only trivial checking is to verify that =x# v >- =v # v!>- % % %- =vk  ?# y> are edges of G6 In this case- a

practically feasible test oracle does not exist6 One common error of the program is that in extending

the shortest path from x to y- the minimum distances from x to the unvisited vertices are not

correctly updated6 In other words- the subpath of the returned CshortestD path is not the shortest6

Based on this particular fault- one of the possible test cases is =y- x- G> for which the expected

shortest distance is p6 The rationale for this test case is that if the returned path is not the shortest

due to the updating error for the partial path- the program error will most likely give rise to a

diFerent path of diFerent length as diFerent updating error may be made6 Clearly- this test case is

not applicable in a directed graph6 Another possible test case with the same design principle- which

can be used in both undirected and directed graphs- is =x# vi# G> and =vi# y# G> where ? ! i ! k6

Other possible test cases based on this particular fault are shown in Table I6

New Test Case
Condition Inputs Expected Result

return the same shortest distance7 p8
9y" x"G: 9path may not be the same:
9x" vi" G: and 9vi" y" G:
for any >  i  k the sum of two distances ? p

x" v " v!" ( ( ( " vk" y 9y" vi"G:
 and 9vi" x"G:

 

is a feasilbe path for any >  i  k

9v " vk" G: the sum of returned distance and
length of 9x" v : and 9vk " y: ? p

9vk " v " G:
 

Table IJ Possible Test Cases for Example I

The following function should output the shortest path and calculate the shortest distance from

x to y in the graph G6 However- there is an updating error in the statement at line ?I6 The correct

statement should be DOvP Q min=DOvP- DOkPRGOk-vP>6

 These test cases are not applicable if G is a directed graph8

S



 ! int ShortestDist,x.y.G1

2! 3

4! S53x67 for all i. P<i=5x7 >? store shortest path ?>

A! int i. k5C7

D! for ,i5 7 iE5n7 iFF1

G! D<i=5G<x=<i=7

H! while ,k J5 y1

K! 3

L! choose k in VOS

 C! such that D<k= is minimum7

  ! S5SF3k67

 2! for each vertex v in VOS >? correct statementS ?>

 4! D<v= 5 D<k= F G<k.v=7 >? D<v=5min,D<v=.D<k=FG<k.v=17 ?>

 A! if ,D<k=FG<k.v=1 E5 D<v=

 D! P<v= 5 k7 >? update path ?>

 G! return D<k=7

 H! 6

Consider the following graph G0 If the input is 3c4 a4 G54 then the output will be 78 and the

shortest path will be cdba0 If G is large4 it is di9cult to verify the answer0 However the test case

3a4 c4 G5 and the test cases 3c4 b4 G5 and 3b4 a4 G5 together are able to reveal this program error0� �
� � �

� � � ��
�

	 �� 

Figure @A An Input Graph for Example 7

 !" Example "* Solving a System of Linear Equations by Gaussian Elim;

ination

Consider a program which solves a system of linear equations4 Ax G b by using Gaussian elimination

whereA is the square matrix of coe9cients and b is a column vector0 The idea of Gaussian elimination

is to perform elementary operations on the augmented matrix IAjbJ until either the resulting matrix

II jcJ is found where I is the identity matrix and c will be the solution4 or the procedure returns no

solution if matrix A is singular0

K



Let us assume that the input is +A, b- and the output is x 0 To check whether x is a solution

of the system, we can subsitute x into the equations0 This can be done manually if the number of

equations is small or using another program0 This approach can be easily adopted in the program

checker0 Depending on the input=output pair, we have the following cases?

Case $ ? Suppose Ax  A b0 Obviously, there is an error in the program0

Case % ? Suppose Ax A b0 Under the assumption that the program still has errors despite this

apparently correct output, there are at least three possible types of errors in the program according

to the domain knowledge that this type of programs will usually contain three main parts in each step

of the elimination? choosing an appropriate pivot, performing elementary operations to transform

A to I , and performing elementary operations to transform b to c0 In this paper, only the Erst type

of errors will be discussed0 A comprehensive treatment of the detection of other errors in numerical

problems using metamorphic testing can be found in GHI0

The idea for using metamorphic testing comes from the fact that if we prepare a new input pair

by interchanging any two rows of A and the corresponding entries of b, the output will be the same

as the output given the original input pair +A, b-0 The Guassian elimination involves the selection

of a pivot0 If there are errors in the program, it may select for the new input pair a diKerent pivot or

make another mistake when transforming +A, b- to +I , c-0 As a result, the program gives a diKerent

output for the new input pair0 Similarly, the input pair for additional test cases may be generated by

interchanging the columns of A to derive new test cases0 To be more precise, let the original input

pair be +A, b- and the corresponding output be x where x A +x!, x", 0 0 0 , xn-0 Upon a successful

test case, two additional test cases can be constructed0 First, we can pick two rows arbitrarily in

the input pair, say row i and row j0 Interchange entries of row i with that of row j to give a new

matrix A 0 Swap the ith entry of b with the jth entry to give b 0 The expected output x of the new

input pair +A , b - should be equal to x0 Otherwise, an error is revealed0 Similarly, we can construct

another test case by interchanging two columns in A, say column i and column j, to give a new

matrix A  0 Using the new input pair +A  , b-, the expected output will be x  where x  

i A xj , x
  

j A

xi, and x
  

k A xk for k  A i( j0 Table N summarizes these two additional test cases0

New Test Case
Condition Inputs Expected Result

4A 5 b 6 where
A is obtained from A by
swapping row i and j and x > x
b is obtained from b by

Ax > b swapping corresponding entries?
4A  5 b6 where
A  is obtained from A x  > 4x 5 ? ? ? 5 xi! 5 xj 5 xi! 5 ? ? ? 5 xj! 5 xi5 xj! 5 ? ? ? 5 xn6
by swapping col i and j
with i % j?

Table N? Additional Test Cases for Example N

Case & ? A is singular0 This case will not be discussed in this paper0 Please refer to GHI for more

details0

As an example, consider the following function0 It contains an initialization error in variable max

at line S which will lead to an incorrect selection of pivot0 Let the input pair +A, b- be?

T



A  

 
!"
! " #

" " #

# # #

#
$%

b  

 
!"
!

!

!

#
$%

The output x  +,- ,-  

!
. is correct3 However- if we interchange row " with row # in A- the

program will report no solution3 It should be pointed out that if the program checker veriAes the

output only by subsituting the vector x back to the equations- this error may not be detected3

 ! void Gauss*A,b.

/! 0

1! int max6 78 used for locating pivot 87

@! int pivot A B6

C! for j A  to n 0 78 transformation of EAFbG to EIFcG 87

I! max A /6 78 correct initializationK max A B 87

L! for i A j to n 78 locating pivot 87

M! if *abs*AEiGEjG. NA max. 0 78 update pivot 87

O! max A abs*AEiGEjG.6

 B! pivot A i6 P

  ! if *pivot QN j. 0 78 assume no error 87

 /! interchange*AEpivotG, AEjG.6

 1! interchange*bEpivotG, bEjG.6 P

 @! if *AEjGEjG AA B.

 C! return*S .6 78 no solution 87

 I! remaining steps P 78 assume no error 87

 L! Calculate solution vector x6 78 EIFcG should be obtained 87

 M! P

 Conclusion

In this paper* we have proposed a new approach for generating test cases calledMetamorphic Testing 3

This approach aims at uncovering those errors which are commonly found in similar applications3

Test cases are generated according to the input8output pair of an 9apparently: successful test case*

which is selected using some well known criteria3 The test cases generated target those errors which

are possibly left undetected by the previous successful test case3 Metamorphic Testing enables soft8

ware practitioners to design additional tests and hence improve the software reliability3 It augments

the e>ectiveness of the existing testing strategies by making use of the corresponding successful test

cases to construct additional test cases3

In our approach* the design of next test cases need not depend on complicated theories3 Rather

it is based on programming experience and testing experience3 Examples are given to show that

this approach is feasible and that the newly constructed test cases are useful in revealing some

common errors3 The approach is applicable in both the testing and production phases and does

not rely on the assumption of a test oracle3 We Cnd its application to the situations without test

DE



oracles particularly interesting as the problem is legitimate and has not been adequately addressed

by existing testing techniques4 Another advantage of the proposed approach is that it does not

depend on any particular test case selection strategy8 so it can be easily used along with other test

case selection strategies and can be easily combined with Blum;s program checker4

While the primary objective of this paper is to present the motivation of the approach and its

applicability8 a methodology supporting such an approach has yet been fully developed4 Our ultimate

goal is to provide a concrete methodology leading to the pragmatic construction of @next@ test cases4

As metamorphic testing requires problem domain knowledge in general8 we expect that a domain

speciAc methodology should be developed4 To facilitate the development of such a methodology8 we

are studying various criteria of classifying programs into their appropriate domains4

Acknowledgements

We would like to thank F4T4 Chan and M4F4 Lau for helpful discussion on the paper4 In particular8

example H is extracted and modiAed from an example in a manuscript by Chan8 Lau8 and the

authors44

References

IJK M4 Blum8 @ProgramChecking@8 Foundations of Software Technology and Theoretical Computer

Science8 Lecture Notes in Computer Science8 Vol4 PQR8 pp4 JST8 JTTJ4

IUK M4 Blum8 @Program Result CheckingW A New Approach to Making Programs More Reliable@8

Automata8 Languages and Programming8 ;<th International Colloquium8 Lecture Notes in

Computer Science8 Vol4 XRR8 pp4 JSJH8 JTTY4

IYK F4T4 Chan8 T4Y4 Chen8 S4C4 Cheung8 M4F4 Lau8 and S4M4 Yiu8 @Application of Metamorphic

Testing in Numerical Analysis@8 manuscript in preparation8 JTT[4

IHK L4J4 Morell8 @A Theory of FaultSBased Testing@8 IEEE Transactions on Software Engineering 8

Vol4 JQ8 No4 [8 pp4 [HHS[PX8 JTTR4

IPK G4J4 Myers8 The Art of Software Testing 8 New YorkW Wiley8 JTXT4

IQK E4 Weyuker8 @On Testing NonSTestable Programs@8 The Computer Journal 8 Vol4 UP8 No4 H8

pp4 HQPSHXR8 JT[U4

JJ


