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ABSTRACT

Various information retrieval (IR) based techniques have
been proposed recently to locate bugs automatically at the
file level. However, their usefulness is often compromised
by the coarse granularity of files and the lack of contextual
information. To address this, we propose to locate bugs
using software changes, which offer finer granularity than
files and provide important contextual clues for bug-fixing.
We observe that bug inducing changes can facilitate the bug
fixing process. For example, it helps triage the bug fixing
task to the developers who committed the bug inducing
changes or enables developers to fix bugs by reverting these
changes. Our study further identifies that change logs and
the naturally small granularity of changes can help boost
the performance of IR-based bug localization. Motivated
by these observations, we propose an IR-based approach
Locus to locate bugs from software changes, and evaluate
it on six large open source projects. The results show that
Locus outperforms existing techniques at the source file level
localization significantly. MAP and MRR in particular have
been improved, on average, by 20.1% and 20.5%, respectively.
Locus is also capable of locating the inducing changes within
top 5 for 41.0% of the bugs. The results show that Locus can
significantly reduce the number of lines needing to be scanned
to locate the bug compared with existing techniques.
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and debugging; Software evolution; eInformation sys-
tems — Retrieval models and ranking;
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1. INTRODUCTION

Bug localization using Information-Retrieval (IR) based
techniques [26, 33, 42, 46] has been shown to be effective. It
enjoys the advantage of not requiring program traces, which
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may not be obtainable in real-life systems. The intuition is
that bug reports and the corresponding buggy source files
share similar tokens, and thus bug locations can be retrieved
from bug reports based on the token similarities calculated
by various retrieval models [20, 31]. Although the general
effectiveness of IR-based techniques has been demonstrated,
recent studies [29, 36] have identified two major issues that
can greatly hinder the practical usefulness of these techniques.
Wang et al. [36] pointed out that existing works produce
results at the source file level, which is coarse-grained and
still leaves developers with a large amount of code to examine
before they successfully find the buggy code. Parnin et al.
[29] pointed out that locating buggy modules in isolation
may not provide adequate information for developers to
understand the bugs, and more contextual clues are desired.
To address these issues, we propose to locate bugs in terms
of software changes rather than source files. Our idea is
inspired by the observation that bug inducing changes (i.e.,
the changes which introduce a bug) are one of important
clues for developers to understand and fix a bug. We find
that bug inducing changes can bring about the following
three benefits. First, since a bug inducing change records the
developer who committed it, it can help activities like bug
triaging. Our empirical study shows that around 70% to 80%
of bugs are fixed by the developer who introduced the bug.
Second, reverting a bug inducing change is a common way to
fix bugs as pointed by existing work [21]. Third, it has been
shown that the granularity of software changes is fine-grained
[13], and debugging at the change level can significantly save
efforts as compared with that at the source file level [13].
Since bug inducing changes are useful for debugging, we
then investigated the feasibility of applying IR-based tech-
niques to locate bugs at the change level. While locating bug
inducing changes is challenging due to the massive number
of changes and the limited information in bug reports, we
observe that software changes can indeed facilitate IR-based
bug localizations. First, change logs describing the intention
or functionality of the changed code often contain substantial
information. Common tokens are found between the log of
a bug’s inducing change and its bug report. These common
tokens can be leveraged by IR-based techniques to locate
bug inducing changes. Second, change hunks (i.e., a group
of contiguous lines that are changed along with contextual
unchanged lines) are intrinsically small in size. Bug related
changes are associated with small size commits[6], which
indicates that using change hunks can be an alternative way
to segment source files [39]. This can mitigate the noise prob-
lem identified by existing studies [39, 42] in locating bugs
using large files. Lastly, the performance of bug localization
can be boosted by leveraging change histories. Bug fixing



histories inferred from the changes have been widely used
for defect prediction [1, 18, 30] and bug localization [42].

Based on these observations, we propose an IR-based bug
localization approach called Locus, which can locate bugs at
both the change and source file levels. Unlike existing tech-
niques, LOCUS retrieves information from software changes
instead of source files. Besides extracting natural language
tokens from software changes as current techniques [25, 33,
36] do, Locus also extracts the code entity names (i.e., pack-
age name, class name, method name). The reason is that
these entities modified in the changes may alter the behaviors
of the system, or even induce bugs. Therefore, two corpora
based on natural language tokens and code entity names are
created. LOCUS separately indexes these two corpora and
generates two rankings by applying the Vector Space Model
(VSM), which is explained in Section 3. Apart from these
two corpora, LOCUS also leverages the information of change
histories to generate an additional ranking as follows. For
source file level localization, a suspicious value for each file to
contain faults is computed based on its fixing histories. For
change level localization, a boosting score for each change is
calculated based on its committed time and the bug report-
ing time. Locus later combines these three rankings and
generates the final localization results.

We evaluated LOCUS on six large open source projects.
For bug localization at the source file level, the results show
that it can successfully locate the buggy files and rank them
within the top 5 for 68.5% of the bugs and within the top 10
for 74.6%. Locus outperforms the current state-of-the-art
tools for all subjects. The MAP and MRR are respectively
improved by 20.1% and 20.5% on average. To the best of
our knowledge, Locus is the first IR-based technique to
locate bug inducing changes based on bug reports without
requiring any knowledge of the associated bug-fixing patches.
Although there are some studies for collecting bug inducing
changes [17, 34], all of them require the knowledge of bug
fizing patches, which is unavailable before the bug is fixed.
The experiments showed that Locus can locate the inducing
changes and rank them within the top 5 for 41.0% of the
bugs. Our results further show that the number of lines
which need to be scanned to locate the bug has been reduced
significantly compared with existing approaches. These re-
sults are promising and show the effectiveness of Locus. In
summary, the main contributions of this paper are:

e We conducted an empirical study to show the usefulness
of bug inducing changes and the benefits that IR-based
bug localization techniques can get from software changes.
We proposed Locus, a new IR-based bug localization
method that can effectively locate bugs from software
changes. To the best of our knowledge, we are the first
to create a text corpus from software change hunks in
IR-based bug localization techniques.

We evaluated LOCUS on six open source projects. The
results indicate that Locus can locate bugs with high
accuracy and outperform the existing state-of-the-art ap-
proaches at the source file level. Besides, LoCcus can also
get promising results in locating bug-inducing changes.

The rest of the paper is structured as follows. Section
2 introduces the background and motivation. We present
our approach and its architecture in Section 3. The experi-
ment setup follows in Section 4, which covers the datasets,
evaluation metrics and the four proposed research questions.
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Section 5 presents the experimental results in detail and
answers the four research questions. Threats to validity are
covered in Section 6. Related work is introduced in Section
7 and Section 8 concludes this work.

2. BACKGROUND AND MOTIVATION
2.1 Change Hunks

When software evolves, changes are committed to fix bugs,
introduce new features or refactor source codes. A committed
change could modify multiple files. A file can be modified at
one or more places, and each of them is called a hunk or a
delta. A hunk is a group of contiguous lines that are changed
along with contextual unchanged lines [6]. Figure 3 shows two
hunk examples of source file WsServerContainer. java. One
introduces a bug and the other fixes the bug. We call those
modified lines the changed lines, which are highlighted
in color in the example. The contextual lines are those
unchanged lines which are displayed in black in the example.

Changes made by developers can induce new bugs [13, 16,
34, 43]. As a system evolves, the number of bugs induced by
committed changes will outnumber those that are induced
by the initial codes (code introduced in the first version of a
source file). Figure 1 shows the number of bugs caused by
the initial source files and that by the subsequent software
changes of a popular Apache project Tomcat. We extracted
all the changes starting from the release time of Tomcat
which is Mar-23-2006 to Aug-27-2015. Fixing changes among
all these changes were then identified by heuristic [9], and
the SZZ algorithm was then applied to identify the inducing
changes based on these fixes [34].
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Figure 1: Comparison between the Number of Bugs
Induced by Software Changes and the Initial Source
Files of Tomcat
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After obtaining the inducing changes, we distinguished
whether the bug is introduced by the initial code or the
subsequent changes. Figure 1 shows that the number of
bugs caused by the initial code is larger than that induced
by changes at the beginning after the release of Tomcat.
However, more bugs are soon induced by the subsequent
committed changes, and the gap between the number of the
two types of bugs becomes larger and larger.

2.2 The Uses of Bug Inducing Changes

Locating buggy modules in isolation may not provide ade-
quate information for developers to understand and fix a bug
[29]. We found that the information of bug inducing changes
has the potential to address this issue. First, most of the
bugs are introduced by changes as discussed in Section 2.1.
Second, bug inducing changes contain important information
for developers to understand and fix a bug. We found evi-
dence of this in 761 Apache bug reports and 1733 Eclipse bug



reports that contain discussions about bug inducing changes.
The following are extracts of some of the discussions.

“This regression was caused by bugzilla 257440. That patch
was reverted and this is now fized. *”

“Ouch, that’s my fault. ... We should revert revision
484642 ASAP. 27

To further understand developers’ perspective on the use-
fulness of bug inducing change, we sent emails to developers
from open source projects surveying whether bug inducing
changes helped fix their bugs and what actions they would
take if bug inducing information was available. The following
shows some of the representative feedback.

“It can be a eureka moment for the developer, where they
see the inducing change and say ‘I know exactly why this is
happening’, thus resulting in a fix typically in a matter of
days, even hours. It really is a critical piece of the puzzle.”

“The action taken is usually getting the responsible devel-
oper to either A) back out the change or B) code and land a
follow-up fix as soon as possible. ”

Here, we summarize three aspects to show the benefits of
using bug inducing change information for bug fixing.

First, since a bug inducing change records the developer
who committed it, it facilitates triage the bug to the developer
who is the most familiar with the buggy code. To confirm
the benefit, we further investigated how many bugs are fixed
by the developer who introduced the buggy code.

We studied the ratio of those bugs for three open source
projects SWT, JDT and Tomcat. Table 1 shows the detailed
results. On average, 77.86% of the bugs were fixed by the
committer of the corresponding introducing changes. As bug
inducing changes can facilitate triaging bugs automatically,
this can save developers’ manual efforts in this process. To
quantify the efforts saved, we investigated how much time
it requires to triage the bugs. We only investigated the
JDT and SWT projects, since they recorded the bug triage
activities in detail. We followed the existing approach [12] to
measure the bug triage time. Figure 2 shows that the bug
triage time is non-trivial. The median bug triage time in
JDT and SWT is 15 and 42 days respectively. These manual
efforts could be saved if bugs can be triaged automatically
by leveraging the information of inducing changes.

Table 1: Ratio of Bug Reports Whose Fixing De-
veloper is the Same as the Developer of the Bug
Inducing Change

Subject #Dev #Bugs #Same Ratio (%)

SWT 3.1 86 97 65 67.0%

JDT 4.5 95 94 67 71.3%
Tomcat 8.0 29 193 167 86.5%
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Figure 2: Bug Triage Time for JDT and SWT (days)
The second benefit is that reverting bug inducing changes is
a common way to fix bugs as pointed out by the existing work

Thttps://bugs.eclipse.org/bugs/show_bug.cgi?id=262975
https://bz.apache.org/bugzilla/show_bug.cgi?id=41551

[21] and this was also confirmed with developers’ feedbacks
in our study.

Another benefit is that debugging at the change level can
significantly save effort when compared with coarser-grained
debugging at source file level [13], since changes and hunks
are small in size [6]. We compared the size of hunks, changes
and source files in terms of lines code for project SWT,
JDT and Tomcat. The median lines of code that a hunk
contains is 8 for all three projects. For changes, the median
numbers of lines are 27, 54, and 28 for SWT, JDT and Tomcat
respectively. Source files contain more lines of code, with
the median numbers 48, 136.5 and 125 accordingly. Among
these three code elements, hunks offer the finest granularity
while source files the coarsest ones.

2.3 Motivations of Using Software Changes in
IR-Based Bug Localization

The above findings motivate us to locate the bugs at the
change level. In this subsection, we investigate whether it is
feasible to use software changes in IR-based bug localization.
Case studies are then conducted to show that IR-based tech-
niques can benefit from three aspects: informative change
logs, change hunks’ fine granularity, and the change histories.

2.3.1 Informative Change Logs

Change logs often contain substantial information that
helps infer the intention or the functionality of the changed
code. Such information can be leveraged by IR-based tech-
niques. For example, Figure 3 shows the brief summary of
bug #56905 from project Tomcat. The bug reports a prob-
lem “unable to destroy WebSocket thread group when reload-
ing webapp”, and the corresponding buggy file is WsServer-
Container.java. Commit 2653cea modified WsServerCon-
tainer. java during the evolution of Tomcat. From the log
message, we know that the intention of this change is to
refactor and add new features to the destroy() method. It
is this change that induced bug #56905 and the bug was
fixed in change a027afd as shown in Figure 3. The log of the
bug inducing change 2653cea shares many common tokens
with the bug report #56905 such as “destroy”, “thread” and
“group”. These common tokens are essential to effective bug
localization using IR-based techniques.

To understand the correlation between bug reports and
the information contained in change logs, we computed the
cosine similarities between bug reports and the corresponding
buggy files as well as the change logs of the buggy files for all
the bugs of the three subjects used in Section 2.2. For each
bug, only those changes committed before the bug report
was filed are considered. We selected the highest cosine
similarity when a bug relates multiple source files or change
logs. Figure 4 shows the results. The median values of
commit logs are 0.300, 0.369 and 0.370 for SWT, JDT and
Tomcat respectively, while the values are 0.191, 0.288 and
0.340 for source files. We conducted Mann-Whitney U-Test
[22] to test if the cosine similarities computed from logs are
significantly larger than that from source files. The results
shows that the differences are significant for all three subjects
(p-value < 0.05). These results suggest that change logs share
substantial common tokens with bug reports.

2.3.2  Fine Granularity of Change Hunks

The effectiveness of IR-based techniques can be improved
by using change hunks due to their granularity being finer
than program source files. Recently, researches have found



Bug #56905

Summary: Unable to destroy WebSocket thread group when
reloading webapp ... generally there might be threads that are
still running

Commit #2653cea (inducing change)
Author : Mark Emlyn David Thomas <markt@apache.org>
Date : Tue Apr 22 08:31:56 2014 +0000

Log: Refactor server container shutdown into the destroy
method. Destroy the thread group on shutdown. Log a warning
if the thread group can't be destroyed

@@ -270,6 +275 IQ ¥ ic void addEndpoint (Class<?> pojo)

5, ub
+ shutdownExecutor () ;

+ super.destroy () ;

+ try {

+ threadGroup.destroy () ;

+ } catch (IllegalThreadStateException itse) {

boolean areEndpointsRegistered() {
return endpointsRegistered;

}

Commit #a027afd (fixing change)
Author : Mark Emlyn David Thomas <markt@apache.org>
Date : Wed Sep 03 13:36:43 2014 +0000

Log: Fix https://issues.apache.org/bugzilla/show_bug.cgi?id=56905

73,14 +273,42 @Q publ addEndpoint (Class<?> pojo)

+ int threadCount = threadGroup.activeCount();
+ boolean success = false;

try {
- threadGroup.destroy () ;
- } catch (IllegalThreadStateException itse) ({
+ while (true) {
+ int oldThreadCount = threadCount;

synchronized (threadGroup) {

Figure 3: Bug Report #56905 of Tomcat and its Fix-
ing Change and Inducing Change (The Bold Texts
are the Common Tokens Shared between Bug Re-
port, Commit Logs and Changes)
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Figure 4: Text Similarities between Bug Reports
and the Buggy files as well as the Change Logs

that bugs are usually located in a small portion of the code,
and thus large source files are susceptible to noise due to the
fuzziness arising from information retrieval [39, 42]. Take
the case in Figure 3 as an example, the buggy file WsServer-
Container. java contains 550 lines in total. However, only
a small number of lines (from line 273 to 287) relate to the
bug. Figure 5 shows the cosine similarities between the to-
kens extracted from the bug report and different lines of
the source file WsServerContainer. java. The figure shows
that the text similarities between the bug report and the
source file diverge a lot at different lines. The lines relevant
to the bug exhibit the highest similarity, while most of the
lines that are irrelevant to the bug achieve lower similarities.
Therefore, if we treat the whole source file as a unit for query-
ing in the information retrieval model, the noise introduced
by the irrelevant lines may degrade the performance of bug
localization.

To handle the noise problem, different approaches have
been proposed to use small pieces of codes to represent
source files by segmentation. Wong et al. proposed dividing
a source file into equally sized segments [39], and Ye et al.
segmented source files into multiple methods [42]. Both of

265

0.8
fix point

‘= 06

=05

& 04

o3

0 100 200 300 500

Line Number
Text Similarities between Bug Report
File

400

Figure 5:
#56905 and Different Lines of its Buggy
WsServerContainer.java of Apache Tomcat

them use the most similar code segments compared with
bug reports to represent the file. Their results have shown
that the performance of bug localization can be boosted by
segmentation. However, segmenting source files into equally
sized segments could lose the characteristics of the source
codes like code structures [39]. As for segmenting source
files into methods, they could still be large in size. As a
result, better ways to put highly related code portions into
small segments are desired. Change hunks are intrinsically
small pieces of code whose content are highly correlated [6]
and most of the bugs are induced by them. Therefore, using
change hunks instead of source files can mitigate the noise
problem existing in large files for IR-based techniques. For
instance, if we use the inducing change 2653cea, we can
obtain a high cosine similarity of 0.656 compared to the bug
report while only 0.275 can be achieved by using the whole
file WsServerContainer. java in the previous example.

2.3.3 Change Histories

Apart from the textual information, software changes cap-
ture the histories of source files such as the alternatives of
authorship of a source file, the number of bugs a source file
contained previously and the corresponding fixing histories.
Such information can indicate the proneness for source files
to contain faults [27]. Therefore, information extracted from
change histories has been widely leveraged in bug prediction
models [11, 18, 27, 30] as well as bug localization model [42]
with promising performance. It has also been deployed in
large systems in industry such as Google [1]. As a result,
the performance of IR-based techniques can be boosted by
leveraging change histories.

The empirical studies above showed the usefulness of bug
inducing changes and the applicability of applying software
changes in IR-based localization techniques. This motivates
us to propose a new IR-based bug localization approach.

3. APPROACH

3.1 Vector Space Model

Like existing IR-based bug localization techniques [33, 42,
46], Locus adopts VSM to retrieve bug-related information.
In VSM, both queries ¢ and documents d are represented as
vectors of weighted terms: V = {w,|t € T}, T is the corpus
of tokens created from all the queries and documents. The
similarity between a query ¢ and a document d is computed
as the cosine similarity between their term vectors:
_ \/qir\[d (1)

[Vall [Vl
The weight w; for each term is computed based on the
classical weighting scheme term frequency (tf) and inverse

simi(q,d) = cosine(Vq, Va)



document frequency(idf). The intuition behind this is that
the weight of a term normally increases with its appearance
frequency in a document and normally decreases with its
occurrence frequency in the other documents. Over the
years, many approaches for calculating tf and idf have been
proposed to improve the performance of VSM model. Locus
follows the approach adopted by BugLocator[46], which was
shown to offer better performance:

1 (td) = log fua+ 1;idf(t) = log( ")
v @
wia = (log fia +1) X 1Og(;t)

In equation 2, f;q represents the number of appearance
of term ¢ in document d. N refers to the total number of
documents in the corpus while n; is the number of documents
which contain term t. In existing models, each bug report
is treated as a query ¢ and a source file is regarded as a
document. When a bug report is received, source files are
ranked based on their similarities compared to the bug report
calculated by the VSM model. However, as mentioned in
Section 2, the effectiveness of the VSM model by regarding
source files as single units can be easily affected by the noises
contained in large files [39]. In our approach, we treat change
hunks as single documents.

3.2 Architecture of Locus

In this study, we proposed a tool called Locus, which
LOcats bugs from software Change hUnkS. To create token
corpora, existing approaches use a bug report and source
files of the version where this bug occurred as the input,
while LocUs uses a bug report and all the changes committed
before this bug was reported as the input. However, many
change hunks extracted are unrelated to source files (e.g.,
modification in configuration files), have no semantic mean-
ing (e.g. adding/deleting space or comments) or do not alter
the behaviors of a system (e.g., code reformatting). A pre-
processing step, as shown in Figure 6, is introduced to filter
out these irrelevant hunks [14]. Since the entities modified by
hunks are more likely to affect the behaviors of the software
system or even induce bugs, the names of these changed
entities are significant. Therefore, LOCUS extracts and in-
dexes these code entity names separately besides the natural
language tokens. As a result, from the selected hunks after
filtering, LOCUS creates two corpora, which are NL (Natu-
ral Language) corpus and CE (Code Entity) corpus. Each
hunk (including the content of changed lines, contextual
lines and the corresponding commit log) are indexed as an
independent document. Besides, LOCUS computes another
Boosting score from the software change repository. At the
source file level, Locus extracts the fixing history for each
source file and uses it as a feature indicating the suspicious-
ness of source files to contain faults. At the change level,
Locus leverages changes’ committed time and favors those
that were committed near the occurrence of the bug. Based
on the NL corpus, the CE corpus and the boosting score, we
design three ranking models, respectively, to rank suspicious
faulty files or bug inducing changes.

When given a bug report, LOCUS constructs two queries,
a NL query and a CE query. These two queries allow all
hunks to be ranked based on the vector space model. The
ranking results at the source file level or the change level can
be later calculated based on the ranking of hunks and the
boosting ranking model. The output of LOCUS is a rank list
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of source files or changes. Note that, when locating bugs at
change level, LoCcUs narrows down the code to be examined
for each suspicious change and only outputs the modification
content of the most suspicious file in each suspicious change.
For example, the modification contents of A.java on change
aadba74 is presented in the suspicious rank.

3.3 Ranking Models
3.3.1 NL Model

The NL corpus is composed of natural language tokens
extracted from the selected hunks after preprocessing. Given
a bug report, we construct a query using the tokens extracted
from the bug summary and description. Subsequent discus-
sions from developers in the bug report which may include
fixing hints (e.g., patched code) are not included as the input
of our tool, since our tool is designed to provide debugging
hints. This process is the same as general process of corpus
creation and query construction. We perform lexical analysis
for each hunk and create a vector of lexical tokens. English
stop words (e.g. a, the, etc.) and programming language
keywords (e.g. if, for, etc.) are removed. The identifiers
which are composed of multiple tokens (e.g. threadGroup)
are split into two individual tokens (e.g., thread and group).
Finally, the Porter Stemming algorithm 2 is applied to stem
a word to its root. After these steps, all the hunks as well as
bug reports can be indexed and term weighted vectors can
be computed. For a bug report b and a hunk h, the similarity
is calculated as follows and simi is defined by Equation 1.

NL(b, h) = simi(bni, hni) (3)

3.3.2 CE Model

Let us explain how to construct the CE corpus based
on the code entity names appeared in the code repository.
Package names, class names and method names are kept in
our model, and they are treated as individual tokens without
splitting. For example, a class ThreadGroup is treated as an
individual token in the CE corpus. After creating the corpus,
we extracted the code entity names from hunks and bug
reports. However, these two artifacts are mainly described
by natural languages, and thus extracting code entity names
from them is different from that from source files. To do
so, we first use the heuristics proposed by Meng et al. [24]
to extract the code like terms from natural language. Then
we compare each code like term with the tokens in the CE

3http:/ /tartarus.org/martin/PorterStemmer/



corpus and only the matched ones are kept. We compute
the term weighted vectors after indexing both the hunks and
bug reports. Similar to that of the NL model, for a source
file s and bug report b, the similarity is calculated as:
OE(Z), h) = S’imi(bce7 hce) (4)

3.3.3 Boosting Model

Section 2 has shown the usefulness of change histories. At
source file level localization, for the sake of simplicity and
effectiveness, we adopt the same algorithm used by Google
[1] to calculate the boosting score. For a source file s, its
suspiciousness score of being buggy is computed as:

. . 1
Fixz(s) = Z 1 o126 +12
i=0

where n is the number of bug fixing commits for s, and ¢; is
the timestamp of the ith bug fixing commit. The timestamp
used in the algorithm is normalized between 0 and 1, where
0 is the release date of the code base and 1 is the time when
predicting, which is the reporting time of the bug to be
located in our case.

Existing works have pointed out that changes committed
recently contribute the most to fault potential [11, 18]. There-
fore, we favor those changes committed near the occurrence
of the bug at change level localization. For each source file
s, we extract all the changes ¢ that modified s before the
bug is reported. We then rank these changes based on their
committed time from the oldest to the latest, and denoted it
as ranks.. For a change ¢, we compute the boosting score
as follows, where ¢(c) denotes the set of the source files that
the change ¢ has modified.

Time(c)

()

1
- sHelta()c() ranksc + 1

(6)

3.4 Integrating Ranking Models
3.4.1 Combining Models

At both source file level and change level localization,
Locus leverages three models, the NL and CE models serve
as the basic units while the boosting model serves as a
discriminative factor. At the source file level, the score for a
source file s and a bug report b is determined by these three
models integrated according to Equation 7. Source file s may
be altered by multiple hunks {h1, h2, ..., hn}. We follow the
strategy adopted by existing approaches [39, 42] and select
the hunk with the highest cosine similarity to represent the
whole source file. Therefore, the final score is computed as
follows:

score(b, s) = m}fc{NL(b, hi) +a x CE(b,hi)} + B1 x Fixz(s) (7)

Like source files, we choose the hunk with the highest cosine
similarity to represent a change c¢ if it comprises multiple
hunks {h1,h2,...,hm}. As a result, the score between a
change ¢ and a bug report b is computed as follows:

score(b,c) = m;glx{NL(b7 hi)+ax CE(b, h;)}+ B2 x Time(c) (8)

Here, we use the hunk h;, with the highest suspiciousness
to represent the change. When we present the results at
change level, we DO NOT present all the contents of source
files modified by the change. Instead, we only present the
modifications of the source file which h;, belongs to.

3.4.2 Determining Parameters

Three parameters, «, 81, 82, are involved when combining
different models. The parameter a adjusts the weight of
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the VSM score calculated from the CE corpus, and thus
the number of code entity names appeared in a bug report
can be an important clue to determine a. Bug reports vary
a lot in their quality [15]. The more code entity names a
bug report contains, the more weight the CE model should
deserve. Based on this intuition, we use the ratio of the
number of code entity names compared to the number of
split tokens to determine « individually for each bug report.
However, the average ratio of code entity names appeared in
bug reports is only 10.3% for the subjects we studied. Since
the bug report quality is an important factor, we magnify
the effect of code entity names by multiplying o with an
amplification factor A. For a bug report, if « is greater than
1 after amplification,we will set it to 1. Our experiments
show that A works well between 3 to 7, and we set it to 5 for
all the subjects empirically for consistency.

F#code entity names ©)
F#split tokens

The parameter 8 captures the weight of the boosting score.
Our experiments show that our proposed model performs
the best when f; is between 0.05 and 0.15 at source file level,
and (2 between 0.15 and 0.25 at change level. 8 could also
be set based on the target projects’ characteristics, such as
the number of changes, the number of history bugs and so
on. We leave it to our future work. In this study, for the
consistency and the general effectiveness, we set 81 to 0.1 and
B2 to 0.2 empirically for all the subjects in our experiments.

a=AX

4. EXPERIMENT SETUP
4.1 Subjects

To evaluate the performance of our proposed bug local-
ization tool LocCuUs, we selected six open source projects as
shown in Table 2. All these projects have well maintained a
bug tracking system and change histories. Half of them come
from the benchmark datasets collected by Zhou et al.[46],
which are ZXing, AspectJ and SWT 3.1. The code repository
of the subject Eclipse in the benchmark [46] was previously
maintained via CVS and the CVS repository is deprecated
nowadays. The repository of Eclipse is now maintained by its
sub-project teams separately via Git, and thus we collected
two projects from Eclipse: Eclipse JDT Core 4.5 and Eclipse
PDE UI 4.4. We also collected another Apache project: Tom-
cat 8.0. All of these three subjects are popular and large
open source projects. We adopt the traditional heuristics [9]
to build the links between bug reports and bug fixes. JDT
Core 4.5 contains 111 fixed bugs [2] and 94 of them are linked
to source codes. PDE 4.4 contains 87 fixed bugs [3] in total
and 60 of them are linked. Tomcat 8.0 contains 303 fixed
bugs [4] and 193 of them are linked to source files. We man-
ually checked the links between bugs and the corresponding
source files later and found out that some of the links may
not be applicable to our evaluation oracle. For example, for
the bug 70619 of subject AspectJ, one of its linked source
file is modules/tests/bugs/bug70619/Precedence. java, it
is obvious that this source file is designed to test bug 70619
and is not the root cause for this bug. This will inevitably
cause bias to the evaluation results. As such, we removed
those links from the six subjects whose linked source files
are designed as test cases. Due to the removal of these links,
the number of bugs in the benchmark subject AspectJ [46]
has been reduced to 244.



Table 2: Basic Information of Evaluation Subjects

Subject #Bugs #Files K Loc K Changes
ZXing 20 391 49.6 3.14
SWT 3.1 98 484 141.9 11.9
AspectJ 244 6,485 511.9 7.7
PDE 4.4 60 5,273 565.2 11.3
JDT 4.5 94 6,775 1,675.3 21.7
Tomcat 8.0 193 2,042 485.7 16.1

4.2 Evaluation Metrics

In order to evaluate the effectiveness of our proposed bug
localization model, we adopt the following three metrics,
which are widely used to evaluate the performance of bug
localization techniques [33, 40, 42, 46].

Top@N: This metric reports the percentage of bugs,
whose buggy entities (source files, inducing changes) can
be discovered by examining the top N(N=1,2,3,...) of the
returned suspicious list of code entities. The higher the value,
the less efforts required for developers to locate the bug, and
thus the better performance.

MRR: Mean Reciprocal Rank [35] is the average of the
reciprocal ranks of a set of queries. The reciprocal rank of
a query is the multiplicative inverse of the rank of the first
relevant answer found.

This metric is used to evaluate the ability to locate the
first relevant code element for a bug.

MAP: Mean Average Prevision [23] is by far the most
commonly used traditional IR metric. It takes all the relevant
answers into consideration with their ranks for a single query.

This metric is used to evaluate the ability of approaches
to locate all the buggy entities of a bug.

4.3 Research Questions

Our experiments are designed to address the following four
research questions:

RQ1: Are the tokens extracted from software chan-
ges better than those from source files in improving
the performance of IR-based bug localization?

Section 2 shows that software changes can benefit IR-based
techniques in several aspects. However, can the text tokens
extracted from software changes effectively locate bugs? How
is the effectiveness compared with the tokens extracted from
source files? To answer these questions, we compare the
localization results using the text tokens extracted from
software changes with those from source files. Note that,
given a bug report, the bug localization is conducted on
all the changes committed before this bug was reported, as
well as the source files (without segmentation) in the version
where this bug occurred. We conducted the experiments
under three different settings: keeping only the split and
stemmed natural language (NL) tokens, keeping only the
code entity names (CE) and using both of them (NL+CE),
the heuristics to combine NL and CE together is the same as
described in Section 3.4. We performed the experiment for
all six subjects and compared the results of MAP and MRR.

RQ2: How effective is LOCUS? Does it outper-
form other bug localization tools?

To answer this question, we apply our approach to locate
bugs for the collected six subjects, and then use all the met-
rics defined above to characterize the effectiveness of the
results. BugLocator proposed by Zhou et al. [46] is one
of the representative IR-based bug localization techniques,
which can locate bugs at source file level. BRTracer is built
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on top of BugLocator and can achieve better performance
by segmenting large files into segments and leveraging stack
traces [39]. Saha et al. proposed another technique called
BLUIR [33] which outperforms BugLocator by using struc-
tured information retrieval. The fixing information of similar
bugs has been shown to be useful in bug localization [46].
The underlying intuition is that similar bugs tend to fix
similar source files. Therefore, AmaLgam [37] combined this
information with the structure information together to im-
prove the performance. We compare LocUs with these three
state-of-the-art IR-based approaches: BRTracer, BLUiR and
AmaLgam. As BLUIR is publicly available, we directly use it
in all the evaluation subjects. For BRTracer, we carefully im-
plemented it on top of BugLocator as described in the paper.
For Amal.gam, two of its key components, similar bug compo-
nent and structure components, are provided by BugLocator
[46] and BLUIR [33], which are both publicly available. We
implemented Amal.gam by combining the components using
the parameter as described in their papers.

RQ3: What is the performance of LOCUS to lo-
cate bugs at the change level?

Locus is capable of locating bugs at change level. To
the best of our knowledge, LOCUS is the first approach that
targets at locating the inducing changes based on the descrip-
tions of a bug report before it is fixed. This research question
is designed to evaluate the effectiveness of LoCUS to locate
bugs at this finer granularity. In order for the evaluation,
the changes which induced the bugs need to be extracted.
SZZ algorithm proposed by Sliwerski et al. [34] can identify
the bug inducing changes based on the fix locations, and we
adopt this algorithm to extract the oracles for our evaluation.
Since multiple files can be modified in a change, we also keep
the information of which source file to be blamed for the bug
in this change. A successful localization for Locus requires
to locate not only the correct change, but also the buggy
source file in the change.

Besides the evaluation metrics described in Section 4.2, we
further estimate the debugging effort required to locate bugs
at the change level compared with that at the file level. We
referred to the existing effort-based evaluation method [5]
that measures the number of blocks to be inspected until the
buggy block is located with a given rank of blocks. Similarly,
we measured the number of lines to be inspected until the
buggy statement is located of the results generated by Locus,
and compared with the state-of-the-art approaches.

RQ4: What is the contribution of each model?

In our approach, we leveraged three different information
extracted from change hunks and packaged them into three
different models: NL model, CE model and Boosting model.
Can all these models contribute to our final performance? In
this research question, we aim to evaluate the effectiveness
of each model. To evaluate the contributions of these three
factors, we conducted three experiments on the six subjects.
First, we only used the NL model in Locus to locate all
the bugs, and then we added the CE model and combined
it with the NL model. Finally, we added boosting model
into Locus. Experiments are performed under these three
settings, and our purpose is to investigate if the performance
can be improved by adding a new model.

S. EXPERIMENT RESULTS

In this section, we answer the four proposed research ques-
tions through analyzing the experimental results.



RQ1: Are the tokens extracted from software chan-
ges better than those from source files in improving
the performance of IR-based bug localization?

Table 3 shows the results of MAP and MRR by using source
files or change hunks as the source of text tokens. The results
show that no matter using the split natural language tokens,
the code entity names or using both, adopting the text tokens
extracted from change hunks in IR-based models achieves
better results than that from source files for all six subjects.
For example, for SWT, the improvements by using only NL
are 78.7% and 74.9% for MAP and MRR. If only using CE,
the improvements are 44.5% and 55.6%. The improvements
are 65.0% and 64.0% for MAP and MRR respectively by
combing NL and CE. We later conducted one-tailed statistics
test of the results to see if the improvements are significant.
The Mann-Whitney U-Test [22] shows that for most of the
subjects (the bold text in Table 3), the performance of hunks
are significantly better than that of source files (p-value <
0.05). These results prove that the advantages of the software
changes discussed in Section 2.3, including the information
in change logs and the small granularity, do help locate bugs
for IR-based techniques.

Table 3: Comparisons of the Results between Using
Source Files and Changes Hunks (The Bold Text
Means the Outperformance is Significant)

Subjects NL CE NL+CE
Text Source | Hunk |Source | Hunk | Source | Hunk
ZXing MAP | 0.380 | 0.401 | 0.258 | 0.268 | 0.443 | 0.458
MRR| 0.429 | 0.464 | 0.257 | 0.268 | 0.491 | 0.532
SWT MAP | 0.280 [0.500]| 0.314 |0.453]| 0.382 [0.630
MRR| 0.322 [0.563| 0.361 [0.562| 0.430 |0.705
Aspect] MAP| 0.145 [0.270]| 0.140 |0.207]| 0.182 [0.303
MRR| 0.174 [{0.323]| 0.165 [0.245| 0.218 |0.360
PDE MAP | 0.207 | 0.256 | 0.209 | 0.349 | 0.257 [0.398
MRR/| 0.245 | 0.288 | 0.255 [0.431| 0.287 |0.472
DT MAP| 0.161 [0.252]| 0.163 |0.248]| 0.206 [0.329
MRR| 0.211 [0.329| 0.228 [0.321| 0.268 [0.417
Tomeat MAP| 0.233 [0.441| 0.237 {0.475| 0.299 |0.547
MRR| 0.276 [0.484| 0.296 [0.544| 0.360 [0.606

RQ2: How effective is LOCUS? Does it
form other bug localization tools?

Table 4 shows the results of our approach for all evaluated
subjects. It shows that our approach can locate the buggy
files and rank them as top 1 among all the source files for
45.0%, 64.3%, 25.0%, 41.7%, 30.9% and 53.9% of the bugs for
ZXing, SWT, AspectJ, PDE, JDT and Tomcat respectively.
On average, Locus locates the buggy files and ranks them
at the top 1 for 41.0% of all the 709 bug reports, and 68.5%
within top 5. For 74.6% of the bug reports, Locus locates
the correct buggy files within the top 10. The results also
indicate the Locus can outperform the three existing works
BRTracer, BLUiR and AmalLgam for five subjects SWT,
AspectJ, PDE, JDT and Tomcat under all the metrics. For
ZXing, Locus achieves the same result as BRTracer under
metric Top@1, for other metrics, LOCUS outperforms all the
other approaches.

Specifically, compared with BRTracer, the improvement of
MAP varies from 12.8% to 54.6%, and the weighted average
improvement is 31.9%. The average improvement of MRR
is 32.4%, varing from 6.0% to 46.9% for different subjects.
Compared to BLUIR, the improvement of MAP varies from
14.3% to 32.1%, and the weighted average improvement is
22.4%. The average improvement of MRR is 25.3%, which

outper-
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varies from 11.5% to 35.5% for different subjects. Compared
to AmaLgam, MAP and MRR are improved by 20.1% and
20.5% respectively on average.

Table 4: Comparisons of the Results at the Source
File Level with the State-of-the-Art Approaches

Subjects [ Methods |MAP [MRR |TopQl |Top@5|Top@10
Locus 0.502 {0.563 |0.450 [0.700 |0.800
ZXing BRTII‘acer 0.445 |0.537 [0.450 |0.600 |0.700
BLUIR 0.380 |0.490 [0.400 |0.650 |0.700
Amal.gam [0.410 |0.510 [0.400 |0.650 |[0.700
Locus 0.640 [0.725 [0.643 |0.847 [0.918
SWT BRT&.“acer 0.467 [0.512 |0.357 |[0.734 |0.857
BLUIR 0.560 |0.650 [0.551 |0.765 |0.867
AmaLgam |0.578 [0.649 |0.551 |0.776 |[0.847
Locus 0.320 (0.381 |0.250 [0.566 |0.639
Aspect] BRTllracer 0.264 |0.305 [0.225 |0.402 |0.467
BLUIR 0.263 |0.321 [0.213 |0.447 [0.525
Amalgam [0.271 |0.335 [0.234 |0.471 |0.545
Locus 0.422 [0.533 [0.417 |0.717 [0.733
PDE BRT&.“acer 0.367 [0.448 |0.367 |[0.567 |0.650
BLUIR 0.349 |0.408 [0.300 |0.550 |0.650
AmaLgam |0.322 [0.392 |0.250 |0.567 |0.683
Locus 0.359 [0.436 |0.309 [0.617 |0.691
IDT BRTllracer 0.232 |0.297 [0.191 |0.426 |0.521
BLUIR 0.277 |0.324 [0.191 |0.521 |0.628
Amal.gam [0.282 |0.334 |0.202 |0.543 |0.606
Locus 0.566 [0.638 [0.539 |0.777 [0.819
Tomeat BRT&'“acer 0.408 [0.465 |0.332 [0.648 |0.736
BLUIR 0.459 |0.471 |0.332 |0.668 [0.736
AmaLgam |0.472 [0.523 |0.399 |0.720 |[0.782

To combine the CE model with the NL model, we set A to
5 in the above experiments. Figure 7 shows the performance
(measured in terms of MAP and MRR) of the six subjects
with different \ values. We find that the bug localization
performance increases with the increasing of A when X is
small. This shows that magnifying the effect of the CE model
helps improve the performance of bug localization. Locus
achieves the optimum performance for the six subjects when
A is between 3 to 7. The improvement slows down or is
even decreased when ) is set to 7 or larger. However, the
decrease is subtle since we set an upper bound 1 for « and it
guarantees that the CE model shares at most the same weight
with the NL model. These results are consistent with our
intuition that code entities names are important as discussed
in Section 3.
—~SWT

e
e

6 8

Tomcat -+ZXing —<PDE —JDT -e-Aspect)

psanaaas

0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
03
0.25

0.2

0 2 4 10 0 2 4

A A 6 8

MAP MRR
Figure 7: The Effect of Parameter \

In summary, these results show that Locus is effective in
locating bugs at the file level. LoCUS can outperform the ex-
isting state-of-the-art IR-based bug localization approaches.

RQ3: What is the performance of LOCUS to lo-
cate bugs at the change level?

To the best of our knowledge, we are the first one to
locate bugs at the change level using IR-based techniques.
Table 5 shows the results of MAP, MRR and Top@N for



all the subjects. The MAP and MRR are 0.205 and 0.256
respectively on average. Besides, Locus can locate the
inducing changes and rank them within the top 5 for 41.0%
of bugs. For 51.4% of the bugs, the inducing changes can be
ranked within the top 10.

Table 5: Results of MAP, MRR and Top@N at the
Change Level

Subject | MAP | MRR | Top@1 | Top@5 | Top@10 | Top@20
ZXing |0.262 | 0.333 | 0.200 | 0.400 | 0.500 0.900
SWT [0.140 | 0.224 | 0.141 | 0.308 0.436 0.551

AspectJ | 0.217 | 0.315 | 0.228 | 0.406 0.506 0.628
PDE [0.2190.330| 0.208 | 0.479 | 0.604 0.667
JDT [0.103|0.223 | 0.162 | 0.275 0.385 0.474

Tomcat | 0.268 [ 0.390 | 0.276 | 0.511 0.598 0.701

Figure 8 shows the results produced by Locus at the
change level and results by Amalgam at source file level in
terms of the lines of codes need to be inspected (in natural
logarithm). Note that, AmalLgam performs better than other
approaches at the file level, so we only show the comparison
between Locus and Amal.gam. The results indicate that
debugging efforts can be saved significantly by using Locus.
When using Locus, the median number of lines needing to
be inspected has been reduced by an order of magnitude,
compared with that using Amal.gam. For example, for all the
bugs in Tomcat, the median number of lines is 193 using Lo-
cus , while the median number is over 3000 using AmalLgam.
To further understand the differences between the results
generated by Locus and Amal.gam, we take bug 56199 in
Tomcat 8.0 as an example. Both Locus and AmaLgam
will rank the relevant element in the top 1. However, the re-
sult generated by Locus is JspCServletContext.java in the
change 05c84ff, which includes only 32 lines of code. The
result generated by Amalgam is JspCServletContext. java,
which includes 864 lines of code. However, this is only an
estimation of the efforts required to locate bugs. Developers
may not investigate suspicious source files line by line when
debugging in practice, and debugging habits are developer-
specific. Therefore, to evaluate the efforts saved precisely
requires user studies involving real developers, and we leave
it as our future work.
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Figure 8: Comparison between Locus and Amalgam,
in terms of the Effort-Based Evaluation.

Locating bugs at the change level is worth exploring and
the results shown in Table 5 and Figure 8 are promising
overall. However, the massive number of change hunks and
the prevalent similar changes [38] make it a challenge task to
locate the exact inducing change hunks. We plan to leverage
more properties of software changes such as change patterns
[10], authorship and their proneness to contain faults [13,
16]. This information can be integrated into our localization
model to improve the results. Besides, we can excavate
deep relations between software changes and bug reports
by leveraging the information of stack traces if found in
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bug reports. We leave the study of such additional software
change properties to our future work.

RQ4: What is the contribution of each model?

Figure 9 shows the results under the three settings as
described in the experiment setup. Using only the natural
language information at the source file level, the average
MAP and MRR are 0.348 and 0.402, respectively. The
results can be improved by 23.6% and 23.7% on average when
incorporating our proposed CE model. This demonstrates
the usefulness of the CE model. By adding the information
of fixing history, the results of MAP and MRR can be further
improved by 5.1% and 5.7%, respectively, on average. At the
change level, the average MAP and MRR are, respectively,
0.160 and 0.259 when using only the NL model. The results
can be improved by 24.5% and 18.8% after combining the
CE model. The information of change time can improve the
results by 3.8% and 2.8% on average in a further step. In
summary, the results show that each model has contributed
to the performance of bug localization.

Tomcat
0T —

—
Asngtﬁ : MAP--Source Leve! mu— -
SWT

ZXing

0.0 0.1 0.2 0.3 0.4 0.6

Tomgat
Aspecti m MRR--SoUrCE LeVel mmm— ——
SWT

ZXing

0.0 0.1 0.2

ENL

0.3 0.4
NL+CE

0.5
W NL+CE+Boosting

0.6 0.7

Tomcat
DT e———

Asp:gﬁ :MAP--Change Level -
SWT  ee— —

ZXing

0.00 0.05 0.10 0.15 0.20 0.25

Tomcat
L]

ASp';E’tﬁ = MRR--Change Level
SWT
ZXing

0.00 0.10 0.30

0.20
mNL NL+CE m NL+CE+Boosting

Figure 9: Contribution of Each Model

0.40

6. THREATS TO VALIDITY

Our experiments are subject to several threats to validity.

Subject Selection Bias: Six popular open source projects
are used in our study and evaluation. Similar results were
found among these projects, suggesting that our findings
are generalizable. However, Locus performs the worst on
subject JDT and AspectJ (MAP<0.4) as shown by Table 4
while these subjects contain the largest number of source files.
This raises the concern that our findings may not generalize
to very large subjects. Therefore, evaluation on more sub-
jects are desired to increase the confidence for our findings.
Besides, the nature of open source projects may differ from
that of commercial projects. To validate if our findings are
generalizable to commercial projects, experiments on these
projects are required. We leave this as our future work.

Data Quality: The quality of bug reports collected may
vary a lot for different subjects, and some subjects may
contain more reports submitted by developers than end users.
The effect of bug reports’ quality on our final results should
be investigated in a further step. However, it’s hard to
differentiate between bug reports submitted by developers
and that by users in practice. Another threat is that the links
between bug reports and software artifacts in the datasets
may not be well maintained [41]. To mitigate this threat, we
adopted the benchmark dataset including the bug reports
and the linked source files from BugLocator [46] for three
of our studied subjects. The dataset is widely evaluated



by existing studies [33, 39]. For the other three subjects
collected by ourselves, the heuristics adopted to recover the
links are widely used by existing works [33, 39, 42, 46].

Empirical Evaluation: We designed several experiments
in this study to evaluate the effectiveness of Locus. However,
the practical usefulness of Locus should be validated by
developers through their debugging tasks. The carrying out
of a user study is left as an important future work.

7. RELATED WORK
7.1 1IR-Based Bug Localization

Lots of approaches have been proposed to locate bugs
automatically using IR~based techniques [15, 20, 26, 28, 33,
37, 39, 46]. Zhou et al. proposed BugLocator that combines
similar bugs with a revised VSM model, which considers
the length of source files, to rank relevant source files for a
bug report [46]. Wong et al. found that large source files
may contain noises, and thus they segmented source files into
equal-sized segments and chose the segments with the highest
similarity to represent the whole source file [39]. They also
considered the information of stack traces which may be
found in bug reports. Moreno et al. also found that using
the information of stack traces can boost the performance of
IR-based techniques [25]. Saha et al. proposed a tool named
BLUIiR which considers the structure information of source
files [33]. Similar to our approach, they considered code
entity names in their ranking model. However, our approach
is different from them in the following aspects: first, they
only extract the identifiers from the stack traces or code
snippets in bug reports while we adopted the heuristics [24]
that can extract code entity names from general artifacts
written in natural languages like bug reports or commit
logs. Second, they indexed full identifiers as well as split
tokens together while we treated split natural language tokens
and code entity names as two corpora and indexed them
individually, the VSM scores were calculated separately and
were then combined together. The approaches discussed
above are based on VSM model. There are other IR-based
techniques using different models. Lukins et al. found that
Latent Dirichlet Allocation can successfully be applied to

source code retrieval for the purpose of bug localization [20].

LDA was also extended in BugScout [28] to narrow down
the search space of buggy files given a bug report.

Information retrieval models have also been combined
with other techniques to improve the performance of bug
localization. The combination with learning-to-rank was
proposed by Ye et al [42]. They extracted six features from
the given bug reports and source files with domain knowledge
such as lexical similarity, bug fixing recency and so on. A
learning model was trained on historical fixed bugs and
was then used to locate relevant files for newly received bug
reports. The combination with deep learning was proposed by
Lam et al.[7]. They leveraged deep neural network to relate
the terms in bug reports to potentially different code tokens
and terms in source files. These approaches require training
a model from historical data while Locus does not. The
combination with spectrum-based localization was proposed
by Le et al.[19]. They found that by considering program
spectra which are traces of program elements executed under
different test cases, the performance of bug localization can
be improved. However, this technique requires the availability
of test cases and execution traces of subjects.
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7.2 Debugging at Software Change Level

Our empirical study shows that many bugs are induced by
software changes, and thus assuring the quality of software
changes is important. Change impact analysis has been well
studied [8, 32], aiming to select a subset of regression test
suite that might be affected given a change and then identify
program edits that induced the test failures. Delta debug-
ging was proposed [44] to locate a subset of the history that
may contributes to a test failure. Combining test spectra
(passed or failed test traces) and change impact analysis,
FAULTTRACER was able to locate the failure-inducing pro-
gram edits [45]. Different from these works, Locus does not
require any regression test suites or test spectra, it is designed
to locate the inducing changes based on the descriptions of
bug reports and change properties. Thomas et al. studied
the properties of bug inducing changes in large open source
projects including Mozilla and Eclipse [34]. They found that
bug-fixing changes as well as those changes committed on
Fridays have higher chances to induce new bugs. Kim et
al. proposed an approach to automatically predict whether
a change is buggy or clean using machine learning classifi-
cation algorithms[16]. They extracted features from source
codes, change logs and change metadata and trained learn-
ing models using historical data. Newly committed changes
can be classified into either clean or buggy by the model.
Kamei et al. conducted an empirical study of just-in-time
quality assurance [13], which concerns defect prediction at
the change level. They pointed out that the fine granularity
of prediction at the change level can save large efforts over
coarser grained predictions at the source file level.

8. CONCLUSION AND FUTURE WORK

The practical usefulness of existing IR-based bug local-
ization techniques is greatly compromised by the coarse
granularity of files and the lack of contextual information.
We observed that bug inducing changes can help developers
in debugging, and software changes can benefit IR-based
bug localization techniques. Inspired by our observation, we
proposed an approach Locus, which locates bugs in terms
of software changes instead of source files. It creates two
individual corpora composed of natural language tokens and
code entity tokens, respectively. It leverages the information
of change histories. Experimental evaluation on six popu-
lar open source projects shows that LoCcus can locate the
relevant files within top 5 for 68.5% of the bugs and 74.6%
within top 10 on average. Our approach outperforms three
state-of-the-art approaches. LOCUS can also locate the bug
inducing changes within top 5 for 41.0% of the bugs, which
is very promising.

In the future, we plan to investigate if software changes can
also improve the performance of bug localization based on
other IR models besides VSM. We also plan to incorporate
more properties of software changes such as change patterns
[10], authorship and their proneness to contain faults [16]
into Locus to filter out uninteresting changes, and hence to
more accurately locate bug inducing changes.
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