
1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Workflow Refactoring for Maximizing
Concurrency and Block-Structuredness

Wei Song, Member, IEEE, Hans-Arno Jacobsen, Senior Member, IEEE,
S. C. Cheung, Senior Member, IEEE, Hongyu Liu, and Xiaoxing Ma, Member, IEEE

Abstract—In the era of Internet and big data, contemporary workflows become increasingly large in scale and complex in structure,
introducing greater challenges for workflow modeling. Workflows are not with maximized concurrency and block-structuredness in
terms of control flow, though languages supporting block-structuredness (e.g., BPEL) are employed. Existing workflow refactoring
approaches mostly focus on maximizing concurrency according to dependences between activities, but do not consider the
block-structuredness of the refactored workflow. It is easier to comprehend and analyze a workflow that is block-structured and to
transform it into BPEL-like processes. In this paper, we aim at maximizing both concurrency and block-structuredness. Nevertheless,
not all workflows can be refactored with a block-structured representation, and it is intractable to make sure that the refactored
workflows are as block-structured as possible. We first define a well-formed dependence pattern of activities. The control flow among
the activities in this pattern can be represented in block-structured forms with maximized concurrency. Then, we propose a greedy
heuristics-based graph reduction approach to recursively find such patterns. In this way, the resulting workflow is with maximized
concurrency and its block-structuredness approximates optimality. We show the effectiveness and efficiency of our approach with
real-world scientific workflows.

Index Terms—Workflow refactoring, activity dependence, concurrency maximization, block-structuredness, synchronization links

F

1 INTRODUCTION

WORKFLOWS or processes are a series of inter-related
activities targeted at achieving specific business func-

tions. With the rapid advancement of cloud technology and
the availability of ever more services, workflows are becom-
ing one of the mainstream ways to construct software sys-
tems [1], [2], [3]. Meanwhile, service-based workflows grow
increasingly large and their structure is becoming increas-
ingly complex [1]. Modelling and changing workflows are a
challenge [1], [3], [4]. Generally, workflows are expected to
be free of both control flow errors (e.g., deadlocks) and data
flow errors (e.g., activity input is undefined) [5], [6], [7], [8].
Maximizing concurrency in the control flow, with respect to
the data flow, is also critical, and has recently received more
attention in the literature [9], [10], [11], [12]. Concurrency
maximization refers to the property that activities without
dependences (including control dependences, data depen-
dences [13]) should be executed in parallel. In this paper,
we study BPEL-like workflows (workflows for short) [14].
However, even for the XML style, as pointed out in a recent
empirical study [1], not all developers are familiar with
good design practices for BPEL-like workflows. Thus, it
is questionable whether real-world workflows are modeled

• W. Song and H. Liu are with the School of Computer Science and
Engineering, Nanjing University of Science and Technology, Nanjing,
China, 210094. E-mail: wsong@njust.edu.cn.

• H.-A. Jacobsen is with the Middleware Systems Research Group, Technis-
che Universität München, 85748 Garching, Germany, and University of
Toronto, Toronto, ONM5S, Canada. E-mail: arno.jacobsen@msrg.org.

• S. C. Cheung is with the Department of Computer Science and Engineer-
ing, Hongkong University of Science and Technology, Hongkong, China.
E-mail: scc@cse.ust.hk.

• X. Ma is with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China, 210023. E-mail: xxm@nju.edu.cn.

with maximized concurrency.
While most control flow and data flow errors lead to

failures of the workflow [5], [7], [15], a workflow does
not necessarily fail if it is not designed with maximized
concurrency. However, such non-maximized concurrency
does affect the quality of workflows [16]; for example, the
makespan of a workflow could increase in such situations.
In the worst case scenario, non-maximized concurrency
between communicating activities could reduce the success
probability of a workflow (service) collaboration [10]. Take
the workflows P1 and P2 in Fig. 1, for example: P1 and
P2 share compatible interfaces (communicating activities)
while P1 (P2) invokes (notation ’!’) the operation B (A)
provided by P2 (P1) before receiving (notation ’?’) the
invocation of its provided operation A (B) from P2 (P1).
Assume that activities ?B and !A in P1 are independent, that
is, P1 is not designed with maximized concurrency because
of the unnecessary sequence order between ?B and !A.
This prevents P1 from being composed with P2 (and other
similar workflows) to avoid a potential deadlock. However,
if ?B and !A are executed in parallel, then, P1 and P2 can
be composed, thus, improving the success probability of the
workflow collaboration. For the reasons identified above,
non-maximized concurrency should be avoided.

Recently, a number of approaches to workflow refactor-
ing have been proposed [17], [9], [10], [11], [16], [12]. For
example, Wang et al. first transform BPEL workflows into
automata then employ Petri nets synthesis [18] to obtain
a workflow with maximized concurrency [11]. Jin et al. pro-
pose to leverage workflow mining (i.e., the α-algorithm [19])
for workflow refactoring such that activities without data
dependences can be executed in parallel [12]. Though some
of these approaches achieve maximized concurrency, it is

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

? A? A

! B! B

? B? B

! A! A
++

P2P1

Fig. 1. An illustrating example showing maximized
concurrency can improve the success probability of
workflow collaboration.

not considered whether the refactored workflow is block-
structured. Block-structuredness is a central workflow de-
sign principle [4], which means that for every node with
multiple outgoing edges (i.e., a split), there exists a corre-
sponding node with multiple incoming edges (i.e., a join)
such that the workflow fragment between the split and
the join forms a block [20]. If a workflow model block-
structured, data flow analysis (e.g., data races) is made
easier. Otherwise, users (e.g., workflow modelers) may
have difficulty in understanding, analyzing, and testing its
business logic. Furthermore, it is difficult for programmers
to transform unstructured workflow models into popular
block-structured workflow languages such as BPEL [14],
[21]. For an approach which obtains the block-structured
control flow (i.e., the approach in [11]), maximized concur-
rency is not ensured. One may argue that we can maxi-
mize concurrency and then block-structuring or reversely
by combining these two existing approaches. Unfortunately,
this solution is infeasible because the approach in [11] sac-
rifices concurrency for block-structuredness. In this paper,
the control flow of a workflow is regarded as optimal if it
ensures maximized concurrency and block-structuredness.
To our best knowledge, our work is the first to consider
both concurrency and block-structuredness maximization.

To address this bi-objective problem, we propose a novel
workflow refactoring approach. For this, we first analyze
activity dependences (e.g., control dependences, data de-
pendences [13]) in the original workflow and capture them
into a workflow dependence graph (WDG) from which we
seek the optimal control flow of activities. We define a well-
formed dependence pattern of activities whose control flow is
block-structured with maximized concurrency. Specifically,
the control flow can be specified using only sequential and
parallel structures (Other structures are also considered but
they are irrelevant to concurrency maximization). The WDG
of a workflow is not always well-formed, which is caused
by a minimum set of extra dependence edges. Should
these edges be removed, the resultant graph becomes well-
formed. By leveraging BPEL links to synchronize different
branches (threads) of a parallel structure, the removed edges
are transformed into links in the final optimized workflow.
Those workflow with minimum links in the parallel struc-
tures are regarded as maximized block-structuredness [21].
Unfortunately, it is intractable to determine the minimum
number of edges to transform. Thus, we present a greedy
heuristic algorithm which harnesses the predecessors and

successors of nodes (activities) to search well-formed pat-
terns in the WDG. Although, our algorithm cannot always
guarantee that the number of introduced links is minimal,
we find that it is efficient in approximating an optimal
control flow with minimal links.

We realize our approach and evaluate it based on a set of
real-world scientific workflows, because they are sufficiently
complex dependence graphs to evaluate the effectiveness
and efficiency of our approach. The experimental results
show that: (1) Our approach obtains BPEL-like workflows
with maximized concurrency, i.e., activities without depen-
dences are executed in parallel. (2) The obtained BPEL-like
workflows contain few links. For the real-world DAGs
(scientific workflows) employed in our experiment, the
number of introduced links ranges from 0 to 8 and is
2.37, on average. (3) Our approach is efficient. The approach
only takes 5.0 to 47.4 milliseconds (ms) to refactor scientific
workflows with the number of nodes ranging from 7 to 85.

To sum up, this paper extends and improves our previ-
ous work [10] and makes the following new contributions:

1) We propose that unoptimized sequences (cf. Defini-
tion 7) can be regarded as another type of anti-
pattern for workflow modelling and design, which
are related to the interplay of both control flow
and data flow, thus, complementing existing anti-
patterns focusing either on control flow or data flow.

2) We define the notion of well-formed patterns in
WDGs. The optimal control flow relations of ac-
tivities in well-formed patterns are block-structured
with maximized concurrency, which can be speci-
fied only with sequential and parallel structures.

3) Based on well-formed patterns and the semantics
of links, we present a graph reduction approach,
with the proof of its soundness, which guarantees
obtaining the workflows with maximized concur-
rency and few links from irregular WDGs.

4) We implement our approach and experimentally
evaluate it with a representative set of real-world
scientific workflows; results demonstrate the effec-
tiveness and efficiency of our approach.

The remainder of this article is organized as follows. Sec-
tion 2 introduces some background information necessary
for understanding this work. Section 3 formulates the re-
search problem and provides an overview of our approach.
Section 4 elaborates on our solution. Section 5 reports our
experimental results. Section 6 reviews related work while
Section 7 concludes the paper.

2 PRELIMINARIES

Our refactoring approach is designed for BPEL [14] and
workflow languages which also use links (or similar rules)
to synchronize different branches in parallel structures. We
use graph models (cf. Definition 1) instead of XML (BPEL)
to represent workflows to improve readability. Since our
refactoring only focuses on transforming unnecessary se-
quential structures into parallel structures, there is no need
for the model to capture all syntax and semantics of BPEL.
More specifically, commonly-used structured activities of
BPEL [14], such as sequence (sequential structures), flow

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

(parallel structures), if, switch, pick (alternative struc-
tures), while, repeatUntil (iterative structures) and their
nested forms can all be expressed by our workflow model
(cf. Definition 1). Links, inspired by BPEL syntax, are used
to synchronize different branches of parallel structures. In
BPEL, links can be associated with transition conditions,
which is not considered in this paper.

Definition 1 (Workflow Model). A workflow is modeled as a
four-tuple W = (N , E, I , O) such that:

• N = {Ab, Ae} ∪ Nb ∪ Ns is a set of nodes, where Ab,
Ae represent the beginning and the ending of W , Nb is
the set of basic activities, and Ns is a set of structured
activities.

• E ⊆ N × N is a set of directed edges between nodes,
representing the order between activities. An edge is called
a link if it is between two nodes in different branches
(threads) of a parallel structure, representing synchroniza-
tion that reduces the parallelism.

• I , O: N → 2D are functions assigning input and output
parameters to activities (basic activities and decision ac-
tivities) in N , where D is the set of data variables defined
or used in W .

In our notation for workflows, rounded rectangles, di-
amonds, and bars represent basic activities, decisions (the
start of alternative and iterative structures), and the start
(And-split) or the end (And-join) of parallel structures,
respectively.

Different activities in a workflow can be inter-related
by dependences. There are two common kinds of activity
dependences in a workflow: control dependence and data
dependence. Control dependence and data dependence are
well-established notions in the field of programming lan-
guage and software engineering [13], which is also the
foundations of our refactoring approach. In the following,
we formally introduce them (cf. Definitions 4 and 5) based
on our workflow model. To define control dependence, we
first introduce the concepts of path and post-dominance.

Definition 2 (Path). A path ρ from A to B in a workflow W
= (N , E, I , O) is a sequence of one or more edges (V1, V2), (V2,
V3), ..., (Vn−1, Vn) in W , where Vi ∈ N (1≤i≤n), V1 = A, and
Vn = B.

Definition 3 (Post-dominance). In a workflow model W , an
activity (node) Ai is post-dominated by another activity Aj if each
directed path from Ai to the ending node Ae (not including Ai)
contains Aj .

Definition 4 (Control Dependence). In a workflow model W ,
an activity Aj is control-dependent on another activity Ai iff there
exists a directed path ρ from Ai to Aj such that any activity Ak

in ρ (excluding Ai and Aj) is post-dominated by Aj , and Ai is
not post-dominated by Aj .

Data dependences are three kinds: true dependence,
anti-dependence and output dependence [13], [22].

Definition 5 (Data (True) Dependence). In a path ρ of
workflow model W , an activity Aj is true- dependent on another
activity Ai iff there is a variable v ∈ I(Aj) ∩ O(Ai), and in ρ,
there is no Ak between Ai and Aj such that v ∈ O(Ak).

Anti-dependence and output dependence are defined
similarly by replacing v ∈ I(Aj) ∩ O(Ai) with v ∈ O(Aj)
∩ I(Ai), and v ∈ O(Aj) ∩ O(Ai), respectively. Besides
control dependence and data dependence, in BPEL, there
is an asyn-invocation dependence between a one-way invoke
activity and the receive activity responsible for receiving
the result of the invoke [10]. All activity dependences
(including implicit dependences in specific applicatons) in
a workflow can be captured in its dependence graph.

Definition 6 (Workflow Dependence Graph (WDG) [22],
[10]). A workflow dependence graph of a workflow W = (N , E,
I , O) is a directed graph WDG = (N ′, E′), where

• N ′ ⊆ N is a set of nodes representing activities of the
workflow.

• E′ ⊆N ′ ×N ′ is a set of directed edges, and an edge <Ai,
Aj> ∈ E′ directed from Ai to Aj denotes an activity
dependence (e.g., control dependence, data dependence)
between the two activities denoted by Ai and Aj .

For a control dependence edge <Ai, Aj>, if Ai is a
decision activity representing an alternative structure (e.g.,
if, switch), <Ai, Aj> is labelled either as “T” or as “F”
depending on whether Aj occurs when the decision is true.
If Ai is a decision activity representing an iterative structure
(e.g., while, repeatUntil), <Ai, Aj> is labelled as “T”. If an
activity Aj is not control-dependent on any activity, we
assume that it is control-dependent on the starting activity
Ab (also called “entry”) of the workflow. In this way, Ae is
always control-dependent on Ab, but we usually omit Ae in
the WDG, because it has nothing to do with refactoring.

Fig. 2a illustrates the workflow model of a ship-
ping service whose business logic can be expressed by
BPEL: <sequence A1, A2, <A3-while<sequence A4, A5,
A6/>/>/>. This workflow sends items in groups until
the customer’s order is fulfilled. From Fig. 2a, we can see
that activities A4 and A5 are post-dominated by A6, while
A3 is not. Thus, according to Definition 4, A6 is control-
dependent on A3. Similarly, A4 and A5 are also control-
dependent on A3. Since activities A1, A2, and A3 are not
control-dependent on any activity, they are regarded as to
be control-dependent on the beginning activity “Entry”.
The WDG of the workflow is shown in Fig. 2b where the
solid lines labeled “T” denote control dependences, other
solid lines data dependences, and the dashed lines loop-
carried data dependences [13]. If we discard loop-carried
data dependences and those caused by data races, the WDG
turns into a DAG. As is discussed in our previous work [23],
the discard facilitates the determination of control-flow re-
lations of nodes in the WDG.

3 PROBLEM AND APPROACH FRAMEWORK

In this section, we first formulate the research problem, and
then present an overview of our approach.

3.1 Problem Formulation
To formulate the problem, we first define a novel workflow
anti-pattern (cf. Definition 7). Similar to BPEL, we use s
= <sequence A1, A2, ..., An/> to represent a sequence of
activities A1-An.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Input: Ф
Output: itemsTotal

Input: itemsTotal
Output: total

A1: Receive
ShipOrder

A2: Assign

A3: while
Input: total

Output: Ф

total > 0

total := itemsTotal

itemsCount := opaqueA4: Assign

A5: Invoke
SendItems

total := total - itemsCount
A6: Assign

Input: itemsCount

Output: Ф

(a)

entry
TT

T

A3A1

T

T

A5

T

A2

A4 A6

(b)

Fig. 2. (a) Workflow and (b) WDG of a shipping service.

Definition 7 (Unoptimized Sequence). Given a sequence s
= <sequence A1, A2, ..., An/> in a workflow W , for ∀ i (1 ≤ i <
n), if <Ai, Ai+1> is an activity dependence, then s is a necessary
sequence. Otherwise, s is an unoptimized sequence, i.e., it
is unnecessary that all activities execute in a sequential order.

The input workflow can have flow, but only unopti-
mized sequence (it can be nested in a flow) are consid-
ered. For example, the workflow depicted in Fig. 2a contains
an unoptimized sequence s = <sequence A4, A5, A6/>
(this sequence is nested in an iterative structure while), as
there is no dependence between activities A5 and A6 (cf.
Fig. 2b). Informally, our goal is to automatically identify
these unoptimized sequences and re-arrange those activ-
ities to make sure that activities without dependences are
executed in parallel while the number of links introduced
in parallel structures is minimum. More formally, the work-
flow refactoring problem is described as follows:

The refactoring problem is to optimize the control flow of a
workflow W to obtain a new workflow W ′ which shares the same
WDG with W such that:

• W ′ involves no unoptimized sequences.
• W ′ is as block-structured as possible, i.e., with a mini-

mum number of links in parallel structures (flows).

3.2 Approach in a Nutshell

Fig. 3 illustrates the three stages of our approach:

1) WDG construction. Activity dependences (including
control and data dependences) of the workflow are
analyzed and captured in the WDG.

Original workflow

WDG

Step 1:

dependence analysis
Step 2:

unoptimized sequence

parallelization

Restructured worklfow

Step 3:

confirmation

Fig. 3. Three stages of our approach.

2) Unoptimized sequence identification & paralleliza-
tion. Unoptimized sequences are identified via
the WDG. Activities with no direct or transitive
dependences are arranged in parallel structures.

3) User confirmation. Since there may be implicit de-
pendences (the activities need executing in se-
quence), each parallelization opportunity identified
in Stage 2 is provided to users (e.g., workflow mod-
elers and programmers) for final confirmation. An
optimization opportunity is abandoned if it is not
passed user confirmation.

Although our attention is focused on transforming
sequences into flows (could be with links), our ap-
proach applies to all workflows that are defined in Def-
inition 1. Since WDG can be obtained with existing ap-
proaches [13], [22] and the last stage is straightforward, we
focus on the second stage in Section 4.

4 REFACTORING APPROACH

To better understand our approach, we first examine the
structure of the WDG. If only edges of control dependences
are kept, the WDG degenerates into a tree with Ab (“Entry”)
as its root [13], [22]. In the tree, except the root, each inner
node represents a decision activity, while each leaf node
represents a basic activity. For instance, in Fig. 2b, the inner
node A3 denotes a decision activity while, while other nodes
(except “Entry”) denote basic activities.

Because of nested control flow, the refactoring is per-
formed from the inner sequence to the outer one. For the
workflow in Fig. 2a, the inner <sequence A4, A5, A6/> is
refactored first before the outer <sequence A1, A2, A3/>.
Next, we first present our approach to local refactoring, i.e.,
seeking the optimal control flow relations for the activities
of the innermost block (sequence). Then, we show how to
identify optimization opportunities across different blocks,
referred to as global refactoring.

4.1 Local Refactoring

For local refactoring, we first consider a single-control WDG
in which there is only one control node (decision activity
or Ab). Other nodes in the single-control WDG can be
partitioned into one, two or more classes according to the
labels (e.g., “T”,“F”) on the edges from the control node
to these nodes. Nodes (activities) in different classes are
mutually-exclusive, i.e., they cannot be executed together.
The refactoring is applied to different classes of nodes
independently. Although nodes in the same class can be

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

related by edges of data dependences, asyn-invocation de-
pendences, and implicit dependences, there is no need to
differentiate them for refactoring.

4.1.1 Optimal Control Flow Graph

In graph theory, a sub-graph SG of G = (N , E) is said to be
induced by a node set SN (SN⊂N) if SG has all edges of G
with both endpoints in SN . Now, we discuss how to seek
the optimal control flow relations for the nodes in the same
class based on the sub-graph (DAG) they induce.

A weakly connected component [24] is a maximal sub-
graph of a directed graph such that if replacing all of its
directed edges with undirected edges produces a connected
(undirected) graph, that is, any two nodes, say, Ai and
Aj , are reachable from each other. Only two cases exist:
the sub-graph is a weakly connected component (WCC),
or it involves more than one WCC. For the latter case,
the control flow relation among these WCCs is specified as
flow, as they are independent of one another. To determine
the control flow relations of the nodes inside a WCC, we
need to ensure that the determined control flow relations
of the nodes are consistent with the dependences in the
WCC such that concurrency degree can be maximized. This
problem can be regarded as an extension to the problem
of topological sorting [25], because all possible topological
sorts correspond to the trace set of the obtained control
flow graph (cf. Theoerem 3). Here, our goal is to obtain the
optimal control flow graph (cf. Definition 8) from the WCC.

Definition 8 (Optimal Control Flow Graph). Given a DAG
G = (N , E), the corresponding control flow graph GCF derived
from G is optimal if the following two conditions are satisfied:

• For any two nodes Ap and Aq , if Aq(Ap) is reachable
from Ap(Aq) in G, the control flow between them in GCF
is sequence, and Ap(Aq) precedes Aq(Ap)); otherwise,
the control flow between them in GCF is flow.

• GCF is as block-structured as possible, i.e., minimum
number of links is involved.

The first condition of Definition 8 ensures concurrency
is maximized, viz., no unoptimized sequences are in-
volved. The second condition ensures maximized block-
structuredness. Although our refactoring approach aims
at this bi-objective optimization, as we will show in Sec-
tion 4.1.3, it is difficult to guarantee the second condition.
Fortunately, if the first condition is satisfied, the corre-
sponding workflow shares the equivalent behavior with the
refactored workflow satisfying both conditions [26], because
they are trace-equivalent [27]1.

4.1.2 Graph Reduction

It is challenging to obtain the optimal control flow graphs
because of the complex structure of WCCs. Here, we present
a graph reduction approach to address this problem, which
includes the following three steps:

1. A trace of GCF is a linear extension of the happens-before relations
in GCF.

1) Obtain the transitive reduction of the WCC. The transi-
tive reduction2 [28] preserves the reachability rela-
tions in the WCC, but has fewer dependence edges.
This facilitates seeking the optimal control flow
relations of nodes in the WCC. In the remainder of
this paper, all mention of WCC refers to its transitive
reductions.

2) Search well-formed patterns (cf. Definition 10) for re-
duction. In the WCC, control flow relations of well-
formed patterns are block-structured and can be de-
scribed with sequence and flow. After the control
flow of a well-formed pattern is determined, we use
a single node to replace the whole pattern in the
WCC (cf. Reduction Rule 1) to facilitate identifying
other well-formed patterns.

3) Leverage the semantics of links for further reduction.
If the WCC is not reduced to a single node (e.g.,
the example in Fig. 6 in Section 4.1.3), the complete
block-structuredness is impossible. In this case, we
can remove minimum number of extra edges in
order to obtain well-formed patterns whose control
flow relations can be determined as the second step.
After this, a link is introduced for each removed
edge such that the two endpoints of the link are
the same as those of the removed edge.

In the following, we explain Step 2 and Step 3. For
convenience of describing the notion of well-formed pattern
and the corresponding reduction rule, we first introduce the
concepts of preset and postset.

Definition 9 (Preset, Postset). In a directed graph G =
(N,E), for any node Ap∈N , the preset of Ap is defined as •Ap

= {Aq|Aq∈N ∧ <Aq , Ap>∈E} and the postset of Ap is defined
as Ap

• = {Aq|Aq∈N ∧ <Ap, Aq>∈E}. For a node set SN , the
preset of SN is defined as •SN = {Aq|Ap∈SN ∧ Aq∈N\SN
∧ <Aq , Ap>∈E} and the postset of SN is defined as SN• =
{Aq|Ap∈SN ∧ Aq∈N\SN ∧ <Ap, Aq>∈E}.

Definition 10 (Well-formed Pattern). In a WCC G = (N,E),
a sub-graph SG induced by a node set SN = SN1 ∪ SN2 · · ·
∪SNn is regarded to be a well-formed pattern if for any Ap, Aq

∈ SNi (1≤ i ≤n), the following two conditions are satisfied:

• <Ap, Aq> /∈ E ∧ <Aq , Ap> /∈ E.
• •Ap = •Aq = SNi−1 ∧ Ap

• = Aq
• = SNi+1, where

SN0, SNn+1 ⊂ N , SN0 ∩ SN = SNn+1 ∩ SN = ∅.

Note that in Definition 10, SN0 and SNn+1 are not
subsets of SN , which indicates that the well-formed pattern
is maximized already, which cannot be further enlarged.

Reduction Rule 1. In a WCC G = (N,E), a well-formed
pattern SG induced by a node set SN = SN1 ∪ SN2· · · ∪ SNn

can be reduced into a single node S such that:

• •S = •SN1 ∧ S• = SNn
•.

• S = <sequence <flow SN1 />, · · ·, <flow SNn />
/>, denoting that nodes in SNi (1≤i≤n) are in a parallel
structure, and SN1, ..., SNn are in a sequential structure.

2. The transitive reduction of a directed graph D is another directed
graph D′ with the same vertices and as few edges as possible, such that
if there is a (directed) path from vertex s to vertex t in D, then there is
also such a path in the reduction D′.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

S = <sequence <flow B1, , Bk />, <flow C1, , Cl /> />

Bk

B1

DnAm

A1 D1

Cl

C1

D1

S

Am

A1

Dn

Reduction

Fig. 4. Reduction Rule 1.

A1 A2 S

S = <flow W1, W2 <link A1 to A2 /> />

W1 W2

(a)

A2 S

S = <flow W <link A1 to A2 /> />

A1

W

(b)

Fig. 5. Two possible scenarios to introduce links.

Fig. 4 illustrates Reduction Rule 1, where node sets SN1,
· · ·, SNn = {B1, · · ·, Bk}· · ·, {C1, · · ·, Cl} and SN0 =
{A1, · · ·, Am}, SNn+1 = {D1, · · ·, Dn}. We can see that the
reduction from several WCCs to a flow node is a special
case of Reduction Rule 1.

We can iteratively utilize this reduction rule to reduce
the WCC until it becomes a single node or no well-formed
patterns can be found. If it is the former case, we can
obtain the optimal control flow relations of activities in the
WCC from the single node. Otherwise, we need to combine
Reduction Rule 1 with the semantics of links to seek the
optimal control flow relations for not well-formed patterns.
To this end, some edges in the resultant WCC need to
be removed such that the WCC can become well-formed.
Following the removal of some edges, the control flow
relation obtained is more relaxed than what it should be.
To reflect the restriction for removed edges on the control
flow, for each removed edge, we introduce a link whose
source and target are the same as those of the removed
edge. Fig. 5a and Fig. 5b illustrate two possible scenarios to
introduce links. In the former scenario, the source and
the target of the introduced link are in different WCCs,
whereas in the latter scenario, they are in the same WCC.

According to Definition 1 and the BPEL specifica-
tion [14], links can only be contained in flows. Theorem 1
guarantees that our solution abides by this requirement.

Theorem 1. The source activity and the target activity of an
introduced link are in a parallel structure (i.e., a flow).

Proof. We prove Theorem 1 by contradiction. According to
our approach, a link in the resultant workflow corresponds
to a removed edge in the WCC (dependence graph). Let
<Ap, Aq> be such a removed edge. Assume that activities
Ap and Aq are not in a flow, and, thus, they must be in a
sequence. According to Reduction Rule 1, there must exist
a (transitive dependence) path from Ap to Aq in the WCC,
say ρ = <Ap, Ax>···<Ay , Aq>. However, the co-existence of
ρ and <Ap, Aq> contradicts the fact that WCC is a transitive
reduction. Thus, Theorem 1 holds.

Theorem 2. Our graph reduction approach can obtain a control
flow graph with maximized concurrency from a DAG.

Proof. Let Ap and Aq be any two nodes in a DAG. If Aq is
reachable from Ap in the DAG, or reversely, in the obtained
control flow graph, they are either in a sequence according
to Reduction Rule 1, or linked in a flow according to
the semantics of links. In both situations, Ap and Aq is
executed in sequence. If Aq and Ap are not reachable from
each other in the DAG, they are either in the same WCC
or in different WCCs. In either case, our approach ensures
that they are executed in parallel. Thus, the first condition
of Definition 8 is met, and thus Theorem 2 holds.

The overall behavior of a workflow can be expressed by
its set of complete traces (from the beginning to the end
of the workflow). If at least one parallelization opportunity
is confirmed by users, the trace set of the refactored work-
flow subsumes that of the original workflow. Theorem 3
demonstrates the relation between the trace set of the control
flow graph with maximized concurrency and the set of
topological sorts of the DAG (dependence graph).

Theorem 3. A control flow graph derived from a DAG satisfies
maximized concurrency if and only if its complete trace set equals
the set of all possible topological sorts of the DAG.

Proof. Assume that GCF is a control flow graph derived from
the DAG. Let S1 be the set of all possible topological sorts
of the DAG and S2 the set of all complete traces of GCF. We
proceed by proving sufficiency and necessity.

Sufficiency. If S1 = S2, we show GCF meets maximized
concurrency (cf. Definition 8). For any two nodes Ap and Aq

in the DAG,

1) If Aq (Ap) is reachable from Ap (Aq) in the DAG,
for any topological sort σ in S1, Ap (Aq) precedes
Aq (Ap). Since S2 = S1, the control flow relation
between Ap and Aq in GCF is sequence.

2) Otherwise, there must exist at least two topological
sorts σ1 and σ2 in S1 such that Ap precedes Aq in σ1

and Aq precedes Ap in σ2. Since S2 = S1, the control
flow relation between Ap and Aq in GCF is flow.

Necessity. We prove S1 ⊆ S2 and S2 ⊆ S1.

1) Let σ be any topological sort in S1, and Ai and Ai+1

are any two adjacent activities in σ. This implies
either <Ai, Ai+1> is an edge of the DAG, or Ai and
Ai+1 are not reachable from each other. Since GCF
meets maximized concurrency, in either case, there
must be a complete trace σ′ of GCF such that Ai and
Ai+1 are adjacent (Ai directly precedes Ai+1) in σ′.
Owing to the arbitrariness of Ai and Ai+1, the order

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

between activities in σ is preserved in σ′, i.e., σ = σ′.
Hence, σ is a complete trace of GCF, i.e., S1 ⊆ S2.

2) Let σ be an arbitrary complete trace in S2, and Ai

and Ai+1 are any two adjacent activities in σ. In
GCF, the control flow relation between Ai and Ai+1

is either sequence (Ai directly precedes Ai+1) or flow.
Since GCF meets maximized concurrency, for the
former case, <Ai, Ai+1> must be an edge in the
DAG; for the latter case, neither Ai nor Ai+1 can
be reached from the other. In either case, there must
exist a topological sort σ′ of the DAG such that Ai

and Ai+1 are adjacent (Ai directly precedes Ai+1)
in σ′. Owing to the arbitrariness of Ai and Ai+1, the
order between activities in σ is preserved in σ′, i.e.,
σ = σ′. Hence, σ is a topological sort of the DAG,
i.e., S2 ⊆ S1.

To sum up, Theorem 3 is proven.

If there are optimization opportunities (i.e., unoptimized
sequences) in the original workflow, the restructured
workflow derived from the DAG will involve more traces
than the original workflow; that is, the trace set of the
original workflow is a subset of that of the restructured
workflow. This is of great significance for service (workflow)
collaboration, because more behaviour (traces) implies more
compatible partners in workflow composition [10].

4.1.3 Strategy for Introducing Links
Reduction Rule 1 and the semantics of links are comple-
mentary. On the one hand, if we incorporate all activities
of a WCC into a flow structure and introduce a link for
each edge in the WCC, maximized concurrency is achieved.
Nonetheless, the obtained control flow graph is far from
block-structured. On the other hand, Reduction Rule 1 can
obtain the optimal control flow graph without using links
provided that the WCC is well-formed. Due to the irreg-
ularity of WCC, we have to combine these two solutions
together, and the goal is to introduce a minimum number of
links. The well-formed pattern (cf. Definition 10) is called
series-parallel directed graph (or minimal vertex series-parallel
directed graphs in particular) in graph theory [29]. Thus, our
goal equals to obtain the maximum series-parallel subgraph
from a DAG. It is known that this problem is NP-hard
for undirected graphs [30], [31], but whether the result is
generalized to directed graphs is still an open problem [29].

One may come up with the following straightforward
algorithm to introduce a minimum number of links for
graph reduction. Given an arbitrary DAG G = (N , E), its
transitive reduction G′ = (N , E′) can be obtained. First, the
algorithm checks whether G′ is a well-formed pattern. If
yes, it terminates. Otherwise, it precedes by removing any
one edge from G′, and determines whether the resultant
G′ is well-formed. In the second step, there could be C1

n

tries, where n = |E′|. For each of the C1
n attempts, the

algorithm terminates when G′ becomes well-formed. Oth-
erwise, it goes on by removing any two edges from G′, and
determines whether G′ is well-formed. In the third step,
there could be C2

n attempts. The algorithm iterates in this
way until G′ becomes well-formed. When it terminates,
the number of edges removed must be minimum, and
thus a minimum number of links for graph reduction is

guaranteed. However, the number of attempts in the worst
case is C0

n + C1
n + · · · + Cn

n = 2n, which is intractable in
practice.

Algorithm 1 Local refactoring

Input: The DAG-based dependence graph (WCC) G = (N , E)
Output: The obtained control flow graph w.r.t the WCC

1: Obtain the preset •A and postset A• for each node A in the
WCC;

2: Find nodes whose presets and postsets are all the same.
These nodes can be combined and reduced to a single node
(i.e., <flow/>). Find a sequence of nodes A1A2· · ·An such
that Ai

• = {Ai+1}, •Ai+1= {Ai}, where 1≤i≤n-1. These nodes
can be combined together and reduced to a single node (i.e.,
<sequence A1, A2,· · ·, An/>;

3: Find nodes whose presets (postsets) intersect. For each set
(denoted as P) of these nodes, obtain the difference set
(denoted as D) of the presets (postsets) of these nodes.
If edges with one endpoint in P and the other in D are
removed, a well-formed pattern can be found, which is
regarded as a candidate for reduction;

4: Use a greedy heuristic for the graph reduction. That is,
utilize Reduction Rule 1 to reduce the well-formed pattern
(including the nodes in P) whose profit n/m is the largest,
where m is the number of edges removed and n is the
number of nodes that can be composed for reduction;

5: The locally optimal steps, i.e., steps 3 and 4, are iterated
until the WCC is reduced into a single node.

With the above reasons, we propose a greedy-heuristic
algorithm (Algorithm 1) to seek the optimal control flow
graph. Algorithm 1 leverages the presets and postsets of
nodes to find well-formed patterns. Note that we can op-
timize Step 3 in Algorithm 1 as follows. First, we identify
activities whose presets or postsets are the same. Based on
these sets of nodes, we can also obtain corresponding can-
didate subgraphs for the local optimization. If no activities
meet this condition, then we use the operations in Step 3
to go on. The original operations in Step 3 are referred to
strategy 1, and the optimization is referred to strategy 2. No
matter which strategy is used in Step 3, our greedy heuristic
does not guarantee to find the optimal solution (i.e., the
minimal number of links), but rather yields solutions
approximating the optimum in reasonable time. Strategy 2
does not guarantee introducing fewer links than Strategy 1
does, but it could be more efficient because it may generate
fewer candidate subgraphs for the local decision. This will
be validated in Section 5. The control flow relations obtained
are always with maximized concurrency even if more than
the minimum number of links are introduced.

Let us illustrate Algorithm 1 with an example. Fig. 6a
shows a WCC representing a dependence graph. Our goal
is to seek the optimal control flow relations of nodes (ac-
tivities) in this WCC. Since the WCC is not well-formed,
we need to remove some edges to obtain well-formed
subgraphs whose control flow relations can be determined.
According to Step 3 of Algorithm 1, we should find nodes
whose presets or postsets intersect. For example, we can
find a node set {A5, A6}, where nodes A5 and A6 share the
same postset, i.e., A5

• = A6
• = {A8}. Similarly, we can find

all other candidate node sets: {A1, A2}, {A3, A4}, {A6, A7}.
If node set {A5, A6} is selected, the edge <A3, A6> can be
selected for removal because one of its endpoints is in {A5,

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

A8

A5 A6

A9

A7

A3

A1 A2

A4

S1

S3 A4
<A3, A6>

<A2, A4>

F1

S1=<sequence <flow A5, A6 />, A8/>

S2=<sequence A3, A7 , A9 />

F1= <flow S1, S3, A4, <link A2 to A4 />, <link A3 to A6 /> />

(a)

(c)(d)

S1

S2

A1 A2

A4
<A3, A6>

(b)

S3=<sequence <flow A1, A2 />, S2 />

Fig. 6. An example illustrating our greedy algorithm.

A6} and the other endpoint is in •A6 \ •A5. If <A3, A6>
is removed, subgraphs induced by node sets {A5, A6, A8}
and {A3, A7, A9} are both well-formed and the profit (i.e.,
(3+3)/1=6) is the largest. Therefore, we can utilize Reduction
Rule 1 to reduce both subgraphs into two single nodes,
S1 and S2 (cf. Fig. 6b). In Fig. 6b, the subgraph induced
by node set {A1, A2, A4, S2} is not well-formed. For this
WCC, there are two candidate node sets {A1, A2} and {S2,
A4}. Either node set can be selected because the two node
sets correspond to the same profit, i.e., (3+1)/1=4. We use
a random selection in case of profit parity. If {A1, A2} is
selected, edge <A2, A4> needs to be removed. Then, the
subgraph induced by node set {A1, A2, S2} can be reduced
to a single node S3 (cf. Fig. 6c). As shown in Fig. 6c, since
nodes S1, S3, A4 are not connected, they can be incorporated
into a flow activity F1, and the two removed edges <A3,
A6> and <A2, A4> become links in F1 (cf. Fig. 6d). From
the final node F1, we can obtain the near-optimal control
flow relations of activities A1-A9.

Finally, we analyze the time complexity of Algorithm 1.
Before Algorithm 1 is applied, the transitive reduction of
the dependence graph (DAG) is obtained, whose time cost
is O(|N |3). For Algorithm 1, we intially obtain the preset
and postset of each node in the dependence graph G = (N ,
E). The time cost for this step is O(|N |+|E|). Second, we
search in G for the well-formed patterns by finding nodes
whose preset and postset are the same. Once such a pattern
is found, we reduce the pattern to a single node in the graph.
The second step iterates until no such pattern can be found.
The time complexity for this step is O(|N |2). Third, based on
the presets and postsets of the remaining nodes, we utilize
a greedy heuristic for selecting some edges to be removed
in order to find well-formed patterns. The time complexity
for the third step is O(|E|×|N |2). Therefore, the total time
complexity of Algorithm 1 is O(|N |2×(|E|+|N |)).

4.2 Global Refactoring

We extend our approach to restructure workflows whose
WDGs have more than one control node (a.k.a. multi-
controlled WDGs). Due to the nested structure of work-

Ac

As1

A1

Asn A2

Ac' = <Ac <sequence />... />

Ac

As1

A1

Asn A2

Ac'

Reduction

Fig. 7. Reduction Rule 2.

flows, global refactoring needs to identify optimization op-
portunities from the innermost sequence to the outermost
one, as specified by Algorithm 2.

Algorithm 2 Global refactoring

Input: The WDG of the original workflow
Output: The restructured workflow

1: All control nodes (decision nodes and Ab) of the resultant
WDG are identified and pushed into a stack in the level
traversal order beginning from the root (Ab) of the sub-
graph (only control dependence is considered) of the WDG;

2: A control node Ac is popped from the stack. From Ac, cor-
responding sub-workflow whose WDG is single-controlled
is obtained. Thus, the sub-workflow can be refactored by
Algorithm 1;

3: The corresponding single-control WDG is degenerated into
its control node Ac (cf. Reduction Rule 2)

4: Steps 3 and 4 are iterated until the control node stack
becomes empty.

Reduction Rule 2. In a WDG G = (N , E), Gs = (Ns,
Es) is a single-control WDG induced by node set Ns. Gs

degenerates to its control node Ac (also denoted as Ac
′) while

G reduces to G′ = (N ′, E′) such that: N ′ = N\(Ns\{Ac}); E′

= E\Es\{<A,As>|A∈N\Ns∧As∈Ns\{Ac}∧<A,As>∈E}
\{<As,A>|A∈N\Ns∧As∈Ns\{Ac}∧<As,A>∈E}.

Fig. 7 illustrates Reduction Rule 2: The single-control
WDG Gs degenerates to its control node Ac (Ac

′), which
facilitates the subsequent refactoring. Moreover, any edge
with one endpoint in Ns\{Ac} and the other endpoint in
N\Ns is “removed” (denoted by dashed directed edges).
Such a “removed” edge will become into a link when its two
endpoints are enclosed in a flow structure (cf. Theorem 1).

Our two reduction rules exhibit different functionalities.
Reduction Rule 1 determines the block-structured control
flow (sequence, flow) of activities in the dependence
graph, whereas Reduction Rule 2 simplifies the WDG such
that the problem of global refactoring is reduced to the one
of local refactoring. We assume that the original BPEL-like
workflows are block-structured and hence sound [32]. Since
the links introduced cannot lead to errors, such as dead-
locks, the soundness of the workflow is not compromised.

To refactor the process in Fig. 2a, we first traverse the
sub-graph (tree in terms of control dependences) of the
WDG in Fig. 2b following a level traversal order. After this
step, the “Entry” node and the decision node A3 are pushed
into a stack. Secondly, A3 is popped out from the stack, and
Algorithm 1 is used to refactor <sequence A4, A5, A6/>
into <sequence A4, <flow A5, A6/>/>. After this, the sub-
graph controlled by A3 is degenerated into a single node
A′

3 according to Reduction Rule 2. Next, the “Entry” node
is popped out from the stack. However, <sequence A1, A2,

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

A3/> cannot be optimized any more. The final refactored
workflow is <sequence A1, A2, <A3-while<sequence A4,
<flow A5, A6/>/>/>/>, which is block-structured with
maximized concurrency.

Similar to Theorem 2, we established that the restruc-
tured workflows obtained by our global refactoring algo-
rithm are also with maximized concurrency. In addition, our
greedy algorithm can approach to introducing minimum
number of links. The time complexity of Algorithm 2 is the
same as that of Algorithm 1, which is O(|N |2×(|E|+|N |)).

5 EVALUATION

In this section, we conduct an experimental evaluation to
answer the following two research questions:

• RQ1 - Effectiveness: How effective is our approach in
maximizing concurrency and block-structuredness
for workflow refactoring? That is, on the one hand,
does it neither miss real optimization opportunities,
nor introduce false ones? On the other hand, does it
introduce few links into the refactored workflows?

• RQ2 - Efficiency: How efficient is our refactoring
approach (and other approaches) in maximizing con-
currency and block-structuredness? Does our ap-
proach scale well in practice?

Our experiment was performed on a set of real-world
scientific workflows by using a computer with 1.7 GHz CPU
and 4 GB memory, running windows 8 and JDK 1.7.

5.1 Experimental Setup
Approach Implementation. In the experiment, we compare our
approach with state-of-the-art refactoring approaches sum-
marized in Table 1. We implement our approach in a pro-
totype ProR, which can be found at: http://bit.ly/myProR.
These three approaches do not require duplication of tasks.
The approach BeehiveZ is based on a workflow mining
technique, that is, the α-algorithm [19]. Note that the three
approaches are quite different in the following respects.
First, the workflow models used in these approaches are het-
erogeneous. More specifically, CASS uses directed graphs,
BeehiveZ employs Petri nets, and the workflow model
adopted by our approach is similar to UML activity dia-
grams [33]. Second, decision activities are only explicitly
modeled in some of the aforesaid models. Thirdly, these
approaches utilize distinct analysis techniques to obtain the
activity dependences. Despite these differences, the last and
the vital step in all these three approaches is similar: they
all leverage the workflow dependence graph (or activity
dependences) to obtain the refactored workflows. Hence,
we only focus on the last step of each approach to obtain
a fair comparison.

Data Set. Since the performance of our approach sig-
nificantly depends on the complexity of the dependence
graph, we use real-world scientific (Taverna) workflows
from myExperiment3 [34] for our evaluation. These scientific
workflows tend to be more complex (not so strictly) with
the increasing number of activities, which can discriminate
different approaches. According to the number of activities

3. http://www.myexperiment.org/workflows

TABLE 1
Approaches Compared in the Experiments

Ref. Refactoring approaches

CASS The approach proposed in [9]
BeehiveZ The approach proposed in [12]
ProR Our graph reduction-based approach

(#Act) involved, we divide the workflows into three cate-
gories: simple (#Act < 30), medium (30 ≤ #Act < 50), and
complex (50 ≤ #Act). We randomly select 10 subjects from
each category and thus 30 scientific workflows are used. The
30 workflows are modeled with DAGs and each edge of the
DAGs represents the dependence between two activities.
Similar workflows are also used in [2], [35]. Based on the
dependence relations in these DAGs, different refactoring
approaches are utilized to seek the workflow models with
the optimal control flow. This equals to transform the DAGs
into BPEL-like workflows. The names (few are shortened
for short), the number of activities (#Act), and the number
of edges (#Edg) of the 30 workflows with references (“1”-
“30”) are summarized in Table 2. To facilitate comparison,
we introduce two notions. Given a scientific workflow W ,
one, we utilize an ordered activity pair <Ap, Aq> to show
that activity Aq is reachable from activity Ap in W , and,
two, we use an unordered activity pair [Ap, Aq] to show
that activities Ap and Aq are not reachable from each other
in W . <Ap, Aq> and [Ap, Aq] are referred to as reachability
pair and unreachability pair, respectively.

Evaluation Criteria. Although workflow models (control
flow graphs) obtained by different approaches are in dif-
ferent forms (directed graphs, Petri nets, UML activity
diagrams), we can define general criteria to evaluate the
obtained process models. Assume that W ′ is the workflow
model obtained from a DAG by using an approach from
Table 1. We use an ordered pair <Ap, Aq> to show that
activity Ap precedes activity Aq in W ′, and an unordered
activity pair [Ap, Aq] to show that activities Ap and Aq are
concurrently executed in W ′. Let S and F be the sets of
ordered pairs and unordered pairs in W ′, and let R and
U be the sets of reachability pairs and unreachability pairs
in the DAG, respectively. The following criteria are used to
evaluate different workflow refactoring approaches.

Criterion 1: Checking Concurrency Maximization. We adapt
F-measure (i.e., F1) of precision and recall [36] to measure to
what extent a refactoring approach can achieve maximized
concurrency, given by:

precision = (| S ∩R | + | F ∩ U |)/ | S ∪ F | (1)

recall = (| S ∩R | + | F ∩ U |)/ | R ∪ U | (2)

F1 = 2× precision× recall/(precision+ recall) (3)

The higher the value of the F-measure (F1), the better
the corresponding workflow refactoring approach. F1 = 1
implies that the obtained workflow model is with maxi-
mized concurrency. F1 < 1 indicates that the approach fails
to obtain maximized concurrency.

http://bit.ly/myProR

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

exon

ids

mutations

getp53MutationIdsByIds

Filter_list_of_strings_extracing_match_to_a_regex

Split_string_into_list_by_regular_expression

id_positon regex_id_separator regex_enrtry_list_separator

getp53MutationIdsByExon

lib

flowbegin

flowend

flowbegin

flowend

(a)

exon

ids

mutations

getp53MutationIdsByIds

Filter_list_of_strings_extracing_match_to_a_regex

Split_string_into_list_by_regular_expression

id_positon regex_id_separator

regex_enrtry_list_separator

getp53MutationIdsByExon

lib

(b)

exon

ids

mutations

getp53MutationIdsByIds

Filter_list_of_strings_extracing_match_to_a_regex

Split_string_into_list_by_regular_expression

id_positon regex_id_separator regex_enrtry_list_separator

getp53MutationIdsByExon

lib

flowbegin

flowend

flowbegin

flowbegin

flowbegin

flowend

flowend

flowend

(c)

Split_string_into_string_list_by_regular_expression

Filter_list_of_strings_extracting_match_to_a_regex ids

getP53MutationsByIds

mutations

lib

getP53MutationIdsByExon

regex_id_separator

regex_entry_list_separator

id_position

exon

(d)

Fig. 8. Workflow models (control flow graphs) (a), (b), (c) transformed from (d) a real scientific workflow “Get TP53 By
Exon” with CASS, BeehiveZ, and ProR, respectively.

Criterion 2: Checking Block-structuredness. From the DAGs,
the obtained workflow models can only contain sequen-
tial structures and parallel structures. Hence, the obtained
workflow model is block-structured if for each node repre-
senting the start (And-split) of a parallel structure, there is a
corresponding node representing the end (And-join) of the
parallel structure such that the workflow fragment between
them forms a block. Hence, the necessary condition for the
block-structuredness is that And-splits and And-joins are
in pairs. Following this, if the number of And-splits is not
equal to the number of And-joins, the obtained workflow
model is not block-structured, because it is difficult to
transform the model into BPEL. When a DAG cannot be
transformed into a block-structured workflow, And-splits
and And-joins also need to be in pairs such that a BPEL-
like workflow with links can be obtained. In this case, the
number of introduced links must be as small as possible.
Unfortunately, the ground truth of the minimal links is
unavailable.

Criterion 3: Efficiency. The runtime overhead (i.e., the av-
erage execution time) of the different refactoring approaches
are also recorded to investigate the efficiency and scalability.

5.2 RQ1: Effectiveness

Before presenting the experimental results, we first use an
example to show the advantage of our approach. Fig. 8a-
c shows the workflow models (control flow graphs) trans-
formed from the DAG (scientific workflow with reference
“3” in our data set4) in Fig. 8d by approaches CASS, Bee-
hiveZ, and ProR, respectively. It follows that: the workflow
model in Fig. 8a is block-structured, but the maximized
concurrency is not satisfied, because some activities inde-
pendent in Fig. 8a are executed in sequence; the workflow
model in Fig. 8b (Petri net) satisfies maximized concur-
rency but is not block-structured, because some And-split
(flowstar) or And-join (flowend) are missing; the workflow
model in Fig. 8c satisfies maximized concurrency and is as
block-structured as possible, that is, each flow begins with
an And-split and ends with an And-join, while only one
link from activity Split string... to activity Filter list... is
introduced. Note that the And-splits and And-joins in Fig. 8c
are used for illustration, and they correspond to <flow>
and </flow>, respectively, in the final BPEL-like file. Our

4. http://www.myexperiment.org/workflows/1013.html

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

TABLE 2
Experimental Results - RQ1: Effectiveness

Ref. Name #Act #Edg CASS BeehiveZ ProR
F1 #split #join F1 #split #join F1 #split #join #links

1 Fetch today’s xkcd comic 7 7 0.9 1 1 1 0 1 1 1 1 0
2 compare pubmed results ge 10 13 0.96 1 1 1 0 2 1 2 2 0
3 Get TP53 By Exon 11 10 0.87 2 2 1 1 3 1 5 5 1
4 Chemical2URIs (Version 1) 13 12 1 1 1 1 1 1 1 1 1 0
5 Simulate SBML ODEs 16 18 0.72 3 3 1 2 3 1 7 7 1
6 TTPish workflow for MASSyPup64 18 24 0.59 6 6 1 5 1 1 7 7 1
7 Online PubMed author search 21 27 0.99 1 1 1 0 2 1 2 2 0
8 EBI InterProScan for Taverna 24 25 0.96 2 2 1 3 5 1 1 1 0
9 NCBI Gi to Kegg Pathways 27 27 0.63 5 5 1 4 3 1 9 9 4
10 FLOSS Communication 28 33 0.89 5 5 1 4 5 1 9 9 2
11 GIPSY’s galmod with VO 33 32 0.82 3 3 1 2 5 1 8 8 1
12 Author Citation Network 35 44 0.95 3 3 1 4 6 1 7 7 0
13 Mapping microarray data 37 46 0.73 6 6 1 5 8 1 9 9 2
14 Gene annotation pipeline 38 40 0.43 4 4 1 8 1 1 11 11 1
15 Download pathways 41 45 0.66 4 4 1 9 18 1 11 11 5
16 Identify strain and phylogenetic tree 43 39 0.64 3 3 1 12 8 1 10 10 2
17 Terms from collection of PDF files 44 43 0.71 3 3 1 10 13 1 8 8 1
18 ConVergenceTreeDiagnosticGeoKS 44 46 0.63 3 3 1 6 8 1 11 11 2
19 Entrez Gene to KEGG Pathway 47 50 0.79 7 7 1 9 5 1 8 8 4
20 casimir paper 49 53 0.54 4 4 1 3 1 1 4 4 0
21 retrive dpas data for all ics 52 55 0.61 4 4 1 4 8 1 18 18 5
22 Calculation of a rotation curve 54 59 0.66 5 5 1 19 15 1 15 15 5
23 Human Microarray Analysis 57 64 0.69 4 4 1 33 30 1 8 8 1
24 Lymphoma type prediction 58 76 0.79 5 5 1 19 7 1 8 8 4
25 BioAID ProteinDiscovery 59 61 0.74 5 5 1 21 31 1 18 18 5
26 Pathways and Gene annotations 61 65 0.7 8 8 1 12 7 1 11 11 4
27 Cow-Human Ortholog 62 66 0.65 6 6 1 40 36 1 11 11 3
28 Kinematical modelling of a galaxy 70 82 0.6 6 6 1 38 43 1 21 21 7
29 Nucleotide InterProScan 75 82 0.69 9 9 1 28 28 1 22 22 8
30 DataBiNS with Kegg ID 85 84 0.45 7 7 1 32 20 1 18 18 2

approach guarantees And-splits and And-joins are in pairs
(cf. Section 4).

The experimental results on all the 30 scientific work-
flows based on Criteria 1 and 2 are summarized in Table 2.
The first columns depicts the references 1-30 of the scientific
workflows. The three sub-columns in the fifth and sixth
columns report the F-measure (F1), the number of AND-
split (#split), and the number of AND-join (#join) of the
workflow models obtained by the approach CASS and
BeehiveZ, respectively. The first three sub-columns of the
eighth column report F1, #split, and #join of the workflow
models obtained by our approach (ProR) and the fourth
sub-column reports the corresponding number of links
(#links) introduced in the obtained BPEL-like workflow
models. Table 2 demonstrates:

CASS obtains block-structured workflow models from
DAGs, because the AND-splits and the AND-joins are in
pairs. However, F1 of the workflow models obtained by
CASS are below 1 (except scientific workflow “4”), which
indicates that CASS fails to obtain the workflow models
with maximized concurrency. In our experiment, we find
that CASS does not introduce false optimization opportuni-
ties; i.e., it does not allow activities with direct and indirect
dependences to be executed in parallel, but it may miss
some real optimization opportunities, that is, activities with-
out dependences are arranged to be executed in sequence.
Surprisingly, for most well-formed DAGs (scientific work-
flows), i.e., “1”, “2”, “7”, “8”, “12”, and “20”, CASS fails

to obtain workflow models with maximized concurrency. In
summary, CASS sacrifices a number of optimization oppor-
tunities to make the workflow models block-structured.

F1 of the workflow models obtained by BeehiveZ are
all 1. This implies that BeehiveZ is able to derive from the
DAGs the workflow models with maximized concurrency.
However, for most cases, in the obtained workflow models,
AND-splits and AND-joins are not in pairs. Hence, the ob-
tained workflow models can hardly be expressed in BPEL.
Therefore, we draw the conclusion that BeehiveZ cannot
guarantee obtaining block-structured workflow models. In
addition, since BeehiveZ is based on a well-known work-
flow mining technique (i.e., the α-algorithm) for workflow
refactoring, our experimental results also demonstrate that
it is not the main goal of workflow mining to produce
block-structured workflow models but to produce workflow
models that justify the respective behaviour exhibited in the
event logs.

F1 of the workflow models obtained by our approach
(ProR) remains 1, and the AND-splits and the AND-joins in
these workflow models are in pairs. In addition, the number
of links introduced by ProR is small. Notably, we do not
know whether the number of introducedlinks is minimal,
because there is no oracle for this. Nevertheless, for the
well-formed scientific workflows with labels “1”, “2”, “4”,
“7”, “8”, “12”, and “20”, the workflow models obtained by
ProR involve no links; for the not well-formed scientific
workflows with labels “3”, “5”, “6”, “11”, “14”, “17”, “23”,

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

only one link is introduced by ProR, respectively. Thus, for
at least 14 of the 30 scientific workflows, ProR obtains work-
flow models with maximized concurrency and as block-
structured as possible. For the other scientific workflows,
ProR also introduces few links and the average number
of links is 2.37 for these 30 workflows. Thus, ProR ap-
proaches to the optimal solution. Since scientific workflows
tend to become more complex with increasing number of ac-
tivities, the average number of links introduced increases
from simple, medium, to complex workflows.

5.3 RQ2: Efficiency
Table 3 summarizes the runtime overhead of different refac-
toring approaches, where the first column shows the ref-
erence to the selection of the 30 scientific workflows we
use. The two sub-columns of the last column report the
runtime overhead for the two strategies of the third step
in Algorithm 1, where the second strategy (Strategy 2) is the
optimized one. According to Table 3:

All three approaches scale well. The runtime overhead of
different approaches does not always increase with increas-
ing workflow (DAG) size, because in addition to DAG size,
the runtime cost also depends on the structural complexity
(i.e., irregular dependence relations) of the DAG. How-
ever, the average runtime overhead increases from simple,
medium, to complex workflows.

Our approach ProR is faster than BeehiveZ but slower
than CASS. This is because ProR aims at maximizing
both concurrency and block-structuredness, while other ap-
proaches only focus on one aspect. BeehiveZ is slowest as it
needs to derive direct succession relations from traces of the
original workflow [12].

Strategy 2 of ProR is more efficient than Strategy 1,
though they are equivalent in deriving the optimal control
flow graph. This is because fewer candidate subgraphs need
to be considered by Strategy 2 for graph reduction. No
matter which strategy is employed, ProR scales well with
increasing DAG size. For instance, for the DAG with label
“30”, although, it involves 85 activities and 84 edges, Strat-
egy 1 and Strategy 2 of ProR take only 53.8 ms and 47.4 ms,
respectively, to obtain the BPEL-like workflow models. The
runtime overhead of ProR confirms the runtime complexity
result of our approach.

The above experimental results demonstrate that
ProR, not only guarantees obtaining workflow models
with maximized concurrency and near-maximized block-
structuredness, but also scales well in practice. Although
other approaches may be slightly faster, the refactored work-
flows do either not exhibit maximized concurrency or are
not as block-structured as possible.

6 RELATED WORK

In this section, we review related studies on workflow anti-
patterns [37], [5], [6], [7], [8], [15], workflow transforma-
tion [38], [39], [20], [40], [20], [41], [21], workflow refactor-
ing [17], [16], [9], workflow enhancement based on work-
flow mining [42], [11], [12], [23], and draw a comparison
between these studies and our work.

Workflow anti-patterns. We first review well-established
workflow anti-patterns which are classified into two

TABLE 3
Experimental Results - RQ2: Efficiency

Ref. CASS (ms) BeehiveZ (ms) ProR (ms)
Strategy 1 Strategy 2

1 3.2 10.6 7.0 5.0
2 3.2 18.1 4.2 4.0
3 3.6 19.5 7.4 5.4
4 3.1 13.8 7.0 5.4
5 6.6 20.5 10.4 9.4
6 7.2 24.1 15.6 12.6
7 5.2 21.6 10.2 9.2
8 7.2 22.8 12.4 11.4
9 4 31.1 17.2 15.6
10 10 22.9 24.6 16.0
11 3.2 28 9.6 6.2
12 3.8 23.9 9.4 6.2
13 10.2 37.4 25 22.2
14 5.4 24.6 18.4 14.0
15 3.4 46.8 37.8 30.4
16 4.4 32.2 22.8 16.0
17 4.2 32.6 17.8 13.0
18 5.2 36.8 22.4 16.2
19 5.2 57.6 37.2 31.0
20 3.2 29.6 15 14.6
21 15.8 74.1 58.4 54.8
22 9.2 65.8 45.2 37.4
23 4.2 34.4 22.8 14.8
24 10.6 65.1 40.2 34.8
25 15.6 73.8 55.6 41.6
26 11.8 71.8 37.4 36
27 9 64.8 48 39
28 16 84.3 65.8 53.2
29 17.8 85 67.2ms 57.8
30 10.8 78.8 53.8 47.4

types [3]: control flow anti-patterns [37], [5], [6] and data
flow anti-patterns [7], [8], [15]. Deadlocks and lack of syn-
chronizations are two common kinds of control flow anti-
patterns [37]. If an AND-join node is used to synchronize
different branches of an XOR-split node, there will be a
deadlock. If an XOR-join node is used to merge differ-
ent threads of an AND-split node, the problem of lack
of synchronization occurs because the XOR-join initializes
more than once. Typical data flow anti-patterns includes
missing input, redundant output, and lost output [7], [15].
Unoptimized sequence orders in executable workflows
(e.g., BPEL processes) can be regarded as another type of
anti-patterns which are related to the interplay of both the
control flow and data flow [10].

Workflow transformation. Transforming unstructured
workflow models into equivalent block-structured ones has
been intensively studied [38], [39], [20], [40]. These studies
focus on identifying kinds of unstructured workflows that
can be transformed into structured equivalents. If this is
not possible, maximal structuring of acyclic workflows is
studied in [40]. However, the structuredness is achieved
at the expense of duplicated nodes, where our approach
does not require this. Besides, some researchers focus on
more general situations, that is, transforming graph-based
workflows into block-oriented workflows [20], [41], [21].
For example, Ouyang et al. study how to transform BPMN
models to block-structured BPEL workflows [21]. Although
existing studies closely relate to our work, there are three

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

main differences. First, since only control flow is considered
and data flow is abstracted in these studies, they do not take
concurrency maximization into account. Second, most of the
work focuses on graph-based workflow models while our
approach on BPEL-like models. Third, our approach focuses
on deriving optimal control flow based on a dependence
graph, whereas the above studies do not.

Workflow refactoring. A great deal of work focuses on
improving the internal implementations of services without
affecting the external observable behavior. For example,
Ratkowski et al. in [17] propose a BPEL transformation
approach to enhance the non-functional properties (e.g.,
performance, modifiability, granularity, and maintainabil-
ity) of the original BPEL workflow but do not change its
behaviour. Feng et al. leverage the data flow information to
restructure service workflows [16]. Their goal is to improve
the performance of service implementations while keeping
the service protocol unchanged. Unfortunately, neither of
these approaches discusses achieving maximized concur-
rency or block-structuredness. Ni et al. focus on detecting
concurrency-relating problematic activity arrangements in
BPEL workflows [9] and determine optimal control flow
relations of a BPEL workflow. However, as we show in
Section 5, their algorithm fails to maximizing concurrency.

Workflow enhancement based on workflow mining. Some
recent work utilizes workflow mining (including Petri nets
synthesis) techniques for workflow refactoring and en-
hancement. For instance, Wang et al. leverage the theory
of regions and Petri nets synthesis to find the optimal
representation of a service composition [11]. Jin et al. employ
workflow discovery technique (i.e., the α-algorithm) to help
reconstruct data-aware Petri nets [12]. The workflow mining
approach presented in [23] can discover workflows from
dependence-complete event logs. However, all these tech-
niques can at most ensure maximized concurrency, while the
block-structuredness is not considered. Leemans et al. pro-
pose a mining approach which can obtain block-structured
workflow from a dependence graph (in terms of direct suc-
cessorship relations) [42]. However, the process underlying
the event log ought to be a tree structure. Our previous
work [23] uses activity dependences for process discovery,
which can derive a workflow model from the discovered
dynamic dependence graph. However, this approach only
considers local concurrency maximization while global con-
currency maximization is not ensured.

7 CONCLUSIONS

In this paper, we have presented a refactoring approach
to maximizing concurrency and block-structuredness for
BPEL-like workflows. The main idea of our approach is to
search in the workflow dependence graph for well-formed
patterns whose control flow relations with maximized con-
currency are block-structured. If a workflow cannot be fully
block-structured, our approach uses synchronization links
to make the refactored workflow near block-structured.
Since the problem of introducing minimum links is in-
tractable, we present a greedy algorithm to achieve ef-
ficiency. The experimental results on real-world scientific
workflows demonstrate that our approach can efficiently
obtain workflow models with maximized concurrency and

few links. Our approach is also applicable to process
discovery. Our future work will focus on other algorithms
to introduce fewer links.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China under Grant No. 2017YFB1001801,
the National Natural Science Foundation of China un-
der Grant No. 61761136003, the Natural Science Founda-
tion of Jiangsu Province under Grant No. BK20171427,
the Deutsche Forschungsgemeinschaft (DFG) project under
Grant No. JA 2441/2-1, NSERC, and the Alexander von
Humboldt Foundation under Grant No. 5090551.

REFERENCES

[1] M. Hertis and M. B. Juric, “An empirical analysis of business
process execution language usage,” IEEE Trans. Software Eng.,
vol. 40, no. 8, pp. 738–757, 2014.

[2] W. Song, F. Chen, H.-A. Jacobsen, X. Xia, C. Ye, and X. Ma,
“Scientific workflow mining in clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 10, pp. 2979–2992, 2017.

[3] W. Song and H.-A. Jacobsen, “Static and dynamic process change,”
IEEE Trans. Services Computing, vol. 11, no. 1, pp. 215–231, 2018.

[4] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst, “Seven
process modeling guidelines (7PMG),” Information & Software Tech-
nology, vol. 52, no. 2, pp. 127–136, 2010.

[5] J. Koehler and J. Vanhatalo, “Process anti-patterns: How to avoid
the common traps of business process modeling,” IBM WebSphere
Developer Technical Journal, vol. 10, no. 2, p. 4, 2007.

[6] S. Roy, A. S. M. Sajeev, S. Bihary, and A. Ranjan, “An empirical
study of error patterns in industrial business process models,”
IEEE Trans. Services Computing, vol. 7, no. 2, pp. 140–153, 2014.

[7] N. Trcka, W. M. P. van der Aalst, and N. Sidorova, “Data-flow
anti-patterns: Discovering data-flow errors in workflows,” in Ad-
vanced Information Systems Engineering, 21st International Confer-
ence, CAiSE’09, Amsterdam, The Netherlands, June 8-12. Proceedings.
Berlin: Springer-Verlag, 2009, pp. 425–439.

[8] H. S. Meda, A. K. Sen, and A. Bagchi, “On detecting data flow
errors in workflows,” J. Data and Information Quality, vol. 2, no. 1,
pp. 4:1–4:31, 2010.

[9] Y. Ni, L. Zhang, Z. J. Li, T. Xie, and H. Mei, “Detecting
concurrency-related problematic activity arrangement in WS-
BPEL programs,” in IEEE International Conference on Services Com-
puting, SCC’11, Washington, DC, USA, 4-9 July. Washington: IEEE
Computer Society, 2011, pp. 209–217.

[10] W. Song, X. Ma, S. C. Cheung, H. Hu, Q. Yang, and J. Lü, “Refactor-
ing and publishing WS-BPEL processes to obtain more partners,”
in IEEE International Conference on Web Services, ICWS’11, Washing-
ton, DC, USA, July 4-9. Washington: IEEE Computer Society, 2011,
pp. 129–136.

[11] Y. Wang, A. Nazeem, and R. Swaminathan, “On the optimal Petri
net representation for service composition,” in IEEE International
Conference on Web Services, ICWS’11, Washington, DC, USA, July 4-9.
Washington: IEEE Computer Society, 2011, pp. 235–242.

[12] T. Jin, J. Wang, Y. Yang, L. Wen, and K. Li, “Refactor business
process models with maximized parallelism,” IEEE Trans. Services
Computing, vol. 9, no. 3, pp. 456–468, 2016.

[13] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, pp. 319–349, 1987.

[14] OASIS, “Web services business process execution language ver-
sion 2.0,” April 2007.

[15] W. Song, C. Zhang, and H.-A. Jacobsen, “An empirical study on
data flow bugs in business processes,” IEEE Trans. Cloud Comput-
ing, PrePrints, doi: 10.1109/TCC.2018.2844247.

[16] Z. Feng, R. Peng, K. He, and Z. He, “Service restructuring by
choreography-driven equivalence,” in IEEE Ninth International
Conference on Services Computing, SCC’12, Honolulu, HI, USA, June
24-29. Washington: IEEE Computer Society, 2012, pp. 407–414.

[17] A. Ratkowski, A. Zalewski, and B. Piech, “Transformational de-
sign of business processes in BPEL language,” e-Informatica, vol. 3,
no. 1, pp. 103–117, 2009.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867593, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[18] W. Reisig, “The synthesis problem,” Trans. Petri Nets and Other
Models of Concurrency, vol. 7, pp. 300–313, 2013.

[19] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[20] J. Mendling, K. B. Lassen, and U. Zdun, “On the transformation
of control flow between block-oriented and graph-oriented pro-
cess modelling languages,” International Journal of Business Process
Integration and Management, vol. 3, no. 2, pp. 96–108, 2008.

[21] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofst-
ede, and J. Mendling, “From business process models to process-
oriented software systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 19, no. 1, pp. 2:1–2:37, 2009.

[22] M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing execution
of composite web services,” in Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA’04, October 24-28, Vancouver, BC,
Canada. New York, NY: ACM Press, 2004, pp. 170–187.

[23] W. Song, H.-A. Jacobsen, C. Ye, and X. Ma, “Process discovery
from dependence-complete event logs,” IEEE Trans. Services Com-
puting, vol. 9, no. 5, pp. 714–727, 2016.

[24] J. E. Hopcroft and R. E. Tarjan, “Efficient algorithms for graph
manipulation [H] (algorithm 447),” Commun. ACM, vol. 16, no. 6,
pp. 372–378, 1973.

[25] Y. L. Varol and D. Rotem, “An algorithm to generate all topological
sorting arrangements,” Comput. J., vol. 24, no. 1, pp. 83–84, 1981.

[26] D. Grigori, J. C. Corrales, M. Bouzeghoub, and A. Gater, “Ranking
BPEL processes for service discovery,” IEEE Trans. Services Com-
puting, vol. 3, no. 3, pp. 178–192, 2010.

[27] M. Weidlich, J. Mendling, and M. Weske, “Efficient consistency
measurement based on behavioral profiles of process models,”
IEEE Trans. Software Eng., vol. 37, no. 3, pp. 410–429, 2011.

[28] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction
of a directed graph,” SIAM J. Comput., vol. 1, no. 2, pp. 131–137,
1972.

[29] M. Mitchell, “Creating minimal vertex series parallel graphs from
directed acyclic graphs,” in Australasian Symposium on Information
Visualisation, InVis.au, Christchurch, New Zealand, 23-24 January,
2004, pp. 133–139.

[30] L. Cai and F. Maffray, “On the SPANNING k-tree problem,”
Discrete Applied Mathematics, vol. 44, no. 1-3, pp. 139–156, 1993.

[31] G. Călinescu, C. G. Fernandes, H. Kaul, and A. Zelikovsky, “Max-
imum series-parallel subgraph,” Algorithmica, vol. 63, no. 1-2, pp.
137–157, 2012.

[32] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split
miner: Discovering accurate and simple business process models
from event logs,” in IEEE International Conference on Data Mining,
ICDM’17, New Orleans, LA, USA, November 18-21, 2017, pp. 1–10.

[33] G. Booch, J. E. Rumbaugh, and I. Jacobson, The unified modeling
language user guide - covers UML 2.0, Second Edition. Addison-
Wesley, 2005.

[34] D. D. Roure, C. A. Goble, and R. Stevens, “The design and
realisation of the myexperiment virtual research environment for
social sharing of workflows,” Future Generation Comp. Syst., vol. 25,
no. 5, pp. 561–567, 2009.

[35] Z. Zhou, Z. Cheng, L. Zhang, W. Gaaloul, and K. Ning, “Scientific
workflow clustering and recommendation leveraging layer hierar-
chical analysis,” IEEE Trans. Services Computing, vol. 11, no. 1, pp.
169–183, 2018.

[36] E. Alpaydin, Introduction to machine learning. London: MIT press,
2014.

[37] W. Sadiq and M. E. Orlowska, “Analyzing process models using
graph reduction techniques,” Inf. Syst., vol. 25, no. 2, pp. 117–134,
2000.

[38] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler, “On
structured workflow modelling,” in Advanced Information Systems
Engineering, 12th International Conference CAiSE’00, Stockholm, Swe-
den, June 5-9, Proceedings. Berlin: Springer-Verlag, 2000, pp. 431–
445.

[39] R. Liu and A. Kumar, “An analysis and taxonomy of unstructured
workflows,” in Business Process Management, 3rd International Con-
ference, BPM’05, Nancy, France, September 5-8, Proceedings. Berlin:
Springer-Verlag, 2005, pp. 268–284.

[40] A. Polyvyanyy, L. Garcı́a-Bañuelos, D. Fahland, and M. Weske,
“Maximal structuring of acyclic process models,” Comput. J.,
vol. 57, no. 1, pp. 12–35, 2014.

[41] S. White, “Using BPMN to model a BPEL process,” BPTrends,
vol. 3, no. 3, pp. 1–18, 2005.

[42] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Dis-
covering block-structured process models from event logs - A
constructive approach,” in Application and Theory of Petri Nets and
Concurrency - 34th International Conference, PETRI NETS’13, Milan,
Italy, June 24-28. Proceedings. Berlin: Springer-Verlag, 2013, pp.
311–329.

Wei Song received the Ph.D. degree from Nan-
jing University, China, in 2010. He is an as-
sociate professor in the School of Computer
Science and Engineering, Nanjing University of
Science and Technology, China. He was a visit-
ing scholar at Technische Universität München,
Germany, from October to December, 2015, and
August, 2016 to August, 2017, and was a visiting
student at The Hong Kong University of Science
and Technology from October, 2008 to February,
2009. His research interests include software

engineering and methodology, program analysis and testing, services
and cloud computing, and process mining and analysis. He was invited
to the Schloss Dagstuhl Seminar “Integrating Process-Oriented and
Event-Based Systems” held in August, 2016. He has published in pre-
miere computer science journals such as IEEE Transactions on Cloud
Computing, IEEE Transactions on Dependable and Secure Computing,
IEEE Transactions on Parallel and Distributed Systems, IEEE Trans-
actions on Services Computing, and IEEE Transactions on Software
Engineering. He is a member of the IEEE.

Hans-Arno Jacobsen received the Ph.D. de-
gree from Humboldt Universität in Germany. He
engaged in postdoctoral research at INRIA near
Paris, France, before moving to the University of
Toronto in 2001. He is a professor of computer
engineering and computer science and directs
the activities of the Middleware Systems Re-
search Group. He conducts research at the inter-
section of distributed systems and data manage-
ment, with particular focus on middleware sys-
tems, event processing, and cyber-physical sys-

tems. In 2011, he received the Alexander von Humboldt-Professorship
to engage in research at the Technische Universität München, Germany.
He is an IEEE Senior Member.

S.C. Cheung received the Ph.D. degree in com-
puting from the Imperial College London. In
1994, he joined The Hong Kong University of
Science and Technology, where he is a full pro-
fessor of computer science and engineering. He
participates actively in program and organizing
committees of major international software engi-
neering conferences. He was the general chair
of the 22nd ACM SIGSOFT International Sym-
posium on the Foundations of Software Engi-
neering (FSE 2014). He was a director of the

Hong Kong R & D Center for Logistics & Supply Chain Management
Enabling Technologies. His research interests include program analysis,
testing and debugging, big data software, cloud computing, internet of
things, and mining software repository.

Hongyu Liu received the M.S. degree from
Nanjing University of Science and Technology
Nanjing, China, in 2016. She is now working at
ZTEsoft. Her research interests include software
engineering, services computing, and workflow
management.

Xiaoxing Ma received the Ph.D. degree in com-
puter science from Nanjing University, China, in
2003. He is a full professor with the State Key
Laboratory for Novel Software Technology and
the Department of Computer Science and Tech-
nology, Nanjing University, China. His research
interests include self-adaptive software systems,
cloud computing, software architecture, and mid-
dleware systems. He co-authored more than 60
peer-reviewed conference and journal papers,
and has served as technical program committee

member on various international conferences. He is a member of the
IEEE and the ACM.

