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Abstract—The remarkable advances of Machine Learning (ML) have spurred an increasing demand for ML- as-a-Service on public

cloud: developers train and publishMLmodels as online services to provide low-latency inference for dynamic queries. The primary

challenge of MLmodel serving is to meet the response-time Service-Level Objectives (SLOs) of inference workloadswhileminimizing

serving cost. In this article, we proposesMArk (Model Ark), a general-purpose inference serving system, to tackle the dual challenge of

SLO compliance and cost effectiveness. MArk employs three design choices tailored to inference workload. First, MArk dynamically

batches requests and opportunistically serves them using expensive hardware accelerators (e.g., GPU) for improved performance-cost

ratio. Second, instead of relying on feedback control scaling or over-provisioning to serve dynamic workload, which can be too slow or too

expensive, MArk employs predictive autoscaling to hide the provisioning latency at low cost. Third, given the stateless nature of inference

serving, MArk exploits the flexible, yet costly serverless instances to cover occasional load spikes that are hard to predict. We evaluated

the performance of MArk using several state-of-the-art MLmodels trained in TensorFlow, MXNet, and Keras. Compared with the premier

industrial ML serving platform SageMaker, MArk reduces the serving cost up to 7:8�while achieving even better latency performance.

Index Terms—Machine-learning-as-a-service, inference serving, SLO awareness, cost minimization, cloud computing

Ç

1 INTRODUCTION

MACHINE Learning (ML) technologies have advanced by
leaps and bounds in the past fewyears, leading to a bur-

geoning demand of Machine-Learning-as-a-Service (MLaaS)
systems on the public cloud. A typical workflow of MLaaS
system covers the two phases of ML, training and inference. In
the training phase, developers build ML models from the
training dataset using an array of ML frameworks. Efficient
training in cloud environments has been well explored in the
recent work [53], [67], [89]. In the inference phase, the trained
models are published as online cloud services and can be que-
ried by users with new input. The service makes prediction
decisions (inference) for a given input using the trained
model [39] (e.g., recognizing human faces in a given photo)
and returns the inference results to the querier.

Unlike training which runs offline and may take hours to
days to complete, inference must be performed in real-time
over dynamic queries with stringent latency requirements
(e.g., tens to hundreds of milliseconds per query). These
requirements are often specified as the response-time Service-
Level Objectives (SLOs) [51], e.g., at least 98 percent of inference
queries must be served in 200 ms. Failing to comply with the

SLOs results in compromised quality of service or even finan-
cial loss, e.g., end users will not be charged for queries not
responded in time. Therefore, an ML model serving system
should strive to meet the target SLOs while minimizing the
cost of provisioning the serving instances in the cloud.

However, achieving these two objectives can be challeng-
ing. Cloud providers like Amazon [16], Google [47], and
Microsoft [63] offer a wide variety of service provisioning
options, ranging from VMs and containers to the emerging
serverless functions. There is a wide configuration space for
each provisioning option (e.g., CPU, memory, and hard-
ware accelerators) coupled with diverse pricing models
offering flexible tradeoffs between service guarantees and
cost savings (e.g., on-demand and spot instances [22]). A
key challenge of provisioning model serving in the cloud is:
how does a serving system choose from a bewildering array
of cloud services to provide low-latency, cost-effective infer-
ence at scale?

Unfortunately, there is no general guidance provided by
the cloud providers, nor has it been studied in previous
research [15], [34], [52], [55], [69], [70], [74], [82] which
mainly targets general applications. To bridge this gap, we
perform comprehensive measurement studies of inference
serving in AWS [16] and Google Cloud [47] using VMs
(IaaS), containers (CaaS), and serverless functions (FaaS).
We briefly summarize our three key findings as follows.

First, among the three alternatives, Infrastructure-as-a-
Service (IaaS) provides the best performance-cost ratio for
inference serving, but it requires long instance provisioning
latency and is unable to adapt to the changing workload
timely. Container-as-a-Service (CaaS) suffers from a similar,
yet less severe, problem with even worse performance-cost
ratio. Compared to IaaS and CaaS, Function-as-a-Service
(FaaS) scales much faster but is the most costly.
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Second, inference serving benefits from batching greatly
when performed using costly hardware accelerators (e.g.,
GPUs). Nonetheless, the benefits are not always guaranteed
but critically depend on the batch size control knobs and
their interactions with query arrivals: when there is not
enough load, serving inference queries using GPUs is not
economically justified. Therefore, a serving system should
judiciously determine when to scale up from CPU to GPU
instances and how to perform batching over GPUs.

Third, ML inference usually performs stateless computa-
tions. This opens up an opportunity of using serverless
functions as a handover service when the system is provision-
ing new instances for scaling up/out. In addition, many ML
models, especially deep learning, have deterministic inference
time [51], [86]—they take fixed-size input vectors and have
input-independent control flows. This also brings an oppor-
tunity for better resource planing and latency control.

Based on these observations, in this paper, we propose
Model Ark (MArk), a low-latency, cost-effective inference
serving system on the public cloud. MArk takes advantage
of the unique characteristics of ML model serving while
addressing the distinctive challenges it raises. In particular,
MArk allows developers to specify the target SLOs through
common APIs. To attain high performance-cost ratio, it uses
IaaS as the primary means of provisioning while utilizing
FaaS to quickly fill the service gapwhen the system is under-
going horizontal/vertical scaling. MArk uses predictive scal-
ing to mask the instance provisioning latency in IaaS.
Unpredicted load spikes are covered by serverless functions
to reduce over-provisioning. Based on the predicted work-
load, MArk opportunistically uses costly GPU instances to
serve batched queries for improved performance-cost ratio. To
further cut costs, MArk also supports the use of heavily dis-
counted, yet interruptible instances (e.g., spot instances) with
an interruption-tolerant mechanism that uses transient serv-
ers to handle instance interruptions at low cost.

We have prototyped MArk as a general-purpose serving
platform in AWS [16] with pluggable backendmodel servers
supporting a range of ML frameworks such as Tensorflow
Serving [66], MXNet Model Server [32], and customized
Keras [38] server with Theano [35] backend. We have eva-
luated MArk with several state-of-the-art ML models for
image recognition, languagemodeling, andmachine transla-
tion: Inception-V3 [79], NASNet [90], LSTM-ptb [62], and
OpenNMT [58]. The results show that MArk yields up to
7:8� cost reduction with comparable or even shorter latency
than the state-of-the-practice solution SageMaker [18], while
complying with the predefined SLO requirements. MArk is
open-sourced for public access.1

2 BACKGROUND AND RELATED WORK

In this section, we survey related work on model serving sys-
tems and autoscaling techniques.We also provide background
information on cloud services and their pricing models.

2.1 Machine Learning Model Serving

A wide array of ML inference serving systems have been
proposed to facilitate model deployment [7], [8], [32], [39],

[66], [84]. These systems place the trained models in contain-
ers and handle model inference requests through REST APIs.
For example, systems like Clipper [39], Rafiki [84], and
MXNet Model Server [32] host each model in a separate
Docker [4] container to ensure process isolation; TensorFlow
Serving [66] deploy models as servables, which are executed
as black box containers and can also be used for versionman-
agement. In order to provide low-latency inference, these
systems employ a number of model-agnostic optimizations
such as batching, buffering, and caching [39], while relying
on conventional container orchestration for scaling. The
recently proposed white box model serving [60] enables
model-specific optimizations with fine-grained resource
sharing and parameter re-use.

However, existing inference serving systemsmainly focus
on streamlining model deployment in server machines,
without addressing the scalability and cost minimization
issues for model serving on the public cloud. Microsoft’s
Swayam [51] is among a few inference serving systems that
focus on infrastructure scalability and resource efficiency.
Yet Swayam is a proprietary system for model deployment
in Microsoft’s private MLaaS clusters. Nexus [75] is a GPU
cluster engine that optimizes DNN inference throughput on
a private cluster through techniques including dependency-
aware scheduling, model fragmentation, and batching. The
objective of Nexus is to increase the utilization of a pre-allo-
cated GPU cluster dedicated for inference serving while we
aspire to reduce the provisioning cost in public cloud. Ama-
zon’s SageMaker [18] offers scalable model serving over
EC2 [1] instances. However, it only supports IaaS provision-
ing and requires manual specification of the provisioning
instances. SageMaker is also agnostic to the response-time
SLOs and serves inference queries in a best-effort manner. In
contrast, MArk meets SLOs at low cost by choosing from a
complex selection of provisioning services in AWS [16].

2.2 Autoscaling Dynamic Workload in Cloud

There is a large body of work on autoscaling dynamic work-
load for general web services hosted in the cloud. We refer
to [70] for an extensive survey of this topic and compare
some related work with MArk in Table 1. In general, there
are two scaling approaches used to serve dynamicworkload.

Feedback Control Scaling. This approach monitors hosted
applications and reactively adjusts resource provisioning
based on themonitoredmetrics (e.g., utilization, throughput,
and latency). Feedback control scaling is adopted in many
industrial serving platforms to autoscale dynamic workload,
e.g., SageMaker in AWS [17], [18] and Kubernetes in Google
Cloud [48], [49]. These systems perform scaling following
some customized rules such as “adding two instances if CPU
utilization reaches 70 percent,” or tracking a target such as
“maintaining 100 queries perminute per instance” [20].

Feedback control scaling makes no prediction and is easy
to implement. However, owing to its reactive nature, it incurs
long instance provisioning delay when used to serve the
changing workload [70]. Over-provisioning is therefore
needed in case of load spikes. For example, SageMaker recom-
mends to start with 100 percent over- provisioning and adjust
thereafter [21]. As ML model serving is often compute-inten-
sive and requires costly CPU/GPU instances, solely relying
on over-provisioning is economically not viable.1. https://github.com/marcoszh/MArk-Project
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Predictive Scaling. This approach makes predictions about
the future workload, based on which it proactively autoscales
the serving instances to reduce over- provisioning. Predic-
tive scaling has been widely employed to serve general
workload (e.g., web services and VM demands) using a
number of time-series-based prediction algorithms, such as
linear regression [36], autoregressive models [43], [72], and
neural networks [26], [64], [68], [77]. Predictive scaling is
often complemented with feedback control scaling, where
the two approaches operate at different time scales [52],
[82]. For example, predictive scaling can be used for
resource planning in hours to days, with reactive provision-
ing operating in minutes to respond to flash crowds or
unexpected deviations from long-term behaviors [82].

However, due to the mismatch of target workload, exist-
ing predictive autoscalers do not work well for ML model
serving. As summarized in Table 1, they only consider pro-
visioning over homogeneous instances on IaaS cloud [14],
[34], [52], [82]. They also do not support hardware accelera-
tors (e.g., GPUs) and cheaper, yet interruptible instances
(e.g., spot servers), hence missing opportunities of cutting
provisioning costs. In addition, many predictive autoscalers
are unaware of the response-time SLOs and only provide
best-effort services [14], [34]. As a result, such approach is
seldomly adopted in real world deployment.

2.3 Cloud Provisioning Services

Compared with private clusters, model serving on public
clouds is far more complex. Leading cloud platforms such
as AWS [16], Google Cloud [47], and Microsoft Azure [63]
offer a variety of provisioning services that can be used for
model serving. We briefly survey these services, with a
main focus on AWS.

Infrastructure-as-a-Service (IaaS). With IaaS, cloud custom-
ers run virtual instances (VMs) of various configurations in
terms of CPUs, memory, storage, network, and accelerators
(e.g., GPU, TPU, and FPGA). Customers can then configure
and deploy ML model serving softwares [32], [39], [80] on
running instances to serve model inference requests.

IaaS cloud provides flexible pricing options to allow cus-
tomers to choose between service guarantees and cost sav-
ings. Taking Amazon EC2 [1] as an example, customers can
run instances on-demand and pay for compute capacity by
per hour or per second depending on the instance types.
Alternatively, customers can run spot instances at steep dis-
counts of the on-demand price, under the condition that a
running spot instance can be interrupted indefinitely [22]. EC2

also allows customers to reserve an instance in a long term
by making an upfront payment [29]. During the reservation
period, the instance usage is subject to a heavy discount
compared to the on-demand price. All three IaaS pricing
options are also available in Google Cloud [47].

Container-as-a-Service (CaaS). With CaaS (e.g., Amazon
ECS [2] andGoogle Kubernetes Engine [6]), customers encap-
sulate services and implementations in containers (Docker
images [4]), and run containers with specified resource con-
figurations. Compared with IaaS, CaaS simplifies software
configurations and deployment without the complexity of
maintaining the server infrastructure. In Amazon ECS, users
pay for the container capacity by per second, where the pric-
ing is based on requested vCPU cores andmemory.

Function-as-a-Service (FaaS). With FaaS, customers run
applications as serverless functions (e.g., AWS Lambda [3]
and Google Cloud Functions [5]) and let the cloud platform
to handle resource provisioning and management. In
Lambda, customers can only specify the memory allocation
for a function instance, and pay for the total number of
requests and the compute time [3]. FaaS is particularly suit-
able for stateless computations and has become popular in
serving ML models [81].

Given a complex selection of provisioning options in the
public cloud, which one should be used for ML model serv-
ing? We answer this question in the next section.

3 CHARACTERIZING MODEL SERVING

ON THE CLOUD

In this section, we characterize ML serving performance
with IaaS, CaaS, and FaaS as well as their configuration
space. Our characterizations are mainly based on AWS [16]
(Sections 3.1-3.4), a leading cloud platform offering the most
diversified service options. We validate the major results in
Google Cloud [47] where possible (Section 3.5).

3.1 What Service to Use: IaaS, CaaS, or FaaS?

We choose three representativeMLmodels, Inception-v3 [79],
Inception-ResNet [78], andOpenNMT-ende [58], for common
prediction tasks such as image classification and machine
translation, and evaluate their peak inference performance
with TensorFlow Serving [66]. Table 2 summarizes the cost
and average latency of serving 1 million requests using AWS
EC2 (IaaS), ECS (CaaS), and Lambda (FaaS), respectively.2

TABLE 1
A Comparison of MArk and Existing Work on Autoscaling Dynamic Workload in the Cloud

Autoscaler Scaling approach Means of Provisioning SLO-aware Heterogeneous instances Interruptible instances Hardware accelerators

MBRP [42] Feedback control Private cluster @ @ � �
Ali-Eldin et al. [14] Predictive IaaS � � � �
Barrett et al. [34] Predictive IaaS � � � �
Urgaonkar et al. [82] Predictive IaaS @ � � �
Han et al. [52] Predictive IaaS @ � � �
Qu et al. [69] Feedback control IaaS � @ @ �
SpotCheck [74] – IaaS � @ @ �
He et al. [55] – IaaS � @ @ �
Swayam [51] Predictive Private cluster @ � – �
SageMaker [18] Feedback control IaaS � � � @
MArk Predictive IaaS and FaaS @ @ @ @

2. Costs of instances are all based on AWS us-east-1 region.
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IaaS versus CaaS. In EC2 [1], customers can choose among
predefined instance types with fixed vCPUs and memory
allocation. In Table 2, we choose the compute-optimized
instance c5.large as the reference, as it is proven to be the
most cost-effective choice in Section 3.3. AWS’s container
service ECS [2], on the other hand, lets users choose the
number of vCPUs they want. We allocate each container
with 2 vCPUs to match the capacity of c5.large, and with
the minimum memory allowed. Compared with c5.

large, the ECS container has similar serving latency but is
more expensive.

FaaS.As for the serverless computing service Lambda [3],
the pricing is on a per-request basis, and the cost per request
depends on the resource allocation and runtime of the
request. Customers specify memory allocation in Lambda,
and CPU resource is allocated proportionally to memory
[19]. For a fair comparison, we evaluate the Lambda cost of
serving the same amount of requests that c5.large can
serve in an hour, with the maximum memory allocated for
best performance. The cost is significantly higher, and the
latency is longer, too.

Scalability. EC2 has long provisioning overhead (e.g., sev-
eral minutes), because more time is needed to load and set
up large ML model serving in addition to standard over-
head, as Microsoft suggests with their production traces [51].
The overhead makes it challenging to accommodate dem-
and surge without high margin of over-provisioning. The
high launching overhead also penalizes frequent provision-
ing and deprovisioning, since customers are billed during
the instance launching period as well. Similar to EC2, ECS
also needs dozens of seconds of provisioning overhead.
Lambda, on the contrary, is able to spawn thousands of
new ML inference instances in less than a few seconds, and
once an instance is ready, it can continuously serve requests
without incurring additional overhead [59]. The cold start
overhead of Lambda can be amortized by warming up func-
tion instances [59]. Compared with EC2 and Lambda, ECS
has no obvious advantage.

Summary. A natural question is that can we exploit the
cost-effectiveness of IaaS service while also taking advantage
of the high scalability of FaaS? Conventional cloud provi-
sioning schemes have to over-provision because of the weak
scalability of IaaS or CaaS. Now that ML serving is eligible
for the highly scalable FaaS, we can reduce over-provision-
ing by combining IaaS and FaaS. The former is used as the
primary serving option, with the latter providing transient
service while new IaaS instances are launching. Moreover,

FaaS can potentially handle the short lasting demand surges
(short spikes), so that the overhead of frequent provisioning
and deprovisioning can be eliminated. Although FaaS is
costly, we believe the cost reduction from less over-provi-
sioning can justify its high price tag.

With IaaS as the primary serving option, we shall deter-
mine how to choose from a bewildering array of instance
families and sizes, which we discuss next.

3.2 IaaS: Can We Use Burstable Instances?

IaaS providers typically categorize instances into various
families.Within a family, instances share the similar physical
hardware but may have different sizes in terms of vCPUs,
memory, and network bandwidth. For CPU instances, EC2
offers four main instance families: the general-purpose m-

family, the compute-optimized c-family, the burstable
t-family, and thememory-optimized r-family.

Among all instance types, burstable instances (t-fam-
ily) have the lowest hourly rate, but they are aggressively
multiplexed on overbooked servers [83], [85]. Burstable
instances provide a baseline level (10 percent in AWS) of
CPU performance with the ability to burst when required
by the workload, yet with limited timespan according to a
throttle policy (a new t2 instance can sustain 100 percent
utilization for 30 minutes) [30], [31].

We profiled t2 instances’ performance for ML serving,
and the results are summarized in Table 3. We see that the
latency drops proportionally with more vCPUs but adding
more memory does not benefit the inference performance
(e.g., upgrading from micro to small or from medium to
large). Although it seems that t2 instances are of low cost
with viable latency for ML serving, these results are
obtained in the bursted mode and do not sustain for a long
time. Such drawback suggests that burstable instances are
not for compute-intensive services [61].

Summary. While burstable instances are plausible for
transient ML serving usage, they should not be used as the
main long-running resources.

3.3 IaaS: Big Instances or Small Instances?

We further investigate CPU instance families compute-opti-
mized c-family and general-purpose m-family, where
we focus on the latest generation c5 and m5. We exclude
memory-optimized instances (r-family) from consider-
ation, as our measurements on t2 instances indicate that
4 GB of memory already does not bound the inference per-
formance. In EC2, the configurations (vCPUs and memory)

TABLE 2
Cost ($) and Average Latency (t) of Serving 1 Million

Requests of Three ML Models in AWS

MLModel EC2 ECS Lambda

$ t (ms) $ t (ms) $ t (ms)

Inception-v3 5.0 210 9.17 217 19.0 380
Inception-ResNet 9.3 398 16.4 411 39.3 785
OpenNMT-ende 51.5 2180 96.3 2280 155 3100

We choose c5.large EC2 instance (2 vCPUs and 4GB memory) as it is the
most cost-effective. Each ECS container is allocated the same vCPUs and mem-
ory as c5.large; each Lambda instance has 3GB memory to achieve compa-
rable latency with c5.large.

TABLE 3
The Average Latency (t) and Cost ($) of Serving 1 Million

Model Inferences With Bursted t2 Instances

AWS t2 Instance Size micro small medium large

Inception-v3 t (ms) 268.6 268.3 140.37 142.5
$ 0.87 1.71 1.81 3.75

Inception-ResNet t (ms) 603.0 593.2 311.8 309.8
$ 1.94 3.79 4.01 7.96

OpenNMT-ende t (s) 4.30 4.19 2.20 2.14
$ 13.85 24.83 28.36 56.71
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and prices of m5 and c5 instances are proportional to their
sizes. So it is important to see how scaling up to larger
instances would affect the ML serving performance.

Figs. 1a and 1b depict the measured latency (lines) and
cost (bars) of serving 1 million inference requests of three
ML models using c5 and m5 instances of different sizes. In
general, c5 instances are cheaper and result in lower latency
than m5 instances because of more advanced CPU models,
even though the latter have larger memory. Our results also
suggest that, for CPU instances of the same family, smaller
instances are more cost-effective, as the serving throughput
grows sub-linearly with the instance size. At the same time,
by scaling from a smaller instance to a bigger one, the
latency drops sub-linearly as well.

Summary. To sum up, smaller instances with advanced
CPU models (c5.large in AWS) are favored as they
achieve higher performance-cost ratio. Moreover, owing to
the finer provisioning granularity, using smaller instances
to serve dynamic workload improves the resource utiliza-
tion. Note that the cost analysis presented here is based in
on-demand market. Once we switch to the spot market, the
cost-effectiveness is variable w.r.t. the change of spot price.

3.4 IaaS: How Does GPU Compare With CPU?

Many high-end IaaS instances are equipped with hardware
accelerators, such as GPU and TPU (exclusive in Google
Cloud), that can be used to speed up ML training and infer-
ence. The questions are: how would those hardware acceler-
ators improve the latency of ML serving, and if such
performance benefit can justify their high cost? For now, we
focus on GPUs, which are the most accessible and popular
general-purpose ML accelerators. We will extend our study
to TPUs in Google Cloud in Section 3.5.

A GPU instance is more expensive than a CPU instance,
but it can achieve up to 40� speedup due to its massive par-
allel nature according to NVIDIA [65]. In order to unleash
the full power of its computing capability, it is essential to
batch multiple inference requests and serve them in one
go [80]. Batching benefits the performance in two ways.
First, it amortizes the overhead of operations such as RPC
calls and inter-device memory copy. Second, it can take
advantage of batch operation optimization from both soft-
ware and hardware [39], [73].

To disclose the intriguing performance difference between
CPU instances and GPU instances as well as batching, we
compare the inference performance of three ML models on
c5 CPU instances and GPU instances p2.xlarge. We

choose p2.xlarge as it is the smallest GPU instance in AWS
(the next size available is p2.8xlarge which has 8 GPUs
and is much more expensive). Fig. 2 shows the cost and
latency of serving 1 million inference requests with various
batch sizes (# of requests served in one batch) on c5 and p2.

xlarge instances. For smaller CPU instances such as c5.

large and c5.xlarge, the serving cost (bars) and latency
improvement (lines) over batching ismarginal (latency grow-
ing proportionally as the batch size), whereas bigger CPU
instance (c5.4xlarge) displays certain improvement when
batch size increases within a small range. GPU instances, on
the other hand, benefit significantly from batching: the larger
the batch, the lower the cost per request. This phenomenon
suggests that batching can significantly improve the cost-
effectiveness of larger CPU instances andGPU instances.

Serving multiple models on the same GPU is proposed by
Nexus [75] to increase utilization in a pre-allocated GPU clus-
ter. However, sharing GPUs incurs non-negligible context-
switching overhead [57]. Since we focus on public cloud
where users can choose from a rich selection of instance types
to ensure a high instance utilization, the context-switching
overhead of collocating models may not be justified as not
much spare resources can be utilized on the rented instances.

Summary. With an appropriate batch size, GPU instances
can achieve lower per-request cost and shorter inference
latency than CPU instances. However, batch size cannot be
increased arbitrarily as it leads to longer queuing latency
and batch inference latency [39]. We will further discuss the
batching configuration in Section 4 and formulate the prob-
lem in a latency-aware context.

3.5 Characterization in Google Cloud

So far, all our profiling experiments are based on AWS. To
validate whether our main observations also apply to ML
serving in the other cloud platforms, we extend our charac-
terization to Google Cloud [47]. Google Cloud offers similar
service and pricing options as AWS. In addition, it provides
Tensor Processing Unit (TPU), the state-of-the-art ASIC
dedicated to high-efficiency ML training.

Fig. 1. The latency (lines) and cost (bars) of serving 1 million model infer-
ence requests with c5 and m5 instances. M1, M2, and M3 respectively
denote Inception-v3, Inception-ResNet, and OpenNMT-ende. The val-
ues are normalized by that of c5.large (182.5ms with $4.3 for M1;
389ms with $9.4 for M2; 2.18s with $51.5 for M3).

Fig. 2. The cost and batch latency of 1 million model inference with
batching of various sizes. M1, M2, and M3 represents inception-v3,
inception-resnet, and OpenNMT-ende. The cost and batch latency are
normalized by the values when batch size is set to 1.
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IaaS Remains the Best Option in Google Cloud.We first com-
pare the cost and latency performance of ML serving using
Google’s IaaS, CaaS, and FaaS with the same workloads as
in Section 3.1. All the experiments were run in us-cen-

tral1 region. Among the three provisioning options, IaaS
remains the best with the lowest cost and shortest latency.
For instance, the average latency and total cost of serving 1
million Inception-v3 requests on an customized IaaS
instance with 1 vCPU and 2 GB memory are 317 ms and
$3.70, respectively. In comparison, it takes 319 ms and $4.17
using the cheapest CaaS instance n1-standard-1 (1
vCPU and 3.75 GB memory), and 527 ms and $17.4 using
Google Cloud Functions (FaaS) with 2 GB memory.

Small Instances Offering Higher Performance-Cost Ratio. We
then compare the cost and latency performance of CPU
instances of various sizes within the same family. We made
the similar observations as in AWS (Section 3.3): smaller
instances offer higher performance-cost ratio than the big-
ger ones, though the latter leads to shorter latency. In partic-
ular, when serving 1 million Inception-v3 requests with n1-

standard-1, n1-standard-2, and n1-standard-4,
the cost (average latency) ends up with $4.16 (319 ms), $7.82
(296 ms), and $11.98 (227 ms), respectively.

3.6 How About ML ASICs?

Application-specific integrated circuits (ASICs) are deemed
to be the step forward in delivering efficient ML. Premier
cloud providers including Google and Amazon have all
shown interests in developing ASICs for ML. Advanced
ASIC products like TPUs from Google, NPUs from Cambri-
con [13], DLUs from Fujitsu, NNPs from Intel [25] are all
well received in market. Among these efforts, Google’s Ten-
sor Processing Unit (TPU) is the front runner. It is the only
one of its kind that is generally available on public cloud.
The TPU, now in its 3rd iteration, is an ASIC built for train-
ing and inference of ML models. TPU benefits from thread
parallelism like GPUs do, yet it removes any general-pur-
pose additions in the architecture. TPUs are solely created
and optimized from the ground up for ML, and are special-
ized for high-speed, low-precision floating-point opera-
tions. Compared with GPUs, TPUs are more power-efficient
while achieving substantially better performance.

In order to understand how TPUs can be adopted in ML
serving, we compare the cost and latency performance of
using CPU, GPU, and TPU instances for ML serving with
various batch sizes. We choose two popular image classifi-
cation models, Inception-v3 and ResNet50 [54]. The results
are shown in Fig. 3, where we use a customized CPU

instance with 1 vCPU and 2 GB memory (CPU), the same
instance with a K80 GPU attached to it (GPU), and a Cloud
TPU-v2 instance (TPU). We observe the similar trend of cost
and latency w.r.t. batch size for CPU and GPU instances as
in AWS (Section 3.4). As for TPU, we find that its high price
tag does not justify the performance benefit. In fact, TPU is
a massively parallel accelerator optimized for training
throughput rather than inference latency. Note that in
Fig. 3, the batch size for TPU is calculated per core. As
TPUv2 has 8 cores, the device batch size is actually 8 times
the value. The design of TPU calls for large batch sizes to
fully exploit its computing capacity [50]. However, the strin-
gent latency requirement of real-time inference cannot wait
for large batches to accumulate, leading to extremely low
hardware utilization. In summary, TPUs are designed with
ML training or large-batch offline inference in mind, thus
not suitable for real-time ML serving under our setting.

3.7 How About Dedicated Inference Accelerators?

Compared with training, model inference only performs
forward propagation and has much smaller memory foot-
prints. Exploiting these properties, cloud providers offer
various specialized pieces of hardware optimized for ML
inference. AWS recently offers Elastic Inference (EI) [9]
and Inferentia [10]; Google offers Edge TPU [11]. Unlike
TPUs that are with massive parallelism and optimized for
throughput, these products have moderate computing
power, and are designed specifically to facilitate low-
latency inference tasks. Note that Edge TPUs are designed
to be deployed physically on the edge as opposed to be
accessible on cloud, so it is out of the scope of this paper.
Besides that, to deploy trained models on Edge TPU or
Inferentia, additional compilation processes including quan-
tization are also needed, which require dedicated software
SDK and may result in a model accuracy drop. Compared
with Edge TPU and Inferentia, AWS EI, released in Spring
2019, is particularly attractive as it requires no additional
engineering to the trained models. We hence explore the
adoption of AWS EI to exploit the newly available inference
accelerators.

AWS EI is essentially a service that offers large GPUs in
small units. EI allows users to attach a GPU-powered infer-
ence accelerator to an EC2 or SageMaker instance. EI accel-
erators come with three sizes each having different capped
FLOPS performance. Compared with renting standalone
GPU instances, EI enables users to utilize GPU power for
inference in a smaller granularity, meeting the lower com-
putation demand of inference. The utilization of EI requires
customized versions of ML frameworks, and some modifi-
cations of codes. EI accelerators are connected to the host
machines via network, which has higher overhead than
direct connections such as PCIe.

We conduct EI evaluations on MXNet with the configura-
tions following the official guide [24]. We use the official
MXNet inference benchmark script [12]. Fig. 4 illustrates the
results. For EI, we use c5.xlarge as the host instance, and
test EI accelerators eia1.medium and eia1.large

respectively. For baselines, we use GPU instance p2.

xlarge and CPU instance c5.xlarge.
Fig. 4 shows that without batching, EI can achieve com-

parable inference throughput of a standalone GPU instance,

Fig. 3. The cost and batch latency of serving 1 million inference requests
with various batch sizes. The batch latencies are normalized by the
latency with no batching.
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with even lower cost compared with CPU-only instance.
However, EI’s performance does not benefit as much from
batching, and its performance is limited by its small mem-
ory allocation. In fact, with an appropriate batch size, stand-
alone GPU can significantly outperform EI instances with
similar costs.3 It is worth noticing that in our evaluations, EI
instances incur much longer launching overhead than regu-
lar EC2 instances: it takes more than 20 seconds for an EI
instance to be ready, while a standalone GPU instance only
requires 7.4 seconds. A deep-dive inspection shows that the
high launching overhead of EI instances is caused by trans-
ferring voluminous ML software and models over the net-
work with limited bandwidth.

Summary. In our evaluations, Elastic Inference shows
balanced cost and performance ratio compared with reg-
ular EC2 instances. However, with appropriate batching,
standalone GPU instances can outperform EI. Further-
more, that EI instances cannot be obtained in spot mar-
ket renders it less competitive in price than the regular
EC2 instances.

3.8 Characterization Summary

We summarize our key findings as follows: (1) IaaS achieves
the best cost and latency performance for MLmodel serving,
and combining it with FaaS can potentially reduce over-pro-
visioning while remaining scalable to spiky workloads. (2)
Burstable instances are viable to cover transient ML serving
demand. (3) In on-demand CPU market, smaller instances
have higher performance-cost ratio than the bigger ones,
even though the latter provides shorter latency. (4) Only
with appropriate batching can the use of GPU instances be
justifiable to achieve lower cost and shorter latency than
CPU instances.

4 MARK

In this section, we present MArk (Model Ark), a scalable sys-
tem that provides cost-effective, SLO-aware ML inference
serving in AWS. While MArk is built in AWS, nothing pre-
vents our design from being extended to the other cloud plat-
forms with similar service offerings, such as Google Cloud
andMicrosoft Azure.

4.1 Overview

Following our observations in Section 3, MArk uses EC2 as
the primary means of provisioning ML serving. It also uses
Lambda to quickly cover the service gap when there is a
need to scale out/up. Fig. 5 illustrates the overall architecture
of MArk. In particular, requests from clients are deposited to
a request queue, and are grouped into batches by the Batch
Manager (details in Section 4.3). MArk periodically measures
the workload metrics, such as the request arrival rate, and
sends them to a Proactive Controllerwhich makes predictions
and plans instances in advance to reduce over-provisioning
(Section 2.2). The controller then sends the launching and
destroying requests to EC2 instances, on which custom ser-
vice backends such as Tensorflow Serving [66] are hosted.
The controller also monitors the health status of all running
instances.With predictive scaling, further actions are needed
to handle prediction errors and unexpected load spikes. On
each running EC2 instance, there is a Bouncerwhichmonitors
serving metrics and performs request admission control.
Whenever there is an incoming request, Bouncer checks
whether its own host instance can finish the inference within
the specified time RTmax. If not, the Bouncer rejects the
request and reroutes it to be handled by Lambda instances
immediately. In addition, MArk employs an SLO Monitor
that keeps track of and maintains the SLO compliance with
themethod described in Section 4.4.

SLO Requirements. Following Swayam [51], we set two
SLO requirements for MArk. (1) Response Time Threshold: a
request is deemed fulfilled only if its response time is below
RTmax. (2) Service Level: the service is considered satisfactory
only if at least SLmin percent of the requests are fulfilled.

4.2 Workload Prediction

MArk employs predictive scaling to reduce over-provision-
ing. To expose the long-term cost trade-off between different
instances and resource provisioning, we need to estimate the
maximum request rate in the near future, which requires
multi-step workload prediction. Existing works employ
many well-established resource estimation methods, such as
linear regression [36], autoregressive models [43], [72], and
neural networks [26], [64], [68], [77]. As the accuracy of pre-
diction depends on the underlyingworkload, there is no uni-
versal method that works perfectly in all cases. Therefore,
MArk exposes an API through which users can implement
their own workload prediction methods that best fit their
applications. The challenge is how to gracefully handle
unavoidable prediction errors and unexpected load surges.

In this paper, we adopt a vanilla version of long short-
term memory (LSTM) network [46] as an example for multi-
step workload prediction as it is reported to have a gener-
ally good prediction performance [76]. It is worth noting
that in general, it is hard to find a universally optimal

Fig. 4. The inference cost and latency of four models with EI, regular
GPU and CPU instances w.r.t. batch sizes. The batch latencies are
normalized by the latency with no batching. Some EI medium results
are left empty because the evaluation tasks encounter out-of-mem-
ory errors.

3. All the said cost comparisons are calculated in on-demand mar-
ket. In fact, EC2 GPU instances can enjoy generous discounts in spot
market, while EI only supports on-demand market at the moment.
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prediction method for all diverse workloads. Users can
replace the LSTM method with other prediction methods
via MArk’s APIs. In this paper we do not focus on finding
the optimal prediction algorithm, but rather demonstrating
the performance and cost benefits when the prediction is
accurate, as well as the effectiveness of using FaaS as a quick
handover approach when the prediction errs. In our imple-
mentation, the prediction unit (time interval) is Pu, and the
prediction window is Pw, meaning that MArk updates the
predicted load for the next PwPu interval every Pu time
units. During each unit, MArk keeps sampling the arrival
rate in consecutive short sample windows of Ps. It keeps
track of the maximum arrival rate of the unit, and gets the
maximum arrival rate array for the next Pw units. In our
evaluations, ½Pu; Pw; Ps� is set to ½1min; 60; 5sec� with the fol-
lowing justifications. We set the prediction unit to 1 minute
as EC2 charges at least 1 minute for new instances. We set
the prediction window to 60 steps because 1 hour of future
trend is good enough to expose the long term trade-offs.
The sample size is set to 5 seconds, since the arrival rate can
be treated as stable in short time slots [86].

4.3 Instance Provisioning and Batching

We formulate the instance provisioning problem and show
that it is intractable even in a simplified form. We hence turn
to an effective online heuristic algorithm as the solution.

Formulation. Given the diverse cloud service options,
MArk essentially orchestrates a heterogeneous cluster with
fast changing demand. We formulate how to optimally
choose the right instance types and their numbers to serve
dynamic demands. Following the classic web service arrival
analysis, we assume Poisson arrivals for the prediction
requests and formulate a queueing model for the model
servers. At the time of writing, AWS employs a new pricing
scheme for spot instances, where the prices no longer fluctu-
ate constantly but stay relatively stable most of the time [22].
It is hence safe to presume that the spot price will not
change during our narrow prediction window. Our goal is
to serve all the requests with minimum cost possible while
meeting the SLO requirements.

We start by introducing the notations used in the prob-
lem formulation. Let I be the set of instance types available
for model serving. Let Pi and Oi respectively denote the
instance price per unit time and the launching overhead
(i.e., the incurred cost during the instance launching period,
which spans from the instance launching time to its readi-
ness) of instance type i 2 I. Let �t be the predicted arrival
rate at time step t 2 T . Let ci be the service rate capacity of
instance type i. We further denote ni;t as the number of
type-i instances running at time t and �i;t the arrival rate of
the request load that is served by instances of type i. We

assume deterministic inference time [86] and model the run-
ning servers of instance type i as an M/D/ci queue [86],
where ci measures the inter-request parallelism. We formu-
late the following optimization problem that minimizes the
instance provisioning cost while meeting the SLO require-
ments of the inference workload

minimize
X
t2T

X
i2I

ni;tP i þOimax ni;t � ni;t�1; 0
� �� �

subject to
X
i2I

�i;t � �t; 8t 2 T ;

W
M=D=ci

�i;t
ni;t

� �
� ‘; 8i 2 I; t 2 T:

We explain our formulation in more detail. The optimiza-
tion objective (i.e., provisioning cost) consists of two parts:
the overall instance running cost plus the overhead of
launching new instances at each time step. There are multi-
ple constraints that must be satisfied. The first is the capacity
constraint, meaning that the accumulated capacity of all run-
ning instances must be able to accommodate all requests in
the predictable future. The second is the SLO constraint,
whereWM=D=ci is the average latency of instance type i under
load �i;t, and ‘ is the target average latency specified in SLO.
The solution is to determine how many instances of type i
should be running at each time t, i.e., finding the decision
variable ni;t.

However, we note that such a complex optimization prob-
lem has no closed-form solution even without considering
request batching and instance pricing [86]. Given the intracta-
bility of this problem, we turn to a heuristic solution: instead
of jointly considering batching and instance provisioning, we
solve the two problems separately using heuristic algorithms.

Batching. Inspired by the adaptive batching in [39], we
introduce two hyperparameters to control the batching
behavior of an instance type: Wbatch which is the maximum
waiting time window for request batching, andNbatch which
is the maximum batch size. The Batch Manager fetches
requests from the queue, and submits the batched requests
if either of the two limits is reached (Fig. 5). We tune the
two hyperparameters to meet the following two require-
ments: (1) No SLO requirements can be violated, meaning
that the waiting time window and the processing time of
the batch together should be capped by response time
threshold RTmax; (2) the throughput with batching enabled
must be greater than that of no batching. That is, the waiting
time window and the batch processing time together should
be less than the time needed to process all those requests
sequentially without batching.

In practice, hyperparameter tuning requires light profiling
for the target instance. We first profile the optimal processing

Fig. 5. An overview of the MArk model serving system.
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rate of the target instance without batching, which we denote
by m�nb. We then gradually increase the batch size from 1 until
one of the following constraints is violated

Wbatch þ Tb � RTmax; Wbatch þ Tb � b

m�nb
;

where b is the batch size, and Tb is the time needed to pro-
cess a batch.

Now that we have the optimal batch size Nbatch  b and
the maximum processing rate m� under this configuration,
together with their maximum waiting time window Wbatch,
we can simply treat the target instance as a black box with
processing rate m�.

Instance Provisioning. We now solve the instance provi-
sioning problem using an online heuristic algorithm that
considers both long-term cost-effectiveness and the launch-
ing overhead, while at the same time attaining high utiliza-
tion of running instances.

We first introduce the notations. Suppose that there are n
types of instances that can be used for serving. At a given
time t0, let R ¼ r1; r2; . . . ; rnf g be the set of running instan-
ces and F ¼ ðF1; . . . ; FmÞ the predicted maximum request
arrival rate for the next m steps, where Ft is the predicted
maximum rate in step t. For each instance type i, let Ci be
the instance capacity, measured by the maximum through-
put of a given model (requests per hour). Let Pi be its unit
price and Oi its launching overhead. Finally, let I be the set
of available instance types. Given R, F , I and the target
SLO, our problem is to determine what instances to launch
and which instances to destroy at t0, so as to minimize the
cost while meeting the target SLO.

The challenge of finding the optimal solution in the long
run is how to deal with the running instances at t0. They
may not be the most cost-effective in the next m steps, but
keeping using them avoids additional launching overhead.
We propose a greedy solution in Algorithm 1. Our intuition
is to greedily find the most cost-effective instance from time
period t0 to tm considering both the pay-as-you-go fee and
the launching overhead. The running instances at t0 can be
treated as special ones with zero launching overhead.

In our algorithm, assuming most instances can get ready
in t time units after launching, we use the predicted load at
t0 þ t as the provisioning target, as it is safe to make instance
provisioning decisions t time units in advance. The values of
t can be easily adjusted based on the actual scenario. In our
setup, t is set to 5 minutes, and the scheduling time unit is
set to 1 minute. In this case, the scheduling decisions are
made every minute, targeting the load in 5 minutes. The
launching requests should be sent right away once the
instance plan is ready; the destroying requests, on the other
hand, should be sent after a predefined cool-down period to
ensure better service quality [70].

It is worth mentioning that Algorithm 1 trivially meets
the SLO requirement by ensuring that the latency perfor-
mance of each selected instance comply to the target SLO
individually.

4.4 SLO Tracking

The heuristic in Algorithm 1 plans instance capacity based
on predictions. Yet not all demand surges are predictable,

and such surges would result in SLO violations if solely rely-
ing on proactive provisioning [70]. To further improve the
SLO compliance, MArk actively monitors request latency,
and reactively scales the cluster as soon as SLO violations are
detected. MArk constantly checks if the last M requests sat-
isfy the SLO requirements. If not, L instances of type T will
be launched (c5.large by default). All those parameters
can be tuned for specificmodels and SLO requirements.

Algorithm 1. Greedy Algorithm

procedure Schedule F;R; I; SLO
S  S [R " Running instances are treated as special ones
with zero launch overhead
forall instance i in S do
if instance i cannot meet SLO requirement then
S ¼ S n fig " Remove i from S

if S ¼ ; then
Report error " No candidate instance can meet SLO

instance plan ; " initialize provisioning plan
Fill(F; S; instance plan)
Launch instances in instance plan but not in R
Destroy instances in R but not in instance plan

procedure Fill F; S; instance plan
Csum  total capacity of all instance i in instance plan
for t ¼ 1 tom do
Lt ¼ Ft � Csum " Unfulfilled requests predicted at step t

if Lt � 0 then " Planned capacity is enough at step t

return
Find the largest e such that there are unfulfilled requests
from steps t to e, i.e., Lt � 0 for all t � t � e
min cost 1 " Greedily search the instancewith the low-
est per-request cost to cover unfilled requests from t to e
forall instance type i 2 S do
cost ðOi þ ðe� tÞPiÞ=N , where N is the number of
unfulfilled requests that will be served by an instance i
in ½t; e�
if cost < min cost then
min cost cost
j i

instance plan instance plan [ fjg
Fill(F; S; instance plan)

4.5 Spot Instance and Lambda Cold Start

Use of Spot Instances.Note that Algorithm 1 does not differ-
entiate between on-demand and spot instances which, if uti-
lized, could further bring down the serving cost due to its
heavy price discount. However, the adoption of spot instan-
ces poses the challenge of instance interruptions. Although
the interruption of a spot instance will be notified 2 minutes
in advance, it may not be long enough for a substitute spot
instance to get ready. The question is how can we handle
the outstanding requests in the presence of instance inter-
ruptions? AWS Lambda seems to be a viable choice, but it
would result in increased latency and cost.

Our answer to this challenge is the burstable instances. As
shown in Section 3.2, burstable instances are cheap instances
which can sustain full utilization for about 30 minutes. The
low cost and high peak performance make them a perfect fit
for transient backups in case of short-term interruptions.
Moreover, burstable instances can be resumed from stopped

ZHANG ETAL.: ENABLING COST-EFFECTIVE, SLO-AWARE MACHINE LEARNING INFERENCE SERVING ON PUBLIC CLOUD 1773

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 29,2022 at 10:55:50 UTC from IEEE Xplore.  Restrictions apply. 



state in less than 2 minutes thanks to their small sizes. There-
fore, when we use spot instances with MArk, we reserve a
few stopped burstable instances as cold standbys. Once
MArk receives interruption notices, it resumes the corre-
sponding amount of burstable instances to handle the tran-
sient requests until the regular spot instances capacity is
back to normal, after which those burstable instances are
stopped.

Lambda Cold Start. Another potential challenge posed
to MArk is the cold start issues of Lambda instances [83].
That is, every time a new Lambda instance is launched, it
needs to load the ML model, framework library and codes
in memory. These operations significantly increases the
inference delay. Nevertheless, cold starts only occur when
the request rate exceeds the concurrency, measured by
the number of currently available lambda instances [41],
[85]. Existing benchmarking experiments show that a
Lambda instance is recycled after it stays inactive for 45 to
60 minutes [40]. To understand the potential impact that
cold starts make to MArk, we evaluate the cold start rate
with our workloads described in Section 5. We confirm that
in realistic settings, cloud providers’ keep-warm strategy
can keep cold starts within a tolerable threshold. In our
measurements, with more than 3 million requests, the cold
start rate never exceeds 0.23 percent. We therefore conclude
that the latency impact of Lambda cold starts is limited. The
cost impact is also negligible. Our profiling with relatively
large computer vision models shows that with $1 we can
spin up 7K inception-v3 Lambda instances, which are capa-
ble of serving more than 20K requests per second. We there-
fore do not consider the cost impact of Lambda cold starts
in Algorithm 1.

Despite the limited impacts of Lambda cold start in ML
serving, our implementation employs strategical concur-
rencywarm-up to further amortize its impact.When a poten-
tial Lambda request surge is expected, such as spot
interruptions and unexpected workload surges, MArk sends
concurrent pings to Lambda to warm up more instances as
described in [41], such process can be easily adopted with
opensource projects [44]. Furthermore, cloud platforms are
actively working on resolving the cold start issues. AWS
now offers Provisioned Concurrency for Lambda [28], devel-
opers can directly provision the number of function instan-
ces in advance. Azure also introduced a similar feature in its
newly introduced premium Function subscription [33].

5 EVALUATION

We have prototyped the proposed MArk system and con-
ducted extensive experimental evaluations on AWS to vali-
date its effectiveness and robustness. We first compare the
performance of MArk using on-demand instances and spot
instances respectively with the premier industrial ML plat-
form SageMaker against production traces from Twitter. To
ensure MArk’s performance does not mainly rely on predic-
tion accuracy, we then examine whether MArk is able to
maintain its advantage under unpredictable, highly bursty
workload. After that, we run a few microbenchmarks to
demonstrate the robustness of MArk in terms of handling
spot interruptions, and the ability to handle unexpected
demand surges.

5.1 Evaluation Setup

MArk. We have prototyped MArk on top of Amazon EC2
and Lambda services in two versions,MArk-ondemandwhich
only uses on-demand instances, and MArk-spot which uses
spot instances with interruption-tolerant mechanism, i.e.,
using burstable servers for smooth transition during unex-
pected instance interruption (Section 4.5).

Testbed.We use AWS as the testbed for conducting exten-
sive experiments. The types of instance used in our evalua-
tion include all the c5 and m5 instances as examples of CPU
instances and p2.xlarge instances as an example of GPU
accelerators. In our experiments, we used up to 42 c5

instances, 10 m5 instances, and 12 p2.xlarge instances.
ML Models. We use four popular ML models that are of

various sizes and cover diverse domains deployed in three
popular ML serving software frameworks to evaluate
MArk’s performance, which are summarized in Table 4. To
configure the batching of the ML models on EC2 instance,
we performed lightweight profiling following the instruc-
tions detailed in Section 4.3. The optimal batching hyper-
parameters Wbatch and Nbatch for p2.xlarge instance
found by our tuning algorithm outlined in Section 4.3 are
200 ms and 8 for Inception-v3, 750 ms and 16 for NASNet,
490 ms and 16 for OpenNMT-ende. For LSTM-ptb, we only
performed experiments on CPU as MXNet Model Server
does not support batching at the time of writing. For
OpenNMT-ende on CPU instance, the optimal batching
hyperparameter Nbatch is found to be 2, and Wbatch is set
accordingly. For the other models on CPU instance, we do
not use batching as it does not bring benefits (see Fig. 2).

SLO. Recall that the SLO requirement is specified as at
least SLmin percent of requests must be served in RTmax

time (Section 4.1). We set SLmin to 98 percent for all models,
and set RTmax as 600, 1000, 100, and 1400 ms for Inception-
v3, NASNet, LSTM-ptb, and OpenNMT-ende respectively.

Workload. In our evaluation, we drive the arrival process of
MLworkloads in two different ways. First, as there is no pub-
licly available traces for ML serving, we synthesize ML
requests based on the tweets traces from Twitter [27]. We
believe that the Twitter traces serve as a good benchmark, as
it represents a popular web service with highly dynamic
load. The trace exhibits typically characteristics of ML infer-
ence workloads, containing recurring patterns (e.g., hour of
the day, day of the week) as well as unpredictable load spikes
(e.g., breaking news). In particular, the peak request rate in
the traces is 4 times higher than the valley, a result of transient
demand surges commonly found in industrial-scale web
applications. Fig. 6a (a) illustrates a snapshot of the trace.

Second, to further evaluate the performance sensitivity of
MArk w.r.t the workload, we synthesize random and bursty

TABLE 4
ML Models and Frameworks Used in Evaluation

Model Type Framework Size

Inception-v3 Image Classification Tensorflow Serving 45 MB

NASNet Image Classification Keras 343 MB

LSTM-ptb Language Modeling MXNet Model Server 16 MB

OpenNMT-ende Machine Translation Tensorflow Serving 330 MB
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ML request load using Markov-Modulated Poisson process
(MMPP) [37], [45], [71]. The load generated by MMPP are
highly unpredictable, as the occurrence and duration of
demand surges are completely random, as shown in Fig. 6b.

In summary, we use the Twitter traces to evaluate how
well MArk performs against synthesized real workload that
can be largely predicted. Using MMPP-generated workload,
we stress test MArk’s performance in the presence of fre-
quent, unpredictable load spikes.

Baseline.As discussed in Section 2.1, existingML inference
systems mainly focus on enabling inference or scheduling
within pre-allocated private clusters instead of utilizing pro-
visioned cloud resources as MArk does. Consequently, we
use the state-of-the-practice SageMaker [18] as the baseline
for evaluation. SageMaker is AWS’s leadingML training and
hosting system. SageMaker hosting employs AWS’s new tar-
get tracking autoscaling policy [21], [23]. Given the dynamics
in request arrival rate (i.e., the arrival rate can increase more
than double in just a few minutes), to ensure service quality,
we follow the AWS guidelines [21] and set the over-provi-
sioning factor to 2 for SageMaker. We will show in Fig. 8 that
even so the over-provisioning is still incapable of handling
the volatile workload of the Twitter traces.

5.2 Macrobenchmarks

Workload Prediction. For Twitter traces, we use the data of the
first 5 months to train the workload prediction model. For
MMPP-generated arrival process, we use a period of 24-hour

data for training. Fig. 6b demonstrates snapshots of the pre-
diction results. We see that the prediction accuracy is in gen-
eral good for the Twitter traces, yet unsatisfactory for the
MMPP case. Since striving for the best workload prediction
is NOT the focus of this paper, andwemainly use the LSTM-
based algorithm as an example of the pluggable workload
prediction component, we do not provide detailed evalua-
tion of the prediction algorithm in the interest of space.

Experimental Results Using Twitter Traces.Wefirst compare
MArk-ondemand, MArk-spot, and SageMaker on the ML
models described in Section 5.1 by feeding the arrival rate
extracted from Twitter traces. The experiments were per-
formed onAWS spanningmore than 8 hours each.We report
two metrics: request latency in Fig. 7, and cost breakdown in
Table 5. The request latency is measured as the time between
request arriving at the serving system and getting response
back,while the cost is the charge billed byAWS. The compar-
ison results suggest that MArk can significantly reduce both
the cost and latency compared with SageMaker. For cost
reduction, compared with SageMaker, MArk-ondemand
respectively achieves 3:63�, 2:79�, 2:41�, and 3:15� for the
four ML models; MArk-spot achieves 6:21�, 5:91�, 6:64�,
and 7:83�, respectively. For latency, MArk-ondemand
achieves up to 57 percent reduction andMArk-spot achieves
up to 60 percent reduction comparedwith SageMaker.

The latency advantage of MArk over SageMaker comes in
three-fold. First, with appropriate batching configuration,
GPU instances can reduce the overall latency by performing
more efficient parallel computation. Second, the SLO-aware
design of MArk helps reduce the queuing delay. In addition,
the predictive scaling and SLO-awareness together form an
efficient hybrid approach that enjoys the benefits in both pro-
active and reactive designs. It is worth pointing out the dif-
ferent performance behaviors between MArk-ondemand
and MArk-spot. As shown in the latency box plots in Fig. 7,
MArk-spot has longer latency tails, since more requests are
handled by Lambda compared with MArk-ondemand, in
case of interruptions. However, the average and median
latencies of MArk-spot are usually the same or even better
than MArk-ondemand. This is because in spot market, the
performance-cost ratio is highly dynamic, which allows
MArk-spot to opportunistically use large instances and GPU
instances at cheaper price than on-demand, leading to better
latency performance.

Fig. 6. Snapshots of the arrival process using Twitter and MMPP with the
prediction results of LSTM-based algorithm.

Fig. 7. Latency comparison of MArk-ondemand (MO), MArk-spot (MS),
and SageMaker (SM) on 4 ML models using Twitter workload.

TABLE 5
Cost ($) Comparison of MArk-Ondemand (MO), MArk-Spot

(MS), and SageMaker (SM) on 4 ML Models Using
Twitter Workload

Setting Inception-v3 NASNet

MO MS SM MO MS SM

EC2 20.94 9.83 80.98 24.21 10.71 68.1
Lambda 1.34 3.2 NA 0.19 0.81 NA
Total 22.28 13.03 80.98 24.40 11.52 68.1

Setting LSTM-ptb OpenNMT-ende
MO MS SM MO MS SM

EC2 6.17 2.24 14.9 27.54 10.79 87.1
Lambda 0 0.04 NA 0.12 0.33 NA
Total 6.17 2.28 14.9 27.66 11.12 87.1

ZHANG ETAL.: ENABLING COST-EFFECTIVE, SLO-AWARE MACHINE LEARNING INFERENCE SERVING ON PUBLIC CLOUD 1775

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 29,2022 at 10:55:50 UTC from IEEE Xplore.  Restrictions apply. 



We have also performed a case study of SLO compliance
and report the Complementary Cumulative Distribution Func-
tion (CCDF) of request latency in Fig. 8. As expected, MArk
managed to maintain its compliance with SLO require-
ments, thanks to the SLO-aware design. SageMaker, on the
other hand, is SLO-oblivious, so the queuing delay adds up
during high arrival periods, and the SLO is violated.

Experimental Results UsingMMPP-Generated Load.Next we
evaluate MArk using the more challenging, less predictable
MMPPworkload.We still use the same fourMLmodels, and
each experiment lasts about 4 hours on AWS. In the interest
of space, we only demonstrate the SLO compliance results in
Fig. 8. Fig. 8a shows that the SLO compliance of SageMaker
is significantly degraded from Twitter case to MMPP case
due to the much more dynamic and bursty behaviors in
MMPP. However, MArk can still meet the SLO requirements
even when the workload is highly dynamic and unpredict-
able, thanks to the SLOMonitor that can detect the failure of
proactive prediction and timely add backup machines based
on the feedback control algorithm. Note that we only evalu-
ated SageMaker with MMPP-driven arrival process on
Inception-v3 model as it is too expensive for us to run all of
them. However, given the SLO-oblivious nature of Sage-
Maker, we expect the behavior would be similar.

Sources of Improvements. The cost reduction of MArk
comes from several aspects. First, predictive scaling together
with Lambda services bring a more judicious over-provi-
sioning design that can reduce the cost. For instance, in the
LSTM-ptb model experiments, only CPU instances are used,
thus the source of the 2� cost reduction in MArk-ondemand
over SageMaker mainly comes from the reduced over-provi-
sioning. Note that although Lambda service used byMArk is
expensive in price, the cost of Lambda can be well justified
by enabling more judicious over-provisioning. Second,
exploiting batching (especially on GPU instances) further
reduces the cost during high demand as the efficiency of

computing is improved. For instance, the OpenNMT results
demonstrate the highest cost reduction as they benefit the
most from batching compared with CPU-only LSTM-ptb
(see Fig. 2d). Third, employing interruptible instances fur-
ther brings down the cost. MArk-spot reduces the cost by
enjoying the spot market discounts compared with its on-
demand counterpart. It is worth mentioning that a more
accurate workload prediction may improve the cost reduc-
tion of MArk, but even in the worst case scenario where
workloads are unpredictable (like MMPP), MArk can fall-
back to an effective reactive scheduling thanks to the capabil-
ity of using FaaS for prompt handover and the SLOmonitor.
Therefore, MArk provides both SLO guarantee and substan-
tial cost savings regardless of the workloads and the predic-
tion algorithm employed.

5.3 Microbenchmarks

In this section, we evaluate the robustness of MArk by tak-
ing a closer look at how MArk handles unexpected demand
surges and spot interruptions.

Robustness Against Unexpected Surge. MArk harvests per-
formance and cost benefits by using a judicious over-provi-
sioning scheme. One important question is whether MArk
can handle unexpected demand surges well in the presence
of unforeseeable flash crowds or poor workload prediction
accuracy. To answer this question, we increase the request
rate for LSTM-ptb serving by 50, 75, and 100 percent in 2
minutes and compare the latency over time between MArk
and SageMaker in Figs. 9a, 9b, and 9c.4 Since the surge is
unpredictable, both MArk and SageMaker handle it reac-
tively. The results suggest that MArk acts faster and effec-
tively than SageMaker during the unforeseeable surge, i.e.,
the increased latency period and amount are much smaller,

Fig. 8. CCDF of latency comparison between MArk and SageMaker.
RTmax is drawn as a black dashed vertical line (the black dashed hori-
zontal line shows the corresponding CCDF value of RTmax). MRK and
SM represents MArk and SageMaker, while TWT and MP represents
Twitter and MMPP workload, respectively.

Fig. 9. Microbenchmark results. (a), (b), (c): The latency change compar-
ison during unexpected demand surge between MArk and SageMaker,
where the surge starts at the 11th min shown by the dashed line. (d):
The latency change when different percentages of spot instances are
interrupted in MArk-spot, where the interruption notice is received at the
7th min.

4. Given that we only compare latency here, we show the results of
MArk-spot as the latency results of MArk-ondemand can only be
better.
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thanks to the Lambda-based fallback mechanism, which can
immediately take over and cap the latency to prevent queue
building up like in SageMaker. In addition, MArk’s SLO
Monitor can detect the SLO violations and issue backup
instance requests right away to adapt to the new arrival
rate, while SageMaker is only able to react in the next scal-
ing cycle.

Robustness Against Spot Interruption. MArk-spot utilizes
spot instances to reduce the cost. However, the interruption
of spot instance can cause performance degradation if not
handled properly. We evaluate MArk-spot by zooming in
the interruption handling periods under different interrup-
tion ratio of instances. We launched a 20-instance Inception-
v3 cluster, and manually interrupted 20, 40, and 80 percent
of the instances respectively. Fig. 9d illustrates the latency
change during the interruption. The interruption happens
at the 7th minute (vertical dashed line), and MArk resumes
t2 instances as transient resources upon receiving interrup-
tion notice. The proactive controller then adjusts the provi-
sioning plan and requests new instances. At the 13th
minute new spot instances are ready, and the latency goes
back to normal. The average latency drops during transient
period because burstable t2 instances can have temporal
boosted performance as discussed in Section 3.2. The short
latency bump at the 13th minute is due to the switching
overhead (i.e., warm up of new instances).

To sum up, the results above confirm that MArk can han-
dle unexpected surge and spot interruption robustly.

6 DISCUSSION

Cloud Platform. Our measurements and evaluations in this
paper are mainly based on AWS. However, the main design
of MArk can be generally extended to the other major cloud
platforms, as they offer similar IaaS and FaaS services, as well
as flexible pricingmodels. Having said that, some hyperpara-
meters used in the algorithm are platform-dependent, and
must be re-tuned. Also, we have not considered reserved
instances, as they require a long-term usage commitment.
We believe their usage will bring down the cost of serving
stable inference demands in a long run. We will leave it as a
futurework.

VM Selection. MArk conducts profiling experiments to
identify the most profitable VM instance to use. To speed
up the VM selection process, intelligent methods like Bayes-
ian optimization [87] and analytical modeling [53] can be
employed.

Large Models. In AWS (and other cloud platforms), a
Lambda instance can have nomore than 3GBmemory, which
may not be sufficient to hold large deep learning models. A
possible solutionwould beutilizing serverlessworkflowserv-
ices like AWS Step Function. Another possible solution goes
to distributed inference under the model parallel scheme. We
will leave further explorations as a futurework.

Hardware Accelerator. We have used the most common
ML accelerator GPU as an example of utilizing hardware
accelerators. We believe that the same batching formulation
can be applied to other accelerators (e.g., FPGA) as they
benefit from batching in a similar manner.

MArk’s architecture requires a centralized master machine
to make provisioning decisions. One natural concern is that

such a centralized design might have poor scalability and
be vulnerable to the single point of failure. Fortunately, as
MArk’s master node only performs lightweight computa-
tions, the potential scalability and reliability problems can
be easily addressed with mature industrial solutions such
as Zookeeper [56], or by deploying the master node on a
dedicated cloud server instead of a VM.

7 CONCLUDING REMARK

In this paper, we have conducted a systematic study of serv-
ing ML models on cloud and concluded that combining FaaS
and IaaS can achieve scalable ML serving with low over-
provisioning cost. Driven by the unique characteristics of ML
model serving, we have proposed MArk, a cost-effective and
SLO-aware ML serving system. We have prototyped MArk
on AWS and showed that compared with the premier
autoscaling ML platform SageMaker, MArk yields significant
cost reduction (up to 7:8�) while complying with the SLO
requirementswith even better latency performance.
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