
1

Towards Efficient Synchronous
Federated Training: A Survey on
System Optimization Strategies

Zhifeng Jiang, Student Member, IEEE, Wei Wang, Member, IEEE, Bo Li, Fellow, IEEE,
Qiang Yang, Fellow, ACM

Abstract—The increasing demand for privacy-preserving collaborative learning has given rise to a new computing paradigm called
federated learning (FL), in which clients collaboratively train a machine learning (ML) model without revealing their private training data.
Given an acceptable level of privacy guarantee, the goal of FL is to minimize the time-to-accuracy of model training. Compared with
distributed ML in data centers, there are four distinct challenges to achieving short time-to-accuracy in FL training, namely the lack of
information for optimization, the tradeoff between statistical and system utility, client heterogeneity, and large configuration space. In
this paper, we survey recent works in addressing these challenges and present them following a typical training workflow through three
phases: client selection, configuration, and reporting. We also review system works including measurement studies and benchmarking
tools that aim to support FL developers.

Index Terms—Federated Learning, Synchronous Training, Survey.

F

1 INTRODUCTION

BUILDING high-quality machine learning (ML) models
demands a massive amount of training data. Yet, the

communication cost and privacy concerns impinge on the
process of collecting large volumes of data from diverse
sources. It is not until recently that governments started to
regulate the commercial use of data with privacy-preserving
legislation (e.g., GDPR [1], HIPAA [2], and CCPA [3]). Com-
pliance violations can be costly, with hefty fines up to hun-
dreds of millions of dollars a year [4], [5]. As such, the desire
for multiple entities (e.g., mobile devices or large organiza-
tions) to collaboratively train a shared model efficiently and
privately gives birth to a new ML paradigm called federated
learning (FL) [6]. FL promises not to expose the clients’ raw
data, and has been widely adopted in many industries with
applications ranging from mobile devices [7], [8], [9], [10],
[11], [12] to financial management [13], [14] and medical
care [15], [16].

Apart from providing strong privacy guarantees, the
key to the success of a federated training system lies in its
efficiency. A typical efficiency metric is the time-to-accuracy,
which is the wall clock time taken to train a model until
it reaches the target accuracy. Despite the rich body of
work that explored various optimization strategies, there
is still plenty of room for further improvement due to the
following distinct challenges posed to FL (§2): (1) the lack of
information for optimization: the information needed for opti-
mally configuring the system is usually outdated or simply
unavailable due to privacy constraints and scaling issues;

• Z. Jiang, W. Wang, B. Li and Q. Yang are with the Department of
Computer Science and Engineering, the Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong. Q. Yang is also
affiliated with WeBank.
E-mail: {zjiangaj, weiwa, bli, qyang}@cse.ust.hk

(2) the tradeoff between statistical and system utility: statistical
utility (the number of iterations taken to reach a plausible
target accuracy) and system utility (the duration of an iter-
ation), the two determining factor for time-to-accuracy, are
usually at odds in FL; (3) client heterogeneity: clients cannot
be treated uniformly due to the intrinsic differences in terms
of resources, data, and states; and (4) a large configuration
space: the operational dimensions for system developers are
too many to explore within an acceptable time. Given these
challenges, it is worth summarizing existing research efforts
to give researchers a holistic view of the lessons learned and
to solicit further explorations.

To position existing research attempts in optimizing the
time-to-accuracy performance in FL, we propose a layered
approach that categorizes them by the training phases in
which they take effect: selection, configuration, and report-
ing (§3). For the selection phase where the server chooses
clients for participation, there are mainly two lines of op-
timization efforts: (1) prioritizing clients either with high
statistical utility or system utility [17], [18], [19], and (2)
explicitly considering both utilities and developing a more
informed solution in response to client dynamics in prac-
tice [20], [21], [22].

As for the configuration phase where the server sends
the global model to the selected clients with auxiliary con-
figuration information, and clients perform local training,
we sort out four lines of work: (1) the first two lines
advocate mitigating the communication cost by reducing
the model size [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36] and decreasing the synchronization
frequency [37], [38], [39], [40], [41]; (2) the last two lines
minimize the computational overhead by accelerating the
training speed in each round [42], [43], [44], [45], [46], [47]
and reducing the number of training rounds [45], [48], [49],

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



2

[50], [51], [52], [53], [54], [55].
In terms of the reporting phase, we focus on the ag-

gregation and outline two related optimizations: (1) re-
ducing the aggregation latency by adopting hierarchical
methods [56], [57], [58] and developing lightweight privacy-
preserving methods [59], [60], [61], and (2) improving the
long-term convergence rate with adaptive optimizers on the
server [62], [63], [64]. For each of the attempted optimiza-
tions, our discussion includes necessary details for readers
to understand the motivation, mechanisms, and major re-
sults. In addition, works such as measurement studies [65]
and benchmarking tools [66], [67], [68], [69], [70], [71], [72]
are indispensable in system research. We also survey the
status quo as a tutorial on FL practice (§4).

Our work focuses on the system-level efforts made in im-
proving the time-to-accuracy performance for synchronous
federated training. We also share some implications derived
from the literature and our survey process. It thus differs
from existing surveys which mainly focus on ML algorithms
and privacy-preserving algorithms. We expect this work to
be an initial attempt to bridge the gap of system-oriented
surveys in FL literature, as well as soliciting more contribu-
tions to related research.

2 BACKGROUND, PROBLEM AND CHALLENGES

In this section, we give a detailed introduction to the system
optimization problem in federated training. We start with
a quick primer on the execution workflow of federated
training (§2.1), followed by the problem statement and the
scope of this survey (§2.2). We next outline two challenges
that make the problem difficult: optimality and practicality
(§2.3), which also serves as a summary of criteria for evalu-
ating existing solutions presented thereafter.

2.1 Federated Training

Federated learning (FL) [6] has recently emerged as a new
paradigm of collaborative machine learning (ML) that al-
lows multiple distributed clients (e.g., mobile devices or
business organizations) to collaboratively train or evaluate a
model with decentralized data. Compared to traditional dis-
tributed learning in datacenter environments, FL mainly dif-
fers in orchestration, resource constraints, data distribution,
and participation scale [73]. At its core, FL keeps private
data on-premises, while using a central server to maintain a
global model and iteratively refine it by aggregating each
client’s local updates. This design reduces not only the
communication cost but also the privacy risk in gathering
clients’ raw data. Owing to its privacy guarantees, FL has
found wide applications in various domains. On mobile
devices, Google runs FL to improve the user experience for
Google Keyboard [7], [8], [9], [10] and Assistant [11], while
Apple deploys FL to evaluate and tune speech recognition
models [12]; in fintech, both IBM [13] and WeBank [14]
utilize FL to detect financial misconducts; in healthcare,
NVIDIA applies FL to create medical imaging AI [15] and
predict patients’ needs for oxygen [16].

While both model training and evaluation play impor-
tant roles in the development of an FL model, they have
different criteria in system design. In this survey, we limit

R
ound i + 1

Client Selection

Training

Aggregation

Available? Selected?
Y

NN

Round i 

Drop out or
miss deadline?

Internet

Server

Clients

Selection Configuration Reporting

N
Y Y

Fig. 1: Standard synchronous federated training proto-
col [65], [68], [74].

the scope to the training process, which is the most time-
consuming and resource-intensive stage throughout the de-
velopment of an FL model. Due to its predominance in
practice, we focus on the support for the synchronous mode,
wherein an ML model is trained across a pool of candidate
clients in rounds, and in each round, the server needs to wait
until a predefined deadline or receiving a sufficient number
of clients’ updates prior to deriving an aggregated update.
In more detail, each round consists of the following three
phases (Fig. 1).

• Client Selection. At the beginning of each round, the
server waits for a sufficient number of clients with
eligible status (i.e., currently charging and connected
to an unmetered network) to check in. The server
then selects a subset of them based on certain strate-
gies (e.g., randomly or selectively) for participation,
and notifies the others to reconnect later.

• Configuration. The server next sends the global model
status and configuration profiles (e.g., the number
of local epochs or the reporting deadline) to each
of the selected clients. Based on the instructed con-
figuration, the clients perform local model training
independently with their private data.

• Reporting. The server then waits for the participating
clients to report local updates until reaching the
predefined deadline. The current round is aborted
if no enough clients report in time. Otherwise, the
server aggregates the received local updates, uses
the aggregate to update the global model status, and
concludes the round.

2.2 System Optimization: The Problem

The primary goal of system optimization in federated train-
ing is to minimize the end-to-end resource usage of perform-
ing a task. The most common metric is the wall clock time,
which is typically measured from the very beginning to a
certain desirable checkpoint (e.g., convergence or reaching
target accuracy). When a metered network is in use (e.g.,
when clients are on-demand virtual machines in a public
cloud), the overall monetary cost becomes another relevant
metric that deserves special attention. When uncharged
devices are involved, the power consumption should also
be considered. Because the cost and energy consumption
generally grows linearly as time flies, in this survey, we are
particularly interested in reducing the time-to-accuracy, i.e.,
the wall clock time for achieving a preset accuracy target.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



3

0 25
Time (min)

0

50

100
A

cc
ur

ac
y 

(%
)

Baseline
NonIID
Straggler

(a) Time to accuracy per-
formance.

0 10 20 30 40
Round

0

50

100

A
cc

ur
ac

y 
(%

)

(b) Round to accuracy
performance.

Baseline
NonIID

Straggler
0

100

R
ou

nd
 T

im
e 

(s
)

64.2 64.6

113.9

(c) Average round time
w/ standard deviation.

0.0 0.5 1.0
Label Portion

4
8

12
16

C
lie

nt
 ID

(d) Data distributions of
clients in NonIID.

2.5 5.0
Normalized Latency

0

1

C
lie

nt
 F

ra
ct

io
n

(e) Computational speed
of clients in Straggler.

Fig. 2: A case study for illustrating system utility and statistical utility with FL emulation.

2.2.1 Statistical Utility and Sytem Utility: A Case Study
Intuitively, the time-to-accuracy performance of federated
training is determined by two factors: the number of rounds
taken to reach the accuracy and the average duration of
training rounds. As in [21], we regard the former as statistical
utility and the latter as system utility throughout this survey.

To illustrate, we conduct an FL case study where 16
clients collaboratively train the LeNet5 [75] model to classify
the images from the MNIST [76] dataset. To emulate the
cross-device environment, each client is run atop an AWC
EC2 c5.xlarge instance (4 vCPUs and 8 GB memory) and
the network bandwidth is throttled to 21 Mbps to dictate
the average mobile connection speed as of 2021 [77]. We run
FedAvg [6] for model aggregation without loss of generality,
atop which we enforce clients’ privacy by implementing
the SecAgg protocol [78] (also see §3.2.3) which makes the
server blind to each client’s local updates. Essentially, we
design three schemes to compare:

• Baseline: all clients’ data is independent and iden-
tically distributed (IID). They also share the same
computational speed.

• NonIID: the same as Baseline except that clients’ data
is non-IID as depicted by Fig. 2d. This is achieved by
latent Dirichlet allocation (described in §4.2.1) with
the concentration vectors being all 0.1’s.

• Straggler: the same as Baseline except that clients’
computation speeds follow the Zipf’s distribution
(with α = 1.2, i.e., moderately skewed). As shown
in Fig. 2e, the straggler is 5× slower than the fastest
who shares the same speed as clients in Baseline.

We first study the impact of statistical utility by com-
paring Baseline and NonIID. As indicated in Fig. 2c, they
proceed a round at the same speed. However, as the learning
curves in Fig. 2a dictate, Baseline reaches the target accuracy
(96.1%) with only 8.4 min, while NonIID takes 43.5 min,
which is 5× slower than Baseline does. Referring to the
round-to-accuracy performance as in Fig. 2b, one can know
that the reason for this contrast lies in the difference in the
numbers of rounds taken to convergence: 10 for Baseline
while 40 for NonIID. Hence, despite having the same sys-
tem utility, Baseline achieves much better time-to-accuracy
performance for having greater statistical utility due to
more evenly distributed data across clients. Of course, data
distribution is uncontrollable in FL practice and developers
can barely end up with IID cases as in Baseline. This adds
up to the challenges of system-level optimizations in FL
training, as later discussed in §2.3.1.

Next, we provide a sense of how system utility affects the
end-to-end performance by comparing Baseline with Strag-
gler. As shown in Fig. 2b, both cases converge with the same
amount of rounds: 10. However, it takes Straggler slightly
longer in time (15.8 min, i.e., 1.9×) to reach the target
accuracy, as demonstrated in Fig. 2a. By observing Fig. 2b
and Fig. 2c, we know that the source of the difference does
not stem from the number of rounds used but the making
span of each round. As all clients have to proceed at the
same speed as the slowest clients in synchronous training,
Straggler features lower system utility than Baseline does due
to the presence of slow clients, rendering worse time-to-
accuracy. Similarly, the disparity of clients’ capabilities is
inevitable in FL practice, which also complicates the design
of system-level optimizations as mentioned in §2.3.1.

2.2.2 What is beyond the Scope
We emphasize that the solutions discussed in this survey op-
erate at the system-level. Therefore, the following directions
of work are excluded from discussion, though they could
effectively improve the statistical and/or system efficiency
in synchronous federated training:

• Hardware updates, e.g., adapting programmable
switches to enjoy the communication efficiency
brought by in-network aggregation [79], [80].

• Security mechanisms, e.g., employing robust aggre-
gation methods to protect the statistical utility from
being impaired by model poisoning attacks [81], [82].

• Paradigm innovations, e.g., (1) letting clients fit
different sets of model parameters by personaliza-
tion [83], [84], [85], [86], [87] or models of hetero-
geneous architectures through knowledge distilla-
tion [88], [89], [90] to tackle data heterogeneity (a
concept mentioned in §2.3.1), (2) allowing clients to
exchange data representations for realizing proto-
type learning [91] to reduce communication burdens,
or (3) permitting clients to send encoded versions of
local datasets to the server to reduce the computa-
tional complexity [92].

• Optimizations on upstream parts of the FL pipeline,
e.g., searching for neural architectures that yield bet-
ter predictive accuracy [93], [94].

2.3 What Makes It Hard: The Challenges

Despite the clear objective, it is non-trivial to work out a
feasible solution due to the following two challenges.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



4

2.3.1 On the Optimality of a Solution

First, the information needed in decision-making may be
outdated or even unavailable. For example, to estimate a
client’s system utility, it is common to refer to its most
recent response latency [21]. However, due to the dynamics
over time, such information may not accurately reflect the
client’s current status. There also exists a cold-start issue,
where we are unaware of a client’s system capabilities until
its first participation. As for estimating a client’s statistical
utility, the amount of available information is further limited
by privacy concerns. According to the recent FL literature,
exploratory attacks such as property inference [95], mem-
bership inference [96], [97], and data reconstruction [98],
[99] can be made possible with model updates. As such,
even exposing model updates can discourage clients from
participation, let alone inquiring about their data distribu-
tions or even raw data [100], [101], [102]. Note that the
uncertainty in clients’ statistical utility and system utility
can be accumulated over time.

Even given a holistic view of the environment, the
problem remains hard due to the coupled nature of statisti-
cal utility and system utility. Intuitively, improving system
utility is equivalent to minimizing the average resource
consumption (e.g., time or bandwidth) per task unit. On
the other hand, reducing the resources invested in a task
unit inevitably downgrades the quality of the outcome
(e.g., statistical utility) as long as no resource is redundant.
To exemplify, by constantly picking the fastest clients in
client selection, the average duration of each round indeed
decreases, whereas the number of rounds taken to target
accuracy may be increased as well when other clients’ data
are under-represented in the global model. Another example
can be found in model compression. To improve communi-
cation efficiency, a client can send only an important subset
of model updates by sparsification [32], [33], [34], [35], [36],
or a low-bit representation of them by quantization [23],
[24], [25], [26], [27]. Although the per-round communication
duration can be significantly reduced by adopting a higher
compression ratio, the convergence has to take more rounds
to occur due to the loss of arithmetic precision.

The problem is further complicated by client heterogene-
ity. Federated training involves tens to potentially millions
of clients, each of which intrinsically differs from one an-
other in the following three aspects:

• Resource Heterogeneity: due to the variability in hard-
ware specifications and system-level constraints,
clients in federated training typically possess dif-
ferent capabilities in computation (CPU/GPU/NPU,
memory, and storage), communication (connectiv-
ity and bandwidth) and power (battery level and
lifespan) [103]. These types of heterogeneity com-
plicate the optimization of the overall system utility.
For example, merely improving the communication
speed does not necessarily lead to shorter end-to-end
latency, especially when the straggler is bottlenecked
by the computation [68].

• Data Heterogeneity: as the training datasets of clients
are typically generated based on their local activities
and contexts, they are not IID. More specifically,

clients’ datasets mainly differ in two aspects1: (1)
sample quantity (i.e., the number of data samples),
and (2) label partition (i.e., the distribution of data
labels) [104]. As a result, not all of them are rep-
resentative of the population distribution. In case
we do not include all the clients in the federation,
optimization for statistical utility has to additionally
account for such heterogeneity.

• State Heterogeneity: as observed from real-world
traces [65], [68], the available slots of mobile device
clients vary significantly in temporal distribution due
to different user behaviors (e.g., screen locking or
battery charging). Therefore, in each round, there can
be different sets of candidate clients to choose from,
as well as different client drop-out outcomes. On top
of the non-IID distribution of clients’ data, this type
of heterogeneity further complicates statistical utility
optimization. Nevertheless, in the cross-silo settings,
it may be less of a concern due to the stable and
dedicated nature of clients’ computing power [70],
[73].

Last but not least, it is infeasible to search through the
entire configuration space for the global optimum. On the
one hand, the space is prohibitively large, as a federated
training task typically spans 101–106 users and 102–104

rounds [73], wherein each phase of a round (§2.1) has mul-
tiple configurable hyperparameters and alternative policies
(e.g., client selection choices in the selection phase, or the
number of local steps in configuration phase). On the other
hand, most of the online decisions are made on the critical
path of the task, meaning that the time spent on working
out a solution also counts towards the end-to-end runtime
performance, the very objective of the optimization. As a
result, it is desirable to be guided by efficient and effective
heuristic algorithms, especially balancing the exploration
and exploitation efforts made in the configuration space.

2.3.2 On the Practicality of a Solution

Apart from navigating the performance-accuracy-privacy
trade-off, the design process of a practical optimization
solution should mitigate the accompanying side-effects on
other aspects such as the loss of robustness to attacks and
failures [73]. For example, to evaluate the statistical utility
of a client, the server may require it to report the loss values
generated in local training [21]. However, a malicious or
free-rider client may intentionally respond with arbitrary
values in the hope of messing with the orchestration or
reaping the benefits of the federation without making solid
contributions. As such backdoors are introduced by the
optimization solution, the developers should take charge of
eliminating the undesirable exploitations of these security
loopholes. Other possible concerns that may arise as a result
of a system optimization solution include but are not limited
to fairness (e.g., whether participant bias is introduced in
the solution), generality (e.g., whether the solution applies
to diverse tasks), and ease of deployment (e.g., whether the
solution can be implemented with moderate engineering
efforts). In other words, a mature system optimization so-

1. See a more complete categorization of non-IID scenarios in §4.2.1.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



5

System 
Optimization

Selection Phase Configuration 
Phase

Reporting 
Phase

Partial 
Attempts Co-Design Model Size 

Reduction
Sync. Freq. 
Reduction

Training Lat. 
Reduction

Training Rnd. 
Reduction

Agg. Lat. 
Reduction

Adaptive 
Aggregation

- Statistics-
Oriented
- System-
Oriented

- Coarse-
Grained
- Fine-
Grained - Sparsification

- Quantization - Client-Level

- Layer-Level

- Load 
Balancing

- Hierarchical 
Agg.

- Server-Side 
Optimizers

- Parameter-
Level

- Sketching
- Lightweight 
Private Agg.

- Optimizer 
State Sync.
- Client Bias 
Reduction

Fig. 3: Taxonomy of the approaches discussed in §3.

lution should not only improve the time-to-accuracy per-
formance by enhancing statistical and system utility but
also minimize the adverse impacts on other aspects that
federated training also values in practice.

3 RECENT OPTIMIZATION APPROACHES

In the past few years, considerable research efforts have
been put into tackling the above challenges for fully un-
leashing the performance potential of FL training. In this
section, we organize them by the training phases, i.e. se-
lection (§3.1), configuration (§3.2), and reporting (§3.3), as
visualized in Fig. 3.

3.1 Optimizing the Selection Phase

Due to the (potentially) large population size and the
heterogeneity across clients, the effectiveness of the used
participant selection algorithm plays a critical role in the
time-to-accuracy performance in federated training. How-
ever, the state-of-the-practice system still relies on randomly
picking participants [74], which inevitably leads to waste of
resources and suboptimal convergence speed. In response,
there is an array of work to guide the selection, which can be
roughly categorized by the target utilities that they improve.

3.1.1 Partial Optimization Attempts

This line of work does not consider the interplay between
statistical utility and system utility. Instead, they mainly
focus on lifting either utility while leaving the other one
ignored or controlled to a limited extent.
Statistics-Oriented. To approach the convergence rate in
centralized settings where the data is IID, CSFedAvg [17]
advocates that clients with a lower degree of non-IID data
should participate more often. To this end, the authors
propose weight divergence to capture the non-IID degree
of data owned by a client. More precisely, it measures the
normalized Euclidean distance between a client’s model and
the reference model trained by the server with auxiliary IID

data. According to the 500-client simulation over CIFAR-
10 and Fashion MNIST, CSFedAvg reduces the time-to-
accuracy by up to 4.0× and 2.7×, respectively, compared
to random selection.

Besides heuristic methods, some researchers use rein-
forcement learning (RL) algorithms to learn which clients
to select in the presence of data heterogeneity. For exam-
ple, FAVOR [19] seeks to reduce the number of rounds to
reach a target accuracy with a deep Q-learning network
(DQN) [105]. To capture each client’s statistical characteris-
tics, it takes the low-dimension representations of local mod-
els as the RL states. Compared to random selection, FAVOR
can reduce the communication rounds by up to 49% in three
image classification tasks. On the other hand, the training
overhead for the RL agent may become an obstacle to
FAVOR’s real-world applications. Specifically, it is reported
to take more than 100 episodes to train an agent suited for
a specific learning task, which could be prohibitive as each
episode corresponds to an entire FL process, i.e., training a
global model from scratch for reaching a target accuracy.

System-Oriented. In synchronous training, clients with the
lowest system utility bottleneck the speed of a federation
round. A straightforward way to bound the time usage is
setting a deadline for randomly selected clients’ to report
updates and ignoring any update submitted after the dead-
line. To avoid waste of computing resources, FedCS [18]
takes a step further by proactively selecting a set of clients
whose participation is not likely to miss the deadline accord-
ing to latency estimation results. As there can be multiple
eligible sets, FedCS further favors the solution with the
largest scale of participation, which reduces part of the
loss in statistical utility. Technically, the whole problem is
formalized as a complex combinatorial optimization, and
the authors resort to a greedy algorithm for efficient ap-
proximation. As indicated in their 1000-client simulation,
FedCS outperforms FedLim (modified FedAvg with per-
round deadlines imposed) by up to 1.2× and 1.8× in the
time-to-accuracy when training over the non-IID CIFAR-10
and Fashion MNIST datasets, respectively.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



6

3.1.2 Co-Optimizing Statistical/System Utility
Given the coupled nature of clients’ system utility and
statistical utility, it is more desirable to navigate the sweet
point of jointly maximizing both of them.
Coarse-Grained. TiFL [20] first considers increasing the
system utility. To that end, it divides clients into different
tiers based on the observed runtime performance, and at
each round only selects clients from the same tier for
mitigating the waste of resources due to idle waiting for
stragglers. To reduce the average iteration span, it also limits
the number of times a (slow) tier can be selected. On top of
that, the statistical utility is respected by prioritizing tiers
with lower testing accuracy whenever there is more than
one electable tier. Compared with FedCS, TiFL bears some
resemblance in limiting the participation of less capable
clients, while being more aware of the statistical utility.
As reported in a 50-client cluster with 5 client tiers, TiFL
achieves an improvement over random selection by up to
3× speedup in overall training time and by 6% in accuracy.
Fine-Grained. Compared to TiFL, Oort [21] reconciles the
demand for enhancing both system utility and statistical
utility in finer granularity. Specifically, it associates each
client with a continuous score and prioritizes those clients
with higher scores. The score is meant to be a principled
measurement of both the statistical utility (determined by
the training loss) and the system utility (estimated from
historical response latency). As some components of the
score cannot be known in advance until the corresponding
client’s first participation, or cannot be guaranteed to be
stable due to the client’s runtime dynamics, the score esti-
mation process is modeled as a Multi-Armed Bandit (MAB)
problem and tackled by the Upper Confidence Bound (UCB)
algorithm [106]. Apart from the scoring backbone, Oort
also aims to address other practical issues like staleness
and robustness. Oort was evaluated on a 1300-client GPU
cluster with realistic datasets and simulation on the client
heterogeneity. Compared to random selection, it reduces the
training time by up to 14× and improves model accuracy by
up to 9.8%.

Besides the UCB algorithm, researchers also experiment
with more sophisticated RL methods to cherrypick partic-
ipants. Notably, AutoFL [22] learns to select participants
and execution targets for each individual based on the Q-
Learning algorithm [107]. To achieve efficient FL execution,
it identifies RL states that are critical to energy efficiency,
convergence time, and accuracy. It also defines RL rewards
that track the energy consumption of clients and model
accuracy. Compared to random selection, AutoFL is re-
ported to improve the average FL energy efficiency by
up to 4.3×, while also exhibiting better training accuracy.
Similar to FAVOR (mentioned in §3.1.1), however, training
the Q-Learning model to converge needs multiple episodes,
each of which corresponds to an entire FL training process.
Its practicality could thus be challenged whenever offline
training is infeasible or costly.

3.2 Optimizing the Configuration Phase
In the configuration phase, there are mainly two processes
that are responsible for the time-to-accuracy performance.
One is downlink (i.e., server-to-client) model transmission

and the other is local model training. Thus, both aspects can
be investigated for system optimization. As for communica-
tion overhead reduction, one can reduce the size of model
updates (§3.2.1) and decrease the synchronization frequency
(§3.2.2). To lower computational overhead, one can shorten
the training latency by balancing the workload across clients
(§3.2.3), as well as reducing the number of rounds taken
to converge by adopting heterogeneity-aware training algo-
rithms (§3.2.4). As the uplink model submission (i.e., client-
to-server) that takes place in the reporting phase shares the
same operational space as the downlink one, we combine
the discussion on both of them in this section for brevity.

3.2.1 Model Update Size Reduction
Prior arts of model update size reduction mainly fall into
three camps: quantization, sketching, and sparsification.
Ahead of the emergence of FL, the exploration of these
directions has already been initiated in the context of tra-
ditional distributed learning. While their communication
merits are mostly reproducible in FL, they also face new
challenges due to the privacy regulations and client hetero-
geneity, which we will also point out hereafter.
Quantization. Quantization converts each scalar in a
model update to its low-bit representation which takes up
less space. While quantization has already gained its fame in
traditional distributed learning and we refer the readers to
dedicated surveys like [108] for more details, here we only
introduce the most representative work. As the first quanti-
zation work in model training with rigorous convergence
proof, QSGD [23] performs unbiased quantization with
standard random dithering, a technique borrowed from
image processing. Since its birth, related works have been
emerging with more aggressive quantization bit-widths and
more appealing empirical performance. For example, Tern-
Grad [24] advocates using only ternary values (0, ±1) in the
uplink direction, while signSGD [25] can use only binary
signs (±) in both uplink and downlink communication. It
is worth mentioning that a popular technique in tackling
the precision loss brought by quantization is error feedback,
whose basic idea is to accumulate the previous quantiza-
tion errors and compensate for them in the current round.
Leveraging this technique, ECQ-SGD [26] performs consis-
tently better than QSD in terms of both convergence speed
and accuracy, while EF-SGD [27] also achieves a narrower
generalization gap from centralized training compared to
signSGD.

Despite their generality, there are some practical con-
cerns about applying these general quantization strategies
to FL due to privacy constraints and client heterogeneity.
For example, determining the clipping threshold for quanti-
zation needs to exploit the knowledge about its inputs (i.e.,
local model updates) for reducing the induced error as in
dACIQ [109]. However, an FL client does neither possess
a priori knowledge of others’ model updates nor should
it request these sensitive values. To work out a globally
applicable clipping threshold, we may need to share some
less sensitive information (e.g., the maximum and minimum
values in local updates) across clients for threshold estima-
tion as in BatchCrypt [60]. Still, whether such a circumven-
tion guarantees robust estimation and immunity to privacy
attacks remains an open question.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



7

Sketching. Existing quantization approaches assume the
input values follow a certain distribution (e.g., uniform or
bell-shaped), which may not always be the case in model
updates [28]. To be more general, some researchers intro-
duce sketching methods where some memory-saving data
structures are used to approximate the exact distribution
of model update values in a single processing pass over
the values. For example, SketchML [28] utilizes a quan-
tile sketch method to generate a non-uniform mapping
from gradient values to low-bit integers. SketchML achieves
empirical success such as decreasing the gradient size by
around 7× and is the first effort to introduce sketching
for compressing model updates in ML training. Similar to
quantization, sketch algorithms can also make use of error
feedback techniques to efficiently amend the errors induced
by the approximation, as demonstrated in SketchedSGD [29]
and FetchSGD [30]. There is also sketching practice that
compresses auxiliary variables apart from model updates,
such as sketching clients’ momenta and per-coordinate
learning rates as in [31].
Sparsification. While quantization and sketching operate
at the precision level in terms of model size reduction,
sparsification operates at the coordinate level. Specifically,
sparsification allows each client to transmit only a sparse
subset of its model updates, while the rest are accumu-
lated and incorporated into future training. Technically, the
sparsified gradient is obtained by first performing element-
wise multiplication on the original gradient with a certain
0/1 mask and then discarding zero elements. The mask is
typically randomly generated as in [32], while another com-
monly used variant is the top s% scheme where 1 is given
to the coordinates that rank top s% in absolute magnitude
and 0 otherwise [33], [34], [35], [36]. The top s% method is
reported to reduce network traffic by up to three orders of
magnitude, while still preserving model quality [33], [34].

While similar cost savings are transferable to plain-
text FL, it is unclear whether sparsification can be further
compatible with cryptographic techniques that are widely
adopted for privacy enforcement in FL. For example, apart
from the uplink model updates, it is also desirable to
sparsify the downlink global update for fully releasing the
potential for communication improvement. However, im-
plementing the downlink sparsification may not be feasible
when the server is not aware of the plaintext values of the
aggregated update as a result of the applied Secure Multi-
Party Computation (SMPC) [59], [78], [110], [111] or Homo-
morphic Encryption (HE) [60], [112], [113], [114] techniques.

It is noteworthy that as quantization (or sketching) and
sparsification are orthogonal to each other, they can be
combined to reap the most benefits in terms of model size
reduction [115], [116].

3.2.2 Synchronization Frequency Reduction

At its core, the reduction in the synchronization frequency is
achieved by identifying and precluding redundant synchro-
nization efforts. This can be operated at different granulari-
ties ranging from clients, layers to individual parameters in
a model update.
Client-Level. The importance of an entire model update
is usually measured by some numerical features. In the

most intuitive form, a model update in Gaia [37] is con-
sidered significant if its magnitude relative to the current
value | Update

V alue | exceeds a specific threshold such as 1%.
While the magnitude may serve as a good indicator for
how data center learning performs, it does not work in FL
where determining an appropriate threshold is hard due to
clients’ heterogeneity. As such, some researchers propose to
involve the comparison with some reference points for more
robust measurement of the importance. For example, [38]
tracks the Euclidean distance between the local model and
a reference model, while CMFL [39] focuses on the number
of coordinates with the same sign in the local model and the
most recent global model.

Layer-Level. Apart from considering a model update as a
whole, another line of work tries to reduce the synchroniza-
tion frequency on a layer basis. A representative work done
in this direction is TWAFL [40] where the model aggregation
is conducted layer-wise. As observations made in deep
neural network (DNN) fine-tuning [117], shallow layers in a
DNN learn general features across different datasets while
deep layers learn ad hoc ones. TWAFL hence proposes to
update shallow layers more frequently than deep ones as
they are more responsible for the overall quality of the
global model.

Parameter-Level. Some industrial practitioners also con-
sider whether to synchronize for each round at the level of
individual parameters. Noticing that each parameter usu-
ally evolves in a transient-then-stable manner, i.e., it first
varies drastically and then settles down around a certain
value with slight oscillation, APF [41] proposes to stop syn-
chronizing those parameters whose evolution has reached a
stationary phase.

3.2.3 Training Latency Reduction

A client’s training latency is determined by both its com-
putational workload and resource capabilities. While the
latter cannot be altered, the former still leaves room for
optimization innovations. We discuss one major line of such
efforts.

Load Balancing. Given the variations in computing power
and data volume, clients may not finish the training process
at the same time. To mitigate the resulting straggler effects,
[42], [43] suggest balancing the amount of training data
across clients. Specifically, they turn to RL techniques for
determining the optimal number of data units used in a
communication round for each participant, intending to
minimize the time and energy consumption and maximize
the volume of involved data. While these solutions can
reduce the round latency, the number of rounds needed
for convergence does not necessarily remain unchanged
because they do not account for data heterogeneity and thus
the contribution of slow clients with important data could
be throttled. To jointly consider heterogeneous system speed
and data distribution during load balancing, [44] carefully
formulates an optimization problem where each client is
associated with a weight that diminishes exponentially with
the disparity between its number of labels and that of the
population. Compared to even data allocation, this work
manages to reduce the end-to-end time-to-accuracy.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8

Load balancing can also be achieved by varying the
number of optimization steps or the complexity of local
models. For example, FedProx [45] balances the system load
across clients by formulating an inexact learning problem
that allows variable steps of local solvers. On the other hand,
HeteroFL [46] assigns sub-models with different widths
of hidden channels to clients so that clients with fewer
capabilities can train smaller sub-models. All sub-models
share the same model architecture, and thus normal model
aggregation is still possible. The authors empirically show
that the quality of the global model trained with heteroge-
neous sub-models is comparable to that trained with full-
sized local models.

Apart from the computational load, it is sometimes also
beneficial to balance the communication load across clients,
especially when the network conditions are complicated as
in wireless connections. For example, targeting a mobile
edge computing (MEC) scenario where Time Division Mul-
tiple Access (TDMA) is implemented, [47] optimizes both
the data batch size and uplink/downlink frame time slots
for each client to achieve the maximum learning efficiency.
In addition to coping with CPU computing, the authors
further extend the optimization problem to the scenario
where devices are equipped with GPUs for training.

3.2.4 Training Round Reduction

In the settings with heterogeneous data, more local com-
putation in a communication round does not necessarily
lead to fewer numbers of rounds for reaching satisfying
optima [55]. Thus, adopting heterogeneity-aware techniques
such as adaptive optimization and bias reduction can help
guarantee the convergence speed in FL practice.
Optimizer State Synchronization. It is common practice
for first-order moment optimization to apply momentum to
dampen oscillations [118], [119]. However, in the federated
settings, if the clients’ momenta are separately updated,
they may deviate from each other due to non-IID data dis-
tributions. Thus, there are researchers proposing optimizer
state synchronization frameworks where clients’ optimizer
states are synchronized by the server periodically. PR-SGD-
Momentum [48] is aligned with this direction and also gives
proof of the linear speedup of convergence w.r.t. the number
of workers. FedAC [49] also applies momentum at clients
with periodic synchronization, while it is proven to obtain
the same linear speedup property with asymptotically fewer
rounds of synchronization. MFL [50] is another similar idea
with theoretical guarantees, but it focuses on accelerating
deterministic gradient descent (DGD) instead of SGD, un-
like the previous two studies.
Client Bias Reduction. Due to data heterogeneity, clients’
model updates can be biased towards the minima of local
objectives, known as “client drift” in the literature [120],
which hinders the convergence of the global model. To re-
duce the variance across clients, a natural idea is to regular-
ize local objective functions for minimizing the drift. For ex-
ample, assuming bounded dissimilarity between local func-
tions, FedProx [45] limits the Euclidean distance between
local models and the global one by regularizing the square
of the distance. FedDANE [51] uses the same regularization
term, while it formulates the other part of the objective

function following the Distributed Approximate NEwton
(DANE) method [121] in classic distributed optimization.
Despite having a similar theoretical convergence rate as Fed-
Prox, FedDANE underperforms FedProx in practice where
the data heterogeneity is high and the participation rate is
low, suggesting a discrepancy between theory and practice
which needs further investigation. The objective function
in FedDyn [52] also considers the combination of a linear
term and an L2 regularizer, with a different linear term
which is formulated to align the empirical loss surfaces
of clients. In theory, FedDyn ensures that the consensus
point of model convergence across clients will be consistent
with the global stationary solution as long as local models
converge, regardless of the degree of data heterogeneity.

Apart from regularizing local objectives, variants in
clients’ local updates can also be reduced by leveraging
the idea of control variates borrowed from the convex
optimization literature. For example, in SCAFFOLD [53],
each of the clients and the server maintains a control variate,
and at each local step, a client de-biases its local updates
with two control variates: one of its own and the other
broadcast by the server. SCAFFOLD converges provably
faster than FedAvg [6] without any assumption made on the
client selection or data heterogeneity. MIME [54] considers
a similar idea but makes a different choice on the specific
definition of control variates.

While the use of control variates requires persistent client
states, there exists another line of work that works for
stateless clients: posterior averaging. Instead of approaching
FL as optimization, this line of work formulates the prob-
lem as a posterior inference one. Compared to traditional
federated optimization, posterior inference can benefit from
an increased amount of local computation without risking
stagnating at inferior optima. FedPA [55] instantiates this
idea with an efficient algorithm to conduct federated poste-
rior inference with linear computation and communication
costs.

3.3 Optimizing the Reporting Phase
In this phase, the operation room for system optimization is
limited to either model uploading or model aggregation. As
the former has already been combined in the last section, we
hereafter focus on optimizing the aggregation process with
two main directions explored in the literature: (1) directly
reducing the aggregation latency at each round (§3.3.1), and
(2) expediting the convergence rate in the long run through
conducting adaptive aggregation (§3.3.2).

3.3.1 Aggregation Latency Reduction
Compared to local training in the configuration phase,
model aggregation involves less intensive computation.
However, its latency can still be salient because (1) large-
scale participation can put pressure on the communication,
and (2) the deployment of security methods can complicate
the computation. We hereafter introduce the respective op-
timization efforts in the literature.
Hierarchical Aggregation. The downsides of the tradi-
tional two-layer (server-client) system include (1) instability:
the network bandwidth may be slow or unpredictable,
especially in public networks and/or under geo-distributed

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



9

settings; (2) risk of scalability: the cloud server may suffer
from network congestion when concurrently receiving too
many local updates; (3) heterogeneity: the straggler effects
could be exacerbated by imbalanced network bandwidth.

To address these issues, some researchers resort to a
hierarchical design of model aggregation by introducing
an extra level of edge servers, each of which is typically
responsible for a small number of clients with proximity.
For instance, in HierFAVG [56], after a fixed number of local
updates on clients, each edge server aggregates its own
clients’ models. Subsequently, after another fixed interval
of edge aggregation, the cloud server aggregates all the
edge servers’ models. It is proven that HierFAVG still guar-
antees convergence, and empirical studies with synthetic
FL datasets show that it reduces the time-to-accuracy by
up to 2.7× in a simulated cloud-edge-client environment.
A concurrent work HFL [57] also considers a similar de-
sign, while it does not attach theoretical analysis on its
convergence behaviors. HybridFL [58] further extends this
primary design with two ideas: (1) quota-triggered edge-
level aggregation: edge nodes stop waiting for more local
updates once receiving a sufficient number of them; and
(2) immediate cloud aggregation: cloud-level aggregation
is conducted right after the edge-level one is completed.
This decouples each pair of interactions (i.e., cloud-edge and
edge-client), thereby further mitigating the impact of client
drop-out and stragglers.

Despite changing the aggregation rules, the hierarchical
designs mentioned above still focus on establishing the con-
vergence to a single global model, which does not deviate
from the learning paradigm discussed throughout this sur-
vey. On the other hand, there also exist other formulations
of collaborative learning such as clustered FL where clients
are assigned to different groups and aggregation takes place
within a group [122], [123], [124]. As they aim to build
personalized models for each group of clients, they are
considered paradigm innovations to standard FL and thus
fall out of the scope of this survey (§2.2).

Lightweight Privacy-Preserving Aggregation. As men-
tioned in §2.3.1, uploading model updates in the clear
may be vulnerable to exploratory attacks which plague
clients’ privacy. Therefore, model aggregation is preferably
safeguarded by cryptographic techniques, which inevitably
induces extra computation and communication overhead.

One line of this work leverages secure multiparty com-
putation (SMPC). One of the most impactful works is
Google’s secure aggregation (SecAgg) protocol, where pseu-
dorandom masks are used for data confidentiality and
Shamir’s secret sharing scheme [125] is used to accommo-
date client dropout [78]. It has provable rigorous privacy
guarantees under both passive and active adversary models.
Given its quadratic communication overhead during secret
sharing, SecAgg has inspired many other SMPC protocols
with improved performance. For example, SecAgg+ [126]
optimizes SecAgg in both communication and computation
by replacing the complete graph with a random sparse
one of logarithmic degree. TurboAgg [59], on the other
hand, attempts to optimize SecAgg through the use of
multi-group circular topology, additive secret sharing, and
Lagrange coding. Compared to SecAgg+, TurboAgg incurs

a slightly higher overhead in the asymptotic sense for
both communication and computation, and only focuses
on tackling honest-but-curious adversaries. While all of the
above schemes rely on Shamir’s scheme for sharing clients’
secrets, there also exist other secret sharing techniques that
offer different trade-offs across performance, privacy, and
dropout resilience, e.g., encoding using Maximum Distance
Separable matrices as in LightSecAgg [127], or Fast Fourier
Transform as in FastSecAgg [128].

Besides SA, Homomorphic Encryption (HE) is another
commonly used privacy-preserving aggregation technique
that comes with prohibitively high message inflation and
runtime overhead. In response, BatchCrypt [60] implements
an end-to-end solution for batching multiple plaintexts into
one large plaintext so that HE-related operations can be
performed in a data-parallel manner. BatchCrypt is shown
to speed up the training by 23×-93× compared to plain
Paillier [129] (a prevalent variant of HEs), but it still leaves
the message inflation suboptimal and is incompatible with
top s% sparsification approaches [61]. Instead of optimizing
traditional HE schemes by batching, FLASHE [61] proposes
a lightweight HE scheme that is tailored for cross-silo FL.
It induces negligible (≤ 6%) computational overhead and
no network communication overhead compared to plaintext
FL for staying symmetric. Its performance is also optimized
when interacting with sparsification techniques.

3.3.2 Adaptive Aggregation
In FedAvg [6], the de facto standard aggregation method,
local model updates simply get weighted by the correspond-
ing numbers of training samples and then added up. While
it guarantees convergence when even dealing with non-
convex empirical risk functions in IID data settings [53],
[130], it is observed to yield unstable convergence behav-
ior or even divergence when it faces models trained with
arbitrarily non-IID data. There are thus rising interests on
whether the aggregation can be more adaptive w.r.t. the data
heterogeneity across clients.
Server-Side Optimizers. Other than accelerating conver-
gence with local momentum (§3.2.4), there are also ex-
ploration efforts on server-side momentum. As there is
originally no optimizer at the server in FL, these methods
first need to generalize the existing aggregation algorithm.
Specifically, at each round, instead of collecting local model
weights, the server instead collects their changes and treats
these changes as the “pseudo-gradient” for the server,
which the server can use to update the global model with
adaptive optimizers. FedAvgM [62] initiates the empirical
studies with the simplest form of momentum applied at the
server, while SlowMo [63] independently proposes a similar
scheme and also attaches the theoretical analysis for its con-
vergence behaviors. A recent work [64] makes more sophis-
ticated use of momentum such as adopting AdaGrad [131],
Adam [132] and YOGI [133] optimizers (which correspond
to FedAdaGrad, FedAdam, and FedYOGI, respectively). It
is shown that FedYOGI consistently outperforms FedAvgM
in terms of validation performance for both sparse- and
dense-gradient FL tasks. Server-side momentum methods
feature no need for persistent states or computation burdens
at the client end, making them well suited to cross-device
scenarios.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



10

Other System 
Exploration Work

Measurement Benchmarking 
Suites

Heterogene-
ous Datasets

Heterogeneo
us Systems

- Synthetic - Distributed 
Deployment

- Heterogeneity 
in Cross-Device 
Settings

- Realistic
- System-Aware 
Simulation

Fig. 4: Taxonomy of the work introduced in §4.

4 MEASUREMENT AND BENCHMARKING TOOLS

Aside from innovating optimization solutions, there are also
researchers contributing with cornerstone works that benefit
the community with informative insights from systematical
measurement studies (§4.1) and grounding benchmarking
tools (§4.2), as visualized in Fig. 4.

4.1 Measurement-Based Research
Due to the complicated interplay between statistical utility
and system utility, there are a few measurement studies
which dedicate to conducting thorough investigations and
providing actionable implications for interested researchers.

• FLASH2 [65]: FLASH particularly studies the impacts
that heterogeneity has on both the statistical utility
and system utility. This work contributes to the com-
munity mainly with three aspects: (1) it establishes
a novel large-scale dataset that reflects the system
and state heterogeneity among 136,000 real-world
smartphones; (2) it implements and open-sources an
FL platform that provides a heterogeneity-aware en-
vironment for experiments; (3) it reports comprehen-
sive findings that stem from the authors’ extensive
measurements atop the platform.
Among the authors’ numerous implications, there
are two fresh findings at the time when the study
is written. First, gradient compression methods (e.g.,
Gradient Dropping [33] and SignSGD [25]) can
hardly shorten the convergence time under heteroge-
neous cross-device settings. Second, advanced aggre-
gation algorithms that overlook some aspects of het-
erogeneity will be less effective in realistic settings.
Readers can refer to the paper for more details.

4.2 Benchmarking Suites
Realistic benchmark suites are necessary for enabling fair,
insightful, and reproducible evaluation of the effectiveness

2. We name it after the corresponding Github repository handle [134].

of system optimizations. As the time-to-accuracy perfor-
mance relies on both the statistical utility and system utility
(§2.2), in the following summary of existing benchmarking
tools, we aim to cover diverse aspects of simulating practical
FL: data characteristics, client capabilities, and availability.

4.2.1 Training Datasets
There are two prevalent categories of training datasets. One
line of work is derived from conventional ML datasets (e.g.,
CIFAR [135], MNIST [136], and Fashion-MNIST [137]). To
synthesize the non-IID nature as in real FL scenarios, the
data partitions in these datasets are typically formed by
restricting the number of data classes each client has (e.g.,
partitioning by shard-based methods as in [6] or latent
Dirichlet allocation (LDA) processes as in [52], [55], [62],
[64]). Although the data generated in such a way are indeed
non-IID, they may not perfectly represent the real-world
characteristics. For instance, besides the label distribution
skew, in reality, non-IID data may also involve feature distri-
bution skew (e.g., same words with different stroke widths),
same labels with different features (e.g., images of clothing
vary due to regional differences) and same features with
different labels (e.g., the same context mapped to different
next words due to personal habits) [73], [104].

In contrast, the other type of datasets is collected in
real distributed scenarios and thus naturally captures the FL
features. We briefly introduce existing open-source attempts
in curating such datasets as follows.

• LEAF [66]: LEAF is an actively maintained project,
which currently consists of 6 datasets spanning
multiple applications such as computer vision
(CV) (FEMNIST and CelebA) and natural language
processing (NLP) (Shakespeare, Reddit, and
Sentiment140). Each dataset is generally formed
by splitting the corresponding public dataset by the
original contributors of the data samples. In other
words, the non-IID nature comes from the unique
behavior style of each contributor.

• FedScale [68]: Similar to LEAF, FedScale also col-
lects realistic datasets and partitions them by unique
client identification. FedScale currently includes 18
datasets (including iNature, OpenImage, Google
Landmark etc.) which span 10 FL tasks. Apart from
the comprehensive coverage of tasks, FedScale has
further made four contributions to the community:
(1) it has the training, validation, and testing set well
established; (2) it streamlines different datasets into
a unified format; (3) it accounts for various partic-
ipation scale from hundreds to millions of clients;
and (4) it provides handy APIs for users to customize
their datasets.

• OARF [67]: for a specific FL task, OARF assem-
bles real-world datasets from different sources to
realize data heterogeneity. For example, for senti-
ment analysis, it combines both the IMDB Movie
Review and Amazon Moview Review datasets. In
training, datasets belonging to different sources are
distributed to different parties. As such, the data are
split in a dataset-wise manner instead of a sample-
wise one. OARF currently covers 9 tasks in CV and
NLP.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



11

Besides the above systematic collection, there are also
other separately maintained realistic datasets, such as
Stackoverflow [138] and PERSONA-CHAT [139].

4.2.2 Production Systems and Simulation Platforms
In addition to setting up data heterogeneity, we also need to
incorporate system heterogeneity in realistic benchmarking.
The most straightforward way to study FL designs with
system utility borne in mind is to deploy in production-
oriented systems. Such systems not only embed the ML back-
bone but also address practical problems like authentication,
communication, encryption, and deployment to physical
distributed environments. We sketch the open-source rep-
resentatives.

• FATE [69]: FATE is an FL framework that can be
deployed in distributed environments. In addition to
its flexible ML pipeline, FATE also features several
aspects that further facilitate the research on vari-
ous goals of practical FL: (1) it supports privacy-
preserving computation by implementing crypto-
graphic algorithms such as the Diffie-Hellman key
agreement [140] and homomorphic encryption [129];
(2) it covers different training architectures including
horizontal FL, vertical FL, and federated transfer
learning; and (3) it allows a certain degree of cus-
tomization on the FL pipeline such as the aggre-
gation step. Given its heaviness in resource con-
sumption, FATE is preferable in powering cross-silo
applications instead of cross-device ones.

• FedML [70]: FedML is also a secure and versatile
FL framework that supports distributed mode. Com-
pared to FATE, FedML is more flexible in communi-
cation engineering due to the ease of customizing
message flow and topology definitions. It is also
more lightweight and can thus accommodate train-
ing on mobile or IoT devices. Moreover, it can be
accelerated with GPUs, while FATE is currently not
compatible with hardware accelerators.

• Flower [71]: Flower is a concurrent work with FedML,
and it concentrates on providing a unified approach
for FL with mobile devices. Similar to FedML, Flower
bears in mind the goals of being (1) lightweight,
(2) extensible, (3) scalable, and (4) compatible with
diverse mobile platforms (e.g., Android and iOS)
and ML-frameworks (e.g., PyTorch [141] and Ten-
sorflow [142]). It also implements secure aggregation
methods like SecAgg (c.f. §3.3.1) with easily config-
urable APIs [143].

• Plato [72]: similar to Flower, Plato also aims to fa-
cilitate FL research atop multiple ML backends in-
cluding PyTorch, Tensorflow, and MindSpore [144].
Different from its counterparts, Plato is optimized in
the development process, e.g., making extensive use
of plugin mechanisms to maximize extensibility and
maintainability. Apart from lightweight distributed
deployment, Plato also offers solutions to integrate
secure communication, reverse proxy, and load bal-
ancing for best fitting in production environments.

Although using production systems yields the most re-
alistic insights, it may not be practical for researchers with

limited resources and time budgets. To meet the growing
demand for conducting agile FL research, several platforms
that enable system-aware simulation have been developed. As
opposed to system-unaware simulators (e.g., Tensorflow
Federated [145], PySyft [146], LEAF [66], OARF [67], and
FedEval [147]), these platforms respect the impact of client
system heterogeneity by associating each client with her
computation and communication speed, as well as availabil-
ity dynamics, which are either set manually by developers
or by replaying realistic traces. In addition, these platforms
also excel in producing comprehensive metrics needed in
performance analysis. Compared to real deployment, on
the other hand, these systems allow researchers to make
fast-forward progress without being blocked by real-world
bottlenecks in computation and communication.

• Flower [71]: besides deployment on real mobile de-
vices as just mentioned, Flower also supports sim-
ulation in the cloud with configurable system-level
parameters such as bandwidth constraints and com-
putational capabilities. With that, researchers can
experiment with larger and more compute-intensive
FL workloads that cannot be run on today’s mobile
devices.

• FedScale [68]: aside from curating real-world datasets
(§4.2.1), FedScale also builds an automated run-
time to simulate FL in realistic settings. By design,
FedScale integrates AI Benchmark and MobiPerf
Measurements system traces to simulate clients’
heterogeneous training speed and network through-
put, respectively. It also incorporates a large-scale
user behavior dataset that was formulated in [65]
to emulate clients’ availability dynamics. Compared
to Flower, it lacks support for deployment on real
distributed devices. Still, it broadly simulates realis-
tic cross-device heterogeneity and can embrace new
behavior traces with its APIs.

5 RELATED WORK AND CONCLUDING REMARKS

5.1 Related Surveys

The motivation for this survey stems from three observa-
tions. First, few in-depth surveys focus on system optimiza-
tion for FL. As FL features strict compliance to privacy
regulations as opposed to traditional distributed learning,
many survey efforts are directed to the unique challenges
such as enforcing data privacy and model robustness [148],
[149], [150], [151], [152], while the system optimization is-
sues receive less attention in dedicated surveys.

As for common system issues shared by FL and tra-
ditional distributed learning, there do exist extensive sur-
veys with detailed discussion. In [153], the authors discuss
the realm of mobile distributed machine learning, where
algorithms are classified into three categories: 1) machine
learning optimizers, 2) distributed optimization algorithms,
and 3) data aggregation methods. In [108], the authors
provide a detailed survey of communication-efficient dis-
tributed training algorithms. They identify four key factors
that affect the communication cost in distributed learning
and organize the literature accordingly: 1) synchronous
scheme, 2) system architecture, 3) compression techniques

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



12

and 4) parallelism of communication and computation. [154]
also studies the communication issues in distributed deep
learning, however, with a focus on the commonly used
lossless methods. It also contains a quantitative analysis of
these methods based on real-world experiments. Compared
to our survey, the scope of these surveys is not narrowed
down to FL and thus does not fully capture all the system
optimization challenges that are unique in FL. Notably, FL
has in its standard workflow the selection phase which
needs particular investigation due to client heterogeneity,
while traditional distributed learning does not even have
the notion of clients.

We notice that there are comprehensive surveys that
cover a wide range of FL techniques including system-
level optimizations. In [73], the authors discuss in-depth the
advances and open problems in FL at the time of writing.
The presented problems and solutions are presented in four
categories: 1) efficiency and effectiveness, 2) privacy preser-
vation, 3) robustness enforcement and 4) fairness establish-
ment. In [155], the authors extensively introduce the chal-
lenges and research directions of FL at and for mobile edge
network. As for FL at mobile edge network, they particu-
larly elaborate techniques on 1) communication efficiency, 2)
resource allocation, and 3) privacy and security. In [120], the
authors provide recommendations on algorithm-level opti-
mization of FL applications, while they also briefly sketch
the system-level constraints and practices. They discuss the
reduction of communication, computation, and memory
costs, as well as propose a basic model to estimate the
communication efficiency of cross-device FL deployment.
In [156], the authors present a fine-grained multi-level clas-
sification of the FL literature, spanning six major topics: 1)
statistical challenges, 2) communication efficiency, 3) client
selection and scheduling, 4) security concerns, 5) privacy
concerns, and 6) service pricing. Compared to this survey,
the above-mentioned work is neither intended to focus
on system-level optimizations nor do they categorize the
literature by the phases in the synchronous training process.
The survey most closely related to ours is [157] which is
dedicated to summarizing system-level optimizations used
in asynchronous FL. As their studied architecture is fun-
damentally different from ours, their survey could be a
good complement to this survey. It is also noteworthy that
their classification mechanism on existing techniques is built
upon the type of client heterogeneity, which also differs
from our taxonomy.

In short, this survey aims to provide a succinct yet com-
plete view of an essential domain in the FL literature: system
optimization in synchronous federated training. We also
summarize in Tab. 1 the main similarities and differences
between our survey and the existing surveys that are closely
related.

5.2 Future Research Directions

The primary goal of this survey is to help researchers design
future optimization solutions. To stimulate more directives
for FL practitioners, we discuss in the following some pos-
sible future directions that we derive from the literature as
well as our development practice.

5.2.1 On the Selection Phase
While RL agents are commonly used in guiding client se-
lection for their beneficial balance between exploitation and
exploration [19], [22], their training costs are inherently high.
Before an RL agent is ready for use, it has to learn from tens
to hundreds of full-sized FL training processes, whose cost
may not be justifiable in practice. Inspired by the experience
from container management [158], we are interested in
whether certain techniques, e.g., transfer learning [159], can
be adopted so that an RL agent can be trained from prior FL
tasks, instead of learning from scratch for every single task.

Moreover, existing algorithms all assume the participa-
tion scale (i.e., the number of clients training simultane-
ously) to be the magnitude of a hundred, because involving
more clients in a round is observed to have marginal benefits
under primary aggregation methods (e.g., FedAvg [6]). On
the other hand, the number of available clients at each
minute can be as many as thousands in the cross-device
practice. It is still desirable to explore the selection of a larger
crowd for boosting the time-to-accuracy performance.

5.2.2 On the Configuration Phase
Aligned with the observations in the literature [68], most
prior arts consistently configure different clients. Although
there exist some heterogeneity-aware efforts like load bal-
ancing where the number of batches, batch size, and number
of local epochs can vary across clients (§3.2.3), we anticipate
that the design space for heterogeneity-aware client config-
urations could be larger, e.g., using different compression
ratios or synchronization frequencies.

To achieve efficient and secure communication, it is also
worth studying how to combine sparsification techniques
with privacy-preserving methods. For example, model spar-
sification is by nature not compatible with secure multi-
party computation protocols such as SecAgg [78], because
the coordinates of sparsified model values often vary across
clients, preventing the pairwise masks from being canceled
out during model aggregation as required by SecAgg. A
recent work named SparseSecAgg [160] attempts to tackle
this issue, however, it implies the need for sharing some
sparsified locations between each pair of clients, which
cannot be directly extended to conventional sparsification
schemes such as the top s% scheme (§3.2.1). More general
reconciliation between the two techniques is still ripe for
future investigation.

5.2.3 On the Reporting Phase
As the system bottleneck is usually assumed to locate in
clients instead of the server, most of the existing optimiza-
tion efforts focus on improving the utility (system and statis-
tical) of clients. It is thus interesting to investigate whether
such an assumption holds in practice, especially when the
scalability of the server is restricted due to rigid capabilities
or limited budgets, or when its aggregation latency is not
negligible due to the presence of large-scale models.

Besides, existing lightweight privacy-preserving aggre-
gation methods are not compatible with robustness en-
forcement techniques [73]. Because the true values of local
models are concealed from the server, it has no way of
inspecting their numerical features [161], [162], [163], [164]

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



13

TABLE 1: Comparative summary between our survey and the most related work.

Survey Similarities Differences

Gu et al. [153] Similar to our survey, this survey addresses some common challenges
of synchronous federated training such as communication efficiency.

• As for machine learning optimizers, it does not discuss the server-
side ones which are FL-specific.

• Our work addresses additional challenges that are not mentioned in
this survey such as participant selection and aggregation efficiency.

Tang et al. [108] Similar to our survey, this survey addresses some common challenges
of synchronous federated training such as communication efficiency.

• It considers distributed vanilla SGD, which is different in conver-
gence characteristics from FL, a special case of local SGD.

• Our work addresses additional challenges that are not mentioned in
this survey such as participant selection and client bias reduction.

Shi et al. [154] Similar to our survey, this survey addresses some common challenges
of synchronous federated training such as communication efficiency.

• It focuses on controlling the system architecture and scheduling
algorithms in data center learning, which is not applicable to
synchronuous FL.

• Our work addresses additional challenges that are not mentioned
in this survey such as participant selection and data heterogeneity.

Kairouz et al. [73]
Similar to our survey, this survey addresses some common challenges
of synchronous federated training such as client bias reduction and
communication efficiency.

• The scope of this survey is quite board, where for example theo-
retical analysis of convergence and privacy-preserving mechanisms
are also extensively discussed.

• Our work addresses additional challenges that are not mentioned
in this survey such as participant selection and load balancing.

Lim et al. [155]
Similar to our survey, this survey addresses some common challenges
of FL such as communication efficiency and participant selection. It also
mentions the standard workflow of synchronous training.

• The scope of this survey is quite board, where many applications
of FL in mobile edge network, e.g., cyberattack detection, are also
elaborated.

• They do not organize system-level optimizations by the phases in
the standard training workflow.

• Our work addresses additional challenges that are not mentioned
in this survey such as client bias reduction and lightweight privacy-
preserving aggregation.

Wang et al. [120]
Similar to our survey, this survey addresses some common challenges
of FL such as communication efficiency and lightweight privacy-
preserving aggregation.

• It centers on the algorithm-level optimizations as well as their the-
oretical guanrantees, while the challenges and directives of system-
level issues are briefly introduced.

• Our work addresses additional challenges that are not mentioned
in this survey such as participant selection and load balancing.

Wahab et al. [156] Similar to our survey, this survey addresses some common challenges
of FL such as participant selection and communication efficiency.

• The scope of this survey is quite board, where even training service
pricing are also included.

• Our work contains additional exploratory work in the system com-
munity that is not mentioned in this survey including measurement
studies and benchmarking suites.

Xu et al. [157] Similar to our survey, this survey focuses on optimizing FL training
process in the precence of client heterogeneity.

• Its target architecture is asynchornous and thus the intersection of
its introduced techniques and ours are fairly small.

• Our work sorts the literature by the phases in the standard syn-
chronous training workflow, which is distinct from the classification
mechanism used in this survey.

or validating their performance for anomaly detection [81],
[165], [166]. This raises the tension between privacy and ro-
bustness. Leveraging Trusted Execution Environment (TEE)
[167], [168] to perform model inspection securely might be
a helpful workaround. However, due to current limits on
TEE’s hardware capabilities [169], there could be a fore-
seeably large performance downgrade of doing so. It thus
remains largely unexplored as to how to navigate the sweet
point of jointly maximizing accuracy, performance, privacy,
and robustness in synchronous federated training.

5.3 Discussion
We further discuss the applicability of the above-introduced
optimization techniques in different contexts.

5.3.1 Cross-Device FL and Cross-Silo FL
FL applications are often categorized as either cross-device
FL (where the participants are a mass of less capable mobile
or IoT devices) or cross-silo FL (where the participants are 2-
100 organizational entities) [73]. While the FL workflow that

we base on throughout this survey is primarily proposed
for cross-device FL [65], [68], [74], it also generalizes to
cross-silo settings. Hence, the scope of this survey does not
preclude cross-silo FL, and hence many practical methods
mentioned here should apply to both settings. For those
techniques that are suitable for merely one setting, we have
emphasized their limitations and stated the practical reasons
behind them.

5.3.2 Horizontal FL and Vertical FL

Based on the characteristics of data distribution, FL applica-
tions can also basically be classified as horizontal FL (where
clients’ data have the same feature space but different
samples) or vertical FL (where clients’ data share the same
sample space but have different features) [170]. Horizontal
FL is typically initiated by a service provider who wants
to improve the quality of an ML application to better fit
the end users’ data of a specific domain. For example, by
combining the statistics of users’ input habits, the develop-
ers of a mobile keyboard application could achieve a more

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



14

intelligent prediction of the next words typed by the users,
thus enhancing their experience.

On the other hand, vertical FL participants are usually a
few organizations who hold data in different domains while
being likely to achieve win-win cooperation by knowledge
sharing. For instance, a regional e-commerce company and a
bank may share the same set of clients. By incorporating the
knowledge of the clients’ revenue and expenditure recorded
at the bank as well as the purchasing traces collected by
the e-commerce, they can build a more accurate prediction
model on the clients’ purchasing behaviors, benefiting both
of their businesses.

Given that there exist diverse training workflows of
vertical FL and the community has not yet achieved a
consensus on the use of any one [171], [172], [173], [174],
much discussion in this survey is biased towards horizontal
FL that has a widely acknowledged architecture (§2.1). Still,
we can provide some insights for optimizing vertical FL
training in general:

1) As the data is feature-partitioned, vertical FL needs
the participation of all clients in each model update
attempt. Thus, optimizations on participant selec-
tion (§3.1) are not applicable to vertical FL.

2) In terms of communication, model-agnostic com-
pression techniques (§3.2.1) should still apply to
plaintext variants of vertical FL such as [175]. How-
ever, synchronization frequency reduction (§3.2.2) is
not possible in vertical FL, as each client does not
have a complete model and cannot conduct training
independently.

3) As for local training, as all participants need pro-
cessing data of the same sample space, load bal-
ancing techniques that assign a different amount of
data samples to each client (§3.2.3) are not feasible
in vertical FL. Moreover, as clients inherently have
different local models, adaptive optimization and
bias reduction methods (§3.2.4) from horizontal FL
do not generalize well to vertical FL.

4) Unlike horizontal FL, the forms of aggregation in
vertical FL differ significantly by the model architec-
ture. Thus, the mentioned optimizations (§3.3) can
hardly be a generic remedy.

Besides horizontal FL and vertical FL, there recently
emerges a novel collaborative learning paradigm called Fed-
erated Transfer Learning (FTL) [170], [176] which can cope
with more relaxed assumptions of client data distribution
using transfer learning techniques [159]. Specifically, it deals
with the cases where two clients’ data not only differ in
sample space but also feature space. Toward this end, FTL
learns a common feature representation between the two
clients and minimizes the empirical errors in predicting one
client’s labels by leveraging the labels of other clients. As
FTL’s training workflow ensembles some variants of vertical
FL [170], we believe that the above-mentioned insights for
vertical FL also hold for FTL.

5.4 Conclusion
In this survey, we focus on system optimization in syn-
chronous federated training and propose a natural tax-
onomy that categorizes existing solutions based on both

the training phase and the type of utility at which they
target. Apart from problem-driven attempts, we also include
related cornerstone efforts including measurement studies
and benchmarking suites. We expect this manuscript to
be a useful guideline for the design and implementation of
federated learning systems.

ACKNOWLEDGMENTS

The research was supported in part by RGC RIF grant
R6021-20, and RGC GRF grants under the contracts
16209120, 16200221, and 16213120. We also thank the anony-
mous reviewers for their valuable feedback.

REFERENCES

[1] (2016) Regulation (eu) 2016/679 of the european parliament and
of the council on the protection of natural persons with regard
to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/ec (general
data protection regulation). [Online]. Available: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

[2] (1996) The health insurance portability and accountability act of
1996 (hipaa). [Online]. Available: https://www.cdc.gov/phlp/
publications/topic/hipaa.html

[3] (2018) California consumer privacy act (ccpa). [Online].
Available: https://oag.ca.gov/privacy/ccpa

[4] (2021) Gdpr enforcement tracker. [Online]. Available: https:
//www.enforcementtracker.com/

[5] (2021) Hipaa fines listed by year. [Online]. Available:
https://compliancy-group.com/hipaa-fines-directory-year/

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS, 2017.

[7] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ra-
mage, and F. Beaufays, “Applied federated learning: Improving
google keyboard query suggestions,” in arXiv preprint, 2018.

[8] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays,
S. Augenstein, H. Eichner, C. Kiddon, and D. Ramage, “Federated
learning for mobile keyboard prediction,” in arXiv, 2018.

[9] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated
learning for emoji prediction in a mobile keyboard,” in arXiv,
2019.

[10] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, “Federated
learning of out-of-vocabulary words,” in arXiv, 2019.

[11] (2021) Your chats stay private while messages improves
suggestions. [Online]. Available: https://support.google.com/
messages/answer/9327902

[12] M. Paulik, M. Seigel, H. Mason, D. Telaar, J. Kluivers, R. van
Dalen, C. W. Lau, L. Carlson, F. Granqvist, C. Vandevelde et al.,
“Federated evaluation and tuning for on-device personalization:
System design & applications,” in arXiv preprint, 2021.

[13] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Ra-
jamoni, Y. Ong, J. Radhakrishnan, A. Verma, M. Sinn et al., “Ibm
federated learning: an enterprise framework white paper v0. 1,”
in arXiv preprint, 2020.

[14] (2020) Utilization of fate in anti money laundering
through multiple banks. [Online]. Available: https://www.
fedai.org/cases/utilization-of- fate- in-anti-money- laundering-
through-multiple-banks/

[15] W. Li, F. Milletarı̀, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust,
Y. Cheng, S. Ourselin, M. J. Cardoso et al., “Privacy-preserving
federated brain tumour segmentation,” in MLMI Workshop, 2019.

[16] (2020) Triaging covid-19 patients: 20 hospitals in 20 days build ai
model that predicts oxygen needs. [Online]. Available: https://
blogs.nvidia.com/blog/2020/10/05/federated-learning-covid-
oxygen-needs/

[17] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client
selection for federated learning with non-iid data in mobile edge
computing,” IEEE Access, vol. 9, pp. 24 462–24 474, 2021.

[18] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in IEEE ICC, 2019.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



15

[19] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on non-iid data with reinforcement learning,” in INFO-
COM, 2020.

[20] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo,
Y. Zhou, H. Ludwig, F. Yan, and Y. Cheng, “Tifl: A tier-based
federated learning system,” in HPDC, 2020.

[21] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort:
Efficient federated learning via guided participant selection,” in
OSDI, 2021.

[22] Y. G. Kim and C.-J. Wu, “Autofl: Enabling heterogeneity-aware
energy efficient federated learning,” in MICRO, 2021.

[23] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“Qsgd: Communication-efficient sgd via gradient quantization
and encoding,” in NeurIPS, 2017.

[24] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Tern-
grad: Ternary gradients to reduce communication in distributed
deep learning,” in NeurIPS, 2017.

[25] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar,
“Signsgd with majority vote is communication efficient and fault
tolerant,” in ICLR, 2019.

[26] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated
quantized sgd and its applications to large-scale distributed
optimization,” in ICML, 2018.

[27] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error
feedback fixes signsgd and other gradient compression schemes,”
in International Conference on Machine Learning, 2019.

[28] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating
distributed machine learning with data sketches,” in SIGMOD,
2018.

[29] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and
R. Arora, “Communication-efficient distributed sgd with sketch-
ing,” in NeurIPS, 2019.

[30] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman,
J. Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient
federated learning with sketching,” in ICML, 2020.

[31] R. Spring, A. Kyrillidis, V. Mohan, and A. Shrivastava, “Com-
pressing gradient optimizers via count-sketches,” in ICML, 2019.

[32] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsifi-
cation for communication-efficient distributed optimization,” in
NeurIPS, 2018.

[33] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in EMNLP, 2017.

[34] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gra-
dient compression: Reducing the communication bandwidth for
distributed training,” in ICLR, 2018.

[35] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with
memory,” in NeurIPS, 2018.

[36] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and
X. Chu, “A distributed synchronous sgd algorithm with global
top-k sparsification for low bandwidth networks,” in ICDCS,
2019.

[37] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gib ebons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching {LAN} speeds,” in NSDI, 2017.

[38] M. Kamp, L. Adilova, J. Sicking, F. Hüger, P. Schlicht, T. Wirtz,
and S. Wrobel, “Efficient decentralized deep learning by dynamic
model averaging,” in ECML PKDD, 2018.

[39] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in ICDCS, 2019.

[40] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient feder-
ated deep learning with layerwise asynchronous model update
and temporally weighted aggregation,” IEEE Trans. Neural Netw.
Learn. Syst, vol. 31, no. 10, pp. 4229–4238, 2019.

[41] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang,
“Communication-efficient federated learning with adaptive pa-
rameter freezing,” in ICDCS, 2021.

[42] T. T. Anh, N. C. Luong, D. Niyato, D. I. Kim, and L.-C. Wang,
“Efficient training management for mobile crowd-machine learn-
ing: A deep reinforcement learning approach,” IEEE Wireless
Communications Letters, vol. 8, no. 5, pp. 1345–1348, 2019.

[43] H. T. Nguyen, N. C. Luong, J. Zhao, C. Yuen, and D. Niyato, “Re-
source allocation in mobility-aware federated learning networks:
a deep reinforcement learning approach,” in WF-IoT, 2020.

[44] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling
of federated mobile devices under computational and statistical
heterogeneity,” IEEE TPDS, vol. 32, no. 2, 2020.

[45] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
in MLSys, 2020.

[46] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and
communication efficient federated learning for heterogeneous
clients,” in ICLR, 2021.

[47] J. Ren, G. Yu, and G. Ding, “Accelerating dnn training in wireless
federated edge learning systems,” IEEE Journal on Selected Areas
in Communications, vol. 39, no. 1, 2020.

[48] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis
of communication efficient momentum sgd for distributed non-
convex optimization,” in ICML, 2019.

[49] H. Yuan and T. Ma, “Federated accelerated stochastic gradient
descent,” in NeurIPS, 2020.

[50] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated
learning via momentum gradient descent,” IEEE TPDS, vol. 31,
no. 8, pp. 1754–1766, 2020.

[51] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smithy, “Feddane: A federated newton-type method,” in 2019
53rd Asilomar Conference on Signals, Systems, and Computers, 2019.

[52] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. What-
mough, and V. Saligrama, “Federated learning based on dynamic
regularization,” in ICLR, 2021.

[53] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in ICML, 2020.

[54] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. Reddi, S. U.
Stich, and A. T. Suresh, “Breaking the centralized barrier for
cross-device federated learning,” in NeurIPS, 2021.

[55] M. Al-Shedivat, J. Gillenwater, E. Xing, and A. Rostamizadeh,
“Federated learning via posterior averaging: A new perspective
and practical algorithms,” in ICLR, 2020.

[56] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in IEEE ICC, 2020.

[57] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hi-
erarchical federated learning across heterogeneous cellular net-
works,” in IEEE ICASSP, 2020.

[58] W. Wu, L. He, W. Lin, and R. Mao, “Accelerating federated learn-
ing over reliability-agnostic clients in mobile edge computing
systems,” IEEE TPDS, 2020.

[59] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking
the quadratic aggregation barrier in secure federated learning,”
IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1,
pp. 479–489, 2021.

[60] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learn-
ing,” in ATC, 2020.

[61] Z. Jiang, W. Wang, and Y. Liu, “Flashe: Additively symmetric
homomorphic encryption for cross-silo federated learning,” in
arXiv, 2021.

[62] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects
of non-identical data distribution for federated visual classifica-
tion,” in NeurIPS Workshop, 2019.

[63] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “Slowmo: Improving
communication-efficient distributed sgd with slow momentum,”
in ICLR, 2020.

[64] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimiza-
tion,” in ICLR, 2021.

[65] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning
upon large-scale smartphone data,” in WWW, 2021.

[66] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B.
McMahan, V. Smith, and A. Talwalkar, “Leaf: A benchmark for
federated settings,” in NeurIPS’ Workshop, 2019.

[67] S. Hu, Y. Li, X. Liu, Q. Li, Z. Wu, and B. He, “The oarf benchmark
suite: Characterization and implications for federated learning
systems,” in arXiv preprint, 2020.

[68] F. Lai, Y. Dai, X. Zhu, and M. Chowdhury, “Fedscale: Benchmark-
ing model and system performance of federated learning,” in
arXiv preprint, 2021.

[69] (2021) Federated ai technology enabler. [Online]. Available:
https://github.com/FederatedAI/FATE

[70] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu et al., “Fedml: A research library
and benchmark for federated machine learning,” in NeurIPS
Workshop, 2020.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



16

[71] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P.
de Gusmão, and N. D. Lane, “Flower: A friendly federated
learning research framework,” in arXiv preprint, 2020.

[72] (2021) Plato: A new framework for federated learning research.
[Online]. Available: https://github.com/TL-System/plato

[73] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings
et al., “Advances and open problems in federated learning,”
Foundations and Trends in Machine Learning, vol. 14, no. 1, 2021.

[74] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan
et al., “Towards federated learning at scale: System design,” in
MLSys, 2019.

[75] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” Neural computation, vol. 1,
no. 4, pp. 541–551, 1989.

[76] L. Deng, “The mnist database of handwritten digit images for
machine learning research [best of the web],” IEEE Signal Pro-
cessing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[77] Cisco, “Cisco visual networking index: Global mobile
data traffic forecast update, 2016-2021, page 25,” 2021,
https : / / www. ramonmillan . com / documentos / bibliografia /
VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016\
Cisco.pdf.

[78] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in CCS,
2017.

[79] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. M.
Swift, “Atp: In-network aggregation for multi-tenant learning.”
in NSDI, 2021, pp. 741–761.

[80] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. Ports, and P. Richtarik, “Scaling
distributed machine learning with in-network aggregation,” in
NSDI, 2021.

[81] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning
attacks to byzantine-robust federated learning,” in USENIX Secu-
rity, 2020, pp. 1605–1622.

[82] S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen, “Abnormal client
behavior detection in federated learning,” in NeurIPS Workshop,
2019.

[83] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated
multi-task learning,” in NeurIPS, 2017.

[84] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-
learning approach,” in NeurIPS, 2020.

[85] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under
privacy constraints,” in IEEE TNNLS, 2020.

[86] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust
federated learning through personalization,” in ICML, 2021.

[87] D. A. E. Acar, Y. Zhao, R. Zhu, R. Matas, M. Mattina, P. What-
mough, and V. Saligrama, “Debiasing model updates for improv-
ing personalized federated training,” in ICML, 2021.

[88] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via
model distillation,” in arXiv preprint arXiv:1910.03581, 2019.

[89] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation
for robust model fusion in federated learning,” 2020.

[90] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation
for heterogeneous federated learning,” in ICML, 2021.

[91] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“Fedproto: Federated prototype learning over heterogeneous de-
vices,” in arXiv, 2021.

[92] S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Aves-
timehr, and N. Himayat, “Coded computing for low-latency
federated learning over wireless edge networks,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 1, 2020.

[93] C. He, M. Annavaram, and S. Avestimehr, “Towards non-iid and
invisible data with fednas: federated deep learning via neural
architecture search,” in arXiv, 2020.

[94] H. Zhu, H. Zhang, and Y. Jin, “From federated learning to fed-
erated neural architecture search: a survey,” Complex & Intelligent
Systems, vol. 7, no. 2, 2021.

[95] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in IEEE
S&P, 2019.

[96] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE S&P,
2017.

[97] C. Song and V. Shmatikov, “Auditing data provenance in text-
generation models,” in SIGKDD, 2019.

[98] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in
NeurIPS, 2019.

[99] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Be-
yond inferring class representatives: User-level privacy leakage
from federated learning,” in INFOCOM, 2019.

[100] A. D. P. Team, “Learning with privacy at scale,” Apple Machine
Learning Journal, 2017.

[101] S. Shastri, V. Banakar, M. Wasserman, A. Kumar, and V. Chi-
dambaram, “Understanding and benchmarking the impact of
gdpr on database systems,” in VLDB, 2020.

[102] S. Shastri, M. Wasserman, and V. Chidambaram, “The seven
sins of personal-data processing systems under {GDPR},” in
HotCloud, 2019.

[103] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[104] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-
iid data quagmire of decentralized machine learning,” in ICML,
2020.

[105] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep rein-
forcement learning,” in NIPS Workshop, 2013.

[106] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Machine learning, vol. 47, no. 2,
pp. 235–256, 2002.

[107] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, 1992.

[108] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-
efficient distributed deep learning: A comprehensive survey,” in
arXiv, 2020.

[109] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-training 4-
bit quantization of convolution networks for rapid-deployment,”
in NeurIPS, 2019.

[110] Y. Zhang, G. Bai, X. Li, C. Curtis, C. Chen, and R. K. Ko, “Privcoll:
Practical privacy-preserving collaborative machine learning,” in
ESORICS, 2020.

[111] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in IEEE S&P, 2017.

[112] C. Liu, S. Chakraborty, and D. Verma, “Secure model fusion for
distributed learning using partial homomorphic encryption,” in
PADG, 2019.

[113] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” in PKC, 2010.

[114] ——, “Fully homomorphic simd operations,” Designs, codes and
cryptography, vol. 71, no. 1, pp. 57–81, 2014.

[115] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” in arXiv preprint, 2016.

[116] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Ex-
panding the reach of federated learning by reducing client re-
source requirements,” 2018.

[117] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in NeurIPS, 2014.

[118] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning,” in
ICML, 2013.

[119] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, S. Kumar,
and S. Sra, “Why are adaptive methods good for attention
models?” in NeurIPS, 2020.

[120] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-
Shedivat, G. Andrew, S. Avestimehr, K. Daly, D. Data et al., “A
field guide to federated optimization,” in arXiv, 2021.

[121] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient
distributed optimization using an approximate newton-type
method,” in ICML, 2014.

[122] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches
for personalization with applications to federated learning,” in
arXiv, 2020.

[123] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in NeurIPS, 2020.

[124] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, J. Jiang, and C. Zhang,
“Multi-center federated learning,” in arXiv, 2021.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



17

[125] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[126] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic over-
head,” in CCS, 2020.

[127] C.-S. Yang, J. So, C. He, S. Li, Q. Yu, and S. Avestimehr, “Light-
secagg: Rethinking secure aggregation in federated learning,” in
MLSys, 2022.

[128] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran,
“Fastsecagg: Scalable secure aggregation for privacy-preserving
federated learning,” 2020.

[129] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Eurocrypt, 1999.

[130] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster
convergence and less communication: Demystifying why model
averaging works for deep learning,” in AAAI, 2019.

[131] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization.” Journal of
machine learning research, vol. 12, no. 7, 2011.

[132] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in ICLR, 2015.

[133] S. Reddi, M. Zaheer, D. Sachan, S. Kale, and S. Kumar, “Adaptive
methods for nonconvex optimization,” in NeurIPS, 2018.

[134] PKU-Chengxu, “Flash,” 2021, https : / / github . com / PKU -
Chengxu/FLASH.

[135] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[136] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regular-
ization of neural networks using dropconnect,” in ICML, 2013.

[137] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” in arXiv
preprint, 2017.

[138] (2021) Stack overflow data. [Online]. Available: https://www.
kaggle.com/stackoverflow/stackoverflow

[139] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston,
“Personalizing dialogue agents: I have a dog, do you have pets
too?” in ACL, 2018.

[140] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
1976.

[141] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,”
NeurIPS, 2019.

[142] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a
system for large-scale machine learning,” in OSDI, 2016.

[143] K. H. Li, P. P. B. de Gusmão, D. J. Beutel, and N. D. Lane, “Secure
aggregation for federated learning in flower,” in Distributed ML,
2021.

[144] MindSpore-AI, “Mindspore,” 2021, https : / / gitee . com /
mindspore/mindspore.

[145] (2021) Tensorflow federated. [Online]. Available: https://www.
tensorflow.org/federated

[146] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert,
and J. Passerat-Palmbach, “A generic framework for privacy
preserving deep learning,” in PPML, 2018.

[147] D. Chai, L. Wang, K. Chen, and Q. Yang, “Fedeval: A benchmark
system with a comprehensive evaluation model for federated
learning,” in arXiv preprint, 2020.

[148] A. Das and T. Brunschwiler, “Privacy is what we care about: Ex-
perimental investigation of federated learning on edge devices,”
in AIChallengeIoT, 2019.

[149] M. Rigaki and S. Garcia, “A survey of privacy attacks in machine
learning,” in arXiv preprint, 2020.

[150] L. Lyu, H. Yu, X. Ma, L. Sun, J. Zhao, Q. Yang, and P. S.
Yu, “Privacy and robustness in federated learning: Attacks and
defenses,” in arXiv preprint, 2020.

[151] A. Blanco-Justicia, J. Domingo-Ferrer, S. Martı́nez, D. Sánchez,
A. Flanagan, and K. E. Tan, “Achieving security and privacy
in federated learning systems: Survey, research challenges and
future directions,” in arXiv preprint, 2020.

[152] N. Truong, K. Sun, S. Wang, F. Guitton, and Y. Guo, “Privacy
preservation in federated learning: Insights from the gdpr per-
spective,” in arXiv preprint, 2020.

[153] R. Gu, S. Yang, and F. Wu, “Distributed machine learning on
mobile devices: A survey,” in arXiv preprint, 2019.

[154] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li, “A quantita-
tive survey of communication optimizations in distributed deep
learning,” IEEE Network, vol. 35, no. 3, pp. 230–237, 2020.

[155] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile
edge networks: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[156] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated
machine learning: Survey, multi-level classification, desirable
criteria and future directions in communication and networking
systems,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2,
pp. 1342–1397, 2021.

[157] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated
learning on heterogeneous devices: A survey,” in arXiv, 2021.

[158] S. Li, L. Wang, W. Wang, Y. Yu, and B. Li, “George: Learning
to place long-lived containers in large clusters with operation
constraints,” in ACM SoCC, 2021.

[159] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, 2009.

[160] I. Ergun, H. U. Sami, and B. Guler, “Sparsified secure aggregation
for privacy-preserving federated learning,” in arXiv, 2021.

[161] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in NeurIPS, 2017.

[162] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems,
vol. 1, no. 2, 2017.

[163] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of
distributed learning in byzantium,” in ICML, 2018.

[164] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML,
2018.

[165] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 273–294.

[166] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in IEEE Security & Privacy, 2019.

[167] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution
environment: what it is, and what it is not,” in IEEE Trust-
com/BigDataSE/ISPA, vol. 1, 2015, pp. 57–64.

[168] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution
environments: properties, applications, and challenges,” IEEE
Security & Privacy, vol. 18, no. 2, 2020.

[169] M. Orenbach, Y. Michalevsky, C. Fetzer, and M. Silberstein,
“{CoSMIX}: A compiler-based system for secure memory instru-
mentation and execution in enclaves,” in ATC, 2019.

[170] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[171] K. Yang, T. Fan, T. Chen, Y. Shi, and Q. Yang, “A quasi-newton
method based vertical federated learning framework for logistic
regression,” in NeurIPS Workshop, 2019.

[172] Y. Hu, D. Niu, J. Yang, and S. Zhou, “Fdml: A collaborative
machine learning framework for distributed features,” in KDD,
2019.

[173] B. Gu, Z. Dang, X. Li, and H. Huang, “Federated doubly stochas-
tic kernel learning for vertically partitioned data,” in KDD, 2020.

[174] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and
Q. Yang, “Secureboost: A lossless federated learning framework,”
IEEE Intelligent Systems, vol. 36, no. 6, 2021.

[175] S. Feng and H. Yu, “Multi-participant multi-class vertical feder-
ated learning,” in arXiv, 2020.

[176] Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure
federated transfer learning framework,” IEEE Intelligent Systems,
vol. 35, no. 4, 2020.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



18

Zhifeng Jiang received the BEng (Hons.) de-
gree from the Department of Computer Science
and Technology at Zhejiang University (ZJU) in
2019. Since then, he has been working towards
a Ph.D. degree in the Department of Computer
Science and Engineering, Hong Kong Univer-
sity of Science and Technology (HKUST). He is
mainly interested in machine learning systems,
with a special focus on efficient and scalable
federated learning. He was a recipient of the
Best Paper Runner-up Award at IEEE ICDCS

2021. He served on the artifact evaluation committees of ACM SOSP
2021, USENIX OSDI 2022, and USENIX ATC 2022.

Wei Wang (Member, IEEE) received his B.Engr.
and M.Engr. degrees from the Department of
Electrical Engineering, Shanghai Jiao Tong Uni-
versity, China, in 2007 and 2010, respectively
and his Ph.D. degree from the Department of
Electrical and Computer Engineering, University
of Toronto, Canada, in 2015. Since 2015, he has
been with the Department of Computer Science
and Engineering at the Hong Kong University
of Science and Technology (HKUST), where he
is currently an Associate Professor. He is also

affiliated with the HKUST Big Data Institute. Dr. Wang’s research in-
terests cover the broad area of distributed systems, with focus on
serverless computing, machine learning systems, and cloud resource
management. He published extensively in the premier conferences and
journals of his fields. His research has won the Best Paper Runner Up
awards of IEEE ICDCS 2021 and USENIX ICAC 2013.

Bo Li is a Chair Professor in Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology. He was a
Cheung Kong Scholar Visiting Chair Professor in
Shanghai Jiao Tong University (2010-2016), and
was the Chief Technical Advisor for ChinaCache
Corp. (NASDAQ:CCIH), a leading CDN provider.
He made pioneering contributions in multimedia
communications and the Internet video broad-
cast, which attracted significant investment and
received the Test-of-Time Best Paper Award

from IEEE INFOCOM (2015). He received 6 Best Paper Awards from
IEEE including IEEE INFOCOM (2021). He was the Co-TPC Chair for
IEEE INFOCOM (2004).

He is a Fellow of IEEE. He received his PhD in the ECE Depart-
ment, University of Massachusetts at Amherst, and his B. Eng. (summa
cum laude) in the Computer Science from Tsinghua University, Beijing,
China.

Qiang Yang received the B.Sc. degree in astro-
physics from Peking University, Beijing, China, in
1982, and the Ph.D. degree in computer science
and the M.Sc. degree in astrophysics from the
University of Maryland at College Park, College
Park, MD, USA, in 1985 and 1989, respectively.

He was a Faculty Member with the University
of Waterloo, Waterloo, ON, Canada, from 1989
to 1995, and Simon Fraser University, Burnaby,
BC, Canada, from 1995 to 2001. He was the
Founding Director of the Noah’s Ark Labora-

tory, Huawei, Hong Kong, from 2012 to 2014, and a Co-Founder of
4Paradigm Corporation, Beijing, an AI platform company. He is cur-
rently the Head (Chief AI Officer) with the AI Department, WeBank,
Shenzhen, China, and the Chair Professor with the Department of
Computer Science and Engineering (CSE), The Hong Kong University
of Science and Technology, Hong Kong, where he was the Former
Head of the Department of CSE and the Founding Director of the
Big Data Institute, Hong Kong, from 2015 to 2018. He has authored
several books, including Intelligent Planning (Springer), Crafting Your
Research Future (Morgan and Claypool), and Constraint-Based Design
Recovery for Software Engineering (Springer). His research interests
include artificial intelligence, machine learning, and data mining, with an
emphasis on transfer learning, automated planning, federated learning,
and case-based reasoning.

Dr. Yang is a fellow of several international societies, including the
ACM, AAAI, IAPR, and AAAS. He served as an Executive Council Mem-
ber for the Association for the Advancement of AI from 2016 to 2020 and
the President for the International Joint Conference on AI from 2017 to
2019. He was a recipient of several awards, including the 2004/2005
ACM KDDCUP Championship, the AAAI Innovative AI Applications
Award in 2016, and the ACM SIGKDD Distinguished Service Award in
2017. He was the Founding Editor-in-Chief of the ACM Transactions on
Intelligent Systems and Technology and the IEEE TRANSACTIONS ON
BIG DATA.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3177222

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


