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Abstract—Data-intensive clusters increasingly rely on in-memory storages to improve I/O performance. However, the routinely

observed file popularity skew and load imbalance create hot spots, which significantly degrade the benefits of in- memory caching.

Common approaches to tame load imbalance include copying multiple replicas of hot files and creating parity chunks using storage

codes. Yet, these techniques either suffer from high memory overhead due to cache redundancy or incur non-trivial encoding/decoding

complexity. In this paper, we propose an effective approach to achieve load balancing without cache redundancy or encoding/decoding

overhead. Our solution, termed SP-Cache, selectively partitions files based on the loads they contribute and evenly caches those

partitions across the cluster. We develop an efficient algorithm to determine the optimal number of partitions for a hot file—too few

partitions are incapable of mitigating hot spots, while too many are susceptible to stragglers. We have implemented SP-Cache

atop Alluxio, a popular in-memory distributed storage system, and evaluated its performance through EC2 deployment and trace-

driven simulations. SP-Cache can quickly react to the changing load by dynamically re-balancing cache servers. Compared to the

state-of-the-art solution, SP-Cache reduces the file access latency by up to 40 percent in both the mean and the tail, using 40 percent

less memory.

Index Terms—Cloud computing, cluster caching systems, load balancing, selective partition

Ç

1 INTRODUCTION

TODAY’S data-parallel clusters employ in-memory storage
solutions for high-performance data analytics [2], [3],

[4], [5], [6], [7]. By caching data objects in memory, I/O-
intensive applications can gain order-of-magnitude per-
formance improvement over traditional on-disk solutions
[2], [4], [5].

However, one plaguing problem faced by in-memory
solutions is the severe load imbalance across cache servers. In
production clusters, data objects typically have the heavily
skewed popularity—meaning, a small number of hot files
account for a large fraction of data accesses [8], [9], [10]. The
cache servers storing hot files hence turn into hot spots. This
problem is further aggravated by the network load imbalance.
It was reported in a Facebook cluster that the most heavily
loaded links have over 4:5� higher utilization than the

average for more than 50 percent of the time [8]. The rou-
tinely observed hot spots, along with the network load
imbalance, result in a significant degradation of I/O perfor-
mance that could even cancel out the performance advan-
tage of in-memory caching (Section 2).

Therefore, maintaining load balance across cache servers
is the key to improving the performance of cluster caches.
State-of-the-art solutions in this regard include selective repli-
cation [9] and erasure coding [8], both of which resort to
redundant caching to mitigate hot spots.

Selective Replication createsmultiple replicas for files based
on their popularity: the more popular a file is, the more
replicas it has. File access requests can then be distributed to
multiple servers containing those replicas, hence mitigating
the load on the hot spots. However, replication results in
high memory overhead as hot files are usually of large
sizes [8], [9], [10]. Given the limited memory space, selective
replication does not perform well in cluster caches [8], [11]
(Section 3.1).

Erasure coding comes as an alternative solution to achieve
load balancing with reduced memory overhead [8]. In par-
ticular, a ðk; nÞ erasure code divides a file into k partitions
and generates n� k parity partitions. Any k of the n parti-
tions are sufficient to decode the original file. This results in
better load balancing as the load of read requests are spread
across multiple servers, and the memory overhead is usu-
ally much smaller than that of replication. However, erasure
coding incurs salient encoding/decoding overhead. In fact,
even with the highly optimized implementation [12], the
computational overhead can still delay the I/O requests by
30 percent on average [8].
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In this paper, we propose a different approach that
achieves load balancing in cluster caches without memory
redundancy or encoding/decoding overhead. Our appr-
oach, which we call selective partition, divides files into multi-
ple partitions based on their popularity: the more popular a
file is, the more partitions it is split into. File partitions are
randomly cached by servers across the cluster. The benefits of
this approach are three-fold. First, it evenly spreads the load of
read requests across cache servers, leading to improved load
balancing. Second, it increases the read parallelism of hot files,
which, in turn, improves the I/O performance. Third, simply
splitting files into partitions adds no storage redundancy, nor
does it incur the computational overhead for encoding/
decoding.

However, it remains a challenge to judiciously determine
howmany partitions a file should be split into. On one hand,
too few partitions are insufficient to spread the load of read
requests, making it incapable of mitigating hot spots. On the
other hand, reading too many partitions from across servers
adds the risk of being slowed down by stragglers.

To address this challenge, we model selective partition as
a fork-join queuing system [13], [14] and establish an upper-
bound analysis to quantify the mean latency in reads. We
show that the optimal number of partitions can be effi-
ciently obtained by solving a convex optimization problem.
Based on this result, we design SP-Cache, a load-balanced,
redundancy-free cluster caching scheme that optimally splits
files to minimize the mean latency while mitigating the
impact of stragglers. We show that SP-Cache improves load
balancing by a factor of OðLmaxÞ compared to the state-of-
the-art solution called EC-Cache [8], where Lmax measures
the load of the hottest file.

We have implemented SP-Cache atop Alluxio [2], [15], a
popular in-memory distributed storage that can be used as
the caching layer on top of disk-based cloud object stores
(e.g., Amazon S3 [16] and Azure Storage [17]) and compute-
collocated cluster file systems (e.g., HDFS [18] and Glus-
ter [19]). We evaluated SP-Cache through both EC2 [20]
deployment and trace-driven simulations. Experimental
results show that despite the presence of intensive strag-
glers, SP-Cache reduces the mean and the tail (95th percen-
tile) read latency by up to 40 percent compared to EC-
Cache [8]. Owing to its redundancy-free nature, SP-Cache
achieves all these benefits with 40 percent less memory foot-
print than EC-Cache.

Part of this work has appeared in [1]. Compared to the
conference version [1], we have made several substantial
improvements in this paper:

1) An efficient implementation of SP-Cache with par-
allel repartition scheme (Section 6.2), which ena-
bles SP-Cache to quickly react to the changing file
popularity with a speedup of two orders of
magnitude over the previous implementation [1]
(Section 7.4);

2) A detailed description of the configuration of SP-
Cache (Algorithm 1);

3) More comprehensive evaluations of the repartition
overhead (Section 7.4), the write performance (Section
7.8), and the coefficient of variation in read late-
ncy (Sections. 2.2, 3.1, and 4.1);

4) Expanded discussions of future extensions (Section 8)
and relatedworks (Section 9).

2 BACKGROUND AND MOTIVATION

In this section, we briefly survey the cluster caching systems
and motivate the need to achieve load balancing therein.

2.1 Cluster Caching

Due to the recent technological advances in datacenter fab-
rics [21] and the emergence of new high-speed network
appliances [22], [23], [24], the gap between network band-
width and storage I/O bandwidth is rapidly narrowing [25],
[26], [27], [28]. Consequently, the performance bottleneck of
cloud systems is shifting from network to storage I/O. Prior
work has shown that accessing data from the local hard
disk provides no salient benefits over remote reads [29],
[30]. As disk locality becomes irrelevant, cloud object stores,
such as Amazon S3 [16], Windows Azure Storage [17], and
OpenStack Swift [31], gradually replace compute-collocated
storages—notably HDFS [18]—as the primary storage solu-
tions for data-intensive applications.

However, cloud object stores remain bottlenecked on
disk I/O [8], as reading from disk is at least two orders of
magnitude slower than reading from memory. In light of
this problem, cluster caching systems, such as Alluxio [15],
Memcached [6], and Redis [32], are increasingly deployed
in front of cloud object stores to provide low-latency data
access at memory speed. In this paper, we primarily target
the storage-side caching to improve the I/O performance.
Our solution can also be applied to compute-collocated file
systems, such as HDFS [18], provided that high-speed net-
works are available.

2.2 Load Imbalance and Its Impact

A plaguing problem faced by cluster caching is the rou-
tinely observed load imbalance across cache servers. We
show through experiments that severe load imbalance
results in significant I/O latencies, marginalizing the perfor-
mance benefits provided by cluster caching.

Load Imbalance. Prior works [8], [9] have identified two
sources of load imbalance in production clusters: the skewed
file popularity and the imbalanced network traffic.

It has been widely observed in datacenters that file (data
object) popularity is heavily skewed and usually follows a
Zipf-like distribution [2], [8], [9], [10]. That is, a large fraction
of data access requests are contributed by only a small num-
ber of hot files. Fig. 1 depicts the distribution of file access
counts and size in the Yahoo! cluster trace [33]. The trace con-
tains the collective statistics of data accesses to over
40 million files in a period of two months. We observe that
the majority of files (� 78%) have cold data that has rarely
been accessed (< 10 times). Only 2 percent are hot with high
access counts (� 100). These files are usually much larger
(15-30�) than the cold ones. Consequently, cache servers
containing these files are easily overloaded given their large
sizes and high popularity.

This problem is further aggravated in the presence of net-
work load imbalance, which is prevalent in production data-
centers [8], [34], [35], [36]. For example, a recent study [8]
measured the ratio of the maximum and the average
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utilizations across all up- and down- links in a Facebook clus-
ter. The result shows that the ratio stays above 4:5� more
than half of the time, suggesting a severe imbalance.

Impact of Load Imbalance. The skew in file popularity,
together with the imbalanced network traffic, create hot
spots among cache servers. To illustrate how these over-
loaded machines may impair the system’s I/O performance,
we stress-tested a small cluster of cache servers.

Setup. We deployed Alluxio [15]—a popular in-memory
distributed storage—on a 30-node Amazon EC2 [20] cluster.
The nodes we used are m4.large instances, each with a
dual-core processor, 8 GB memory, and 0.8 Gbps network
bandwidth. The cluster is used to cache 50 files (40 MB
each). We launched another 20 m4.large instances as cli-
ents. Each client submits the file read requests to the Alluxio
cluster as a Poisson process with a rate from 0.25 to 0.5
requests per second. Therefore, the aggregated access rates
are 5-10 requests per second. We created imbalanced load
with skewed file popularity following a Zipf distribution
with exponent 1.1 (i.e., high skewness).

Diminishing Benefits of Caching. We ran two experiments.
In the first experiment, all files were cached in memory; in
the second experiment, we disabled cluster caching and
spilled files to the local hard disk. For each experiment, we
measured the mean read latency under various request
rates and depict the results in Fig. 2. The coefficients of vari-
ance (CV) are shown in Table 1. Note that having CV greater
than 1 indicates high variance in read latency, i.e., severe
hot spot effects.

When the cluster is less loaded (5 requests per second),
in-memory caching provides salient benefits, improving the
mean read latency by 5�. However, as the load ramps up,
the hot spots among cache servers become more pro-
nounced, and the benefits of caching quickly diminish. We
make similar observations for the CV in read latencies.
Under the skewed popularities, the CV is consistently

higher than 1, suggesting high variance due to the presence
of hot spots. In fact, with request rate greater than 9, the
read latency is dominated by the network congestion on
hot-spot servers, and in-memory caching becomes irrelevant.

Therefore, there is a pressing need to achieve load bal-
ancing across servers. We next review existing techniques
and show that they all fall short in minimizing latency.

3 INEFFICIENCY OF EXISTING SOLUTIONS

Prior art resorts to redundant caching to achieve load balanc-
ing, either by copying multiple replicas of hot files—known as
selective replication [9], [37]—or by creating coded partitions of
data objects, e.g., EC- Cache [8]. However, these techniques
enforce an unpleasant trade-off between load balancing and
cache efficiency. On one hand, caching more replicas (coded
partitions) helps mitigate hot spots as the load of read
requests can be spread to more servers. On the other hand,
the overhead in memory and/or computation due to redun-
dant caching harms efficiency.

3.1 Selective Replication

Selective replication replicates files based on their popular-
ity [9], [37], i.e., the more popular a file is, the more replicas
are copied across servers. A file read request is then ran-
domly served by one of the servers containing the replica of
that file. In this way, the load of read requests are evenly
distributed, leading to improved load balancing.

While selective replication is proven effective for disk-
based storage [9], it does not perform well for cluster cach-
ing [8], [11], as replication incurs high memory overhead.
To illustrate this problem, we deployed an Alluxio cluster
following the settings described in Section 2.2, where the
top 10 percent popular files were copied to multiple repli-
cas. The aggregated request rate is set to 6. We gradually
increased the number of replicas and examined how the
mean latency in reads can be improved at the expense of
increased memory overhead. Fig. 3 and Table 2 depict the
average latencies and coeffecients of variances, respectively.

Fig. 1. Distribution of access counts (blue) and average file size (orange)
observed in a Yahoo! cluster [33].

Fig. 2. The average read latencies with and without caching as the load
of read requests increases.

TABLE 1
The Coefficient of Variation (CV) of the Read Latencies with and

without Caching as the Load of Read Requests Increases

Request rate 5 6 7 8 9 10

W/o caching 1.67 1.70 1.64 1.74 1.79 1.78
W/ caching 1.29 1.41 1.59 2.08 1.83 1.83

Fig. 3. Average read latency and cache cost in percentage with different
replica numbers of the top 10 percent popular files.
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We observe a linear growth of memory overhead in
exchange for only a sublinear improvement in read latency.
Moreover, we need a replication factor of 4 to effectively
suppress the coefficient of variation to be lower than 1. In
other words, to mitigate the hot spots, we need 3 extra cop-
ies for each of the top 10 percent popular files. Given that
in-memory caches remain a constrained resource in produc-
tion clusters and the fact that popular files are usually of
large sizes (Fig. 1), selective replication often results in poor
cache efficiency with very low hit ratio (more in Section 7.7).

3.2 Erasure Coding

State-of-the-art solutions employ erasure coding [38], [39] to
load-balance cache servers without incurring high memory
overhead. In particular, a ðk; nÞ erasure coding scheme evenly
splits a file into k partitions. It then computes n� k parity par-
titions of the same size. The original file can be decoded using
any k out of the n partitions, allowing the load of its read
requests to be spread to n servers. The memory overhead is
ðn� kÞ=k, which is lower than that of selective replication (at
least 1�) in practical settings. An efficient implementation of
this approach goes to EC- Cache [8] which late-binds parti-
tions during reads to mitigate stragglers. That is, instead of
reading exactly k partitions, EC- Cache randomly fetches
kþ 1 partitions and waits for any k partitions to complete
reading. EC-Cache significantly outperforms selective repli-
cation in both themedian and tail read latencies [8].

However, EC-Cache requires non-trivial decoding (encod-
ing) overhead during reads (writes). Even with a highly opti-
mized coding scheme [40] and implementation [12], the
decoding overhead may still delay the read requests by up to
30 percent [8]. To verify this result, we ran EC-Cache in
an Amazon EC2 cluster with 30 r3.2xlarge memory-
optimized instances, each having 61 GB memory and 8 cores.
Following [8], we used a (10,14) coding scheme (i.e., memory
overhead 40 percent) to cache files of various sizes. We
launched an EC-Cache client submitting file read requests and
measured the incurred decoding overhead, i.e., the decoding
time normalized by the read latency. Fig. 4 depicts the results as
a box plot. We observed more prominent decoding overhead

with large files. Notably, for files greater than 100 MB which
account for most of the file accesses in production clusters
(Fig. 1), the decoding overhead consistently stays above 15 per-
cent. We stress that this result is measured in the presence of a
less advanced network,wherewe observed 1Gbps bandwidth
between instances. We expect the read latency dominated by
the decoding overhead with high-speed networks (� 40 Gbps
bisection bandwidth).

To sum up, existing load balancing solutions either suffer
from high cache redundancy or incur non-trivial decoding/
encoding overhead—either way, the I/O performance is
impaired.

4 LOAD BALANCING WITH SIMPLE PARTITION

In this section, we consider a simple, yet effective load-
balancing technique which uniformly splits files into multi-
ple partitions so as to spread the I/O load. We explore the
potential benefits as well as the problems it causes.

4.1 Simple Partition and Potential Benefits

We learn from EC-Cache [8] that dividing files into smaller
partitions improves load balancing, yet the presence of parity
partitions necessitates the decoding overhead. A simple fix is
to split files without creating coded partitions. Intuitively, sim-
ple partition provides two benefits over EC-Cache. First, it
requires no overhead for decoding/encoding. Second, it adds
no storage redundancy, attaining the highest possible cache
utilization. Simple partition also retains two benefits pro-
vided by EC-Cache. First, it mitigates hot spots under skewed
popularity by spreading the load of read requests to multiple
partitions. Second, it provides opportunities for read/write
parallelism,which, in turn, speeds up the I/O of large files.

To validate these potential benefits, we configured EC-
Cache in a “coding-free” mode using a ðk; kÞ coding scheme
(i.e., no parity partition). Specifically, we evenly split a file
into k partitions and randomly cached them across the clus-
ter. No two partitions of a file were placed on the same
server.We re-ran the experiments in Section 2.2 using simple
partition. For the purpose of stress-testing, we configured
the aggregated file request rate to 10 from all clients. Note
that at such a high rate, the average read latency would have
stretched over 20 s without load balancing (Fig. 2). We study
how simple partition can speed up I/O with increased read
parallelism k. The results are depicted as a solid line in Fig. 5.
The average read latencies drop to 1-1.3 s, suggesting 17-22�
improvement over stock Alluxio without partition. Table 3
presents the coefficent of variance, which is reduced to
0.75 with 9 partitions and below 0.5 withmore partitions.We
stress that these improvements are achieved without any

TABLE 2
The Coefficient of Variation (CV) of the Read Latencies with Dif-
ferent Replica Numbers of the Top 10 percent Popular Files

Replication # 1 2 3 4 5

CV 1.29 1.25 1.22 0.61 0.64

Fig. 4. Decoding overhead in EC-Cache. Boxes depict the 25th, 50th,
and 75th percentiles. Whiskers depict the 5th and 95th percentiles.

Fig. 5. Average read latency using simple partition in a 30-node cluster,
with and without stragglers.
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decoding overhead or cache redundancy. In contrast, the
replication scheme studied in Section 3.1 is only able to attain
the average latency of 2 s and a CV of 0.61 with 1:4�memory
footprint (Fig. 3) in the presence of even lighter load (i.e., 6
requests per second).

4.2 Problems of Simple Partition

However, simple partition is not without problems. First, it
uniformly divides each file into k partitions, irrespective of
its size and popularity. This is unnecessary and inefficient.
For less popular files, which usually dominate in popula-
tion [9], [10], spreading their load provides marginal bene-
fits in improving load balancing. Rather, the increased read
parallelism may result in salient networking overhead due
to TCP connections and the incast problem [41], [42]. Refer-
ring back to Fig. 5 (solid line), with too many partitions
(k > 15), the networking overhead outweighs the benefits
of improved load balancing. To quantify the network over-
head with a large number of partitions, we further increased
the value of k to 100. Specifically, we placed all file parti-
tions on the same cache server so that the total network
bandwidth is kept unchanged with different partition num-
bers. We measured the network goodput, i.e., the transmis-
sion rate of useful bits excluding protocol overhead bits,
with different partition numbers. Fig. 6 shows the results
normalized by the goodput with one partition. When the
network bandwidth is set to 1 Gbps, the goodput dropped
by 20 percent with 20 partitions and by nearly 40 percent
with 100 partitions. The loss of goodput is exactly the net-
work overhead caused by reading from multiple partitions.
We made similar observations when further throttling the
bandwidth to 500 Mbps, where the normalized goodput
gradually decreases and drops to 0.6 with 100 partitions.

Second, simple partition is susceptible to stragglers, as
reading from many servers in parallel is bottlenecked by the
slowest machine. To illustrate this problem, we manually
injected stragglers into the cluster. Specifically, for each par-
tition read, we slept the server thread with probability 0.05
and delayed the read completion by a factor randomly
drawn from the distribution profiled in the Microsoft Bing
cluster trace [43]. Wemeasured the average read latency and
depict the results as the dashed line in Fig. 5. As the read par-
allelism k increases, the latency caused by stragglers quickly
dominates, leading to even longer delay. Table 3 shows the
coefficient of variation in this set of experiments. We observe
that simple partition is vulnerable to straggler effects, which
lead to high variances with large partition numbers.

4.3 Fixed-Size Chunking and Its Problems

Fixed-size chunking is a common practice for many distrib-
uted storage/caching systems, e.g., HDFS [18], Windows
Azure Storage [17], and Alluxio [15]. With fixed-size

chunking, files are split into multiple chunks of a pre-speci-
fied size and distributed across servers. However, fixed-size
chunking suffers from the same problems of simple parti-
tion, as the chunk size is uniform for all files in the caching
cluster. Configuring a large chunk size cannot eliminate hot-
spots, while a small chunk size results in too many file
chunks, increasing network overhead and aggravating
stragglers.

In light of these problems, we wonder: is it possible to
achieve load-balanced, redundancy-free cluster caching
using file splitting while still being resilient to stragglers?
We give an affirmative answer in the following sections.

5 SP-CACHE: DESIGN AND ANALYSIS

In this section,we present SP-Cache, a load balancing scheme
that selectively partitions hot files based on their sizes and
popularities. We analyze its performance and seek an opti-
mal operating point to minimize the average read latency
without amplifying the impact of stragglers.

5.1 SP-Cache Design Overview

SP-Cache employs selective partition to load-balance cluster
caches under skewed popularity. In a nutshell, it evenly
splits a file into small partitions, where the number of parti-
tions is in proportion to the expected load of that file. Specifically,
for file i, let Si be its size and Pi be its popularity. The expected
load of file i is measured by Li ¼ SiPi. Let ki be the number of
partitions file i is split into.With SP-Cache, we have

ki ¼ daLie ¼ daSiPie; (1)

where a is a system-wide scale factor applied to all files. This
results in the uniform load across partitions, i.e., Li=ki � a�1.

SP-Cache randomly places ki partitions across N servers in
the cluster, where no two partitions are cached in the same
server. Random placement improves load balancing. It
ensures each server to store approximately an equal number of
partitions. Given the uniform load across partitions, each
server is expected to have the balanced load.

5.2 Benefits

SP-Cache is more efficient than simple partition (Section 4).
It differentiates the vital few from the trivial many, in that a
small number of hot, large files (vital few) are subject to
finer-grained splitting than a large number of cold, small files
(trivial many). As the former is the main source of conges-
tion, spreading their load to more partitions mitigates the
congestion on the hot spots more than doing so to the latter.

TABLE 3
The Coefficient of Variation (CV) of Read Latencies Using Sim-
ple Partition in a 30-Node Cluster, with and without Stragglers

Partition # 3 9 15 21 27

W/o stragglers 1.02 0.75 0.55 0.44 0.48
W/ stragglers 1.03 1.10 1.05 1.17 1.35

Fig. 6. Normalized goodput with different number of partitions using
1 Gbps and 500 Mbps network, respectively.
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Moreover, given the small population of hot files [9], [10],
splitting them results in fewer partitions than splitting a
large number of cold files. This, in turn, results in a reduced
number of concurrent TCP connections, alleviating the
incast problem [41], [42].

Moreover, we show that SP-Cache achieves better load bal-
ancing than EC- Cache [8]. In particular, we denote byXSP the
total load on any particular server under SP-Cache,whereXSP

is a random variable. Let XEC be similarly defined for EC-
Cache. We use the variance of XSP (XEC) to measure the
degree of load imbalance—a higher variance implies the more
severe load imbalance. The following theoremholds.

Theorem 1. Consider SP-Cache with scale factor a and EC-
Cache with a ðk; nÞ erasure code. In a cluster where the number
of servers is much greater than the number of partitions of
any particular file under the two schemes, we have

VarðXECÞ
VarðXSP Þ !

a

k

P
i L

2
iP

i Li
: (2)

Proof. Consider any particular server. DenoteXi as the load
contributed by file i to this server. We have

X ¼P
i Xi;

Assuming independent partition placement across files,
we have

VarðXÞ ¼P
i VarðXiÞ: (3)

To facilitate the derivation of VarðXiÞ, we define a
binary random variable ai indicating whether the request
for file i is served by this server. The load Xi can be
expressed as

Xi ¼ ai
Li
ki
;

where ki denotes the (non-parity) partition number of file
i and Li

ki
calculates the partition-wise load of file i.

Under SP-Cache, each server has a probability of
kSP
i
N to

be selected to cache the partitions of file i. Therefore, aSPi

followsBernoulli distributionwith parameter
kSP
i
N .We have

VarðXSP
i Þ ¼ Li

kSP
i

� �2

VarðaSPi Þ ¼ Li

kSP
i

� �2
kSP
i
N 1� kSP

i
N

� �
:

Under EC-Cache, each server has a probability of
nEC
i
N

to cache the partitions of file i; each server caching the

partitions has a probability of
kEC
i
þ1

nEC
i

to serve the request.

Therefore, aECi follows Bernoulli distribution with para-

meter
nEC
i
N �

kEC
i
þ1

nEC
i

¼ kEC
i
þ1

N . Similarly, we have

VarðXEC
i Þ ¼ Li

kEC
i

� �2

VarðaECi Þ ¼ Li

kEC
i

� �2
kEC
i
þ1

N 1� kEC
i
þ1

N

� �
:

Suppose that the server numberN is much larger than
the partition number ki. With (3), we have

VarðXEC Þ
VarðXSP Þ �

P
i
ð Li

kEC
i

Þ2k
EC
i
þ1

NP
i
ð Li

kSP
i

Þ2k
SP
i
N

�
P

i

L2
i

kEC
i

NP
i
Li
aN

¼ a
kEC

P
i
L2
iP

i
Li
;

which completes the proof. tu
It is easy to show that under heavily skewed popularity,

the variance bound (2) approaches a
k Lmax, where Lmax meas-

ures the load of the hottest file, i.e., Lmax ¼ maxiLi. As a and
k are both constants, Theorem 1 states that compared to EC-
Cache, SP-Cache improves load balancing by a factor of
OðLmaxÞ in a large cluster.

5.3 Determining the Optimal Scale Factor

Despite the promising benefits offered by SP-Cache, it
remains a challenge to judiciously determine the scale factor
a. On one hand, choosing a small a results in a small num-
ber of partitions that are insufficient to mitigate the hot spots.
On the other hand, choosing a too large a results in high I/O
parallelism, adding the risk of being slowed down by
stragglers.

We address this challenge with the optimal scale factor
which is large enough to load-balance cluster caches, but also
small enough to restrain the impact of stragglers. Specifically,
we model SP-Cache as a fork-join queue [13], [14] and estab-
lish an upper bound for the mean latency as a function of
scale factor a. Based on this analysis, we propose an efficient
search algorithm which exponentially increases a to reduce
the mean latency until the improvement becomes marginal.
We settle on that a as a sweet spot, for it yields “just-
enough” partitions to attain load balancing.

Model. We model SP-Cache as a fork-join queue [13], [14]
illustrated in Fig. 7. In particular, SP-Cache “forks” each file
read to multiple reads on its partitions. Upon completion, all
those partition reads “join” together to reassemble the file.

For tractable analysis, we consider Poisson arrivals of the
read requests for each file. We shall verify in Section 7.7 that
this technical assumption is not critical with real-world
request arrival sequences. Let �i be the request rate of file i.
We measure the popularity of file i as

Pi ¼ �iP
j
�j
: (4)

We model each cache server as an independent M=G=1
queue [44] with a FIFO service discipline. We derive the
mean service delay on server s, which is the partition transfer
delay averaged over all reads. Specifically, let Cs be the set of
files having partitions cached on server s, and Bs the avail-
able network bandwidth. For a partition of file i 2 Cs, the
transfer delay depends on its size Si

ki
and the network band-

width Bs. To account for the possible network jitters, we
model the transfer delay as exponentially distributed with
mean Si

kiBs
. The chance that file i’s partition gets accessed is

simply its request rate normalized by the aggregated rate,

Fig. 7. The fork-join queuing model for SP-Cache.
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i.e., �i=Ls, whereLs is the aggregated request rate on server s
and is given by

Ls ¼
P

i2Cs
�i: (5)

The mean service delay on server s is then computed as

ms ¼
P

i2Cs

�i
Ls

Si
kiBs

: (6)

Note that to make the analysis tractable, we assume a
non-blocking network (i.e., no delay in the network) and do
not model the stragglers. Our goal is to analyze the impact
of scale factor a on load balancing with respect to the mean
latency.

Mean Latency. We denote by Qi;s as the read latency file i
experiences on server s, which includes both the queuing
delay and the service delay (transfer delay of a partition).
As the file read is bottlenecked by the slowest partition read,
the mean read latency of file i is given by

�Ti ¼ E½maxs:Cs3iQi;s	: (7)

Summing up the mean latency over files, weighted by their
popularities, we obtain the mean read latency in the system:

�T ¼P
i Pi

�Ti: (8)

The mean read latency critically depends on scale factor
a. Intuitively, having a large a results in a large number of
small partitions, which reduces both the overall queuing
delay (better load balancing) and the transfer delay (small
partitions).

Upper Bound Analysis. Unfortunately, exactly quantifying
the mean latency (8) in the fork-join system remains intracta-
ble due to the complex correlation between the partition
placement (Cs) and the queueing dynamics [45], [46], [47].
Instead, we resort to establishing a tight upper bound to
quantify the mean latency.

Prior work [45] shows that in a fork-join queue, the mean
latency can be upper-bounded by solving a convex optimiza-
tion problem. Applying this result [[45], Lemma 2], we bound
the mean read latency for file i as follows:

�Ti 
 T̂i ¼min
z2R

�
zþ

X
s:Cs3i

1

2
ðE½Qi;s	 � zÞ

þ
X
s:Cs3i

1

2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½Qi;s	 � zÞ2 þVar½Qi;s	

q i�
;

(9)

where z is an auxiliary variable introduced to make the
upper bound as tight as possible, and Var½�	 measures the
variance.

While the latency bound (9) is not closed-form, it can be
efficiently computed as (9) is a convex optimization prob-
lem given the expectation and variance of latency Qi;s.
Using the Pollaczek-Khinchin transform and the moment
generating function forM=G=1 queue [44], we have

E½Qi;s	 ¼ Si
kiBs
þ LsG

2
s

2ð1�rsÞ ; (10)

and

Var½Qi;s	 ¼ ð Si
kiBs
Þ2 þ LsG

3
s

3ð1�rsÞ þ
L2
sðG2sÞ2

4ð1�rsÞ2
; (11)

where G2
s and G3

s denote the second and third moments of
the service delay on server s, and rs is the request intensity
and is given by rs ¼ Lsms. Since the service delay is expo-
nentially distributed with mean Si

kiBs
, we have

G2
s ¼

P
i2Cs

�i
Ls
� 2ð Si

kiBs
Þ2; (12)

and

G3
s ¼

P
i2Cs

�i
Ls
� 6ð Si

kiBs
Þ3: (13)

Summary. Putting it all together, given the scale factor a,
we upper-bound the mean read latency as follows. We first
compute the number of partitions ki ¼ daSiPie for each
file i, based on which the expectation and variance of its
read latency can be obtained, i.e., (10) and (11). Plugging
them into (9), we solve a convex optimization problem and
obtain the upper bound of the mean read latency for file i.
We now upper-bound the mean latency of the system by
replacing the latency of each file with its upper bound in (8).

Experimental Verification. To examine how accurate the
derived upper bound characterizes the mean read latency,
we deployed a 31-node EC2 cluster and used it to cache 300
files (100 MB each) under skewed popularity. The detailed
settings of our experiment are given in Section 7.1. Fig. 8
compares the derived upper bound and the mean latency
measured in the cluster with various scale factors. The upper
bound, though derived in a fork-join queuing model under
some technical assumptions, closely tracks the average read
latency measured in the EC2 cluster. Yet, as our model does
not account for the networking overhead (TCP connections
and incast problem) and stragglers, the measured latency
occasionally goes above the theoretical upper bound.

Determining the Optimal Scale Factor. We observe in Fig. 8
that as scale factor a increases, the mean latency dips quickly
until an “elbow point” is reached (a ¼ 1), beyond which the
latency plateaus for a short while and starts to rise as a turns
large (a > 2). This is by no means an accident. Intuitively,
configuring a larger a results in better load balancing owing
to finer-grained partitions. The price paid is the increased
networking overhead and straggler impact. The gains out-
weigh the price before a reaches the elbow point, by which
the load imbalance remains the main source of read latency.
However, this is no longer the case after a passes the elbow
point. The load is sufficiently balanced across servers, and

Fig. 8. Comparison of the derived upper bound and the average read
latency measured in the EC2 cluster.
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the overhead of networking and stragglers becomes increas-
ingly prominent, eventually dominating the latency.

Therefore, we should settle on the “elbow point” for the
optimal scale factor. We use the derived upper bound to
accurately estimate the mean latency. To locate the elbow
point, we resort to an exponential search algorithm. Specifi-
cally, the search starts with an a such that the most heavily
loaded file is split into N

3 partitions. The algorithm iteratively
searches the optimal a. In each iteration, it inflates a by 1:5�
and examines the improvement in the derived latency
bound. The search stopswhen the improvement drops below
1 percent. Algorithm 1 summarizes the details of this proce-
dure. We shall show in Section 7 that using the scale factor
determined by this simple algorithm, SP-Cache reduces the
mean (tail) latency by up to 50 percent (55 percent) as com-
pared to EC- Cache [8].

Algorithm 1. Configuration of the Scale Factor

1: procedure SP-CACHE(fPig; fSig; fBsg) " fPig: popularity;
fSig: file size; fBsg: network bandwidth

2: Initialize a1  N=3=maxiðPi � SiÞ, t 1; T̂ 0  0 " N is
the server number;

3: fCt
jg  Random partition placement

4: while True do
5: fktig  Partition number following (1)

6: fT̂ t
i g  upper bound latency that solves (9)

7: T̂ t  average bound with fT̂ t
i g following (8)

8: if jT̂ t � T̂ t�1j > 0:01 � T̂ t�1 then
9: t++
10: at ¼ 1:5 � at�1

11: else
12: break
13: return at

6 IMPLEMENTATION

We have implemented SP-Cache atop Alluxio [15], a popular
in-memory storage for data-parallel clusters. In this section,
we describe the overall architecture of SP-Cache and justify
the key design decisionsmade in the implementation.

6.1 Architecture Overview

Fig. 9 gives an overview of the system architecture. SP-Cache
consists of three components: SP-Master, SP-Client, and
SP-Repartitioner. The SP-Master implements the
main logic of selective partition described in Section 5. It over-
sees many Alluxio cache servers and maintains the metadata
(e.g., popularity) of files stored on those servers. The SP-

Client, on the other hand, accepts the read/write requests
from applications and interacts with cache servers for parti-
tion collecting and file reassembling. The SP-Reparti-

tioners run in parallel on cache servers and re-balance the
loads across servers periodically based on the instructions
issued by the SP-Master (more details in Section 6.2).

Reads. Fig. 9a shows the data flow for reads. Similar to
Alluxio [15], an application submits read requests to an SP-

Client through the provided API. Upon receiving a file
request, the SP-Client contacts the SP-Master, who
returns a list of cache servers containing the partitions of the

requested file. The master also updates the access count for
the requested file, so as to keep track of the file popularity for
future load re-balancing. The SP-Client then communicates
with the servers in the list and reads file partitions in parallel.
Upon the completion of parallel reading, the client reassem-
bles partitions to recover the original file and passes it to the
application.

Writes. SP-Cache directly writes a new file to a randomly
selected cache server without splitting, given that cold files
usually dominate in population (Section 2). For each file
stored in the cluster, SP-Cache keeps track of its popularity
and periodically adjusts the number of partitions based on
its load: once the file turns hot, it will get repartitioned. We
elaborate on how this can be done in the next subsection.

6.2 Periodic LoadBalancingwith Parallel Repartition

Periodic Repartition. As file popularities may change over time,
SP-Cache periodically load- balances cache servers by repartition-
ing the stored files. Following the recommendations in [9], SP-
Cache repartitions files every 12 hours based on the access
count measured in the past 24 hours. To do so, the SP-Mas-
ter instructs each cache server to report its current network
bandwidth (measured through sample reads). Based on the
bandwidth and the popularity information, the master com-
putes the optimal scale factor a using themethod described in
Section 5.3. Specifically, our implementation uses CVXPY [48]
to solve Problem (9).

The effectiveness of periodic load balancing is supported
by the evidence that the file popularity in production clusters
is relatively stable in a short term (e.g., days). In fact, it has been
observed in a Microsoft cluster that around 40 percent of the
files accessed on any given day were also accessed four days
before and after [9]. A similar conclusion can also be drawn
from the Yahoo! cluster trace [33]: nearly 27 percent of the files
remain hot formore than aweek.

Fig. 9. Architecture overview of SP-Cache. (a) Applications interact with
SP-Client for file access. (b) SP-Repartitioners periodically
repartitions files in parallel based on the instructions of SP-Master.

446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 29,2020 at 15:38:22 UTC from IEEE Xplore.  Restrictions apply. 



Parallel Repartition. SP-Cache employs two special
designs to minimize the latency of load re-balancing. First,
to reduce the repartition overhead, the SP-Master identi-
fies the files whose partition numbers remain unchanged and
keeps them untouched in their original locations. At the
same time, the SP-Master will record the load contributed
by these files in each cache server such that the load distri-
bution could be balanced in the following step.

Next, SP-Cache launches one SP-Repartitioner in
each cache server. To facilitate parallel repartition, each SP-

Repartitioner will handle a disjoint set of files assigned
by the SP-Master. The SP-Repartitioner assembles a
file and re-splits it into the specified number of partitions.
To reduce the network overhead incurred by reassembling,
for each file that needs to be repartitioned, the SP- Master

randomly selects a SP-Repartitioner in a cache server
containing partitions of that file.

Fig. 9b shows an example where two files F1 and F2 are
repartitioned across three cache servers. Originally, file F1
has two partitions cached in server 1 and 2, while file F2
has only one partition cached in server 3. The SP-Repar-

titioner in server 1 (server 3) is selected to repartition file
F1 (F2), as the file has a partition cached in the server,
which does not need to be transferred over the network.
After the file has been assembled, the SP-Repartitioner

splits it and distributes the new partitions across the cache
servers. In Fig. 9b, file F1 is aggregated into a single parti-
tion cached in server 1; file F2 is repartitioned into three
partitions across the three servers.

Algorithm 2. Parallel Repartition

1: procedure PARALLEL-REPARTITION(fPig; fSig; fBsg; fk0ig)
2: " fPig: popularity; fkig: previous partition number
3: a SP-CacheðfPig; fSig; fBsgÞ
4: fkig  Partition number following (1)
5: Cs  ; for all server s "Initialize server loads
6: for all file i do "Keep un-repartitioned files
7: if ki ¼ k0i then
8: for allmachine s storing partitions of file i do
9: Cs  Cs [ fig "Record loads
10: for all file i do
11: if ki 6¼ k0i then
12: while ki > 0 do
13: s argmins:i =2 CskCsk "Server with the least load
14: Cs  Cs [ fig
15: ki  ki � 1
16: return fCsg

The placement of the newly generated partitions is
planned in advance by the SP-Master, using a greedy
placement strategy that tries to balance the load distribution
as much as possible. Specifically, for a file with a new
partition number k, the SP-Master chooses k distinct
servers with the smallest loads to place its partitions. The
details of the parallel repartition scheme are presented in
Algorithm 2.

6.3 Partition Placement

Prevalent caching systems simply employ random data
placement (e.g., the Round-Robin policy) [18], [49], [50],
which increases the risk of load imbalance due to the

skewed popularity. In fact, it has been acknowledged that
problematic data placement is one of the root causes of load
imbalance [11]. This is no longer a problem for SP-Cache.
As shown in Section 5.1, in SP-Cache, each partition contrib-
utes approximately the same load. Therefore, random place-
ment is sufficient to achieve good load balancing. We will
verify this point in evaluations in Section 7.3. Moreover, we
will show in Section 7.4 that the greedy placement strategy
(Algorithm 2) proposed for parallel repartition further
improves load balancing over the random placement strat-
egy in the presence of changing popularity of files.

6.4 Implementation Overhead

Metadata. SP-Cache requires only a small amount of meta-
data maintained in the master node. For each file i, the SP-

Master stores the partition count ki and a list of the ki
servers containing those partitions. Compared to the file
metadata maintained in Alluxio, the storage overhead is
negligible.

Computational Overhead. Finding the optimal scale factor
a appears the main computational overhead in our imple-
mentation. Nevertheless, our evaluations show that even
with 10k files, the optimal scale factor can be configured
within 90 seconds (details in Section 7.2). As the computa-
tion is only needed every 12 hours, its overhead can be
amortized and is less of a concern.

7 EVALUATIONS

In this section, we provide comprehensive evaluations on
SP-Cache through EC2 deployment and trace-driven simu-
lations. The highlights of our evaluations are summarized
as follows:

1) The upper-bound analysis in Section 5 provides a
reliable guidance to search for the optimal scale fac-
tor with low computational overhead (Section 7.2).

2) With 40 percent less memory usage, SP-Cache red-
uces the average read latency by 29� 50% (40� 70%)
and tail latency by 22� 55% (33� 60%) over
EC-Cache (selective replication) (Section 7.3).

3) In case of popularity shifts, SP-Cache is able to re-
balance the load across cache servers within 3 sec-
onds for up to 350 files; the overhead of repartition
grows very slowly as the number of files increases
(Section 7.4).

4) SP-Cache is resilient to stragglers, improving the
read latencies by up to 40 percent over EC-Cache in
both the mean and the tail (Section 7.5).

5) With limited cache budget, SP-Cache achieves a
higher cache hit ratio than EC-Cache (Section 7.6).

6) In terms of the average write performance, SP-Cache
is 1:77� faster than EC-Cache (Section 7.8).

7.1 Methodology

Cluster Setup. We have deployed SP-Cache in an Amazon
EC2 cluster with 51 r3.2xlargeinstances. Each node has 8
CPU cores, 61 GB memory. We measured 1 Gbps network
bandwidth between instances using iPerf. We used 30
nodes as the cache servers, each with 10 GB cache space,
one node as the master, and the remaining 20 nodes as
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clients continuously submitting read requests as indepen-
dent Poisson processes.

Skewed Popularity. We configured the skewed file popu-
larity to follow a Zipf distribution [8], [51], [52], [53]. Unless
otherwise specified, the exponent parameter of the Zipf dis-
tribution is set to 1.05 (i.e., high skewness).

Metrics. We use the mean and the tail (95th percentile)
read latencies as the primary performance metrics. We cal-
culate the improvement of latencies as

Latency improvement ¼ D�DSP
D � 100%; (14)

where DSP and D denote the latencies measured under SP-
Cache and the compared scheme, respectively.

In addition, we measure the degree of load imbalance by
the imbalance factor, defined as

h ¼ Lmax�Lavg

Lavg
; (15)

where Lmax and Lavg are the maximum and average load
across servers. Lower values of h imply better load balancing.

Baselines.We benchmark SP-Cache against three baselines.
EC-Cache. The erasure coding scheme of EC-Cache [8]

determines its ability on load-balancing as well as its cache
redundancy. In particular, EC-Cache claims to employ an
adaptive coding strategy based on file popularities with a
total memory overhead of 15 percent. However, the details
disclosed in the paper and the implementation, kindly pro-
vided by the authors, are not sufficient for a full reconstruc-
tion of its adaptive coding scheme. Instead, we used a
uniform (10,14) erasure coding scheme for all files, which is
shown to achieve the best performance in its sensitive study
of coding parameters. Now that the cache redundancy is
40 percent, we expect EC-Cache to achieve better perfor-
mance in handling the load imbalance and straggler issues.

Selective Replication. For a fair comparison, we copied the
top 10 percent popular files to 4 replicas. Therefore, assum-
ing equal-sized files, the overall cache redundancy incurred
by selective replication is 10%� 4 ¼ 40%—the same as that
of EC-Cache.

Fixed-size Chunking. Fixed-size chunking is commonly
employed in many prevalent distributed storage/caching
systems where files are split into multiple chunks of a con-
stant size. Typically, the chunk size is configured as a large
value, e.g., 512 MB in Alluxio. Since we test with 100 MB
files in our experiments, such large chunk sizes result in one
partition for each file, making no difference to load balanc-
ing. To this end, we configure fixed-size chunking with
much smaller chunk sizes and compare its performance
against SP-Cache (in Section 7.3 and 7.8).

7.2 Configuration of the Scale Factor
and Partition Size

We first show that SP-Cache is able to configure the optimal
scale factor a based on the derived upper bound. We ran the
experiment with 300 files (100 MB each), and set the total
access rate to 8 requests per second. Fig. 8 compares the
derived upper bound and the average read latencymeasured
in the experiments. Notice that in Fig. 8, we explore a larger
range of a than what SP-Cache would search (Section 5.3) to
demonstrate the tightness of the bound. We observe that the
“elbow point” of the upper bound well aligns with that of
the mean latency, suggesting that the upper-bound analysis
can be used to accurately locate the optimal scale factor a.

Overhead. The computational overhead of configuring the
optimal a depends on the number of files, as it requires the
latency upper bound (9) to be computed for each file. To
quantify this overhead, we measured the runtime required
to configure the optimal a in themaster nodewith 1-10k files.
Fig. 10 shows the average configuration time in 5 trials,
where the error bars depict the maximum and the minimum.
With more files, the configuration time linearly increases.
Nevertheless, even with 10k files, it takes SP-Cache no more
than 90 seconds to finish configuration. Since the configura-
tion is only needed every 12 hours, its overhead is negligible.

Partition Size. Fig. 11 shows the optimal partition sizes
SP-Cache chooses for files ordered by popularity in an
experiment with 100 files (100 MB each). SP-Cache only par-
titions the top 30 percent of hot files but leaves the others
untouched (no splitting). The variance in the optimal parti-
tion numbers also indicates that configuring a uniform par-
tition number regardless of the file popularity would be
highly inefficient, even with a small number of files.

7.3 Skew Resilience

We evaluated SP-Cache against the two baselines under
skewed popularity in the EC2 cluster with naturally occurred
stragglers. We cached 500 files each of size 100 MB. Note
that the total cache space (300 GB) is sufficient to hold all 500
files and their replicas (parity partitions). The aggregated
request rate from all clients is configured from 6 to 22
requests per second.

Load Balancing. To study how well SP-Cache results in
better load balancing than the two baselines, we measured
the load of each server (i.e., the amount of data reads) under
each scheme. Fig. 12 compares the load distributions under
the three schemes. SP-Cache achieves the best load balanc-
ing, with imbalance factor h ¼ 0:18. This is 2:4� and 6:6�
better than EC-Cache (h ¼ 0:44) and selective replication
(h ¼ 1:18), respectively.

Fig. 10. Distributions of co-access distances in TPC-DS benchmark.
Fig. 11. The partition sizes configured by SP-Cache for files ordered by
popularity (from the most popular to the least). Only the top 30 percent
of hot files get partitioned.
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Read Latency. Fig. 13 compares the mean and tail read
latencies of the three schemes under various request rates.
Owing to the improved load balancing, SP-Cache consis-
tently outperforms the two baselines. The benefits of SP-
Cache become more prominent as the request rate surges.
In particular, compared to EC-Cache (selective replication),
SP-Cache significantly improves the mean and tail latencies
by 29-50% (40-70%) and 22-55% (33-63%), respectively.

Fixed-Size Chunking. Fig. 14 compares SP-Cache against
fixed-size chunking with chunk size of 4, 8, and 16 MB. We
observe similar problems as simple partition (Section 4.2).
On one hand, configuring small chunks results in heavy net-
work overhead due to the increased read parallelism. We
see in Fig. 14a that at low request rates (< 15), the average
read latency increases as the chunk size gets smaller, e.g.,
up to 46 percent (32 percent) slower than SP-Cache with
4 MB (8 MB) chunks—an evidence that network overhead
dominates. On the other hand, configuring large chunks,
though saving the network overhead, fails to mitigate hot
spots under heavy loads (request rate > 15). In fact, the
mean latency with 16 MB chunks is over 2� that of SP-
Cache when the access rate rises to 22.

In terms of the tail latency, fixed-size chunking achieves
comparable performance to SP-Cachewith small chunk sizes
(e.g., 4 and 8 MB), as it effectively reduces the hot spots,
which are themain source of congestions in our experiments.

Compute-Optimized Cache Servers. Next, we evaluate the
performance of EC-Cache with cache servers of enhanced
computing power. We used c4.4xlarge instances of
Amazon EC2, which are compute-optimized with Intel
AVX2 extensions and the Intel Turbo Boost technology.

Each c4.4xlarge instance has 16 cores and 30 GB mem-
ory. We measured 1.4 Gbps network bandwidth between
c4.4xlarge instances, which is 40 percent higher than
that in the cluster with r3.2xlarge instances.

With the boosted computing power of cache servers, we
expect EC-Cache to have better performance due to
the improved encoding/decoding efficiency. Fig. 15 shows
the results, in which the performance gap between
EC-Cache and SP-Cache remains salient. Specifically, SP-
Cache outperforms EC-Cache by 39-47 percent and 40-53
percent in terms of the average and tail read latencies,
respectively. The latency with SP-Cache remains steadily
below 0.5 second on average and 0.6 second in the 95th per-
centile, indicating much better performance than in the clus-
ter with r3.2xlarge instances due to higher network
bandwidth. The result suggests that SP-Cache can easily
handle heavy request loads with improved networking con-
ditions. Also note that selective replication has much worse
performance, leading to 3.3-3.8x and 2.5-8.7x longer laten-
cies than SP-Cache on average and in the tail, respectively.

7.4 Resilience to Popularity Shifts

We next evaluate how SP-Cache adapts to the changing file
popularities with the parallel repartition scheme. We shift
the file popularity by randomly shuffling the popularity
ranks of all files (under the same Zipf distribution).
Notice that this presents much more drastic popularity
changes than what has been observed in real-life clusters
(Section 6.2) and hence imposes greater challenges of load
re-balancing on SP-Cache.

We conducted experiments with files of size 50 MB each
and increased the file number from 100 to 350. We mea-
sured the runtime of parallel repartition and compared it

Fig. 12. Load distribution under the three load-balancing schemes. The
load of a server is measured by the total amount of data reads. The client
request rate is 18.

Fig. 13. Mean and tail (95th) latencies under skewed file popularity.

Fig. 14. Mean and tail (95th) latencies compared with fixed-size
chunking.

Fig. 15. Mean and tail (95th) latencies compared with c4.4xlarge

(compute-optimized) instances.
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with that of a sequential scheme, where all files are collected
and repartitioned in sequence via the SP-Master. Fig. 16
shows the results. The repartition time needed for the
parallel scheme is less than 3 seconds and remains relatively
stable as the number of files increases. In comparison, it
takes the sequential scheme 319 seconds to finish reparti-
tion. We therefore observed a two-order-of-magnitude per-
formance improvement achieved by SP-Cache with parallel
repartition.

We attribute the substantial performance gain of SP-
Cache to two main factors. First, SP-Cache speeds up the
repartition process with much larger aggregated network
bandwidth, as it distributes the repartition workload across
many cache servers in parallel. Second, SP-Cache only
needs to repartition a small fraction of files. Due to the
heavy tail of the popularity distribution, most files are cold
and only have a single partition. Without migrating these
files, SP-Cache avoids incurring a huge volume of network
traffic. Fig. 17 shows the ratio of files that need to be reparti-
tioned after a popularity shift. We observe that the ratio
decreases quickly as the number of files increases. This veri-
fies why SP-Cache achieves a much shorter time for load re-
balancing compared with the naive repartition scheme,
where all files are collected and re-distributed sequentially.

Fig. 18 shows the load distribution under the sequential
and parallel repartition schemes. Recall that the former ran-
domly places all partitions (Section 5.1) while the latter
employs a greedy placement (Algorithm 2) for repartitioned
files. The parallel repartition scheme achieves better load bal-
ancing. By choosing the least-loaded servers to place each
partition, the greedy placement algorithm can gradually
improve the load balancing across servers. In addition, the
overhead of the greedy searching is minimized, as only a
small number of files need to be repartitioned.

7.5 Resilience to Stragglers

Redundant caching is proven resilient to stragglers [8], [9].
To evaluate how SP-Cache, which is redundancy-free, per-
forms in this regard, we turn to controlled experiments with
more intensive stragglers than that has been observed in the
EC2 cluster. Specifically, we manually injected stragglers
following the pattern profiled from a Microsoft Bing cluster
trace (Section 4.2). We turned each cluster node to stragglers
with probability 0.05 (i.e., intensive stragglers [43]).

Fig. 19 shows the results. Despite intensive stragglers,
SP-Cache reduces the mean latency by up to 40 percent
(53 percent) compared to EC- Cache (selective replication).
Yet, the presence of stragglers results in prolonged tail
latencies. In fact, SP-Cache exhibits slightly longer tails
than the two redundant caching baselines at low request
rate, as reading files from many locations adds the chance
of encountering an injected straggler. As the request
rate increases, most of the read requests get congested on
the hot spots, and the load imbalance becomes the main
source of the tail latency. Consequently, the tail latencies
under the two baselines quickly ramp up. In contrast,
SP-Cache effectively tames load imbalance across servers,
reducing the tail by up to 41 percent (55 percent) over
EC-Cache (selective replication).

7.6 Hit Ratio with Throttled Cache Budget

We stress that the benefits of SP-Cache evaluated so far were
realized with 40 percent less memory than the two baselines.
Should the same cache budget be enforced, SP-Cache would
have attained even more significant benefits. To this end, we
throttled the cluster caches and measured the cache hit ratio
under the three load-balancing schemes. Specifically, we
refer to the cluster settings in Section 7.3 and used the LRU
(least-recently-used) policy for cache replacement. Fig. 20

Fig. 16. Average completion time of sequential and parallel repartition
schemes. Error bars depict the 95th and 5th percentiles in 10 trials.

Fig. 17. Fraction of files to be repartitioned. Error bars depict the 95th
and 5th percentiles in 10 trials.

Fig. 18. Load distribution under the parallel and sequential repartition
schemes. The load of a server is measured by the total amount of data
reads.

Fig. 19. Mean and tail (95th) latencies with injected stragglers.
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compares the cache hit ratio of the three schemes with
various cache budget. Owing to the redundancy-freeness,
SP-Cache keeps the most files in memory and achieves the
highest cache hit ratio. In comparison, selective replication
falls short, as cachingmultiple replicas of hot files requires to
evict the same number of other “not-so-hot” files out of the
memory.

7.7 Trace-driven Simulation

Previous evaluations have assumed the uniform file size
and Poisson arrivals of the read requests. We next remove
these assumptions through trace- driven simulations with
the real-world size distribution and request arrivals.

Workload. We synthesized the workload based on the file
size distribution and the request arrivals from two public
traces. Specifically, our simulation generated 3k files. The
file sizes follow the distribution in the Yahoo! traces [33]
(Fig. 1); the file popularity follows a Zipf distribution with
exponent 1.1. We assume that a larger file is more popular
than a smaller one. As the Yahoo! trace [33] provides no
request arrival information, we refer to the Google cluster
trace [54] which contains the submission sequence of over
660k Google cluster jobs (e.g., MapReduce and Machine
Learning). Since cluster jobs usually read input at the begin-
ning, we simply use the job submission sequence as the
read request arrivals.

Settings. We simulated a cluster of 30 cache servers, each
with 10 GB memory and 1 Gbps network bandwidth. We
manually injected stragglers into the simulated cluster as
described in Section 7.5. We assume that a cache miss causes
3� longer read latency than a cache hit. We used a ð10; 14Þ
coding scheme in EC-Cache and set the decoding overhead
as 20 percent (Section 3.2).

Results. Fig. 21 shows the distributions of the read laten-
cies under the three load-balancing schemes. SP-Cache
keeps in the lead with the mean latency of 3.8 s. In compari-
son, the mean latencies measured for EC-Cache and selec-
tive replication are 6.0 s and 44.1 s, respectively. As hot files
have large sizes in production clusters, redundant caching

results in even lower cache utilization, inevitably harming
its I/O performance.

7.8 Write Latency

Finally, we evaluate the write latency. We wrote files of vari-
ous sizes to the EC2 cluster. We configured SP-Cache to
enforce file splitting upon write based on the provided file
popularity. Fig. 22 compares the write performance of the
four schemes. Selective replication is the slowest, as writing
multiple replicas transfers a large volume of data over the
network. Using erasure code, EC-Cache writes less amount
of data, but the encoding overhead drags it down. Such enco-
ding overhead gets more significant as the file size increases,
which is in accordance with the our observation in Section
3.2. Similarly, fixed-size chunking incurs much higher net-
work overhead when files get larger. The reason is that the
number of chunks gradually increases and the cost of TCP
connections becomes non-trivial. As shown in Fig. 6, the net-
work goodput sharply dropswith a large number of chunks.

Without suffering from these problems, SP- Cache pro-
vides the fastest writes and is on average 1:77� and 3:71�
faster than EC-Cache and selective replication, respectively.
Compared with fixed-size chunking using a chunk size of
4 MB, the performance advantage of SP-Cache is 13 percent
on average. Notice that we employed sequential write in SP-
Cache for fair comparison with the other three baselines. The
write performance can be further improved using the paral-
lel partition scheme of SP-Cache as described in Section 6.2.

8 LIMITATION AND DISCUSSION

While SP-Cache significantly outperforms the existing solu-
tions, our current implementations have several limitations.
We discuss those limitations and leave them for future
explorations.

Short-Term Popularity Variation. With periodic load balanc-
ing, SP-Cache is unable to timely handle the short-termpopu-
larity shifts, e.g., bursts of access to certain files. To address
this problem, we can enable online and dynamic adjustment of
partition granularity in case that some files may turn hot (or
cold) in a short period of time. We expect SP-Cache to
respond to popularity variations much faster than EC-Cache
and selective replication. To quickly adjust the partition gran-
ularity in an online fashion, SP-Cache can split and combine
the existing partitions. This can be done in a distributed man-
ner and incurs only a small amount of data transfer. In con-
trast, EC-Cache needs to collect all the partitions at themaster
node for re-encoding; selective replication incurs 1� band-
width and storage overhead for every additional replica.

Fig. 20. Cache hit ratio with throttled cache budget.

Fig. 21. Distributions of the read latencies under three load-balancing
schemes in trace-driven simulations.

Fig. 22. Comparison of write latencies with different file sizes.
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Fault Tolerance. While SP-Cache manages to minimize the
impact of stragglers, it does not provide fault tolerance for
non-transient stragglers which can be arbitrarily slow to the
extent of a complete failure. We stress that such fault toler-
ance cannot be achieved without cache redundancy [8], [9].
Nevertheless, since the underlying storage system readily
handles storage faults (e.g., the cross-rack replication of
HDFS [18] and S3 [16]), SP-Cache can always recover the
lost data from stable storages relying on the checkpointing
and recomputing mechanism of Alluxio. First, Alluxio peri-
odically persists the cached files to underlying storages (i.e.,
checkpointing [2]). The persisted data will then be repli-
cated across the storage systems to ensure fault tolerance.
Second, Alluxio keeps a lineage for each file, recording how
this file can be recomputed from source files stored in stable
storages. Once a file that has not been checkpointed gets
lost, SP-Cache will recompute this file based on its lineage.

Finer-Grained Partition. For structured data with clear
semantics, e.g., Parquet files [55], it is unnecessary to parti-
tion or replicate the entire file uniformly if there are discrep-
ant popularities within the file. In this case, SP-Cache can be
extended to support finer-grained partition within a file by
examining the popularities of different parts of the file.

9 RELATED WORK

Cluster caching has been broadly employed in data-
intensive clusters as disk I/O remains the primary perfor-
mance bottleneck for data analytics [4], [6], [10]. To achieve
load-balanced caching, various techniques have been pro-
posed, including data placement optimizations and replica-
tion/partition schemes.

Data Placement. One common approach for load balanc-
ing is to optimize the data placement scheme by designing
the mapping function from files to servers. For instance,
consistent hashing [50], [56] is a popular choice to imple-
ment such mappings. Unfortunately, hashing schemes may
impose significant disparity on the load distribution, e.g.,
some heavily-loaded servers are assigned files twice as
average [11]. This issue can be partly alleviated via adap-
tively adjusting the hash space boundaries [37], [57]. How-
ever, even with “perfect hashing” where each server holds
exactly the same number of files, load balancing is not
guaranteed as hashing schemes are agnostic to the skewed
file popularity. Unlike these works, SP-Cache obviates the
need for placement optimizations by eliminating the skew
in the per-partition load (Section 5.1). The server load can
then be balanced with random placement.

Replication. Replication has been the de facto load balancing
technique used in the disk-based object stores, including
Amazon S3 [16], OpenStack Swift [31], and Windows Azure
Storage [17]. Given the skewed popularity, replicating all files
uniformlywastes the storage capacity. Selective replication [9],
[58] comes as a solution. However, as popular files often have
large sizes, selective replication incurs highmemory overhead,
and is ruled out as a practical solution for cluster caching.

File Partition. EC-Cache [8] is the work most related to SP-
Cache, which also takes advantage of file partition to load-
balance cache servers. SP-Cache is by no means a “coding-
free” version of EC-Cache. Instead, it judiciously determines
the partition number of a file based on its load contribution,

whereas EC-Cache simply settles on a uniform partition
scheme. To our knowledge, SP-Cache is the first work that
systematically explores the benefits of selective partition.

10 CONCLUSIONS

In this paper, we have designed, analyzed, and developed
SP-Cache, a load- balanced, redundancy-free cluster cach-
ing scheme for data-parallel clusters. SP-Cache selectively
splits hot files into multiple partitions based on their sizes
and popularities, so as to evenly spread the load of their
read requests across multiple servers. We have established
an upper-bound analysis to quantify the mean latency, and
used it to guide the search of the optimal partition number
for each file. SP-Cache effectively eliminates the hot spots
while keeping the impact of stragglers to the minimum.
We have implemented SP-Cache atop Alluxio. EC2 deploy-
ment and trace-driven simulations showed that SP-Cache
significantly outperforms existing solutions with better
load balancing in a broad range of settings. Notably, with
40 percent less memory footprint than EC-Cache, SP-Cache
improves both the mean and the tail latencies by up to
40 percent, even in the presence of intensive stragglers.
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