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Abstract

With the sustained technological advances in machine
learning (ML) and the availability of massive datasets re-
cently, tech companies are deploying large ML-as-a-Service
(MLaaS) clouds, often with heterogeneous GPUs, to provi-
sion a host of ML applications. However, running diverse ML
workloads in heterogeneous GPU clusters raises a number of
challenges. In this paper, we present a characterization study
of a two-month workload trace collected from a production
MLaaS cluster with over 6,000 GPUs in Alibaba. We explain
the challenges posed to cluster scheduling, including the low
GPU utilization, the long queueing delays, the presence of
hard-to-schedule tasks demanding high-end GPUs with picky
scheduling requirements, the imbalance load across heteroge-
neous machines, and the potential bottleneck on CPUs. We
describe our current solutions and call for further investiga-
tions into the challenges that remain open to address. We
have released the trace for public access, which is the most
comprehensive in terms of the workloads and cluster scale.

1 Introduction

Driven by recent algorithmic innovations and the availability
of massive datasets, machine learning (ML) has achieved re-
markable performance breakthroughs in a multitude of real
applications such as language processing [23], image classifi-
cation [33,55], speech recognition [32,56,62], and recommen-
dation [30, 60, 74]. Today’s production clusters funnel large
volumes of data through ML pipelines. To accelerate ML
workloads at scale, tech companies are building fast parallel
computing infrastructures with a large fleet of GPU devices,
often shared by multiple users for improved utilization and
reduced costs. These large GPU clusters run all kinds of ML
workloads (e.g., training and inference), providing infrastruc-
ture support for ML-as-a-Service (MLaaS) cloud [2–4, 7, 8].

In this paper, we share our experiences in running ML
workloads in large GPU clusters. We present an extensive

characterization of a two-month workload trace1 collected
from a production cluster with 6,742 GPUs in Alibaba PAI
(Platform for Artificial Intelligence) [2]. The workloads are
a mix of training and inference jobs submitted by over
1,300 users, covering a wide variety of ML algorithms in-
cluding convolutional and recurrent neural networks (RNNs
and CNNs), transformer-based language models [23, 37, 56],
GNNs-based (graph neural network) recommendation mod-
els [31,57,75], and reinforcement learning [39,43,44]. These
jobs run in multiple ML frameworks, have different schedul-
ing requirements like GPU locality and gang scheduling,
and demand variable resources in a large range spanning
orders of magnitude. GPU machines are also heterogeneous
(see Table 1) in terms of hardware (e.g., V100, P100, T4)
and resource configurations (e.g., GPUs, CPUs, and memory
size). In comparison, prior workload analyses focus mainly
on training CNN and RNN models in homogeneous environ-
ments [18, 29, 36, 41, 65, 66, 72].

The large heterogeneity of ML workloads and GPU ma-
chines raises a number of challenges in resource management
and scheduling, making it difficult to achieve high utilization
and fast job completion. We present those challenges, describe
our solutions to some of them, and invite further research on
the open problems.

Low utilization caused by fractional GPU uses. In our
cluster, a task instance usually can only use parts of a GPU.
In fact, the median usage of streaming multiprocessors (SMs)
of an instance is 0.042 GPUs. Existing coarse-grained GPU
allocation schemes dedicate an entire GPU to one task in-
stance [36, 41, 72], and would result in extremely low utiliza-
tion in our cluster.

We address this problem with GPU sharing, a technique
that allows multiple ML tasks to time-multiplex a GPU in a
controlled manner [66]. Utilizing this feature, the scheduler
consolidates a large volume of low-GPU workloads onto a
small number of machines, using only 50% of the requested

1The trace was collected in July and August 2020, and is now open for
public access as part of the Alibaba Cluster Trace Program [1].



GPUs on average. Such consolidation causes no severe in-
terference: among high-utilization GPUs, only 4.5% run ML
tasks with potential contention on SMs.

Long queueing delays for short-running task instances.
Short-running task instances are prone to long queueing de-
lays caused by head-of-line blocking. In fact, around 9% of
short-lived instances spent more than half of their comple-
tion time waiting to be scheduled. An effective solution is to
predict the task run-time and prioritize short tasks over the
long ones. Existing approaches require specialized framework
support to track and estimate the training progress [41,46,49],
which is not always possible in production as users can run
standard or customized ML frameworks without such feature.

However, there is a silver lining. In our cluster, the ma-
jority of workloads are recurring, with 65% of tasks repeat-
edly executed at least 5 times in the trace. Through careful
feature engineering, we can predict the durations of most
recurring tasks within 25% error, sufficient to make quality
scheduling decisions as suggested by previous work [16].
Trace-driven simulations shows that using shortest-job-first
scheduling with predicted task durations reduces the average
completion time by over 63%.

Hard to schedule high-GPU tasks. Our cluster runs a
small portion of compute-intensive ML tasks for business-
critical, user-facing applications. These tasks request full
GPUs (no sharing) and can attain dramatic speedup on high-
end devices by exploiting advanced hardware features such
as NVLink [12] (see Section 6.1)—these picky requirements
make them difficult to schedule.

Our scheduler employs a simple reserving-and-packing
policy to differentiate those hard-to-schedule high-GPU tasks
from other tasks. It reserves high-end GPU machines (e.g.,
V100 with NVLinks) for a small number of high-GPU tasks
with picky scheduling requirements, while packing the other
workloads on less advanced machines, using GPU sharing.
The reserving-and-packing policy reduces the average queue-
ing delay by 68% for high-GPU tasks and 45% for all.

In our quest for optimized cluster management, a few chal-
lenges remain open, which have received less attention in the
literature.

Load imbalance. We observe imbalanced load running in
heterogeneous machines. In general, machines with low-end
GPUs are more crowded than those with high-end GPUs: the
former have over 70% CPUs and GPUs of these machines
allocated on average, while the latter have only 35% CPUs and
49% GPUs allocated. There is also a provisioning mismatch
between workloads and machines. On average, workloads
running in 8-GPU machines demand 1.9× more CPUs per
GPU than the machines can provide (12 CPUs per GPU),
whereas those running in 2-GPU machines request 53% fewer
CPUs per GPU than the machine specifications (32 or 48
CPUs per GPU).

Bottleneck on CPUs. While ML workloads perform train-

ing and inference on GPUs, many data processing (e.g., data
fetching, feature extraction, sampling) and simulation tasks
(e.g., reinforcement learning) involved in the pipeline run on
CPUs, which can also become a bottleneck. In fact, we find
that workloads running in machines with higher CPU utiliza-
tion are more likely to get slowdown. For example, in T4
machines, those slowed tasks measure an average of 33.5%
P75 CPU utilization, noticeably higher than that measured by
the accelerated tasks (21.3%). Similar results are also found
in V100 machines reserved for high-GPU workloads (50.6%
P75 CPU utilization for slowed tasks and 42.4% for the ac-
celerated), indicating that even GPU-demanding workloads
can be harmed by CPU contention.

We believe the observations made in our cluster do not
stand in isolation. We share the insights derived from our
analysis and discuss potential system optimization opportu-
nities in improving ML framework, adopting resource dis-
aggregation, and decoupling data pre-processing from GPU
training (see Section 7). We hope that the observations and
experiences shared in our study, as well as the release of the
PAI trace, can inspire follow-up research in optimizing ML
workload scheduling and GPU cluster management.

2 Background

Fast growing data and GPU demand. The support for scal-
able machine learning has become increasingly important in
production data processing pipelines. In our experience of
operating general-purpose ML platforms for production work-
loads, we have witnessed the fast growing demand of both
training data and GPU resources. In just a few years, the sheer
volume of training data for an ML job has grown orders of
magnitude, from the standard dataset of 100s GB (e.g., Im-
ageNet [22]) to an Internet scale of 10s or even 100s TB.
The massive volume of data forces ML jobs to scale out to
a large number of GPU machines. In our cluster, the largest
single ML job requests to run on over 1,000 GPUs, posing a
significant gang-scheduling challenge to the cluster.

Alibaba PAI. To accommodate the fast growing computing
demand of ML workloads, Alibaba Cloud offers Machine
Learning Platform for AI (PAI), an all-in-one MLaaS plat-
form that enables developers to use ML technologies in an
efficient, flexible, and simplified way. PAI provides various
services covering the entire ML pipeline, including feature en-
gineering, model training, evaluation, inference, and autoML.
Since its introduction in 2018, PAI has gained tens of thou-
sands of enterprises and individual developers, making it one
of the largest leading MLaaS platforms in China.

Figure 1 illustrates an architecture overview of PAI, where
users submit ML jobs developed in a variety of frameworks,
such as TensorFlow [14], PyTorch [48], Graph-Learn [75],
RLlib [38]. Upon the job submission, users provide the appli-
cation code and specify the required compute resources, such



Resource Scheduler and Monitor

…

PS

worker worker worker

workerworker

evaluator

ML Platform for AI (PAI)

GPU NVLink

Users
Submit 
Jobs

Split into
Tasks

Launch 
Instances

GPU Server

Figure 1: Architecture overview of PAI.

Table 1: Machine specs of GPU clusters in the existing trace
analysis works. GPUs with † are equipped with NVLink [12].
The Philly trace does not reveal CPU specs and GPU types.

System #CPUs Mem (GiB) #GPUs GPU type #Nodes

PAI 64 512 2 P100 798
96 512 2 T4 497
96 512 8 Misc. 280
96 384 8 V100M32† 135
96 512/384 8 V100† 104
96 512 0 N/A 83

Philly [36] Unk. 528/264 2 12GB GPU 321
Unk. 528/264/132 8 24GB GPU 231

Tiresias [29] 20 256 4 P100† 15

Gandivafair [18] 12 224 4 K80 32
12 448 4 P100 12
12 448 4 V100 6

Themis [41] 24 448 4 K80 12
12 224 2 K80 8

HiveD [72] 24 224 4 K80 125
24 224 4 M60 75

Antman [66] 96 736 8 V100M32† 8

as GPUs, CPUs, and memory. Each job is translated into mul-
tiple tasks of different roles, such as parameter servers (PS)
and workers for a training job, and evaluator for an inference
job. Each task may consist of one or multiple instances and
can run on multiple machines. PAI employs Docker contain-
ers to instantiate tasks for simplified scheduling and execution
on heterogeneous hardware.

Trace analysis. Running diverse ML workloads in shared
GPU clusters at cloud scale raises daunting challenges. Trace
analysis is essential to understand those challenges and pro-
vide new insights on system optimization. However, existing
analyses are performed on GPU clusters with limited size,
workload diversity, and machine heterogeneity, and hence
cannot fully represent the state of the art (see Table 1). Take
Microsoft’s Philly trace [36] as an example. Whereas dis-
tributed training is now commonplace, the majority of Philly
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Figure 2: Heavily skewed distribution of task instances run
by users and the prevalence of gang-scheduling requirements.

workloads (> 82%) ran on a single GPU instance when the
trace was collected in 2017. It is also unclear what types of
GPUs were used to run those workloads, which may have
significant impact to scheduling [41, 46]: the performance of
new-generation GPUs can be 1.1–8× higher than the older
generations [18]. Moreover, the Philly trace only includes the
training workloads, whereas it is common to run both training
and inference jobs in a shared MLaaS platform [47, 51, 69].

The insufficiency of existing works motivates the release
of the PAI trace, which we examine next.

3 Workload Characterization

In this section, we analyze the ML workloads in the released
PAI trace. We start with an overview of the trace, followed by
a characterization of its temporal and spatial patterns.

3.1 Trace Overview

Trace information. The released PAI trace contains a hy-
brid of training and inference jobs running state-of-the-art
ML algorithms in mainstream frameworks [14, 48, 75]. Most
jobs request multiple GPUs. The trace records the arrival
time, completion time, resource requests and usages in GPUs,
CPUs, GPU memory and main memory of the workloads at
various levels (e.g., job, task, and instance) (Sections 3.2 and
3.3). The application semantics, such as whether the code is
performing training or inference, and in what ML framework,
are not available as our cluster scheduling system Fuxi [26,71]
only sees the execution containers and is agnostic to the
running applications. Nevertheless, we have manually ex-
amined some workloads and included their application names
(e.g., click-through rate prediction and reinforcement learn-
ing) in the trace to provide some clues whenever possible
(Sections 6.1 and 6.2). Machine-level information is also pro-
vided in the trace, including the hardware specs (Table 1) and
time-varying resource utilizations (Section 4) collected by the
daemon agents that periodically query the Linux kernel and
GPU driver (e.g., NVIDIA Management Library [9]) in the
host machines. The detailed schema and trace data are given
in the trace repository [1].
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Figure 3: Task submissions and resource requests roughly
follow diurnal patterns.

Jobs, tasks, and instances. In PAI, users submit jobs. Each
job has one or multiple tasks taking different computation
roles. Each task runs one or multiple instances in Docker
containers. For example, a distributed training job may have
a parameter-server (PS) task of 2 instances and a worker
task of 10 instances. All instances of a task have the same
resource demands and might be gang-scheduled (e.g., running
simultaneously for all PyTorch workers). Our characterization
in this subsection mainly focuses on task instances.

Heavy-skewed instance distribution. The PAI trace con-
tains more than 7.5 million instances of 1.2 million tasks
submitted by over 1,300 users. Figure 2a depicts the distribu-
tion of task instances run by users, which is heavily skewed.
More specifically, around 77% of task instances are submitted
by the top 5% users, each running over 17.5k instances, while
the bottom 50% users run less than 180 instances each.

The prevalence of gang-scheduling. Our distributed ML
jobs require gang-scheduling. As shown in Figure 2b, among
all task instances, around 85% have such requirements, in
which 20% must be gang-scheduled on more than 100 GPUs,
some even requesting over 1,000. Together, tasks with gang-
scheduled instances account for 79% of the total GPU de-
mands. The prevalence of these tasks makes it difficult to
achieve high utilization.

GPU locality. In addition to gang-scheduling, a task may
request to run all its instances on multiple GPUs co-located
in one machine, a requirement known as GPU locality. Al-
though such requirement often leads to prolonged scheduling
delays [29, 36, 72], it enables the use of high-speed GPU-to-
GPU interconnect within a single node (e.g., NVLink and
NVSwitch), which can dramatically accelerate distributed
training [12, 15, 36]. In our cluster, enforcing GPU locality
yields over 10× speedup for some training tasks (Section 6.1).

GPU sharing. PAI supports GPU sharing that allows mul-
tiple task instances to time-share a GPU at a low cost. With
this feature, users can specify GPU request in (0,1) and run
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Figure 4: CDF of instance run-time and queueing delays.

its task instances using parts of GPUs. We will show in Sec-
tion 5.1 that GPU sharing enables considerable savings on
GPU provisioning.

Various GPU types to choose from. PAI provides het-
erogeneous GPUs and allows users to specify the required
GPU types to run their tasks. The available choices include
NVIDIA Tesla T4, P100, V100, V100M32 (V100 SXM2 with
32 GB memory), and other GPUs of older generations (Misc
in Table 1), e.g., Tesla K40m, K80, and M60. In our cluster,
only 6% tasks require to run on specified GPUs, while the
others have no such limitation and can run on any GPUs.

3.2 Temporal Pattern
We next examine the temporal patterns of the PAI workloads.

Diurnal task submissions and resource requests. Fig-
ure 3 depicts task and instance submissions as well as the
overall resource requests in one week during the trace collec-
tion period. We observe rough diurnal patterns, where task
submissions in weekdays (from the 24th to 144th hours) are
slightly higher than in weekends. It is worth mentioning that
in addition to the daytime, midnight is also a rush hour for task
submissions (Figure 3a). Yet, most tasks submitted at mid-
night are less compute-intensive, having only a few instances
and requesting a small amount of resources (Figure 3b).

Instance run-time in a wide range. Figure 4a shows the
distribution of instance run-time (solid line). Similar to the
Philly trace [36] (dotted line), instance run-time varies in
a wide range spreading four orders of magnitude. The me-
dian run-time (23 minutes) is comparable with that of Philly
(26 minutes), while their 90th percentile (P90) run-time (4.5
hours) is shorter than that of Philly (25 hours).



Non-uniform queueing delays. The queueing delay (aka
wait time or scheduling delay), measured from the moment of
task submission to the start of the task instance, varies greatly
among instances. Compared to the long-running instances,
short-running instances usually spend a larger portion of time
in queueing. To see this, we use the median run-time as a
threshold and divide instances into long-running and short-
running ones, where a long-running (short-running) task in-
stance has a longer (shorter) run-time than the median. In
Figure 4b, We compare the queueing delays of these task in-
stances relative to their completion times (queueing delay plus
run-time). Around 9% short-running instances spend more
than half of the completion time waiting to be scheduled; this
number drops to 3% when it comes to long-running instances.

A task instance’s queueing delay also depends on its GPU
request. Figure 4c shows that instances willing to share GPUs
(i.e., GPU request in (0,1)) can be quickly scheduled, with the
90th percentile (P90) queueing delay being 497 seconds. In
comparison, instances that do not accept GPU sharing need to
wait for a longer time, with the P90 delay being 1,150 (8,286)
seconds for those requesting one GPU (> 1 GPU).

Long queueing delays are also seen in instances requesting
high-end GPUs. As shown in Figure 4d, for instances running
on advanced V100 GPUs (including V100M32), the median
and P90 delays are 113 and 13,709 seconds, respectively. In
comparison, for instances running on low-end miscellaneous
GPUs, the median and P90 delays are only 11 and 360 sec-
onds, respectively.

3.3 Spatial Pattern
We finally present the spatial patterns of the PAI task instances
by analyzing their resource requests and usages. PAI collects
the system metrics of running tasks every 15 seconds and
provides visualization tools [2, 25] for users to analyze the
workload patterns and figure out their resource requests.

Heavy-tailed distribution of resource requests. Fig-
ures 5a, 5b, and 5c (blue solid lines) respectively depict the
distributions of the total CPUs, GPUs, and memory requested
by all instances. All three distributions are heavy-tailed, with
around 20% instances requesting large resource amounts and
the other 80% requesting small to medium. More specifically,
the P95 request demands 12 vCPU cores2, 1 GPU, and 59
GiB memory, more than twice the median request (6 vCPU
cores, 0.5 GPUs, and 29 GiB memory).

Uneven resource usage: Low on GPU but high on CPU.
Most users tend to ask for more resources than they actu-
ally need, resulting in a low resource usage (dotted lines in
Figures 5a, 5b, and 5c). In our cluster, the median instance re-
source usages are 1.4 vCPU cores, 0.042 GPUs, and 3.5 GiB
memory, much smaller than the median request. We stress

2In our cluster, each physical processor core consists of two vCPU cores,
using hyper-threading technology [42].
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Figure 5: CDF of instance resource requests and actual usages.

that the low GPU usage is not caused by the low comput-
ing demand, but by contentions on other resource like CPU,
making GPUs idle for most of the time (Section 6.2). Fig-
ure 5b also shows that around 18% instances barely use GPUs:
they perform computations such as running parameter servers,
fetching and pre-processing data, which are mostly on CPUs
with small or no GPU involvement.

In PAI, instances of a task can use spare resources in the
host machines, making it possible to overuse more resources
than requested. Compared to GPU and memory, overuse of
CPUs is more prevalent. To see this, for each instance we mea-
sure the difference between its resource usage and request for
CPU, GPU, and memory—positive (negative) being overuse
(underuse). We normalize the results by the machine’s CPU,
GPU, and memory capacity, respectively, and depict the distri-
butions in Figure 5d. There are 19% task instances overusing
CPUs (blue solid line with X > 0). In comparison, only 3%
(9%) instances use more GPUs (memory) than they requested.

4 GPU Machine Utilization

Having studied the workload characterization, we turn to re-
source utilization in GPU machines.

4.1 Utilization of Compute Resources
We start to analyze the utilization of compute resources, in-
cluding CPU, GPU, main and GPU memory. Our cluster has
1,295 2-GPU machines and 519 8-GPU machines (Table 1).
Machines with 8 GPUs have a lower CPU-to-GPU ratio than
those with 2 GPUs. In light of their different configurations,
we perform measurement separately for the two types of ma-
chines. Each machine has time series data of resource utiliza-
tion measured every 15 seconds by the monitoring system.
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Figure 6: CDF of P90 and P50 (median) utilization of CPU,
GPU, main and GPU memory in different machine groups.

At each timestamp, we collect the utilization of all 8-GPU
machines and calculate the tail (P90) and the median (P50).
Together, we obtain a sequence of P90 and P50 utilizations
taken at different timestamps. We depict their distributions in
Figure 6 (two subfigures on the left). We perform the same
measurements in 2-GPU machines and depict the results in
the right two subfigures. Compared to memory (main and the
GPU’s), GPU and CPU have higher utilization. In 8-GPU ma-
chines (upper-left in Figure 6), the average P90 utilization of
GPU (red dash-dotted line) and CPU (blue solid line), i.e., the
arithmetic mean of P90 values from all timestamps, reaches
82% and 77%, respectively. In 2-GPU machines (upper-right
in Figure 6), the P90 GPU utilization remains high (77% on
average), while the P90 CPU utilization drops to 42% on av-
erage due to the large CPU-to-GPU ratio (32 or 48 CPUs per
GPU). In both types of machines, the P90 utilization of the
main and GPU memory stays below 60% at almost all time,
indicating that our tasks are less memory-intensive.

Compared to other resources, we measure a larger variation
of utilization on GPUs. As shown in Figure 6, the distribution
of P90 GPU utilization spans a wide range from less than 40%
to 100% of the computing power provided by the streaming
multiprocessors of the machine’s GPUs; the difference be-
tween the tail and the median utilization is also larger on GPU
than on other resources (comparing the top sub-figures with
the bottom). The large variation is partly due to the bursty
GPU usage patterns found in our ML workloads [65,66]. It is
also due to the design of our scheduler that prioritizes packing
over load balancing (Section 6.3).

4.2 Low Usage of Network and I/O

In addition to compute resources, network and I/O are also
frequently used in distributed ML. To understand their impact,
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Figure 7: Low usage of network and I/O.

we measure the network input rate3 in machines with different
bandwidth guarantees (≥ 10 Gbps for P100 and Misc, ≥ 15
Gbps for T4, and ≥ 32 Gbps for V100) and depict their distri-
butions in Figure 7a. The P95 network input rate only reaches
54%, 48%, and 34% of the guaranteed bandwidth provided
in P100 (or Misc), T4, and V100 machines, respectively.

In terms of I/O, we collect machine-level CPU usage data,
including the I/O waiting time (iowait) and the execution time
in usr and kernel modes, respectively. Figure 7b shows their
distributions. The CPU time spent on iowait is three orders of
magnitude smaller than that in usr and kernel modes, meaning
that CPUs are mostly busy processing data rather than waiting
for the I/O to complete.

5 Opportunities for Cluster Management

In PAI, our goal of cluster management is two-fold: (1) achiev-
ing high utilization in GPU machines, and (2) completing as
many tasks as fast as possible. In this section, we describe the
opportunities and our efforts in achieving the two goals.

5.1 GPU Sharing
Unlike CPUs, GPUs do not natively support sharing and are
allocated as indivisible resources in many production clus-
ters [36, 72], where a single task instance runs exclusively
on a GPU. Although such allocation provides strong perfor-
mance isolation, it results in GPU underutilization, which is
particularly salient in our cluster as most instances can only
utilize a small portion of the allocated GPUs (Section 3.3).

To avoid this problem, the PAI cluster scheduler supports
GPU sharing which allows multiple task instances to run on
the same GPU in a space- and time-multiplexed manner. With
this feature, a task instance can request a fraction of GPU
(< 1 GPU) and is guaranteed to allocate the specified fraction
of GPU memory upon scheduling (space-multiplexed). When
needed, an instance can also use unallocated GPU memory
during execution. An instance, however, has no guaranteed
allocation of compute units (i.e., SMs), which are dynamically
shared among co-located instances (time-multiplexed).4

3Our trace does not log the network output. For most training and infer-
ence tasks, the network input is orders of magnitude larger than the output.

4Fine-grained sharing of compute units with isolation guarantee requires
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Figure 9: Heavy utilization is rarely measured in GPUs; most
heavy-utilized GPUs run a single instance.

Benefits of GPU sharing. GPU sharing enables consider-
able savings on resource provisioning. To see this, we simu-
late the scenario of no GPU sharing, in which we replay the
trace and count the number of allocated GPUs in each hour.
Figure 8 compares the simulated results with the numbers
measured in the real system, binned in hour of the day. On
average, only 50% of GPUs are needed with sharing. In the
peak hour at around 10 am, the savings can be up to 73%.

Does GPU sharing cause contention? As the utilization
increases, instances running on a shared GPU start to con-
tend for streaming processors (SMs), causing interference. To
quantify how frequently the contention may occur, we collect
the utilization data of all GPUs in two months and depict their
distribution in Figure 9a. Heavy utilization (≥ 95%) is rarely
measured, which accounts for only 7% cases in the trace.
We further examine those heavy-utilized GPUs in which run-
ning instances have a high chance to contend with each other.
Figure 9b shows the number of heavy-utilized GPUs in a
5-day period, among which only a few (4.5% on average)
run multiple instances (the top-stacked bars). As the majority
of heavy-utilized GPUs run a single instance, no contention
occurs. We therefore believe GPU sharing does not cause
severe contention in our cluster.

high-level support of ML framework. In PAI, such support is provided by
AntMan [66]. Yet, it only applies to tasks running in the frameworks where
AntMan is implemented (currently supporting TensorFlow and PyTorch).
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Figure 11: Submissions and in-
stance run-times of three batch
inference tasks using BERT.

5.2 Predictable Duration for Recurring Tasks
Knowing the duration (aka run-time) of ML task instances
is the key to making better scheduling decisions. Existing
schedulers for ML workloads predict the task instances du-
ration based on the training progress (e.g., number of it-
erations, loss curve, and target accuracy) and speed of the
task [29, 41, 46, 49]. Obtaining such information requires
specific framework support (e.g., TensorFlow and PyTorch),
which is not always possible in our cluster as users run a va-
riety of frameworks of standard or customized version, and
their submitted tasks may not perform iterative training (e.g.,
inference). In fact, our cluster scheduler [26, 71] is designed
for container workloads and is agnostic to the task semantics.

The prevalence of recurring tasks. Despite the scheduler
being agnostic to task progress, we find that most tasks are
recurring, and their instance run-times can be well predicted
from past executions. Yet, in our system, task recurrence can-
not be simply identified from the task ID or name, which is
uniquely generated for each submission. Instead, we turn to
the meta-information consistently specified by a task across
multiple submissions, such as the entry scripts, command-
line parameters, data sources and sinks. Hashing the meta-
information generates a unique Group tag, which we use to
identify the recurrence of a task. Following this approach,
we depict the distribution of task recurrences in Figure 10:
around 65% tasks repeatedly run at least 5 times in the trace.

In addition to periodic training, many recurring tasks per-
form batch inference. These tasks aggregate data from incom-
ing requests and then perform batch inference on a collective
of data in one go. Users can configure the task launching inter-
val, ranging from minutes to days. As an illustrative example,
Figure 11 shows three recurring tasks identified in the trace
that perform batch inference with pre-trained BERT [23] mod-
els. All three tasks run on a regular basis, with stable average
instance run-times that can be accurately predicted.

Instance duration prediction for recurring tasks. A re-
curring task can be submitted by different users with different
resource requests, and its instances may have different run-
times. We therefore predict the duration from past runs based
on three features, the task’s username (User), resource re-
quests (Resource, including GPU and other resources), and
group tag (Group). Taking these features as input, we predict



-∞ -80 -60 -40 -20 0 20 40 60 80 100
Estimate error (%) ±5%

0
5

10
15
20
25
30
35
40

Po
rti

on
 o

f i
ns

ta
nc

es
 (%

)

<Group,User,Resource>
<Group,User,GPU>
<Group,User>
<User,GPU>
<User>
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percentage, of duration estimates with different features.

the task’s average instances duration using the CART (Clas-
sification And Regression Trees [17]) algorithm with a tree
regressor. The regressor makes at most 10 splits for each tree
and uses the mean absolute error (MAE) as the splitting crite-
rion. We choose MAE instead of the standard mean squared
error (MSE) because the former is more robust to extreme
outliers in heavy-tailed distribution than the latter.

To evaluate the accuracy of our prediction, we consider
tasks that recur at least 5 times in the trace. We use 80% of
those tasks to train the predictor and the remaining 20% for
testing. Figure 12 compares the accuracy of the predictor
trained with different feature inputs, including Group, User,
Resource, and GPU (requested GPU types and numbers). We
use percentage prediction error [35] as the accuracy metric,
defined as (true−pred)/true×100%. Our evaluation shows
that Group is the most important feature that greatly improves
the prediction accuracy. Further complementing it with User
and Resource (or GPU) results in less than 25% prediction
error for 78% instances. According to prior studies [16], du-
ration predictions with such accuracy is sufficient to make
high-quality scheduling decisions.

Benefits for scheduling. We present a simple simulation
study to evaluate how the prediction of task instance duration
can help improve scheduling. We developed a discrete-time
simulator and use it to replay the trace. We sample tasks from
the trace and feed their resource requests, arrival times, real
and predicted run-times into the simulator. We assume ho-
mogeneous GPUs in simulation and respect the real duration
when scheduling a task instance to a GPU. Both the simulator
and experiment scripts are released along with the trace [1].

We configure two scheduling policies, first-in-first-out
(FIFO) and shortest-job-first (SJF), in simulation. Figure 13
shows the average task completion time in GPU clusters of
different sizes using FIFO and four SJF schedulers, where
SJF-Oracle makes scheduling decisions based on the real-
measured task instance duration (ground truth) and the others
use predictors trained with different input features. Compared
to FIFO, the four SJF schedulers reduce the average task
completion time by 63–77%, depending on the predictors
they use. In particular, the predictors trained with the Group
feature yield better performance; the more features are in-
cluded, the more accurate the predictions are, and the closer
the scheduling performance is to the optimum (SJF-Oracle).
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Figure 13: Average task completion time given different GPU
cluster sizes and various scheduling policies in simulation.

These results are in line with Figure 12.

6 Challenges of Scheduling

Compared to previous simulations, scheduling ML tasks of
large heterogeneity in production clusters is far more complex.
To understand the challenges posed by such heterogeneity,
in this section we present case studies for two representative
types of ML tasks with high and low GPU requests. We de-
scribe our scheduling policies deployed in production that
differentiate between the two types of tasks in light of their
different request and usage patterns. Yet, many challenges
remain open, which we discuss in detail.

6.1 Case Study of High-GPU Tasks

In our cluster, a small portion of tasks run compute-intensive
instances with high GPU requests (Section 3.3). These tasks
train state-of-the-art models or perform inference with trained
models for business-critical, user-facing applications. They
request powerful GPU devices with high memory or advanced
hardware features (e.g., NVLink).

NLP with advanced language models. Around 6.4% tasks
running in our cluster perform natural language process-
ing (NLP) using advanced models, such as BERT [23], AL-
BERT [37], and XLNet [67]. Among them, 73% have large
input and must run on GPUs with 16 GiB or higher mem-
ory (i.e., T4, P100, V100/V100M32). Figure 14a shows the
distribution of GPU requests and usages of NLP instances,
where 40% request more than 1 GPU and use over 0.4 GPUs
in computing power. Comparing Figure 5b and Figure 14a,
we observe much higher GPU requests and usages of NLP
tasks than that of general workloads.

Image classification with massive output. In our cluster,
some distributed training tasks request to run their worker
instances in one machine with high-speed GPU-to-GPU inter-
connects (e.g., NVLink) for much improved performance, a
requirement known as GPU locality. A typical example is to
train a classification model that classifies images of goods into
a large number of standard product units (SPUs). The model
can be a modified ResNet [33] with the last output layer
replaced by a softmax layer with 100,000 output of SPUs
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Figure 15: CDF of the CPU and GPU usage of click-through-
rate (CTR) instances.

(ResNet-100k). The presence of such a large fully-connected
layer mandates the exchange of massive gradient updates be-
tween worker instances, making communication a bottleneck.
For these tasks, meeting GPU locality is critically important.
Figure 14b compares the duration of a training epoch of three
classification models with a large number of output in 8-GPU
machines with and without NVLink (i.e., via PCIe). All three
models achieve salient speedup with NVLink: ResNet-100k,
the largest model, is accelerated by 10.5×.

6.2 Case Study of Low-GPU Tasks

The majority of tasks running in our cluster have low GPU
requests and usages (Section 3.3). To understand this some-
what unexpected result, we study three popular tasks. By
profiling their executions, we find that they spend a consider-
able amount of time on CPUs for data processing (e.g., data
fetching, feature extraction, sampling) and simulation (e.g.,
reinforcement learning), leaving GPUs under-utilized.

CTR prediction model training and inference. Among
all tasks in the trace, over 6.7% are for advertisement click-
through rate (CTR) prediction. These tasks use a variety of
CTR models [30, 60, 73, 74], with around 25% instances per-
forming training and the other 75% performing inference. Fig-
ure 15 shows the distributions of the CPU and GPU usages
of these instances. Compared to training, inference instances
have higher CPU utilization as they process a large volume
of data continuously arriving. Both instances have low GPU
utilization: over 75% instances use less than 0.1 GPUs.
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Figure 16: Microbenchmark of inference and training in-
stances of click-through-rate prediction models.
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Figure 17: Resource usage and duration breakdown of GNN
training instances.

We next profile the executions of three inference instances
with DeepFM, DCN, and DNN models, respectively. Fig-
ure 16a shows the run-time breakdown of I/O, GPU, and
CPU operations. The three instances spend around 80% run-
time on CPUs to fetch and process the next input batch
(IteratorGetNext in TensorFlow [20, 40]); GPU and I/O opera-
tions (e.g., MatMul, Sum, Cast, MEMCPYHtoD) only account
for 10% of the execution time, respectively.

The high CPU usage of these instances makes them prone
to interference from the co-located workload, especially in
machines with high CPU utilization. To see this, we run train-
ing instances of a DeepFM model in containers with 8 vCPU
cores. Together with an instance, we run some artificial load
using spare cores of the host machine to create CPU stress. We
configure varying load to control the level of stress. Figure 16b
shows the instance training speed in a 48-core machine under
varying stresses with 0 to 40 cores left idle (highest to no
stress). Though the co-located load run on different vCPU
cores not occupied by the instance, it still results in up to
28% slowdown of the training speed due to the contention
of other shared resources, such as cache, power, and memory
bandwidth [19, 21, 58].

GNN training. Graph Neural Network (GNN) training
comes as another popular computation, which accounts for
2% instances in our cluster, including GraphSage [31], Bi-
partite GraphSage [75], GAT [57], etc. Figure 17a shows
the distribution of CPU and GPU usage of GNN training in-
stances, where CPU is more heavily utilized than GPU. In
production GNN models, a graph must undergo a sequence
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Figure 18: Characterization of reinforcement learning in-
stances.

of pre-processing, such as EdgeIteration, NeighborSampling,
and NegativeSampling [75], before turning into an embed-
ding (a computationally digestible format, usually vectors)
of a deep neural network. Such graph pre-processing is cur-
rently cost-effective when performing on CPUs. As shown in
Figure 17b, it accounts for 30–90% duration of each training
iteration in different models.

Reinforcement learning. Our cluster also runs many rein-
forcement learning (RL) tasks. An RL algorithm iteratively
generates a batch of data through parallel simulations on
CPUs and performs training with the generated data on GPUs
to improve the learning policy. Figure 18a shows that 72%
RL tasks have at least 10 gang-scheduled instances, with the
largest one running over 1,000 instances. Most RL instances
are used to run simulations, eating up lots of CPUs and net-
work bandwidth but only a small fraction of GPUs, as shown
in Figure 18b. In fact, in the largest RL task, each instance
requests only 0.05 GPUs.

6.3 Deployed Scheduling Policies
Compared to low-GPU tasks, high-GPU tasks have picky
scheduling requirements and are usually run by business-
critical applications. They are hence differentiated from other
tasks and scheduled as first-class citizens.

Reserving-and-packing. In our cluster, the scheduler em-
ploys a reserving-and-packing policy. That is, it intention-
ally reserves high-end GPUs (e.g., V100/V100M32 with
NVLinks) for high-GPU tasks, while packing the other work-
loads to machines with less advanced GPUs (e.g., T4 and
Misc). Specifically, for each task, the scheduler characterizes
its computation efficiency using a performance model that
accounts for many task features, such as the degree of paral-
lelism, the used ML model, the size of embedding [59,64,70],
and the historical profiles of other similar tasks. Tasks with
high computation efficiency larger than a certain threshold
are identified as high-GPU.

For each task, the scheduler generates an ordered sequence
of allocation plans; each plan specifies the intended GPU
device and is associated with an attempt timeout value. The
scheduler attempts allocation following the ordered plans: it
waits for the availability of the intended GPU specified in the
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Figure 19: Task queueing delays in simulation with load-
balancing (Balanced) and reserving-and-packing (R&P).

current plan until timeout, and then moves on to the next plan
for another attempt. For high-GPU tasks, the allocations of
high-end GPUs are attempted before the less advanced ones
in the ordered plans; for other tasks, the order is reversed. Our
GPU scheduler is implemented atop Fuxi [26, 71], a locality-
tree based scheduling system.

Load-balancing. Given the potential resource contention
and interference between co-located task instances (Sec-
tion 6.2), maintaining load balancing across machines with
similar specs is also important. Therefore, under reserving-
and-packing, the scheduler also prioritizes instance schedul-
ing to machines with low allocation rate, measured as a
weighted sum of the allocated CPUs, memory, and GPUs
normalized by the machine’s capacity.

Benefits. Our scheduler prioritizes reserving-and-packing
over load-balancing. To justify this design, we evaluate two
scheduling policies using the simulator described in Sec-
tion 5.2: 1© simply load-balancing machines using progres-
sive filling (always scheduling a task’s instances to the
least utilized node), and 2© only performing reserving-and-
packing without considering load balancing (R&P). We sam-
ple 100,000 tasks with over 500,000 gang-scheduled instances
from the trace and feed them into the simulator. Figure 19a
shows the CDF of the queueing delays of all instances and
tasks under the two policies. Note that the queueing delay of a
task is also the queueing delay of its gang-scheduled instances.
Over 90% instances and tasks are launched immediately under
the two policies. Compared to load-balancing, reserving-and-
packing reduces the average task queueing by 45%, mostly
attributed to the significant cutoff of the tail latency by over
10,000 seconds. Figure 19b further compares the queueing de-
lays of business-critical tasks and instances requesting V100
GPUs under the two policies: reserving-and-packing reduces
the average task queueing delay by 68%. The simulation re-
sults justify our design of prioritizing reserving-and-packing
over load-balancing.

6.4 Open Challenges
However, our scheduler policy design is not without its prob-
lems, many of which remain open to address. We next discuss



Table 2: Mismatch between machine specs and instance re-
quests, in terms of the provisioned/requested CPUs per GPU.

vCPU cores per GPU All nodes 8-GPU nodes 2-GPU nodes

Machine specs 23.2 12.0 38.1
Instance requests 21.4 22.8 18.1

those open challenges, which we believe also stand in other
GPU clusters with heterogeneous machines.

Mismatch between machine specs and instance requests.
We observe a mismatch between machine specs and instance
requests. Table 2 compares the average number of provisioned
and requested vCPU cores per GPU in machines with 8 and
2 GPUs and their running instances. In 8-GPU machines, 12
vCPU cores are provisioned for each GPU. Yet, the instances
running in those machines request 22.8 vCPU cores per GPU
on average. On the other hand, CPUs in 2-GPU machines are
over-provisioned, where the CPU-to-GPU ratio is more than
twice of the instance requests.

To understand how the mismatch may affect the machine
utilization, we randomly sample a number of nodes with dif-
ferent specs and depict the requests and usages of CPUs and
GPUs in heatmaps shown in Figure 20, where each row cor-
responds to one machine, and all values are normalized to the
machine’s capacity. Compared to 8-GPU nodes, 2-GPU ma-
chines have substantially underutilized CPUs despite GPUs
being heavily occupied. On average, P100 (T4) machines
have 31% (20%) CPUs allocated with only 19% (10%) CPU
utilization (Figures 20c and 20d).

We stress that the mismatch between machine specs and
instance requests is not fundamental, as the cluster-wide CPU-
to-GPU specs remains close to the overall instance requests
(23.2 vs. 21.4 as shown in Table 2). We therefore believe that
the mismatch can be avoided or at least mitigated by improved
scheduling (e.g., rescheduling some high-CPU instances in
8-GPU machines to 2-GPU nodes).

Overcrowded weak-GPU machines. Compared to other
machines, those with less advanced GPUs are overcrowded.
The problem becomes even more salient in 8-GPU nodes
(Misc GPUs) as shown in Figure 20a. On average, 77% CPUs
and 74% GPUs are allocated in these machines. CPUs are
better utilized than GPUs: the utilization of CPU is 43% on
average, while the average utilization of GPU is 18%. This
result is partly caused by our scheduling algorithm prioritizing
weak-GPU machines for low-GPU tasks (Section 6.3), which
account for a large instance population in our cluster.

Imbalanced load in high-end machines. Compared to
other nodes, high-end machines with advanced V100 GPUs
are less crowded (Figure 20b), with the average allocation
ratios of CPUs and GPUs being 35% and 49%, respectively.
These machines are usually reserved for a small number of
important high-GPU tasks, thus suffering from low utilization.
We also observe imbalanced load among V100 machines. In
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Figure 20: Heatmap of requests and usages of CPU and GPU
in machines with different specs. Each row corresponds to
one machine.

Figure 20b, the machines near the bottom are more crowded
than the others. This suggests that the current load-balancing
algorithm still has plenty room to improve (Section 6.3).

CPU can be the bottleneck. As shown in Section 6.2, a
large number of ML tasks use CPUs more extensively than
GPUs. These tasks are more likely to get slowdown in ma-
chines with high CPU contentions. To see this, we study the
correlation between machine utilization and instance slow-
down in the trace and depict the results in Figure 21. Our
analysis focuses on the recurring tasks (Section 5.2). In each
task recurrence, we divide the instances into three groups:
1) instances with accelerated execution whose duration is
the shortest 15%, 2) normal execution whose duration is the
middle 70%, and 3) delayed execution whose duration is the
longest 15%. Figure 21a compares the CPU utilization in ma-
chines running accelerated, normal, and delayed instances. In
general, machines running delayed instances measure higher
CPU utilization than those running accelerated and normal
instances. However, such correlation is not found on GPUs.
As illustrated in Figure 21b, the distributions of GPU utiliza-
tion show no substantial differences across machines running
accelerated, normal, and delayed instances.

We next zoom in to the popular CTR prediction tasks with
high CPU usage (Section 6.2). Figure 22 shows the CDF of
CPU/GPU utilization in machines running accelerated and
delayed instances, respectively. In machines with over 24%
CPU utilization run 50% delayed instances but only 10%
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Figure 21: Correlation between machine utilization (CPU
and GPU) and instance slowdown. Machines hosting delayed
instances have higher CPU utilization than those hosting nor-
mal and accelerated ones. In contrast, such correlation is not
found on GPUs. The boxes depict the 1/128, 1/64, . . . , 1/4, 1/2,
3/4, . . . , 63/64, 127/128 quantile values [34, 61].

0 25 50 75 100
Machine-level CPU usage (%)

0
20
40
60
80

100

CD
F 

(%
)

delayed
accelerated

(a) CDF of machine CPU usage.

0 25 50 75 100
Machine-level GPU usage (%)

0
20
40
60
80

100

CD
F 

(%
)

delayed
accelerated

(b) CDF of machine GPU usage.

Figure 22: The impact of resource utilization to the execution
of CTR prediction instances with high-CPU usages.

accelerated instances (Figure 22a), an evidence of strong cor-
relation between CPU contention and instance slowdown.
GPU contention, on the other hand, has no clear contribution
to instance slowdown (Figure 22b).

To summarize, task instance scheduling in GPU clusters
should also account for the potential interference caused by
CPU contentions. This essentially calls for a multi-resource
scheduler that jointly considers CPUs, GPUs, memory, I/O,
and network when making scheduling decisions.

7 Discussion

Support of elastic scheduling. One fundamental challenge
posed to GPU schedulers in heterogeneous clusters is the
gang-scheduling requirement of distributed training. Some
frameworks [6, 13] are hence developed to support elastic
scheduling which allows a training job to dynamically ad-
just the number of workers on the fly. Compared to gang-

scheduling jobs, elastic-scheduling jobs are easier to handle:
they can start with a small amount of resources and later scale
to more GPUs when the cluster becomes less crowded. How-
ever, elastic scheduling introduces non-determinism to final
model accuracy [27, 63].

Machine provisioning and resource disaggregation.
GPU schedulers should also account for machine provision-
ing: in our previous analysis, although 8-GPU machines pro-
vide abundant GPU processing power, 2-GPU machines can
be a better fit to tasks with heavy CPU processing. To make
the problem simplified, many system works propose to decom-
pose monolithic machines into a number of distributed, disag-
gregated hardware components for improved hardware elastic-
ity [53], despite the non-negligible communication overhead.
TensorFlow has recently made a framework-level attempt
towards this direction. It released an experimental data ser-
vice [5] to decouple data pre-processing from GPU training
so as to address the CPU bottleneck. However, it requires
changing user’s source code with non-trivial efforts.

8 Related Work

GPU sharing. GPU sharing can be supported at different
levels. At the GPU hardware level, NVIDIA recently released
the Multi-Instance GPU (MIG) [10] feature that enables par-
titioning a large GPU into multiple small GPU instances
with isolated memory and bandwidth. However, MIG is only
available on the latest A100 GPUs, and it does not support
arbitrary GPU partition. At the GPU software level, GPU
time-multiplexing can be implemented by intercepting CUDA
APIs [24,28,54]. Yet, it usually introduces non-trivial context
switching overhead and does not provide a good isolation be-
tween the co-located task instances. NVIDIA Multi-Process
Service (MPS) [11] offers an alternative solution, but it cannot
isolate failures among co-executed process. At the framework
level, by extending standard ML frameworks such as Ten-
sorFlow and PyTorch, AntMan [66] and Salus [68] enable
fine-grained GPU sharing and manage GPU memory for each
task instance at a low cost. However, Salus requires users
to adapt their code to the framework, while AntMan only
supports training tasks.

GPU cluster scheduler. Many GPU cluster schedulers have
been proposed recently (Table 1). Notably, Optimus [49] and
Tiresias [29] schedule distributed training jobs with an objec-
tive of minimizing the average completion time; Themis [41],
Gandivafair [18], and HiveD [72] further consider completion-
time fairness for the training jobs. All these works support
no GPU sharing, with the minimum allocation unit being
one GPU. The clusters used in evaluation are of limited size,
workload diversity, and machine heterogeneity.

ML workload characterization. In addition to computa-
tion, communication and I/O are also important for distributed
training and are thus the focus in the previous characterization



studies. For example, tf.data [45] reports that a majority of
production ML workloads read many terabytes of data and
spend a large proportion of time in data loading. Some ML
schedulers [50,52] study the training efficiency with different
network bandwidth and propose to mitigate the communica-
tion overhead for accelerated training. An earlier characteri-
zation of ML training tasks in Alibaba PAI [59] suggests to
replace the PS-Worker architecture with Ring AllReduce to
better exploit the high-speed NVLink among GPUs. These
works mainly focus on distributed training but leave aside the
general MLaaS workloads and cluster resource management.

9 Conclusion

In this paper, we characterized a two-month production trace
consisting of a mix of training and inference tasks in a large
GPU cluster of Alibaba PAI. We made a number of obser-
vations. Notably, the majority of tasks have gang-scheduled
instances and are executed recurrently. Most of them are small,
requesting less than one GPU per instance, whereas a small
number of business-critical tasks demand high-end GPUs
interconnected by NVLinks in one machine. For those low-
GPU tasks, CPU is often the bottleneck, which is used for
data pre-processing and simulation. To better schedule the
PAI workloads, our scheduler enables GPU sharing and em-
ploys a reserving-and-packing policy that differentiates the
high-GPU tasks from the low-GPU ones. We also identified
a few challenges that remain open to address, including load
imbalance in heterogeneous machines and the potential CPU
bottleneck. We have released the trace to facilitate future
research on improved GPU scheduling.
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