
ZipServ: Fast and Memory-Efficient LLM Inference
with Hardware-Aware Lossless Compression

Ruibo Fan
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

ruibo.fan@connect.hkust-gz.edu.cn

Xiangrui Yu
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

xyu868@connect.hkust-gz.edu.cn

Xinglin Pan
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

xpan413@connect.hkust-gz.edu.cn

Zeyu Li
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

zli755@connect.hkust-gz.edu.cn

Weile Luo
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

wluo976@connect.hkust-gz.edu.cn

Qiang Wang
Harbin Institute of Technology,

Shenzhen
Shenzhen, China

qiang.wang@hit.edu.cn

Wei Wang
The Hong Kong University of Science

and Technology
Hong Kong, Hong Kong SAR

weiwa@cse.ust.hk

Xiaowen Chu
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

The Hong Kong University of Science
and Technology

Hong Kong, Hong Kong SAR
xwchu@ust.hk

Abstract
Lossless model compression holds tremendous promise for
alleviating the memory and bandwidth bottlenecks in bit-
exact Large Language Model (LLM) serving. However, ex-
isting approaches often result in substantial inference slow-
downs due to fundamental design mismatches with GPU
architectures: at the kernel level, variable-length bitstreams
produced by traditional entropy codecs break SIMT par-
allelism; at the system level, decoupled pipelines lead to
redundant memory traffic. We present ZipServ, a lossless
compression framework co-designed for efficient LLM infer-
ence. ZipServ introduces Tensor-Core-Aware Triple Bitmap
Encoding (TCA-TBE), a novel fixed-length format that en-
ables constant-time, parallel decoding, together with a fused
decompression-GEMM (ZipGEMM) kernel that decompresses
weights on-the-fly directly into Tensor Core registers. This
"load-compressed, compute-decompressed" design eliminates
intermediate buffers and maximizes compute intensity. Ex-
periments show that ZipServ reduces the model size by
up to 30%, achieves up to 2.21× kernel-level speedup over
NVIDIA’s cuBLAS, and expedites end-to-end inference by

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’26, Pittsburgh, PA, USA
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790250

an average of 1.22× over vLLM. ZipServ is the first lossless
compression system that provides both storage savings and
substantial acceleration for LLM inference on GPUs.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms.

Keywords: LLM Inference, Lossless Compression, GEMM,
GPU, Tensor Core
ACM Reference Format:
Ruibo Fan, Xiangrui Yu, Xinglin Pan, Zeyu Li, Weile Luo, Qiang
Wang, Wei Wang, and Xiaowen Chu. 2026. ZipServ: Fast and
Memory-Efficient LLM Inference with Hardware-Aware Lossless
Compression. In Proceedings of the 31st ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’26), March 22–26, 2026,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3779212.3790250

1 Introduction
The transformative power of Large Language Models (LLMs)
like GPT-4 [54], LLaMA-3 [17], and Qwen-3 [70] is rooted in
their massive scale [3, 36], enabling a new paradigm of AI ap-
plications [6, 60, 74, 81]. However, this immense scale creates
significant deployment challenges, making GPU memory
capacity and bandwidth the primary bottlenecks for LLM
serving, especially in resource-constrained environments.
Model compression offers a promising solution for ef-

ficient LLM deployment. Most existing approaches are
lossy, reducing size by approximating model weights via

https://orcid.org/0009-0006-7492-2069
https://orcid.org/0009-0005-2478-1512
https://orcid.org/0000-0002-1172-9935
https://orcid.org/0009-0008-4381-0544
https://orcid.org/0009-0007-2875-0056
https://orcid.org/0000-0002-2986-967X
https://orcid.org/0000-0002-4585-4152
https://orcid.org/0000-0001-9745-4372
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790250
https://doi.org/10.1145/3779212.3790250
https://doi.org/10.1145/3779212.3790250

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

Figure 1. Execution time of lossless compression pipelines
on NVIDIA L40S GPU with GateUp_proj layers.

quantization (e.g., GPTQ [23], AWQ [43]) or pruning (e.g.,
SparseGPT [22]). However, such approximations risk accu-
racy loss. For instance, aggressive 4-bit quantization (e.g.,
MXFP4) slashes accuracy from 56.0% to 36.2% on Live-
CodeBench [44], while even robust int8 quantization (GPTQ-
int8) can cause up to 11.1% loss in long-context reasoning
(NOCHA) [49]. These risks undermine reliability in safety-
critical and user-facing settings, motivating approaches that
guarantee bit-exact reproducibility and numerical integrity.
Lossless compression offers a compelling alternative by

providing bit-exact model representation without accuracy
loss. To date, its benefits have largely targeted storage and
training workflows. For example, LMC [71] and ZipNN [29]
employ Huffman [31] to compress model checkpoints for
efficient storage and distribution, while NeuZip [28] and
DietGPU [33] mitigate memory and communication over-
head during training. Although recent efforts, notably
DFloat11 [85], aim to extend these gains to inference, prac-
tical efficiency remains elusive. When integrated into serv-
ing pipelines, existing lossless techniques incur significant
runtime overhead. As shown in Figure 1, the decoupled de-
compression step alone takes 1.56–3.44× the time of the core
inference computation. This overhead forces an unpleasant
tradeoff between memory efficiency and runtime efficiency.
We contend that this tradeoff is not fundamental but

arises from a mismatch between conventional compression
algorithms and modern GPU architectures. The issue mani-
fests at two levels. At the kernel level, traditional entropy
codecs (e.g., Huffman [31] or ANS [18]) produce variable-
length bitstreams, whose decoding demands serialized, data-
dependent operations. These are ill-suited to the lockstep,
parallel SIMT execution model of GPU warps, resulting in
severe control-flow divergence and compute underutiliza-
tion. At the system level, most frameworks employ a decou-
pled inference pipeline: weights are fully decompressed into
a global-memory buffer before kernel consumption. This
staged execution results in redundant, high-latency memory
accesses, eroding compression-provided bandwidth savings
and reducing arithmetic intensity during inference.

To rectify these fundamental algorithm-hardware mis-
matches, we present ZipServ1, the first lossless compres-
sion framework co-designed for high-performance LLM in-
ference on GPUs. Our key observation is that the exponent
bits of BFloat16 weights in LLMs exhibit a highly skewed,
low-entropy distribution in contemporary models. Exploiting
this statistical redundancy, we propose Tensor-Core-Aware
Triple Bitmap Encoding (TCA-TBE), a fixed-length, bitmap-
based weight format tailored to GPU architectures. Unlike
variable-length entropy codecs, TCA-TBE enables constant-
time, parallel decoding using lightweight bitwise operations,
thereby eliminating control-flow divergence and aligning
with the GPU’s SIMT execution model. Paired with TCA-
TBE, ZipServ devises a fused decompression-GEMM kernel
(ZipGEMM). Rather than decompressing weights into global
memory as an intermediate step, ZipGEMM performs on-
the-fly decoding, delivering compressed weights directly into
the register files that feed Tensor Core matrix multiplication
units. This "load-compressed, compute-decompressed" design
eliminates intermediate buffers, reduces data movement, and
maximizes the overlap between computation andmemory ac-
cess. By jointly addressing both the kernel-level and system-
level mismatches, ZipServ transforms the theoretical storage
savings of lossless compression into tangible performance
gains on inference-optimized GPUs.
We demonstrate ZipServ’s effectiveness through com-

prehensive benchmarking against state-of-the-art lossless
approaches, including DietGPU [33], vendor-optimized
nvCOMP [53], and the Huffman-based DFloat11 [85]. Com-
pared to these baselines, which uniformly suffer significant
runtime overhead, ZipServ consistently delivers substantial
accelerations at both the kernel and system level on various
inference-optimized GPUs, including RTX4090, L40S, and
RTX5090. Our fused ZipGEMM achieves speedups of up to
2.21× over NVIDIA’s cuBLAS, and up to 5.53× over DFloat11,
the fastest lossless compression pipeline. These kernel-level
improvements translate into an average 1.22× end-to-end
speedup compared to leading systems like vLLM [39]. Our
results demonstrate for the first time that when co-designed
with hardware, lossless compression can provide both stor-
age savings and substantial LLM inference acceleration.

The main contributions of this paper are as follows:
• We identify the fundamental mismatch between con-
ventional entropy-based compression and GPU archi-
tectures, revealing both kernel- and system-level bot-
tlenecks that hinder efficient inference.
• We propose TCA-TBE, a fixed-length, bitmap-based
encoding tailored to SIMT execution and Tensor Core
tiling, enabling constant-time, parallel decoding.
• We design ZipGEMM, a novel kernel that performs
decompression on-the-fly directly into Tensor Core

1Publicly available at https://github.com/HPMLL/ZipServ_ASPLOS26.git

https://github.com/HPMLL/ZipServ_ASPLOS26.git

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

registers, eliminating intermediate memory buffers
and maximizing compute intensity.
• We present and evaluate ZipServ, a lossless com-
pressed LLM inference framework that achieves end-
to-end speedups across diverse LLMs and GPUs, con-
stituting the first practical evidence that lossless com-
pression can directly accelerate LLM serving.

2 Background
2.1 Transformer-Based LLMs
Transformer-based LLMs [2, 17, 70] are composed of stacked
layers ofmulti-head attention, feed-forward networks (FFNs),
and normalization layers. During inference, computation
proceeds autoregressively in two phases: prefill and decode.
The prefill phase parallelizes computation over the input
prompt, resulting in high arithmetic intensity due to large
matrix multiplications operated over multiple tokens. On
the contrary, the decode phase generates tokens one at a
time, where matrix multiplications involve only a single
token per batch element. The decode phase, hence, suffers
from reduced compute utilization and greater sensitivity to
memory bandwidth. In both phases, the dominant operation
is dense matrix multiplication: 𝑌 =𝑊𝑋 , where𝑊 ∈ R𝑀×𝐾
is a learned weight matrix and 𝑋 ∈ R𝐾×𝑁 are activations,
where𝑀 is the output dimension, 𝐾 is the hidden dimension,
and 𝑁 is the number of tokens.

2.2 BFloat16 Format
BFloat16 (BF16) [35] is a 16-bit floating-point format that
has become the de facto precision standard for LLM inference,
balancing memory efficiency with numerical robustness. It
is natively supported by major hardware accelerators, in-
cluding NVIDIA Tensor Cores [47], Google TPUs [34], and
Intel AMX [37], and is widely adopted in production-scale
models, including LLaMA-3 [17], Qwen [70], and Mistral [2].
A BF16 number consists of 1 sign bit, 8 exponent bits, and 7
mantissa bits. Its numerical value is computed as:

BF16(𝑥) = (−1)sign × 2exponent−127 × (1.mantissa).

This layout preserves the full exponent range of IEEE FP32
(1-8-23) while reducing mantissa precision. Compared to
FP16 (1-5-10), BF16 offers a wider dynamic range, reducing
vulnerability to overflows and underflows in large models.

2.3 GPU Architecture and Tensor Core Execution
Modern GPUs comprise multiple Streaming Multiproces-
sors (SMs), each with SIMT cores, Tensor Cores, registers,
shared memory, and local caches. Threads are grouped
into warps of 32, executing under the Single Instruction,
Multiple Threads (SIMT) paradigm. Tensor Cores are spe-
cialized processors for high-throughput matrix multipli-
cations. On recent NVIDIA architectures [50, 51], Ten-
sor Cores support BF16 operands through the PTX-level

Figure 2. Exponent bit distribution in LLM weights.

mma.sync.m16n8k16 instruction, which performs fused ma-
trix multiply-accumulate (FMA) operations across small ma-
trix tiles. A typical BF16 Tensor Core operation can be ex-
pressed as: 𝐷frag = 𝐴frag × 𝐵frag +𝐶frag, where 𝐴frag ∈ R16×16,
𝐵frag ∈ R16×8, and𝐶frag ∈ R16×8 is the FP32 accumulator frag-
ment. This operation is executed at the warp level, where a
group of 32 threads collaborate to compute the matrix mul-
tiplication. The input and output fragments are distributed
across the entire warp. Each thread holds a specific subset of
fragment elements in its registers, and the complete fragment
is formed collectively.

3 Gaps and Opportunities
Lossless compression enables bit-exact model representation
but is rarely used for inference due to high runtime overheads
stemming from a mismatch between traditional codecs and
GPU architectures. This section quantifies compressibility
in LLM weights and identifies key kernels and system-level
bottlenecks that motivate our co-designed solution.

3.1 Compressibility of BF16 Weights
We analyzed the BF16 weights of leading LLMs, includ-
ing Llama-3-8B-Instruct [17], Mistral-Small-24B-Instruct-
2501 [2], and Qwen2.5-32B-Instruct [69], and observed re-
markable redundancy in their 8-bit exponent fields. As
shown in Figure 2, the exponent distributions are highly
skewed: the top-3most frequent exponents account for more
than 67% of all weights, and the top-7 exponents cover
over 95% (e.g., 96.4% in LLaMA-3 and 97.4% in Mistral-24B).
The information entropy of the exponent field is only 2.57–
2.74 bits, far below its 8-bit allocation, implying a theo-
retical lossless compression ratio of about 1.51× (16/10.6)
for BF16 values. These findings are consistent with prior

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

Figure 3. Existing Lossless Compression for BF16 Weights.
Illustrated with Huffman Encoding.

works [28, 29, 71, 83, 85]. We further scrutinized this redun-
dancy across 3,875 weight matrices from four LLM families
(Gemma-3, Mistral, Qwen2.5, and LLaMA-3.1), revealing a
critical structural property: exponent contiguity. In 99.6% of
these matrices, the top-7 most frequent exponents form a
numerically contiguous sequence (i.e., 𝑒★, . . . , 𝑒★ + 6). Con-
sequently, a simple contiguous window covers 97.1% of all
weights on average, approaching the information-theoretic
limit. In Appendix A, we prove that this is not coinciden-
tal but an intrinsic property of LLMs. This contiguity is the
cornerstone of ZipServ. It obviates the need for complex,
hardware-unfriendly variable-length codecs (e.g., Huffman)
in favor of a fixed-length, base-plus-offset representation.
This insight directly enables our Tensor-Core-Aware Triple
Bitmap Encoding (TCA-TBE) and its implicit lookup mecha-
nism described in §4.3.2.

3.2 Kernel-Level Architectural Mismatch
Existing methods exploit the exponent redundancy of BF16
weights by applying entropy coding to the exponent stream.
For example, DFloat11 uses Huffman coding [85], while Diet-
GPU employs Asymmetric Numeral Systems (ANS) [33]. As
shown in Figure 3, these approaches produce a compressed
bitstream with variable-length symbols depending on their
statistical frequency. However, this bitstream must be de-
compressed sequentially to correctly recover each exponent,
which fundamentally conflicts with the lockstep, massively
parallel SIMT execution model of modern GPUs.
To illustrate this mismatch, we examine the three-stage

decompression pipeline in DFloat11 [85]. ❶ Bitstream Par-
titioning. The bitstream is split into chunks for parallel
thread processing. However, because variable-length sym-
bols cross chunk boundaries, threads cannot operate indepen-
dently but require additional metadata to locate valid symbol
start points, introducing overhead and disrupting parallel
execution. ❷ Symbol Extraction. Threads use hierarchical
lookup tables (LUTs) for symbol decoding—a data-dependent
operation. When warp threads encounter different symbol
lengths, faster threads stall for slower ones, causing diver-
gence and underutilization of GPU resources. ❸ Pointer Ad-
vancement. After symbol decoding, each thread advances
its bit pointer by the symbol’s length, which is only known

Figure 4. Existing lossless compression inference pipeline.

after the lookup completion. This inherently serializes the de-
coding loop and sacrifices opportunities for instruction-level
parallelism. Our evaluation shows that on L40S GPUs, even
highly optimized decompressors (e.g., ANS-based DietGPU
and Huffman-based DFloat11) achieve only 43.7% and 76.5%
of peak memory bandwidth, respectively. This inefficiency
exposes a fundamental algorithm-hardware mismatch: en-
tropy coding is inherently data-dependent, while efficient
GPU execution desires regular, uniform parallelism.

3.3 Inefficiency of Decoupled Inference Pipeline
The architectural inefficiency of entropy-coded decoding is
found not only at the kernel level, but also at the system
pipeline level for LLM inference. In mainstream approaches,
decompression is performed as a separate, decoupled pre-
processing stage (see Figure 4): it materializes the entire de-
compressed weights in global memory first and then passes
it to the compute kernels. This decoupled pipeline design
leads to redundant data transfers, undermining the benefits
of compression, particularly in bandwidth-constrained envi-
ronments. We analytically quantify its inefficiency using the
Roofline model, focusing on Compute Intensity (CI).
Compute Intensity. CI measures the number of floating-
point operations (FLOPs) performed per byte read from
global memory. For a typical BF16 GEMM operation 𝑌𝑀×𝑁 =

𝑊𝑀×𝐾𝑋𝐾×𝑁 , the compute intensity is:

𝐶𝐼𝐺𝐸𝑀𝑀 =
𝑀𝑁𝐾

𝑀𝐾 +𝐾𝑁 +𝑀𝑁 . (1)

In the decoupled pipeline scenario, assuming an average
compression ratio (CR) of 1.51 (§3.1), the CI becomes:

𝐶𝐼Decoupled =
2𝑀𝑁𝐾

𝑀𝐾

(
2
CR + 4

)
+ 2(𝐾𝑁 +𝑀𝑁)

≈ 𝑀𝑁𝐾

2.66𝑀𝐾 +𝐾𝑁 +𝑀𝑁 .

(2)

RooflineModel Analysis. Figure 5 illustrates the Roofline
analysis on an NVIDIA RTX4090. During the decode stage,
both the standard GEMM and the decoupled pipeline oper-
ate in the memory-bound regime, where performance scales
linearly with CI. However, our analysis highlights a pro-
nounced penalty for the decoupled approach: the additional
memory traffic required to materialize intermediate decom-
pressed weights significantly reduces CI. Specifically, for a

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 5. Roofline analysis.

weight matrix of size𝑀 = 𝐾 = 4096, the decoupled pipeline
exhibits a CI degradation of 62.3%, 62.2%, 62.0%, and 61.7%
relative to standard GEMM for batch sizes of 8, 16, 32, and
64, respectively.
ZipServ’s Fused Design. The inefficiency of decoupled
pipelines arises directly from staging decompressed weights
in global memory. ZipServ addresses this by introducing
a fused decompression-GEMM kernel that directly fetches
compressed weights from DRAM and decompresses them
on-the-fly into register files, which immediately feed the
Tensor Core. This approach effectively increases CI to

𝐶𝐼ZipServ =
2𝑀𝑁𝐾

𝑀𝐾 · 2
CR + 2(𝐾𝑁 +𝑀𝑁)

≈ 𝑀𝑁𝐾

0.66𝑀𝐾 +𝐾𝑁 +𝑀𝑁 . (3)

Revisiting the Roofline model in Figure 5, ZipServ’s fused ex-
ecution (𝐶𝐼ZipServ) demonstrates a substantial improvement,
achieving even higher CI (approximately 50%) than the un-
compressed GEMM baseline. This benefit, most pronounced
in memory-bound regimes, leads to linear speedups relative
to the compression ratio, translating information-theoretic
redundancy into wall-clock acceleration.

4 Design of ZipServ
Our earlier analysis identifies both kernel-level and system-
level sources of inefficiency that hinder the decoding of loss-
less compression in LLM inference. In this section, we present
ZipServ, a lossless compression system co-designed for stor-
age efficiency and fast, bit-exact LLM inference.

4.1 Overview and Workflow
As illustrated in Figure 6, ZipServ consists of two main
components: an offline compressor, which transforms BF16
model weights into a parallelization-friendly compressed
representation, and an online inference engine, responsible
for efficient decoding and computation at runtime.
Offline Compressor. At the core of the offline compressor
is the Tensor-Core-Aware Triple Bitmap Encoding (TCA-TBE),
a fixed-length, bitmap-based compression format designed
to enable parallel decoding via GPU SIMT execution and
Tensor Core–accelerated GEMM operations. As outlined in
Algorithm 1, given a model, the compressor first profiles
the exponent distribution of each layer’s weights. Instead of

selecting arbitrary frequent exponents, it identifies a win-
dow of 𝑘 numerically consecutive exponent values (typically
𝑘 = 7) that maximizes coverage of the weight distribution.
The compressor records the value immediately preceding
this range as the BaseExp (i.e., min(range) − 1). Using this
range, the compressor encodes the entire weight matrix into
the TCA-TBE representation. Each 8 × 8 tile of weights is
converted into three 64-bit bitmaps and two compact value
buffers: one for high-frequency values falling within the se-
lected exponent range (storing only the sign and mantissa
relative to BaseExp), and another for outliers in full BF16
precision. The resulting compressed model is then loaded
onto the GPU, ready for serving.
Online Inference Engine. The inference engine employs
a stage-aware strategy that adapts the execution pipeline for
the prefill and decode phases, all on the unified TCA-TBE
format. During the compute-bound prefill stage, the engine
performs decoupled execution: a dedicated decompression
kernel decompresses the weights into global memory first,
followed by the prefill computation. This approach allows
high-throughput GEMM to effectively amortize the decom-
pression overhead. In the memory-bound decode stage,
the engine switches to a fused decompression-GEMM kernel
(ZipGEMM). ZipGEMM enables a “load-compressed, compute-
decompressed” execution model, where weights are decom-
pressed on-the-fly directly into Tensor Core registers. This
eliminates redundant data transfers and maximizes compute
intensity for each token generation. These two specialized
execution paths deliver near-optimal inference performance.

4.2 Tensor-Core-Aware Triple Bitmap Encoding
ZipServ is built on top of a novel Tensor-Core-Aware Triple
Bitmap Encoding (TCA-TBE) scheme. It is designed to mini-
mize the weight memory footprint while enabling efficient
parallel decoding on GPUs. In contrast to existing variable-
length bitstream-based entropy codecs, TCA-TBE employs
a fixed-length, tile-structured representation that ensures
constant-time, thread-local decompression. Its data layout is
carefully aligned with Tensor Core tiling and register-level
operand distribution, allowing the decompressed weights
to be consumed directly by the mma.sync instruction. The
core of TCA-TBE is a fixed-length 3-bit codeword assigned
to each weight element, representing one of eight possible
states (000–111). During offline compression, ZipServ pro-
files the exponent histogram of a weight matrix and identifies
the top-7 most frequent exponent values and maps them to
codewords 001–111. The special codeword 000 serves as a
fallback, designating weights whose exponent falls outside
the top-7, which are then stored in full precision.
The Choice of Codeword Length. We choose the 3-bit
codeword because it achieves a near-optimal compression
ratio by leveraging the highly skewed exponent distributions
observed in contemporary LLMs. To quantify this design

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

Figure 6. Overview of ZipServ. ZipServ features an offline lossless compressor (left) and an online inference engine (right).

Algorithm 1 ZipServ Offline Compressor (TCA-TBE)
Input: Weight MatrixW, Tile Size 𝑇 = 8 × 8
Output: Bitmaps B1..3, High-Freq BufferH , Fallback Buffer
L, BaseExp 𝑒𝑏𝑎𝑠𝑒

1: ⊲ Phase I: Global Exponent Analysis
2: 𝐻𝑖𝑠𝑡 ← ComputeExponentHistogram(W)
3: 𝐸𝑡𝑜𝑝 ← SelectTop7ConsecutiveExponents(𝐻𝑖𝑠𝑡)
4: 𝑒𝑏𝑎𝑠𝑒 ← min(𝐸𝑡𝑜𝑝) − 1 ⊲ Set base for implicit lookup
5: ⊲ Phase II: Tile Encoding
6: for each tile 𝑡 ∈ W do
7: Initialize local bitmaps 𝑏1, 𝑏2, 𝑏3 ← 0
8: for 𝑖 = 0 to 63 do
9: 𝑤 ← 𝑡 [𝑖]; 𝑒 ← 𝑤.𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

10: if 𝑒 ∈ 𝐸𝑡𝑜𝑝 then
11: 𝑐 ← 𝑒 − 𝑒𝑏𝑎𝑠𝑒 ⊲ Compute 3-bit code 𝑐 ∈ [1, 7]
12: 𝑏1 [𝑖] ← 𝑐0; 𝑏2 [𝑖] ← 𝑐1; 𝑏3 [𝑖] ← 𝑐2 ⊲ Set bits
13: H .Push(Pack(𝑤.𝑠𝑖𝑔𝑛,𝑤 .𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎))
14: else
15: L .Push(𝑤) ⊲ Store full precision fallback
16: end if
17: end for
18: Store 𝑏1, 𝑏2, 𝑏3 to global B1..3
19: end for

choice, we calculate the expected per-element storage cost
as:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐵𝑖𝑡𝑠 (𝑛) = 𝑟𝑛 · (𝑛 + 8) + (1 − 𝑟𝑛) · (𝑛 + 16),

where 𝑛 is the codeword length and 𝑟𝑛 is the proportion of
weights covered by the top 2𝑛−1 exponent values. As shown
in §3.1, 𝑟3 ≈ 0.96, yielding an average of 11.3 bits per element,
which approaches the theoretical lower bound (8+2.6=10.6
bits) and offers clear advantages over 2-bit (12.4 bits) and
4-bit (12.1 bits) codewords. Besides, the 3-bit encoding yields
a compact 7-entry codebook, enabling decoding via a simple
table lookup. This requires only a handful of bitwise oper-
ations per thread, which can be efficiently performed with
warp-synchronous Tensor Core pipelines.

Figure 7. Tensor-Core-Aware Triple Bitmap Encoding. The
4 × 4 FragTile shown is illustrative; the actual size is 8 × 8.

Decoupled Triple Bitmap Layout. Tomaximize decoding
efficiency on SIMT architectures, TCA-TBE implements a de-
coupled triple bitmap layout rather than packing codewords
into a dense bitstream. Conventional bitstreams are ineffi-
cient on GPUs because packing non-byte-aligned codes (e.g.,
3-bit) forces codewords to span memory word boundaries.
This necessitates complex logic for non-aligned accesses and
introduces data-dependent branching, which in turn causes
thread divergence that severely degrades SIMT throughput.
TCA-TBE avoids these bottlenecks by decomposing the

3-bit codewords for each 8× 8 weight tile into three indepen-
dent 64-bit bitmaps, with each bitmap representing a single
bit-plane (Figure 7). This design enables two benefits. First,
it guarantees coalesced memory accesses, as each bitmap is
a contiguous 64-bit word, naturally aligned to native mem-
ory boundaries. Second, it enables branch-free decoding. All
threads in a warp follow an identical execution path, aligning
with the SIMT model on modern GPUs.

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 8. Data movement and instruction pipeline.

Hierarchical Tiling Design. TCA-TBE adopts a three-
level hierarchical tiling scheme that partitions the weight
matrix according to the architectural granularity of modern
GPUs. ❶ FragTile (FT): The base unit is an 8×8 tile, matching
the smallest operand fragment of Tensor Core instruction. ❷
TensorCoreTile (TT): Each 16× 16 tile is composed of a 2× 2
grid of FragTiles. This size aligns with the operand dimen-
sions (m=16, k=16) required by PTX-level Tensor Core mma in-
structions (mma.m16n8k16).❸ BlockTile (BT): At the coarsest
level, a 64 × 64 tile aggregates multiple TensorCoreTiles and
is processed cooperatively by a thread block. The FragTiles
within a TensorCoreTile are stored in column-major order,
mirroring the operand register layout (e.g., Ra0–Ra3) ex-
pected by Tensor Core instructions. This design eliminates
the need for runtime coordinate transformation, reducing
instruction overhead. Each 8 × 8 FragTile is encoded using
five buffers. ❶ Three 64-bit bitmaps, each representing one
bit-plane of the 3-bit codewords. ❷ A PackedSignMantissa
buffer, which holds the compact 8-bit representation (sign
and mantissa) of weights whose exponents fall within the
top-𝑘 frequent classes. ❸ A FullValue buffer, which stores
full-precision BF16 values for weights not covered by the
exponent codebook. At the matrix level, TCA-TBE organizes
these buffers into four contiguous global arrays, each nested
according to the tiling hierarchy. In addition, an Offset ar-
ray records the starting offset of each GroupTile within the
PackedSignMantissa and FullValue arrays.

4.3 Fused ZipGEMM Kernel Design
TCA-TBE’s SIMT-friendly design opens up new opportuni-
ties for high-throughput decoding. To achieve this, ZipServ
fuses decompression and matrix multiplication into a single
kernel, ZipGEMM, that fetches weights from global mem-
ory in a compact TCA-TBE format and decompresses them
just-in-time during computation. ZipGEMM enables a load-
compressed, compute-decompressed execution model, sub-
stantially reducing the memory bandwidth requirement for
each token generation in the decode stage (see Figure 5).

4.3.1 Kernel Workflow. Figure 8 illustrates the workflow
of the ZipGEMM kernel. Based on a split-K tiling architec-
ture, each thread block iteratively processes the𝐾 dimension
in chunks. In each iteration, the kernel proceeds through
four coordinated stages. ❶ Tile Loading. Threads coopera-
tively load the compressed weight tile and the correspond-
ing activation tile from global memory into shared memory,
with asynchronous and vectorized memory instructions (i.e.,
LDGSTS.128) to bypass the L1 cache and improve global
memory bandwidth utilization. The PackedSignMantissa
and FullValue arrays within each tile are padded offline
to ensure 128-bit alignment. ❷ Warp-Level Decoding. Each
warp independently decompresses the compressed weight
from shared memory. The decompressor reconstructs the
original BF16 values in a layout compatible with Tensor
Core consumption, utilizing lightweight ALU operations and
avoiding shared memory round-trips. ❸ Activation Register
Transfer. The activation tile is moved from shared memory
into registers using the LDSM.M88 instruction, which enables
a warp to load a 16 × 16 tile and arrange it in the layout re-
quired for Tensor Cores. ❹ Tensor Core Computation. Once
both decompressed weights and activations reside in regis-
ters, the warp performs Tensor Core mma instructions. The
execution path closely mirrors the standard cuBLAS GEMM
kernels, while operating directly on compressed representa-
tions and reducing global memory accesses.

4.3.2 Efficient Decompressor. ZipGEMM incorporates
an efficient Decompressor that enables thread-local recon-
struction of compressed weights directly within the register
file. The core principle of the Decompressor is that each
thread independently decompresses the elements required for
the proper Tensor Core fragment layout. Specifically, as shown
in Figure 7, the fragment layout requires that thread 𝑖’s
.bf16x2 register (e.g., Ra0) holds the values at positions
2𝑖 and 2𝑖 + 1 within the 8 × 8 tile, denoted as 𝑎0 and 𝑎1
respectively. Since each element is encoded in one of two
states—either as a high-frequency fixed-length code or as a
fallback full-precision value—and these states are distributed
in an unstructured manner, the decompressor solves a sparse,
non-uniform spatial reconstruction problem. Two challenges
arise in this context. First, each thread must efficiently de-
termine the state of its assigned element (compressed or
fallback). Second, each thread should recover the original
BF16 representation in a deterministic, SIMT-friendly man-
ner. To this end, ZipServ’s Decompressor is structured into
three tightly integrated stages: spatial bitmap indicator, dy-
namic addressing, and fast exponent reassembly (see Figure
9 and Algorithm 2).
Spatial Bitmap Indicator. Each thread first determines
the storage mode of its assigned elements by evaluating a
spatial indicator mask. During offline compression, each 8×8
weight tile is encoded using three 64-bit bitmaps, where each

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

Figure 9. The Decompressor Design.

Algorithm 2 ZipGEMM Thread-Local Decompression
Input: BitmapsB1..3, BuffersH ,L, BaseExp 𝑒𝑏𝑎𝑠𝑒 , LaneID 𝑙
Output: Register pair 𝑅 containing two BF16 values
1: ⊲ Step 1: Spatial Indicator Construction
2: M ← B1 ∨ B2 ∨ B3
3: ⊲ Step 2: Parallel Element Decompression
4: for 𝑘 ∈ {0, 1} do
5: 𝑝 ← 2 · 𝑙 + 𝑘 ⊲ Global position in 8 × 8 tile
6: 𝑚𝑎𝑠𝑘 ← (1 ≪ 𝑝) − 1
7: 𝑖𝑑𝑥H ← Popc(M &𝑚𝑎𝑠𝑘) ⊲ Calculate index
8: if (M ≫ 𝑝) & 1 then
9: ⊲ Case A: High-Frequency Path
10: 𝑣𝑎𝑙 ←H[startH + 𝑖𝑑𝑥H] ⊲ Fetch Sign + Mantissa
11: ⊲Reconstruct 3-bit code
12: 𝑐 ← (B3 [𝑝] ≪ 2) ∨ (B2 [𝑝] ≪ 1) ∨ B1 [𝑝]
13: 𝑒 ← 𝑒𝑏𝑎𝑠𝑒 + 𝑐 ⊲ Implicit Lookup
14: 𝑤𝑘 ← MakeBF16(𝑣𝑎𝑙 .𝑠𝑖𝑔𝑛, 𝑒, 𝑣𝑎𝑙 .𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎)
15: else
16: ⊲ Case B: Fallback Path
17: 𝑖𝑑𝑥L ← 𝑝 − 𝑖𝑑𝑥H ⊲ Calculate index in fallback
18: 𝑤𝑘 ← L[startL + 𝑖𝑑𝑥L]
19: end if
20: end for
21: 𝑅 ← PackRegister(𝑤0,𝑤1)
22: return 𝑅

bitmap encodes a single bit of the 3-bit codeword. At run-
time, the three bitmaps are combined using a warp-level
bitwise OR to produce a single 64-bit indicator mask. Each
bit in this mask specifies the storage mode of one element:
1 for compressed (high-frequency), 0 for fallback (uncom-
pressed). Each thread determines its decoding path by in-
specting the corresponding bits in this spatial indicator mask,
which resides in registers. Specifically, for thread 𝑖 , the bits
at positions 2𝑖 (for 𝑎0) and 2𝑖 + 1 (for 𝑎1) indicate the state

of the two assigned elements. For instance, Thread 19 finds
that bit 38 (2 × 19) is set, indicating its 𝑎0 element is stored
in compressed form. It fetches the packed value from the
high-frequency buffer and proceeds with exponent reassem-
bly. In contrast, Thread 6 sees that bit 12 (2 × 6) is unset and
simply loads its 𝑎0 directly from the fallback buffer. This bit-
wise decision process is lightweight, fully register-resident,
and completes in constant time.
Dynamic Addressing. Once the storage mode is deter-
mined, each thread computes its read offset into the appro-
priate value buffer on-the-fly, without explicit per-element
indices. This is achieved via a lightweight, warp-local prefix
sum over the spatial indicator. For thread 𝑖 , the offset is calcu-
lated by counting how many previous elements of the same
storage type appear in bits [0, 2𝑖 − 1] of the spatial indicator.
Specifically, if the element is compressed (bit = 1), the offset
equals the number of 1s; if uncompressed (bit = 0), it equals
the number of 0s in that range. These counts are efficiently
computed using GPU-native instructions such as __popc()
and __shfl_sync(). For example, Thread 6, encountering
an unset bit at position 12, computes its fallback buffer offset
by counting the number of 0s in bits [0, 11]. Thread 19, with
bit 38 set, counts the number of 1s in bits [0, 37] to access
the compressed buffer. This dynamic addressing mechanism
transforms indexing into a deterministic, SIMT-friendly op-
eration that aligns naturally with GPU execution patterns.
Fast Exponent Reassembly via Implicit Lookup. To
further reduce the decoding overhead, ZipServ reconstructs
exponents using an implicit lookup mechanism based on
arithmetic remapping, avoiding table-based decoding. Dur-
ing offline compression, the top-7 most frequent exponent
values are identified globally and assigned 3-bit codewords
(001–111), ordered by increasing numerical value instead of
frequency rank. A single global base exponent is recorded as
base_exp =min(top_exponents)−1, which is shared by all

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

tiles. At runtime, each thread reconstructs the original expo-
nent by adding the 3-bit codeword to the base exponent. This
operation eliminates shared memory table lookups by using
a single integer ALU instruction. The recovered exponent
is then fused with the sign and mantissa fields to assemble
a valid BF16 value. For example, Thread 19 observes that
bit 38 in the spatial indicator is set and reconstructs the 3-bit
codeword by reading the corresponding bits from the three
bitmap planes, yielding 101 (5). With a global base exponent
of 115, it recovers the original exponent as 115 + 5 = 120,
then combines it with the sign and mantissa to form the
final BF16 value. This arithmetic decoding process is fully
SIMT-compatible, exploits the GPU’s integer pipelines.
Repacking into Tensor Core Fragments. Each thread
repacks the two reconstructed BF16 elements into a single
bfloat162 register, matching the operand layout required
by Tensor Core mma.sync instructions.

4.3.3 Fine-grained Software Pipeline. ZipGEMM uses
a hierarchical two-level pipeline to overlap memory transfer,
decompression, and computation, effectively hiding mem-
ory and decompression latency. At the coarse level, tile-wise
double buffering overlaps global-to-shared memory trans-
fers with computation; at the fine level, slice-wise interleav-
ing overlaps shared-to-register movement and decompres-
sion with Tensor Core operations. This is implemented via
two shared memory buffers for compressed weights (triple
bitmaps, packed sign-mantissa, fallback values) and activa-
tions. Within each tile, computation is sliced along the K
dimension (typically 16 × 16 fragments) and processed us-
ing an interleaved load-decompress-compute pattern. While
Tensor Cores execute matrix multiplication (mma) on slice
𝑖 , ALU units concurrently load and decompress weights for
slice 𝑖 + 1 from shared memory into registers. This ensures a
steady compute flow by hiding decompression and memory
latency behind computation.
To coordinate the two pipeline levels, ZipGEMM

uses a hierarchical barrier strategy for inter-tile and
intra-warp synchronization. Inter-tile synchronization:
cp.async.wait_group<0>() and __syncthreads() en-
sure all asynchronous transfers complete before switching
buffers. This barrier is placed after the final slice decompres-
sion but before the final slice mma, allowing computation to
proceed while the next tile is being loaded and decompressed,
which maximizes overlap and minimizes stalls. Intra-warp
coordination: Intra-warp operations are implicitly synchro-
nized via the SIMT model, requiring no explicit barriers
between load, decompress, and compute at the slice level.

4.4 Stage-Aware Inference Strategy
ZipServ uses the fused ZipGEMM kernel exclusively dur-
ing the decode stage for accelerated token generation. For
the compute-bound prefill stage, where large matrix dimen-
sions (𝑁 = 𝐵𝑆 × 𝑆𝑒𝑞_𝑙𝑒𝑛) provide high arithmetic intensity,

Figure 10. Hierarchical software pipeline design.

ZipServ falls back to a decoupled pipeline: an efficient de-
compression kernel first extracts the compressed weights
to global memory, then performs high-throughput GEMM
operations to amortize the decompression overhead (typi-
cally <4% as shown in §6.4). In both prefill and decode stages,
the decompression kernel and ZipGEMM kernel share the
same compressed format and per-thread decompression logic
(§4.3.2), obviating the need for runtime format conversions.

5 Implementation
We implemented ZipServ as a high-performance, modular
inference backend comprising approximately 3.5K lines of
code. The core engine consists of about 2.5K lines of CUDA
and C++, which implements the offline TCA-TBE compres-
sor and the online ZipGEMM kernel. The kernel is compiled
into a standalone shared library (.so) using nvcc, exposing
C++ APIs for weight packing and kernel launching. The re-
maining 1.0K lines are Python glue code used to integrate
ZipServ into vLLM [39]. We extended vLLM’s model loader
and linear execution modules to support the TCA-TBE for-
mat, utilizing PyBind11 to invoke our custom CUDA kernels.

6 Evaluation
We evaluate the performance of ZipServ at two levels: the
kernel level of the fused ZipGEMM and the standalone De-
compression kernel (ZipServ-Decomp), and the end-to-end
inference framework level. All experiments are conducted on
two platforms. ❶ A consumer-grade server equipped with
4× NVIDIA RTX4090 GPUs (Ada Lovelace, 24GB memory,
Compute Capability 8.9), paired with an Intel Xeon Plat-
inum 8352V CPU (144 cores, 512GB DDR4). ❷ A datacen-
ter platform with 4× NVIDIA L40S GPUs (Ada Lovelace,
48GB), paired with an Intel Xeon Gold 6230R CPU (104 cores,
512GB DDR4). We also evaluate ZipGEMM on the latest ❸
RTX5090 GPU (Blackwell, 32GB, Compute Capability 12.0)
to demonstrate forward compatibility. All code is compiled
using GCC 11.3 and NVCC 12.4 (with NVCC 12.8 specifically
for RTX5090). For kernel-level evaluation, we perform 100
warm-up iterations followed by 1,000 timed executions. For
end-to-end evaluation, each configuration is run 10 times.

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

Figure 11. Kernel performance comparison on NVIDIA RTX4090 and L40S GPUs.

6.1 ZipGEMM Kernel Performance

Datasets. We benchmark the kernel-level performance on
representative linear layers from state-of-the-art LLMs. The
input shapes for kernel benchmarking are directly extracted
from the real weight matrices of prominent LLM families,
including LLaMA3.1 [17] (8B, 70B, and 405B), Qwen2.5 [69]
(7B, 14B, 32B, and 72B), Gemma3 [68] (12B and 27B), and
Mistral [2] (24B and 123B), covering a broad range of model
scales and hidden dimensions.
Baselines. We compare ZipGEMM against four representa-
tive baselines: ❶ cuBLAS_TC v12.4.5 [52], NVIDIA’s official
BF16 Tensor Core GEMM kernel; ❷ DietGPU [33], a popular
open-source, GPU-native rANS codec for lossless decom-
pression of floating-point weights; ❸ nvCOMP (rANS) [53],
NVIDIA’s general-purpose asymmetric numeral systems-
based decompression library; and ❹ DFloat11 [85], a state-
of-the-art Huffman-coded GPU decompression framework
for LLM inference. Since nvCOMP lacks native BF16 sup-
port, we compress exponent bits as a bitstream via rANS and
reconstruct BF16 values with a custom high-performance
kernel. For DFloat11, whose compression code is unavail-
able, we benchmark full Transformer block decompression
latency and linearly scale estimates for other matrix shapes.
Workloads. We profile all linear layers within a Trans-
former block, including the merged QKV projection
(QKV_proj), attention output projection (O_proj), merged
FFN gate and up projection (GateUp_proj), and down pro-
jection (Down_proj), along with the model’s LM head layer.
Benchmarks are conducted at batch sizes of 8, 16, and 32.
Results. We begin by evaluating the performance of our
fused ZipGEMM kernel. Figure 11 shows the normalized

speedup relative to cuBLAS_TC across all evaluated mod-
els and workloads. ZipGEMM consistently outperforms
all baseline methods on both hardware platforms. On the
RTX4090, ZipGEMM achieves an average speedup of 1.31×
over cuBLAS_TC, with a peak speedup of 1.71×. The advan-
tage is even greater on the L40S, with an average speedup
of 1.36× and a maximum of 2.21×. In contrast, other decou-
pled decompression methods introduce substantial overhead,
resulting in significant slowdowns. Specifically, DietGPU,
nvCOMP, and DFloat11 achieve average speedups of only
0.17 × /0.20×, 0.19 × /0.23×, and 0.28 × /0.34× on RTX4090
and L40S, respectively. This indicates that the decoupled
decompression processes incur overheads that exceed the
computation time of the baseline GEMM. ZipGEMM stands
out as the only implementation that can significantly sur-
pass the efficient Tensor Core GEMM. These results high-
light the effectiveness of ZipGEMM’s fused decompression-
computation approach, which efficiently transforms storage
savings into tangible execution speedup.

We further conducted a layer-wise analysis (Figure 11(c)).
ZipGEMM exhibits significant acceleration on most of the
computationally intensive layers within a transformer block.
For instance, within the LLaMA3.1 model family on the L40S,
ZipGEMM achieves average speedups of 1.39× and 1.64× on
the GateUp_proj and Down_proj layers, respectively. How-
ever, ZipGEMM may experience a slowdown when process-
ing certain layers with small shapes; for example, on the
L40S, its performance on the O_proj layer of LLaMA3.1-8B
is reduced to 0.79×. This is primarily because small layers
require fine-grained parameter tuning (e.g., split-K configu-
rations and precise tiling) to fully utilize hardware, which
is beyond the scope of this work. Nevertheless, such layers
account for only a small fraction of the total FLOPs within
a Transformer block. ZipGEMM delivers robust block-level

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 12.Micro-level kernel performance analysis.

Figure 13. Standalone decompression kernel comparison.

speedups of 1.35× for LLaMA3.1-8B and 1.48× for LLaMA3.1-
405B on the L40S.
Micro-level Analysis. We profiled ZipGEMM with Nsight
Compute (NCU) on an RTX4090 to identify the source of
its speedup (𝑀 = 28672, 𝐾 = 4096 and 𝑁 = 32). As shown
in Figure 12, the performance gain stems from a deliberate
architectural trade-off: introducing a predictable ALU work-
load for on-the-fly decoding in exchange for a reduction in
memory traffic. Figure 12(a) quantifies this trade-off. The
high volume of integer and logical instructions (LOP3, IADD,
and POPC) reflects the computational cost of our core de-
coding steps. This workload is the price for a 29.3% drop in
DRAM reads, a direct validation of the TCA-TBE format’s ef-
ficiency. Crucially, the two-level software pipeline effectively
hides the decoding latency by overlapping it with compute
and memory operations. As a result, even with ALU utiliza-
tion soaring to 66.0%, Tensor Core utilization is maintained
at a remarkable 71.6% of the cuBLAS baseline, demonstrating
that compute throughput is preserved (Figure 12(b)). This
high pipeline efficiency is enabled by our data layout. As
seen in Figure 12(c), shared memory bank conflicts are virtu-
ally eliminated (∼4.7K) compared to the millions incurred by
methods like DietGPU. This conflict-free access is a prereq-
uisite for our fine-grained pipeline, ensuring smooth data
flow and maximizing SIMT throughput.

6.2 Decompression Kernel Performance
To further dissect decompression efficiency, we benchmark
our standalone ZipServ-Decomp kernel. Figure 13 presents
the total decompression time for all weights in a full Trans-
former block of LLaMA3.1-8B and Mistral-24B. ZipServ-
Decomp achieves average speedups of 2.14×, 1.83×, and

Figure 14. Cross-generation performance comparison.

Figure 15. ZipServ performance under different N settings.

1.10× over DietGPU, nvCOMP, and DFloat11, respectively.
Although the TCA-TBE format was co-designed to support
fused execution with matrix multiplication, its structure
proves highly efficient for standalone decompression as well.
This efficiency stems from its fixed-length, warp-aligned de-
sign, which eliminates control divergence and enables warp-
synchronous per-thread decoding. In contrast, although ex-
isting baselines are explicitly optimized for decompression,
they often rely on variable-length, entropy-coded formats.
These lead to thread divergence, serialized bit parsing, and
irregular memory access that degrade GPU efficiency.

6.3 Performance Across GPU Generations and Tiers
To establish forward compatibility, we benchmark ZipGEMM
on the latest NVIDIA RTX5090 and compare it against top-
tier datacenter A100 and H800 using LLaMA3.1-8B and
Mistral-24B GateUp_proj layers at batch size 32. We first
directly port ZipGEMM to the Blackwell-based RTX5090
without exploiting new features (e.g., Tensor Memory and
asynchronous WMMA execution [32]). As shown in Figure 14,
ZipGEMM delivers substantial speedups over cuBLAS_TC
on RTX5090—1.34× for LLaMA3.1-8B and 1.87× for Mistral-
24B—confirming the design to be forward-compatible.
ZipGEMM also narrows the consumer–datacenter divide:
on an RTX4090, ZipGEMM outperforms the standard
cuBLAS_TC on A100 with LLaMA3.1-8B (0.195 ms vs. 0.215
ms, 9.3% faster) and is only 2.7% slower on Mistral-24B (0.530
ms vs. 0.516 ms), effectively placing it in the same perfor-
mance class. This trend intensifies on newer hardware.While
a standard RTX5090 trails the H800 by 53.3% (LLaMA3.1-8B)
and 125.7% (Mistral-24B), ZipGEMM reduces these deficits
to 14.1% and 20.8%, respectively (Figure 14(b)), approaching
datacenter-level performance on consumer GPUs.

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

6.4 Overhead Analysis
We analyze the system overhead from two perspectives:
runtime inference overhead and offline preparation cost.
❶ Runtime Overhead. Figure 15 quantifies the overhead
of ZipServ during inference across different 𝑁 settings
(𝑁 = 𝐵𝑆 × 𝑆𝑒𝑞𝑙𝑒𝑛). In the decode stage (small 𝑁 , typically 1–
128), the fused ZipGEMM kernel incurs no overhead. Instead,
it consistently outperforms the cuBLAS_TC baseline in these
memory-bound regimes, with on-the-fly decompression fully
hidden within the kernel execution. For the compute-bound
prefill stage (large 𝑁 , e.g., 8192), where ZipGEMM’s on-
the-fly decompression overhead outweighs its benefits from
reduced memory access, ZipServ switches to a decoupled
pipeline. The efficient decompression kernel first expands
the compressed weights, followed by cuBLAS_TC GEMMs.
This incurs a limited overhead of only ∼4%/2% of the GEMM
time at 𝑁 = 8192/16384. ❷ Offline Compression Cost. Be-
yond runtime performance, we also evaluate the one-time
cost of preparing the model. Compressing the LLaMA-3.1-8B
model takes approximately 2.5 minutes on a 16-core Intel
Xeon 8352V CPU. Given that this is an offline operation per-
formed only once prior to deployment, it does not impact
the critical path of online serving and is negligible when
amortized over the model’s lifecycle.

6.5 End-to-end Inference Performance

Setup. We evaluate the end-to-end inference performance
of ZipServ on a range of representative models and hard-
ware configurations: LLaMA3.1-8B on one RTX4090 GPU,
Mistral-24B on two L40S GPUs, and LLaMA3.1-70B on four
L40S GPUs with tensor parallelism. We benchmark using
batch sizes of 8 and 32, with varied output sequence lengths
of 128, 256, 512, 1024, and 2048 tokens to simulate different
serving scenarios.We compare ZipServ against three leading
baseline systems: ❶ vLLM [39], a state-of-the-art LLM infer-
ence and serving framework; ❷ Transformers [75], a widely
adopted standard library; and ❸ DFloat11 [85], representing
state-of-the-art performance for lossless compression-based
inference frameworks. We measure two key metrics: end-to-
end request latency (total time to generate the full output
sequence) and throughput (output tokens per second). As
shown in Figure 16, ZipServ consistently demonstrates su-
perior performance across all tested configurations.
Results. For latency, on average, across all models and
batch sizes, ZipServ reduces latency by 17.60%, 60.79%, and
82.13% compared to vLLM, Transformers, and DFloat11,
respectively. For throughput, ZipServ provides average
speedups of 1.22× over vLLM, 3.18× over Transformers, and
8.52× over DFloat11. The performance gains are pronounced
for long-context generation, where the memory-bandwidth
savings and computational efficiency of the fused ZipGEMM
kernel in the decode phase become dominant. For instance,
when generating 2048 output tokens with batch size of 32

500 1000 1500 2000
0

50

100
Llama-3.1-8B - Latency (Batch Size 8)

500 1000 1500 2000
0

100

Llama-3.1-8B - Latency (Batch Size 32)

500 1000 1500 2000
500

1000

1500
Llama-3.1-8B - Throughput

500 1000 1500 2000
0

200

400

La
te

nc
y

(s
)

Mistral-24B - Latency (Batch Size 8)

500 1000 1500 2000
0

250

500
Mistral-24B - Latency (Batch Size 32)

500 1000 1500 2000
250
500
750

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Mistral-24B - Throughput

500 1000 1500 2000
Output Length

0

500

1000

Llama-3.1-70B - Latency (Batch Size 8)

500 1000 1500 2000
Output Length

0

1000

2000

Llama-3.1-70B - Latency (Batch Size 32)

500 1000 1500 2000
Output Length

200

400
Llama-3.1-70B - Throughput

ZipServ vLLM Transformers DFloat11

Figure 16. End-to-end performance comparison.

using LLaMA3.1-8B, ZipServ achieves a throughput of 1105
tokens/sec, resulting in a 1.66× speedup over vLLM. We also
analyzed the memory consumption during inference. For
LLaMA3.1-8B, Mistral-24B, and LLaMA3.1-70B, ZipServ re-
duces the weight footprint of 14.96/43.92/131.56 GB down
to 10.83 (72.4%)/31.30 (71.3%)/93.52 (71.1%) GB, respectively.
The reduction in weight storage further enhances serving
efficiency in two key ways. First, it enables the deployment
of larger models on resource-constrained hardware. Second,
the freed memory can be allocated to the KV cache, allow-
ing memory managers like vLLM’s PagedAttention [39] to
support larger batch sizes and longer contexts, thereby con-
verting static weight savings into dynamic throughput gains.
Breakdown Analysis. We further dissect the performance
gains by analyzing the latency and memory composition of
LLaMA-3.1-8B on an RTX4090, as detailed in Figure 17. In the
baseline vLLM system (at sequence length 1024), GEMM op-
erations dominate the runtime, consuming 24.99 ms (83.6% of
total latency). ZipServ effectively alleviates this bottleneck:
the fused ZipGEMM kernel, combined with residual dense
GEMMs, reduces the total linear layer latency to 14.76 ms,
a 1.69× improvement. Since Attention (3.02 ms) and other
overheads (1.88 ms) remain constant, these kernel-level gains
directly drive the end-to-end speedup. On the memory front,
ZipServ compresses the static weights from 14.96 GB to
11.18 GB. This 3.78 GB saving is automatically repurposed
by the memory manager to expand the KV cache capacity
from 5.07 GB to 8.60 GB (a 1.70× increase), thereby enabling
the higher throughput and longer context support observed
in our end-to-end benchmarks.

7 Limitation and Discussion
ZipServ is designed for the increasingly important deploy-
ment scenario on resource-constrained consumer-grade and
inference-optimized GPUs, where limited memory band-
width makes lossless compression a powerful lever for ef-
ficiency. On such platforms, ZipServ consistently delivers
substantial acceleration and memory savings. To stress-test
performance under more bandwidth-relaxed conditions, we

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 17. Breakdown of end-to-end inference time and
memory consumption.

Figure 18. Performance on training-oriented GPUs.

also benchmarked on training-oriented datacenter GPUs
(A100, H800), where ZipGEMM may not always match the
highly optimized cuBLAS baseline (Figure 18). This reflects
a hardware–software mismatch rather than an algorithmic
limitation: abundant HBM (HBM2e/HBM3) alleviates the
memory bottlenecks ZipServ is designed to mitigate, while
lower core frequencies (e.g., 1410 MHz on A100 vs. 2520
MHz on RTX4090) make the intensive ALU workload harder
to hide within the software pipeline. Nevertheless, ZipServ
still provides best-in-class support for compressed inference.
Our standalone decompression kernel outperforms state-of-
the-art by up to 2.64×, and ZipGEMM remains the fastest
fused GEMM kernel. As shown in §6.3, ZipServ also enables
consumer-grade GPUs to close much of the gapwith elite dat-
acenter accelerators, offering a compelling cost-performance
proposition for deployment on accessible hardware.
While ZipServ targets bit-exact inference, a comparison

with lossy techniques is instructive. ZipGEMM was bench-
marked against theMarlinW8A16 FP8 kernel on an RTX4090
GPU, using a representative weight shape (28672 × 4096)
at batch size 32. Although ZipGEMM trails Marlin-W8A16
in latency (0.194 ms vs. 0.143 ms), the resulting 1.36× gap
aligns closely with the ratio of effective bit-widths (∼11 bits
vs. FP8). This indicates that our design reduces and hides
the overhead of complex lossless decompression within the
memory access latency. Furthermore, ZipServ is orthogonal
to lossy methods and can be applied atop quantized weights
to exploit residual redundancy, combining aggressive com-
pression with enhanced performance [26].

Three key directions are envisioned for extending ZipServ.
First, the TCA-TBE format can be adapted for lossless KV

Cache compression, addressing the dominant memory bot-
tleneck in long-context serving [45]. Second, although cur-
rently optimized for NVIDIA architectures, ZipGEMM can
be adapted to other matrix accelerators, including Intel
AMX [37] and AMD Matrix Cores [61]. This extensibility
is supported by the hardware-agnostic nature of the core
design, as the integer arithmetic and population count in-
structions required for decompression are widely supported
across modern instruction sets. Finally, ZipServ is applicable
to broader system-level challenges, including efficient model
checkpointing [65, 71] and communication compression in
distributed training [73, 84].

8 Related Work

Lossy Model Compression. Lossy methods dominate
LLM acceleration, mainly via post-training quantization
(PTQ) [4, 12, 15, 19, 23, 43, 46, 78, 88] and pruning [11, 14,
22, 67, 80, 86], supported by efficient kernels [21, 24, 55–57,
72, 77]. These approaches risk accuracy degradation [16, 41].
ZipServ provides bit-exact, lossless, and efficient inference.
Lossless Model Compression. A large body of work has
investigated memory compression to reduce bandwidth or
expand capacity via lightweight hardware schemes [7, 8, 20,
38, 58, 59, 87], but these techniques are not tailored for model
compression. Efforts such as LMC [71] and ZipNN [29] apply
Huffman [31] to compress checkpoints for efficient storage
and distribution, but offer no runtime benefits. Recent sys-
tems, including NeuZip [28], DietGPU [33], nvCOMP [53],
and DFloat11 [85], support lossless GPU codecs at runtime
to reduce inference memory usage, but incur significant
overhead (§3). Huff-LLM [83] achieves higher efficiency but
targets FPGA-like architectures and does not generalize to
GPUs. Ecco [5] designs specialized Huffman codec hardware,
but targets lossy compression. Our ZipServ fuses decompres-
sion and GEMM computation, turning lossless compression
into practical GPU inference acceleration.
Kernel Fusion. Kernel fusion reduces memory traffic by
combining operators, as in FlashAttention [9, 10, 62] or
graph-level frameworks [48, 76, 79]. ZipServ draws insights
from them and, to our knowledge, is the first to fuse decom-
pression with GEMM, avoiding full-weight materialization.
System-Level Optimizations for LLM Inference. Mod-
ern LLM serving is powered by sophisticated inference en-
gines [1, 25, 27, 30, 39, 42, 64, 66, 82, 89, 90], which focus on
high-level scheduling strategies and memory orchestration.
ZipServ is orthogonal and complementary, and can be in-
tegrated as a high-performance backend. This allows these
engines to benefit from both a reducedmemory footprint and
accelerated computation without altering their core logic.

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

9 Conclusion
We presented ZipServ, a lossless compression framework
that, for the first time, delivers significant inference ac-
celeration for Large Language Models. By co-designing a
hardware-aware compression format, TCA-TBE, with a fused
decompression-GEMM kernel, ZipServ overcomes the archi-
tectural bottlenecks that have historically plagued lossless
methods on GPUs. Our evaluation demonstrates substan-
tial speedups over highly-optimized baselines like cuBLAS,
particularly on consumer-grade hardware where ZipServ
narrows the performance gap to expensive datacenter GPUs,
establishing a compelling cost-performance proposition. Ul-
timately, ZipServ reframes lossless compression from a mere
storage-saving utility into a practical and powerful tool for
high-performance, bit-exact LLM inference.

Acknowledgments
We extend our thanks to the anonymous ASPLOS reviewers
and our shepherd, Bo Wu, for their valuable feedback and
support. This work was partially supported by National Nat-
ural Science Foundation of China under Grant No. 62272122,
the Guangzhou Municipal Joint Funding Project with Uni-
versities and Enterprises under Grant No. 2024A03J0616,
GuangzhouMunicipality Big Data Intelligence Key Lab (2023
A03J0012), Hong Kong CRF grants under Grant No. C7004-
22G and C6015-23G, the NSFC/RGC Collaborative Research
Scheme under the contract of CRS_HKUST601/24, and Na-
tional Natural Science Foundation of China under Grant No.
62302126. Wei Wang and Xiaowen Chu are the correspond-
ing authors.

A Theoretical Analysis: Compressibility of
LLM BF16 Weights

We present the theoretical foundation showing why expo-
nent distributions in LLM weights are highly skewed and
exhibit top-K contiguity.
Following recent studies [13, 40, 63], we assume that

weights 𝑤 ∈ R𝐷 in a single layer (vectorized for analysis)
follow a zero-mean normal distribution:

𝑤 ∼ N(0, 𝜎2𝐼)

A non-zero, normal BF16 number 𝑣 is represented as 𝑣 =
(−1)𝑆 × 2𝐸−127 × (1.𝑚1 ...𝑚7)2, where 𝑆 is the sign bit, 𝐸 is
the 8-bit unsigned integer value of the exponent field, and
(1.𝑚1...𝑚7)2 is the 7-bit mantissa with an implicit leading 1.
The bias for the BF16 exponent is 127.

Let 𝑥 = 𝐸 − 127 be the actual exponent value. Any number
using this specific exponent 𝐸 will have a magnitude in the
range [2𝑥 , 2𝑥+1). Our analysis focuses on the probability dis-
tribution of this exponent value 𝑥 (or equivalently, 𝐸), given
that the weights 𝑤 are drawn from N(0, 𝜎2). The redun-
dancy arises if this distribution 𝑃 (𝑋 = 𝑥) is highly skewed,

meaning some exponent values are far more common than
others.

The probability of a single weight𝑤𝑖 falling into the mag-
nitude range corresponding to a specific exponent 𝑥 is:

𝑃 (𝑋 = 𝑥) = 𝑃 (2𝑥 ≤ |𝑤𝑖 | < 2𝑥+1)
Note that this calculation is an approximation. We are cal-

culating the probability of a value falling into the exponent’s
ideal magnitude range [2𝑥 , 2𝑥+1), which simplifies the BF16
quantization process by ignoring rounding effects caused by
the 7-bit mantissa. However, this serves as a robust approxi-
mation for analyzing the overall exponent distribution.

Given that𝑤𝑖 ∼ N(0, 𝜎2), its Probability Density Function
(PDF) is 𝑓 (𝑤𝑖) = 1√

2𝜋𝜎2 𝑒
−𝑤2

𝑖 /(2𝜎2) . The probability is the
integral of this PDF over the positive and negative ranges:

𝑃𝜎 (𝑋 = 𝑥) = 2 ×
∫ 2𝑥+1

2𝑥

1
√
2𝜋𝜎2

𝑒−𝑡
2/(2𝜎2)𝑑𝑡

This integral can be expressed using the error function
(erf), defined as erf(𝑧) = 2√

𝜋

∫ 𝑧
0 𝑒
−𝑢2𝑑𝑢:

𝑃𝜎 (𝑋 = 𝑥) = erf
(
2𝑥+1

𝜎
√
2

)
− erf

(
2𝑥

𝜎
√
2

)
Theorem A.1. The function 𝑃 (𝑋 = 𝑥) = erf

(
2𝑥+1
𝜎
√
2

)
−

erf
(

2𝑥
𝜎
√
2

)
is unimodal for 𝑥 ∈ Z.

Proof. To prove unimodality, we consider the continuous
extension 𝑓 (𝑥) = erf

(
2𝑥+1
𝜎
√
2

)
− erf

(
2𝑥
𝜎
√
2

)
for 𝑥 ∈ R. If 𝑓 (𝑥) is

unimodal, then the discrete function 𝑃 (𝑋 = 𝑥), which is the
evaluation of 𝑓 (𝑥) at integer points, will also be unimodal.
Let 𝑢 = 2𝑥

𝜎
√
2
, so that 𝑓 (𝑥) = erf(2𝑢) − erf(𝑢). The deriv-

ative of the error function is 𝑑
𝑑𝑧
erf(𝑧) = 2√

𝜋
𝑒−𝑧

2 . Thus, the
derivative of 𝑓 with respect to 𝑥 is:

𝑑 𝑓

𝑑𝑥
=

2
√
𝜋
𝑢 ln 2𝑒−𝑢

2
(
2𝑒−3𝑢

2 − 1
)

Let ℎ(𝑢) = 2𝑒−3𝑢2 − 1. Since 2√
𝜋
, 𝑢, ln 2, and 𝑒−𝑢2 are all

positive for 𝑢 > 0 (as 2𝑥 > 0), the sign of 𝑑𝑓
𝑑𝑥

is determined
solely by ℎ(𝑢).

Setting ℎ(𝑢) = 0 gives:

2𝑒−3𝑢
2
= 1 =⇒ 𝑒−3𝑢

2
=
1
2

=⇒ −3𝑢2 = − ln 2 =⇒ 𝑢2 =
ln 2
3

Thus, the unique critical point is at 𝑢0 =
√︃

ln 2
3 .

For 𝑢 < 𝑢0, we have 3𝑢2 < ln 2, so 𝑒−3𝑢2 > 1
2 , meaning

ℎ(𝑢) > 0 and 𝑑𝑓

𝑑𝑥
> 0, so 𝑓 (𝑥) is increasing.

For 𝑢 > 𝑢0, we have 3𝑢2 > ln 2, so 𝑒−3𝑢2 < 1
2 , meaning

ℎ(𝑢) < 0 and 𝑑𝑓

𝑑𝑥
< 0, so 𝑓 (𝑥) is decreasing.

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Therefore, 𝑓 (𝑥) has a singlemaximum at𝑢0, proving that it
is unimodal. Since 𝑃 (𝑋 = 𝑥) is the discrete sampling of 𝑓 (𝑥)
at integer values, it follows that 𝑃 (𝑋 = 𝑥) is also unimodal.

□

Theorem A.2. Contiguity of Top-K in Unimodal Distribu-
tions.

Proof. Proof by contradiction: Suppose that the setX𝐾 of the
Top-K most probable values is not contiguous. Then, there
exist three integers 𝑥𝑎 < 𝑥𝑐 < 𝑥𝑏 such that: 𝑥𝑎, 𝑥𝑏 ∈ X𝐾 but
𝑥𝑐 ∉ X𝐾 .

By the unimodal property, the probability function 𝑃 (𝑥)
first increases and then decreases, so for any 𝑥𝑐 between 𝑥𝑎
and 𝑥𝑏 , we have:

𝑃 (𝑥𝑐) ≥ min(𝑃 (𝑥𝑎), 𝑃 (𝑥𝑏)).
Since 𝑥𝑎 and 𝑥𝑏 are in X𝐾 , they are among the 𝐾 largest

probabilities. Thus, min(𝑃 (𝑥𝑎), 𝑃 (𝑥𝑏)) is at least as large as
the 𝐾-th largest probability. Therefore, 𝑃 (𝑥𝑐) must also be
at least as large as the 𝐾-th largest probability, meaning 𝑥𝑐
should be in X𝐾 .
This contradicts the assumption that 𝑥𝑐 ∉ X𝐾 . Hence, the

Top-K set must be contiguous. □

References
[1] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun

Kwatra, Bhargav S. Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. 2024. Taming throughput-latency tradeoff in LLM inference
with sarathi-serve. In Proceedings of the 18th USENIX Conference on
Operating Systems Design and Implementation (Santa Clara, CA, USA)
(OSDI’24). USENIX Association, USA, Article 7, 18 pages.

[2] Mistral AI. 2023. Mistral 7B. arXiv preprint arXiv:2310.06825 (2023).
[3] Zeyuan Allen-Zhu and Yuanzhi Li. 2025. Physics of Language Models:

Part 3.3, Knowledge Capacity Scaling Laws. In ICLR. OpenReview.net.
[4] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li,

Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. 2024.
Quarot: Outlier-free 4-bit inference in rotated llms. arXiv preprint
arXiv:2404.00456 (2024).

[5] Feng Cheng, Cong Guo, Chiyue Wei, Junyao Zhang, Changchun Zhou,
Edward Hanson, Jiaqi Zhang, Xiaoxiao Liu, Hai Li, and Yiran Chen.
2025. Ecco: Improving Memory Bandwidth and Capacity for LLMs via
Entropy-Aware Cache Compression. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture. 793–807.

[6] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas An-
gelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael I.
Jordan, Joseph E. Gonzalez, and Ion Stoica. 2024. Chatbot Arena: An
Open Platform for Evaluating LLMs by Human Preference. In ICML.
OpenReview.net.

[7] Esha Choukse, Mattan Erez, and Alaa R Alameldeen. 2018. Compresso:
Pragmatic main memory compression. In 2018 51st Annual IEEE/ACM
International Symposium onMicroarchitecture (MICRO). IEEE, 546–558.

[8] Esha Choukse, Michael B Sullivan, Mike O’Connor, Mattan Erez, Jeff
Pool, David Nellans, and StephenWKeckler. 2020. Buddy compression:
Enabling larger memory for deep learning and hpc workloads on gpus.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 926–939.

[9] Tri Dao. 2024. FlashAttention-2: Faster Attention with Better Paral-
lelism and Work Partitioning. In International Conference on Learning
Representations (ICLR).

[10] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FlashAttention: Fast and Memory-Efficient Exact Attention with
IO-Awareness. In Advances in Neural Information Processing Systems
(NeurIPS).

[11] Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen. 2023. Beyond size:
How gradients shape pruning decisions in large language models.
arXiv preprint arXiv:2311.04902 (2023).

[12] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
2022. Gpt3. int8 (): 8-bit matrix multiplication for transformers at
scale. Advances in Neural Information Processing Systems 35 (2022),
30318–30332.

[13] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer.
2023. QLoRA: Efficient Finetuning of Quantized LLMs. In NeurIPS.

[14] Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang
Wang, and Xiaowen Chu. 2024. Pruner-Zero: Evolving Symbolic
Pruning Metric from Scratch for Large Language Models. In Proceed-
ings of the 41st International Conference on Machine Learning. PMLR.
https://arxiv.org/abs/2406.02924 [arXiv: 2406.02924].

[15] Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan
Chen, Zhenheng Tang, Qiang Wang, Wei Xue, Yike Guo, et al. 2024.
Stbllm: Breaking the 1-bit barrier with structured binary llms. arXiv
preprint arXiv:2408.01803 (2024).

[16] Peijie Dong, Zhenheng Tang, Xiang Liu, Lujun Li, Xiaowen Chu, and
Bo Li. 2025. Can Compressed LLMs Truly Act? An Empirical Eval-
uation of Agentic Capabilities in LLM Compression. arXiv preprint
arXiv:2505.19433 (2025).

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783 (2024).

[18] Jarek Duda, Khalid Tahboub, Neeraj J Gadgil, and Edward J Delp. 2015.
The use of asymmetric numeral systems as an accurate replacement
for Huffman coding. In 2015 Picture Coding Symposium (PCS). IEEE,
65–69.

[19] Ali Edalati, Alireza Ghaffari, Mahsa Ghazvini Nejad, Lu Hou, Boxing
Chen, Masoud Asgharian, and Vahid Partovi Nia. 2025. OAC: Output-
adaptive Calibration for Accurate Post-training Quantization. In AAAI.
AAAI Press, 16453–16461.

[20] Magnus Ekman and Per Stenstrom. 2005. A robust main-memory
compression scheme. In 32nd International Symposium on Computer
Architecture (ISCA’05). IEEE, 74–85.

[21] Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, Gu Gong, Qiang Wang,
Wei Wang, and Xiaowen Chu. 2025. SpInfer: Leveraging Low-Level
Sparsity for Efficient Large Language Model Inference on GPUs. In
EuroSys. ACM, 243–260.

[22] Elias Frantar and Dan Alistarh. 2023. SparseGPT: Massive Language
Models Can Be Accurately Pruned in One-Shot. In ICML.

[23] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022.
Gptq: Accurate post-training quantization for generative pre-trained
transformers. arXiv preprint arXiv:2210.17323 (2022).

[24] Elias Frantar, Roberto L. Castro, Jiale Chen, Torsten Hoefler, and Dan
Alistarh. 2025. MARLIN: Mixed-Precision Auto-Regressive Parallel
Inference on Large Language Models. In PPoPP. ACM, 239–251.

[25] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-
Latency Serverless Inference for Large Language Models. In OSDI.
USENIX Association, 135–153.

[26] Gerasimos Gerogiannis, Stijn Eyerman, Evangelos Georganas, Wim
Heirman, and Josep Torrellas. 2025. DECA: A Near-Core LLM Decom-
pression Accelerator Grounded on a 3D Roofline Model. In Proceedings
of the 58th IEEE/ACM International Symposium on Microarchitecture®.
184–200.

[27] Ruihao Gong, Shihao Bai, Siyu Wu, Yunqian Fan, Zaijun Wang, Xi-
uhong Li, Hailong Yang, and Xianglong Liu. 2025. Past-Future Sched-
uler for LLM Serving under SLA Guarantees. In Proceedings of the 30th

https://arxiv.org/abs/2406.02924

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Ruibo Fan, et al.

ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2. 798–813.

[28] Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024. NeuZip: Memory-
Efficient Training and Inference with Dynamic Compression of Neural
Networks. CoRR abs/2410.20650 (2024).

[29] Moshik Hershcovitch, Andrew Wood, Leshem Choshen, Guy Girmon-
sky, Roy Leibovitz, Ilias Ennmouri, Michal Malka, Peter Chin, Swami-
nathan Sundararaman, and Danny Harnik. 2024. ZipNN: Lossless
Compression for AI Models. CoRR abs/2411.05239 (2024).

[30] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad
Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via
MII and DeepSpeed-Inference. arXiv:2401.08671 [cs.PF] https://arxiv.
org/abs/2401.08671

[31] David A Huffman. 2007. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE 40, 9 (2007), 1098–1101.

[32] Aaron Jarmusch, Nathan Graddon, and Sunita Chandrasekaran. 2025.
Dissecting the NVIDIA Blackwell Architecture with Microbenchmarks.
arXiv preprint arXiv:2507.10789 (2025).

[33] Jeff Johnson. 2024. DIET-GPU: Efficient Model Inference on GPUs.
https://github.com/facebookresearch/dietgpu.

[34] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan,
Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian
Towles, et al. 2023. Tpu v4: An optically reconfigurable supercom-
puter for machine learning with hardware support for embeddings. In
Proceedings of the 50th annual international symposium on computer
architecture. 1–14.

[35] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar
Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj
Jammalamadaka, Jianyu Huang, Hector Yuen, et al. 2019. A study of
BFLOAT16 for deep learning training. arXiv preprint arXiv:1905.12322
(2019).

[36] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2020. Scaling Laws for Neural Language Models. CoRR
abs/2001.08361 (2020).

[37] Hyungyo Kim, Gaohan Ye, Nachuan Wang, Amir Yazdanbakhsh, and
Nam Sung Kim. 2024. Exploiting intel advanced matrix extensions
(AMX) for large language model inference. IEEE Computer Architecture
Letters 23, 1 (2024), 117–120.

[38] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. 2016.
Bit-plane compression: Transforming data for better compression in
many-core architectures. ACM SIGARCH Computer Architecture News
44, 3 (2016), 329–340.

[39] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model Serv-
ing with PagedAttention. In SOSP. ACM, 611–626.

[40] Hoil Lee, Fadhel Ayed, Paul Jung, Juho Lee, Hongseok Yang, and Fran-
cois Caron. 2023. Deep Neural Networks with Dependent Weights:
Gaussian Process Mixture Limit, Heavy Tails, Sparsity and Compress-
ibility. J. Mach. Learn. Res. 24 (2023), 289:1–289:78.

[41] Zhen Li, Yupeng Su, Runming Yang, Zhongwei Xie, Ngai Wong, and
Hongxia Yang. 2025. Quantization Meets Reasoning: Exploring LLM
Low-Bit Quantization Degradation for Mathematical Reasoning. CoRR
abs/2501.03035 (2025).

[42] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. 2023. AlpaServe: Statistical Multiplexing with Model
Parallelism for Deep Learning Serving. In OSDI. USENIX Association,
663–679.

[43] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen,
Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and

Song Han. 2024. AWQ: Activation-aware Weight Quantization for On-
Device LLM Compression and Acceleration. Proceedings of Machine
Learning and Systems 6 (2024), 87–100.

[44] Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu,
Tiezheng Yu, Chun Yuan, and Lu Hou. 2025. Quantization Hurts Rea-
soning? An Empirical Study on Quantized Reasoning Models. CoRR
abs/2504.04823 (2025).

[45] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang,
Qizheng Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Anantha-
narayanan, et al. 2024. Cachegen: Kv cache compression and streaming
for fast large language model serving. In Proceedings of the ACM SIG-
COMM 2024 Conference. 38–56.

[46] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv
Choudhary, Raghuraman Krishnamoorthi, Vikas Chandra, Yuandong
Tian, and Tijmen Blankevoort. 2024. SpinQuant–LLM quantization
with learned rotations. arXiv preprint arXiv:2405.16406 (2024).

[47] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen
Chu. 2024. Benchmarking and dissecting the nvidia hopper gpu archi-
tecture. In 2024 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 656–667.

[48] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020.
Rammer: Enabling Holistic Deep Learning Compiler Optimizations
with rTasks. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 881–897. https:
//www.usenix.org/conference/osdi20/presentation/ma

[49] Anmol Mekala, Anirudh Atmakuru, Yixiao Song, Marzena Karpinska,
and Mohit Iyyer. 2025. Does quantization affect models’ performance
on long-context tasks? arXiv preprint arXiv:2505.20276 (2025).

[50] NVIDIA. 2020. NVIDIA Ampere GA102 GPU Architecture Whitepa-
per. https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-
gpu-architecture-whitepaper-v2.pdf.

[51] NVIDIA. 2023. NVIDIA Ada GPU Architecture Whitepa-
per. https://images.nvidia.com/aem-dam/Solutions/geforce/ada/
nvidia-ada-gpu-architecture.pdf.

[52] NVIDIA. 2024. cuBLAS Docs. https://docs.nvidia.com/cuda/cublas/
index.html.

[53] NVIDIA. 2025. nvcomp: Repository for nvCOMP docs and examples.
https://github.com/NVIDIA/nvcomp. Accessed: 2025-08-18.

[54] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[55] Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon

Kim, Beomseok Kwon, Se Jung Kwon, Byeongwook Kim, Youngjoo
Lee, and Dongsoo Lee. 2024. LUT-GEMM: Quantized Matrix Multipli-
cation based on LUTs for Efficient Inference in Large-Scale Generative
Language Models. In ICLR. OpenReview.net.

[56] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim,
Youngjoo Lee, and Dongsoo Lee. 2022. nuQmm: Quantized MatMul
for Efficient Inference of Large-Scale Generative Language Models.
CoRR abs/2206.09557 (2022).

[57] Tommaso Pegolotti, Elias Frantar, Dan Alistarh, and Markus Püschel.
2023. QIGen: Generating Efficient Kernels for Quantized Inference on
Large Language Models. CoRR abs/2307.03738 (2023).

[58] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur
Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry.
2013. Linearly compressed pages: A low-complexity, low-latency main
memory compression framework. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture. 172–184.

[59] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. 2012. Base-delta-immediate
compression: Practical data compression for on-chip caches. In Pro-
ceedings of the 21st international conference on Parallel architectures
and compilation techniques. 377–388.

[60] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria
Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language Models Can Teach Themselves

https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.08671
https://github.com/facebookresearch/dietgpu
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://github.com/NVIDIA/nvcomp
https://arxiv.org/abs/2303.08774

ZipServ ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

to Use Tools. In NeurIPS.
[61] Gabin Schieffer, Daniel Araújo De Medeiros, Jennifer Faj, Aniruddha

Marathe, and Ivy Peng. 2024. On the rise of amd matrix cores: Per-
formance, power efficiency, and programmability. In 2024 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 132–143.

[62] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ra-
mani, and Tri Dao. 2024. FlashAttention-3: Fast and Accurate Attention
with Asynchrony and Low-precision. In NeurIPS.

[63] Chongjie Si, Jingjing Jiang, andWei Shen. 2025. Unveiling the Mystery
of Weight in Large Foundation Models: Gaussian Distribution Never
Fades. CoRR abs/2501.10661 (2025).

[64] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. 2024. PowerInfer:
Fast Large Language Model Serving with a Consumer-grade GPU. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles (Austin, TX, USA) (SOSP ’24). Association for Computing
Machinery, New York, NY, USA, 590–606. doi:10.1145/3694715.3695964

[65] Foteini Strati, Michal Friedman, and Ana Klimovic. 2025. PCcheck:
Persistent Concurrent Checkpointing for ML. In Proceedings of the
30th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 1. 811–827.

[66] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang,
Yong Li, and Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large
Language Model Serving. In OSDI. USENIX Association, 173–191.

[67] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 2024. A Simple
and Effective Pruning Approach for Large Language Models. In ICLR.

[68] Gemma Team. 2025. Gemma 3 technical report. arXiv preprint
arXiv:2503.19786 (2025).

[69] Qwen Team. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115 (2024).

[70] Qwen Team. 2025. Qwen3 Technical Report. arXiv preprint
arXiv:2505.09388 (2025).

[71] Daniel Waddington and Cornel Constantinescu. 2025. Lossless Com-
pression for LLM Tensor Incremental Snapshots. arXiv preprint
arXiv:2505.09810 (2025).

[72] Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining
Shi, Ningxin Zheng, Ziming Miao, Fan Yang, Ting Cao, et al. 2024.
Ladder: Enabling Efficient Low-Precision Deep Learning Computing
through Hardware-aware Tensor Transformation. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
24). 307–323.

[73] Zhuang Wang, Zhaozhuo Xu, Jingyi Xi, Yuke Wang, Anshumali Shri-
vastava, and TS Eugene Ng. 2025. {ZEN}: Empowering Distributed
Training with Sparsity-driven Data Synchronization. In 19th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
25). 537–556.

[74] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models.
In NeurIPS.

[75] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf,
Morgan Funtowicz, et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations. 38–45.

[76] MengdiWu, Xinhao Cheng, Shengyu Liu, Chunan Shi, Jianan Ji, Kit Ao,
Praveen Velliengiri, Xupeng Miao, Oded Padon, and Zhihao Jia. 2025.
Mirage: A Multi-Level Superoptimizer for Tensor Programs. In 19th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 25). USENIX Association. https://www.usenix.org/conference/
osdi25/presentation/wu-mengdi

[77] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou,
Xiafei Qiu, Yong Li, Wei Lin, and Shuaiwen Leon Song. 2023. Flash-
LLM: Enabling Cost-Effective and Highly-Efficient Large Generative

Model Inference with Unstructured Sparsity. Proc. VLDB Endow. 17, 2
(Oct. 2023), 211–224. doi:10.14778/3626292.3626303

[78] Guangxuan Xiao, Ji Lin, Mickael Seznec, HaoWu, Julien Demouth, and
Song Han. 2023. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International Conference on
Machine Learning. PMLR, 38087–38099.

[79] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen,
and Yibo Zhu. 2022. Bolt: Bridging the gap between auto-tuners and
hardware-native performance. Proceedings of Machine Learning and
Systems 4 (2022), 204–216.

[80] Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang,
Peng Gao, Fengwei An, Yu Qiao, and Ping Luo. 2024. BESA: Pruning
Large Language Models with Blockwise Parameter-Efficient Sparsity
Allocation. In ICLR.

[81] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. 2025. Physics
of Language Models: Part 2.2, How to Learn From Mistakes on Grade-
School Math Problems. In ICLR. OpenReview.net.

[82] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Asso-
ciation, Carlsbad, CA, 521–538. https://www.usenix.org/conference/
osdi22/presentation/yu

[83] Patrick Yubeaton, Tareq Mahmoud, Shehab Naga, Pooria Taheri,
Tianhua Xia, Arun George, Yasmein Khalil, Sai Qian Zhang, Sid-
dharth Joshi, Chinmay Hegde, and Siddharth Garg. 2025. Huff-
LLM: End-to-End Lossless Compression for Efficient LLM Inference.
arXiv:2502.00922 [cs.LG] https://arxiv.org/abs/2502.00922

[84] Lin Zhang, Longteng Zhang, Shaohuai Shi, Xiaowen Chu, and Bo
Li. 2023. Evaluation and optimization of gradient compression for
distributed deep learning. In 2023 IEEE 43rd International Conference
on Distributed Computing Systems (ICDCS). IEEE, 361–371.

[85] Tianyi Zhang, Yang Sui, Shaochen Zhong, Vipin Chaudhary, Xia Hu,
and Anshumali Shrivastava. 2025. 70% Size, 100% Accuracy: Lossless
LLM Compression for Efficient GPU Inference via Dynamic-Length
Float. arXiv preprint arXiv:2504.11651 (2025).

[86] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and
Carlo Vittorio Cannistraci. 2024. Plug-and-play: An efficient post-
training pruning method for large language models. In The Twelfth
International Conference on Learning Representations.

[87] Jishen Zhao, Sheng Li, Jichuan Chang, John L Byrne, Laura L Ramirez,
Kevin Lim, Yuan Xie, and Paolo Faraboschi. 2015. Buri: Scaling big-
memory computing with hardware-based memory expansion. ACM
Transactions on Architecture and Code Optimization (TACO) 12, 3 (2015),
1–24.

[88] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size
Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, and Baris
Kasikci. 2024. Atom: Low-bit quantization for efficient and accurate
llm serving. Proceedings of Machine Learning and Systems 6 (2024),
196–209.

[89] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff
Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica,
Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. 2025. SGLang:
efficient execution of structured language model programs. In Pro-
ceedings of the 38th International Conference on Neural Information
Processing Systems (Vancouver, BC, Canada) (NIPS ’24). Curran Asso-
ciates Inc., Red Hook, NY, USA, Article 2000, 27 pages.

[90] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating
Prefill and Decoding for Goodput-optimized Large Language Model
Serving. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 193–
210. https://www.usenix.org/conference/osdi24/presentation/zhong-
yinmin

https://doi.org/10.1145/3694715.3695964
https://www.usenix.org/conference/osdi25/presentation/wu-mengdi
https://www.usenix.org/conference/osdi25/presentation/wu-mengdi
https://doi.org/10.14778/3626292.3626303
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2502.00922
https://arxiv.org/abs/2502.00922
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

	Abstract
	1 Introduction
	2 Background
	2.1 Transformer-Based LLMs
	2.2 BFloat16 Format
	2.3 GPU Architecture and Tensor Core Execution

	3 Gaps and Opportunities
	3.1 Compressibility of BF16 Weights
	3.2 Kernel-Level Architectural Mismatch
	3.3 Inefficiency of Decoupled Inference Pipeline

	4 Design of ZipServ
	4.1 Overview and Workflow
	4.2 Tensor-Core-Aware Triple Bitmap Encoding
	4.3 Fused ZipGEMM Kernel Design
	4.4 Stage-Aware Inference Strategy

	5 Implementation
	6 Evaluation
	6.1 ZipGEMM Kernel Performance
	6.2 Decompression Kernel Performance
	6.3 Performance Across GPU Generations and Tiers
	6.4 Overhead Analysis
	6.5 End-to-end Inference Performance

	7 Limitation and Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Theoretical Analysis: Compressibility of LLM BF16 Weights
	References

