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Middleboxes and Deep Packet Inspection

‣ Process packets based on payload 

‣ IPsec, Monitoring, Firewalls, WAN optimization, etc
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Consumption of Multiple Resources
‣ Packet processing requires multiple types of resources 

(e.g., CPU, memory b/w, link b/w) 

‣ Different middlebox (MB) modules consume different 
amounts of resources
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Figure 1: Normalized resource usage of four middlebox func-
tions implemented in Click: basic forwarding, flow monitoring,
redundancy elimination, and IPSec encryption.

of servers than users, they decide how many resources each user
should get on each server. In contrast, middleboxes require sharing
in time; given a small number of resources (e.g., NICs or CPUs)
that can each process only one packet at a time, the scheduler must
interleave packets to achieve the right resource shares over time.
Achieving DRF allocations in time is challenging, especially doing
so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were
active [24]. This memoryless property is key to guaranteeing that
flows cannot be starved in a work-conserving system.

We design a new queuing algorithm called Dominant Resource
Fair Queuing (DRFQ), which generalizes the concept of virtual
time from classical fair queuing [10, 24] to multiple resources that
are consumed at different rates over time. We evaluate DRFQ using
a Click [22] implementation and simulations, and we show that it
provides better isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:
1. We identify the problem of multi-resource fair queueing, which

is a generalization of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling
schemes—bottleneck fairness and per-resource fairness—and
show that they suffer from problems including poor isolation,
oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that pro-
vides both share guarantees and strategy-proofness: Dominant
Resource Fair Queuing (DRFQ). DRFQ implements DRF allo-
cations in the time domain.

2. MOTIVATION
Others have observed that middleboxes and software routers can

bottleneck on any of CPU, memory bandwidth, and link bandwidth,
depending on the processing requirements of the traffic. Dreger
et al. report that CPU can be a bottleneck in the Bro intrusion
detection system [13]. They demonstrated that, at times, the CPU
can be overloaded to the extent that each second of incoming traffic
requires 2.5 seconds of CPU processing. Argyraki et al. [8] found
that memory bandwidth can be a bottleneck in software routers,
especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For
example, many middleboxes let encrypted SSL flows pass through
without processing.

To confirm and quantify these observations, we measured the re-
source footprints of several canonical middlebox applications im-
plemented in Click [22]. We developed a trace generator that takes
in real traces with full payloads [4] and analyzes the resource con-
sumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications.
Each application’s maximum resource consumption was normal-
ized to 1. We see that the resource consumption varies across mod-

Figure 2: Performing fair sharing based on a single resource
(NIC) fails to meet the share guarantee. In the steady-state pe-
riod from time 2–11, flow 2 only gets a third of each resource.

ules: basic forwarding uses a higher relative fraction of link band-
width than of other resources, redundancy elimination bottlenecks
on memory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for dif-
ferent traffic (e.g., HTTP caching for some flows and basic forward-
ing for others), and future software-defined middlebox proposals
suggest consolidating more functions onto the same device [28,
27]. Moreover, further functionality is being incorporated into hard-
ware accelerators [30, 23, 5], increasing the resource diversity of
middleboxes. Thus, packet schedulers for middleboxes will need
to take into account flows’ consumption across multiple resources.

Finally, we believe multi-resource scheduling to be important in
other contexts too. One such example is multi-tenant scheduling
in deep software stacks. For example, a distributed key-value store
might be layered on top of a distributed file system, which in turn
runs over the OS file system. Different layers in this stack can
bottleneck on different resources, and it is desirable to isolate the
resource consumption of different tenants’ requests. Another ex-
ample is virtual machine (VM) scheduling inside a hypervisor. Dif-
ferent VMs might consume different resources, so it is desirable to
fairly multiplex their access to physical resources.

3. BACKGROUND
Designing a packet scheduler for multiple resources turns out to

be non-trivial due to several problems that do not occur with one
resource [16]. In this section, we review these problems and pro-
vide background on the allocation scheme we ultimately build on,
DRF. In addition, given that our goal is to design a packet queuing
algorithm that achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur

in multi-resource scheduling and shows that several simple schedul-
ing schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isola-
tion. Fair queuing ensures that each of n flows can get a guaranteed
1
n fraction of a resource (e.g., link bandwidth), regardless of the de-
mand of other flows [24].1 Weighted fair queuing generalizes this
concept by assigning a weight wi to each flow and guaranteeing
that flow i can get at least wiP

j2W wj
of the sole resource, where W

is the set of active flows.
We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight wi should
get at least wiP

j2W wj
fraction of one of the resources it uses.

1By “flow,” we mean a set of packets defined by a subset of header
fields. Administrators can choose which fields to use based on or-
ganizational policies, e.g., to enforce weighted fair shares across
users (based on IP addresses) or applications (based on ports).
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Resources should be shared fairly 
and efficiently among flows 

4



Fairness
‣ Predictable service isolation 

‣ The service a flow receives in an n-flow system is at 
least 1/n of that it achieves when the flow monopolizes 
all resources 

‣ Dominant Resource Fairness (DRF) 

‣ Flows receive approximately the same processing time 
on the dominant resources of their packets
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Efficiency
‣ High resource utilization given a non-empty system, with 

high traffic throughput 

‣ Important in today’s enterprise networks, as a surging 
volume of traffic now passes through MBs
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However, fairness and efficiency are 
conflicting objectives in the presence of 
multiple resources
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Fair but Inefficient

‣ Fair: both flows receive 9 time units to process on their 
dominant resources in each round 

‣ Inefficient: link is idle at 1/3 of time
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Abstract—Middleboxes are widely deployed in today’s enter-
prise networks. They perform a wide range of important net-
work functions, including WAN optimizations, intrusion detection
systems, network and application level firewalls, etc. Depending
on the processing requirement of traffic, packet processing for
different traffic flows may consume vastly different amounts
of hardware resources (e.g., CPU and link bandwidth). Multi-
resource fair queueing allows each traffic flow to receive a
fair share of multiple middlebox resources. Previous schemes
for multi-resource fair queueing, however, are expensive to
implement at high speeds. Specifically, the time complexity
to schedule a packet is O(log n), where n is the number of
backlogged flows. In this paper, we design a new multi-resource
fair queueing scheme that schedules packets in a way similar to
Elastic Round Robin. Our scheme requires only O(1) work to
schedule a packet and is simple enough to implement in practice.
We show, both analytically and experimentally, that our queueing
scheme achieves nearly perfect Dominant Resource Fairness.

I. INTRODUCTION

Queueing algorithm determines the order in which packets
of various independent flows are processed, and serves as
a fundamental resource allocation mechanism in a network
appliance. Traditional queueing algorithms [1], [2], [3], [4],
[5], [6] make packet scheduling decisions for switches and
routers, where bandwidth is the only resource concerned as
these appliances simply forward packets to their next hops.

However, with a wide adoption of modern network appli-
ances or “middleboxes” [7], [8], link bandwidth is no longer
the only resource shared by flows. In addition to simple packet
forwarding, middleboxes perform a variety of critical network
functionalities that require deep packet inspection (DPI) based
on the traffic contents, such as IP security encryption, WAN
optimization, intrusion detection and prevention systems, etc.
Performing these complex network functionalities requires the
support of multiple hardware resources and may bottleneck on
any of CPU, memory bandwidth, and link bandwidth [9], [10],
[11]. For example, flows that require statistical monitoring may
congest the link bandwidth [11], while those that require IP
security encryption need more CPU processing time [10]. A
multi-resource queueing algorithm is therefore needed to allow
flows to share these middlebox resources fairly and efficiently.

Fairness offers predictable service isolation among flows. It
ensures that the service (i.e., throughput) a flow receives is
at least at the level when every resource is evenly allocated,
and that the bad behaviours of rogue flows do not affect
other normal flows. This isolation property is embodied by
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(b) A packet schedule that is efficient but unfair.

Fig. 1. An example showing the tradeoffs between fairness and efficiency
for multi-resource packet scheduling. Flow 1 sends packets p1, p2, ..., each
having a processing time vector h2, 3i; flow 2 sends packets q1, q2, ..., each
having a processing time vector h9, 1i. Schedule (a) is fair but inefficient;
schedule (b) is highly efficient but unfair.

the Dominant Resource Fairness (DRF) [12], [13], with which
each flow receives approximately the same processing time on
its dominant resource, defined as the one that requires the most
packet processing time [11].

Efficiency serves as another important metric that measures
the resource utilization level of a queueing algorithm. A
schedule with high efficiency leads to a high utilization level of
hardware resources, which naturally translates into high traffic
throughput of a middlebox. This is particularly important to
today’s enterprise networks as there is a surging volume of
traffic passing through middleboxes [14], [7].

Unfortunately, fairness and high resource utilization are of-
ten conflicting objectives for multi-resource packet scheduling
and cannot be achieved at the same time. To see this, consider
two schedules shown in Fig. 1 with two flows whose packets
need CPU processing before transmission. Each packet of
flow 1 has a processing time vector h2, 3i, meaning that it
requires 2 time units for CPU processing and 3 time units
for transmission; each packet of flow 2 has a processing
time vector h9, 1i. The dominant resource of flow 1 is link
bandwidth as it takes more time to transmit a packet than
processing it using CPU; the dominant resource of flow 2 is
CPU. Fig. 1a gives a fair schedule that implements DRF, where
the transmission time flow 1 receives is approximately equal
to the CPU processing time flow 2 receives. The schedule

1



Efficient but Unfair

‣ Unfair: Flow 1 receives 96% of the link bandwidth; Flow 2 
receives 36% of the CPU time 

‣ Efficient: 100% CPU and link utilization given a non-
empty system
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any of CPU, memory bandwidth, and link bandwidth [9], [10],
[11]. For example, flows that require statistical monitoring may
congest the link bandwidth [11], while those that require IP
security encryption need more CPU processing time [10]. A
multi-resource queueing algorithm is therefore needed to allow
flows to share these middlebox resources fairly and efficiently.

Fairness offers predictable service isolation among flows. It
ensures that the service (i.e., throughput) a flow receives is
at least at the level when every resource is evenly allocated,
and that the bad behaviours of rogue flows do not affect
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the Dominant Resource Fairness (DRF) [12], [13], with which
each flow receives approximately the same processing time on
its dominant resource, defined as the one that requires the most
packet processing time [11].

Efficiency serves as another important metric that measures
the resource utilization level of a queueing algorithm. A
schedule with high efficiency leads to a high utilization level of
hardware resources, which naturally translates into high traffic
throughput of a middlebox. This is particularly important to
today’s enterprise networks as there is a surging volume of
traffic passing through middleboxes [14], [7].

Unfortunately, fairness and high resource utilization are of-
ten conflicting objectives for multi-resource packet scheduling
and cannot be achieved at the same time. To see this, consider
two schedules shown in Fig. 1 with two flows whose packets
need CPU processing before transmission. Each packet of
flow 1 has a processing time vector h2, 3i, meaning that it
requires 2 time units for CPU processing and 3 time units
for transmission; each packet of flow 2 has a processing
time vector h9, 1i. The dominant resource of flow 1 is link
bandwidth as it takes more time to transmit a packet than
processing it using CPU; the dominant resource of flow 2 is
CPU. Fig. 1a gives a fair schedule that implements DRF, where
the transmission time flow 1 receives is approximately equal
to the CPU processing time flow 2 receives. The schedule
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Ideally…
‣ Allow the network operator to flexibly specify the tradeoff 

preference 

‣ Many applications may have loose fairness 
requirements 

‣ Implement the specified tradeoff via a queueing algorithm
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However…
‣ Existing multi-resource queueing algorithms focus only on 

fairness, without efficiency consideration 

‣ The tradeoff problem has never been mentioned 
before, and is unique to multi-resource scheduling 

‣ Even the efficiency measure is unclear!
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The Efficiency Measure

12



Schedule Makespan
‣ Time elapsed from the arrival of the first packet to the 

time when all packets finish processing on all resources 

‣ The completion time of the last flow

13

Max efficiency = Min makespan



Quantifying the Efficiency Loss
‣ Theoretical results  

‣ m: # of resource types concerned 

‣ the makespan of fair queueing could be up to m times 
the optimal makespan 

‣ Experiment confirms 20% throughput loss of existing 
multi-resource fair queueing
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Makespan minimization is notoriously hard, 
especially when there are more than two 
types of resources concerned (NP-hard)
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We limit our discussion to the two most 
concerned types of resources for packet 
processing—CPU and link bandwidth
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Our Approach
‣ Relax the scheduling problem to an idealized fluid model 

‣ Discuss the tradeoff between fairness and efficiency in 
the fluid model 

‣ Implement the fluid model in the real world via a packet-
by-packet tracking algorithm

17



The Fluid Relaxation: packets are 
assumed to receive services in arbitrarily 
small increments on all resources
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Fluid Relaxation
‣ Discrete schedule 

!

!

‣ Fluid relaxation
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(b) A packet schedule that is efficient but violates DRF.

Figure 1: An example showing the tradeoff between fairness and
efficiency for multi-resource packet scheduling. Packets that fin-
ishes CPU processing are placed into a buffer in front of the output
link. Flow 1 sends packets p1, p2, ..., each having a processing
time vector h2, 3i; Flow 2 sends packets q1, q2, ..., each having
a processing time vector h9, 1i. Schedule (a) achieves DRF but is
inefficient; Schedule (b) is efficient but unfair.

proximately equal to the CPU processing time Flow 2 receives. In
this sense, Flow 1 should schedule three packets whenever Flow 2
schedules one, so that each flow receives 9 time units to process its
dominant resource, as shown in Fig. 1a. This schedule, though fair,
leads to poor bandwidth utilization—the link is idle for 1/3 of the
time. On the other hand, Fig. 1b shows a schedule that achieves
100% CPU and bandwidth utilization by serving eight packets of
Flow 1 and one packet of Flow 2 alternately. The schedule, though
efficient, violates DRF. While Flow 1 receives 24/25 of the link
bandwidth, Flow 2 receives only 9/25 of the CPU time.

The fairness-efficiency tradeoff shown in the example above gen-
erally exists for multi-resource packet scheduling, but it has re-
ceived little attention before. Existing multi-resource queueing al-
gorithms focus solely on fairness [13, 32, 35]. However, for appli-
cations having a loose fairness requirement, trading off a modest
degree of fairness for higher efficiency and higher throughput is
well justified. In general, depending on the underlying applica-
tions, a network operator may weigh fairness and efficiency differ-
ently. Ideally, a multi-resource queueing algorithm should allow
network operators to flexibly specify their tradeoff preference and
implement the specified tradeoff by determining the “right” packet
scheduling order.

However, designing such a queueing algorithm is non-trivial. It
remains to be seen how efficiency can be quantitatively defined.
Further, it remains open how the tradeoff requirement should be ap-
propriately specified. But most importantly, given a specific trade-
off requirement, how can the scheduling decision be correctly made
to implement it?

This paper represents the first attempt to address these challenges.
We clarify the efficiency measure as the schedule makespan, which
is the completion time of the last flow. We show that achieving a
flexible tradeoff between fairness and efficiency is generally NP-
hard. We hence limit our discussion to a typical scenario where
CPU and link bandwidth are the two types of resources required for
packet processing, which is usually the case in middleboxes. We
show that the fairness-efficiency tradeoff can be strictly enforced
by a GPS-like (Generalized Processor Sharing [9,21]) fluid model,
where packets are served in arbitrarily small increments on both
resources. To implement the idealized fluid in the real world, we

design a packet-by-packet tracking algorithm, using an approach
similar to the virtual time implementation of Weighted Fair Queue-
ing (WFQ) [9, 16, 21]. We have prototyped our tradeoff algorithm
in the Click modular router [19]. Both our prototype implementa-
tion and trace-driven simulation show that a 15% ⇠ 20% fairness
tradeoff is sufficient to achieve the optimal efficiency, leading to a
nearly 20% improvement in bandwidth throughput with a signifi-
cantly higher resource utilization.

2. FAIRNESS AND EFFICIENCY
Before discussing the tradeoff between fairness and efficiency,

we shall first clarify how the notion of fairness is to be defined, and
how efficiency is to be measured quantitatively. We model packet
processing as going through a resource pipeline, where the first
resource is consumed to process the packet first, followed by the
second, and so on. A packet is not available for the downstream
resource until the processing on the upstream resource finishes.
For example, a packet cannot be transmitted (which consumes link
bandwidth) before it has been processed by CPU.

2.1 Dominant Resource Fairness
Fairness is one of the primary design objectives for a queueing

algorithm. A fair schedule offers service isolation among flows by
allowing each flow to receive the throughput at least at the level
when every resource is evenly allocated. The notion of Domi-
nant Resource Fairness (DRF) embodies this isolation property by
achieving the max-min fairness on the dominant resources of pack-
ets in their respective flows [13]. The dominant resource of a packet
is defined as the one that requires the maximum packet process-
ing time. In particular, let ⌧r(p) be the time required to process
packet p on resource r. The dominant resource of packet p is
rp = argmaxr ⌧r(p). Given a packet schedule, let Di(t1, t2) be
the time flow i receives to process the dominant resources of its
packets in a backlogged period (t

1

, t
2

). The function Di(t1, t2) is
referred to as the dominant service flow i receives in (t

1

, t
2

). A
schedule is said to strictly implement DRF if for all flows i and j,
and for any period (t

1

, t
2

) they backlog, we have

Di(t1, t2) = Dj(t1, t2). (1)

In other words, a strict DRF schedule allows each flow to receive
the same dominant service in any backlogged period.

However, because packets are scheduled as separate entities and
are transmitted in sequence, strictly implementing DRF at all times
may not be possible in practice. For this reason, a practical fair
schedule only requires flows to receive approximately the same
dominant services over time [13, 32, 35], as shown in the previous
example of Fig. 1a.

2.2 The Efficiency Measure
In addition to fairness, efficiency is another important concern

for a multi-resource scheduling algorithm, but has received no sig-
nificant attention before. Even the definition of efficiency needs
clarification.

Perhaps the most widely adopted efficiency measure is system
throughput, whose conventional definition is the rate of comple-
tions [17], computed as the processed workload divided by the
elapsed time (e.g., bits per second). While this performance metric
is well defined for single-resource systems, extending its definition
to multiple types of resources leads to a throughput vector, where
each component is the throughput of one type of resource (e.g.,
10 CPU instruction completions per second and 5 bits transmitted
through the output link per second), and different throughput vec-
tors may not be comparable.

q1 q2
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Time0 6 8 12 14 182 4 10 16 20 22 24 26
q1 q2

Figure 2: The DRGPS fluid that implements the perfect fairness
in the example of Fig. 1. Flow 1 sends packets p1, p2, ..., and
receives h3/5 CPU, 1/15 bandwidthi; Flow 2 sends packets q1, q2,
..., and receives h3/5 CPU, 1/15 bandwidthi. Only 2/3 of the link
bandwidth is utilized.

In any backlogged periods, because flows are allocated the same
dominant shares, they receive the same dominant services, achiev-
ing strict DRF at all times. The resulting fluid schedule is also
known as DRGPS [33], a multi-resource generalization to the well-
known GPS [9, 21].

Any discrete fair schedule is essentially a packet-by-packet ap-
proximation to DRGPS. For instance, applying DRGPS to the ex-
ample of Fig. 1 leads to a fluid schedule shown in Fig. 2, where
the normalized packet processing times of Flow 1 and Flow 2 are
h⌧̄

1,1, ⌧̄1,2i = h2/3, 1i and h⌧̄
2,1, ⌧̄2,2i = h1, 1/9i, respectively.

By (16), both flows are allocated the same dominant share ¯d = 3/5.
Specifically, Flow 1 receives h2/5 CPU, 3/5 bandwidthi; Flow 2
receives h3/5 CPU, 1/15 bandwidthi. In total, only 2/3 of the
bandwidth is utilized, the same as the discrete fair schedule shown
in Fig. 1a.

3.3 Fluid Schedule with Optimal Efficiency
We next discuss the efficiency objective. While there are some

schedules proposed in the operations research literature that can
achieve the minimum makspan for a flow shop problem, none of
them applies in the context of packet scheduling: they either as-
sume no packet arrivals (e.g., [29]) or require full knowledge of
future information (e.g., [5]). We propose a simple greedy fluid
schedule as follows.

For a given time instant, we define the system’s instantaneous
dominant throughput as the sum of the dominant share allocated,
i.e.,

P
i2B di. Intuitively, by maximizing

P
i2B di at all times, one

would expect a high average dominant throughput
P

i2B Di/T ,
where T is the schedule makespan and Di is the total dominant ser-
vices (processing time) required by flow i. Given dominant work-
load

P
i2B Di, maximizing the average dominant throughput is

equivalent to minimizing the schedule makespan T . Following this
intuition, we propose a greedy fluid schedule that solves the fol-
lowing resource allocation problem to maximize the instantaneous
dominant throughput at every time:

max

di�0

X

i2B

di

s.t.
X

i2B

⌧̄i,rdi  1, r = 1, 2.
(17)

In case that the optimal solution, denoted d⇤
= (d⇤

1

, . . . , d⇤n), is
not unique, the schedule chooses the one with the maximum overall
utilization:

max

d⇤i

X

r

X

i2B

⌧̄i,rd
⇤
i . (18)

In the example of Fig. 1, solving (17) allocates Flow 1 the dominant
share d⇤

1

= 9/25 and Flow 2 the dominant share d⇤
2

= 24/25. It is
easy to check that both CPU and link bandwidth are fully utilized.

Compared to those schedules proposed in the operations research
literature, the greedy schedule defined by (17) is particularly at-
tractive for packet scheduling due to the following three properties.
First, it is an online algorithm without any a priori knowledge of
future packet arrivals. Further, among all packets that are back-
logged, only the information regarding head-of-line packets is re-
quired. This suggests that the schedule only needs to maintain a
very simple per-flow state. Most importantly, the greedy schedule
is more than a simple heuristic. Below we show that under some
practical assumptions, greedily maximizing the dominant through-
put gives the minimum makespan. Our analysis requires the fol-
lowing lemma, where we show that the schedule will not waste any
resource in idle, unless all flows bottleneck on the same resource,
in which case the other resource cannot be fully utilized anyway.
The proof is deferred to our technical report [31] due to space con-
straint.

Lemma 1. The fluid schedule defined by (17) fully utilizes both
resources if there are two head-of-line packets with different dom-
inant resource, i.e., there exist two flows j and l, such that ⌧̄j,1 =

1 > ⌧̄j,2 and ⌧̄l,1 < ⌧̄l,2 = 1.

With Lemma 1, we analyze the makespan of the fluid sched-
ule defined by (17). Following [13], we say a flow is dominant-
resource monotonic if it does not change its dominant resource dur-
ing backlogged periods. To make the analysis tractable, we assume
that flows are dominant-resource monotonic. This is often true in
practice as packets in the same flow usually undergo the same pro-
cessing, and hence have the same dominant resource. The follow-
ing lemma,whose proof can be found in [31], states the optimality
of the fluid schedule in a static scenario without dynamic packet
arrivals.

Lemma 2. For dominant-resource monotonic flows, the fluid
schedule defined by (17) gives the minimum makespan if all packets
are available at the beginning.

We now extend the results of Lemma 2 to an online case where
packets dynamically arrive over time. The following theorem gives
the optimality condition of the fluid schedule. The proof is deferred
to [31].

Theorem 2. For dominant-resource monotonic flows, the fluid
schedule defined by (17) gives the minimum makespan among all
schedules, if after the system has two flows with different dominant
resources, whenever a new flow arrives, there exist two backlogged
flows with different dominant resources.

The optimality conditions required by Theorem 2 can be easily
met in practice. Because the number of backlogged flows is usu-
ally large, it is almost true that we can always find two flows with
different dominant resources. In fact, even in a very unfortunate
case where all flows bottleneck on the same resource, the greedy
fluid schedule does not deviate far away from the optimum: no
matter what fluid schedule is used, the bottleneck resource is al-
ways fully utilized when the system is non-empty and hence has
the same backlog, which is a dominant factor in determining the
schedule makespan.

The significance of Theorem 2 is that it connects makespan, a
measure defined in the time domain, to the instantaneous dominant
throughput, a measure defined in the space domain. More impor-
tantly, it shows that minimizing the former is, in a practical sense,
equivalent to maximizing the latter at all times, without the need to
know future packet arrivals. We shall use this intuition to strike a
balance between fairness and efficiency in the next subsection.
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ily small increments on all resources. For each packet, this
is equivalent to process it simultaneously on all resources at
the same progress, and head-of-line packets of backlogged
flows can also be served in parallel, at different processing
rates. Such a parallel processing fluid eliminates the need of
discussing the scheduling orders of flows, relaxing a com-
binatorial optimization problem to a much simpler resource
allocation problem. We shall show in the next section that,
under some practical assumptions, makespan minimization
can be easily achieved in the fluid model. We can then
strike a balance between fairness and efficiency by impos-
ing some fairness constraints to the fluid. We shall discuss
in §4 and §5 how this fluid is implemented in the real world
by a packet-by-packet tracking algorithm.

3. FAIRNESS, EFFICIENCY, AND THEIR
TRADEOFFS IN THE FLUID MODEL

In this section, we relax the packet scheduling problem to
a fluid model and investigate the two extreme cases, achiev-
ing the perfect fairness without the makespan concern and
minimizing the makespan without the fairness concern. We
then discuss how to strike a balance between fairness and ef-
ficiency in the fluid model. We start with a detailed look into
the fluid model.

3.1 The Fluid Relaxation
In the fluid model, a flow is relaxed to a fluid where each

of its packet is served simultaneously on all resources at the
same progress. Packets of different flows are also served in
parallel. The schedule needs to decide, at each time t, the
resources allocated to each backlogged flow to process its
head-of-line packet. In particular, let Bt be the set of flows
that are backlogged at time t. Let ati,r be the fraction (share)
of resource r allocated to process the head-of-line packet of
flow i at time t. A fluid schedule determines, at each time t,
the resource allocation ati,r for each backlogged flow i and
each resource r.

A feasible fluid schedule needs to satisfy several constraints
when making resource allocation decisions at time t. The
first constraint is to ensure that no resource is allocated more
than its availability:

X

i2Bt

ati,r  1, r = 1, 2. (1)

The second constraint ensures that a packet receives a con-
sistent processing rate across all resources. In particular, for
a backlogged flow i and its head-of-line packet, let ⌧i,r be its
packet processing time on resource r, and

ri = argmax

r
⌧i,r

be its dominant resource. The processing rate this packet
receives on resource r is computed as the ratio between the
resource share allocated and the processing time required,
i.e., ati,r/⌧i,r. To ensure a consistent processing rate, we

have

ati,r/⌧i,r = ati,r0/⌧i,r0 , for all r and r0.

Let r0 be the dominant resource ri. We see a linear relation
between the allocation share of resource r and that of the
dominant resource:

ati,r =

⌧i,r
⌧i,ri

ati,ri = ⌧̄i,rd
t
i , (2)

where

⌧̄i,r = ⌧i,r/⌧i,ri

is the normalized packet processing time on resource r, and

dti = ati,ri

is the dominant share allocated to the head-of-line packet
of flow i at time t. Equation (2) shows that making resource
allocation decisions at time t is equivalent to determining the
dominant share dti for each backlogged flow i at the same
time. Plugging (2) into (1), we obtain the required resource
constraints for a feasible fluid schedule as follows:

X

i2Bt

⌧̄i,rd
t
i  1, r = 1, 2. (3)

We are now ready to discuss two special cases, where fair-
ness and efficiency are the only objective to optimize in the
system, respectively. For ease of presentation, in the remain-
der of the paper we drop the superscript t when the time can
be clearly inferred from the context.

3.2 Fluid with Perfect Fairness
We first discuss the fairness objective. To achieve perfect

DRF, the fluid enforces the strict max-min fairness on flows’
dominant shares, under the feasibility constraint. Specifi-
cally, the fluid solves the following DRF allocation problem
at each time t:

max

di

min

i2B
di

s.t.
X

i2B
⌧̄i,rdi  1, r = 1, 2 .

(4)

Let n be the number of backlogged flows. The optimal so-
lution, denoted by ¯d = (

¯d
1

, . . . , ¯dn), allocates each back-
logged flow the same dominant share, i.e.,

¯di = ¯d = 1/max {
P

i ⌧̄i,1,
P

i ⌧̄i,2} . (5)

Because flows are allocated the same dominant share, they
receive the same dominant services in any backlogged peri-
ods, achieving the strict DRF at all times. The resulting fluid
is also known as DRGPS [31], a multi-resource generaliza-
tion to GPS [9, 20].

As a concrete example, we apply DRGPS to the example
of Fig. 1. Recall that the packet processing time vectors of
Flow 1 and Flow 2 are h⌧

1,1, ⌧1,2i = h2, 3i and h⌧
2,1, ⌧2,2i =

h9, 1i, respectively. Their normalized packet processing times
are h⌧̄

1,1, ⌧̄1,2i = h2/3, 1i and h⌧̄
2,1, ⌧̄2,2i = h1, 1/9i, re-

spectively. By solving (4), both flows receive the same domi-
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mum makespan is strongly NP-hard when the number of machines
(resources) is greater than two [12].

Given the hardness results above, in this paper, we limit our dis-
cussion to two types of resources, CPU and link bandwidth, as
these are the two most concerned middlebox resources [13,25]. We
note that even with two types of resources, minimizing the sched-
ule makespan remains a hard problem. Because packets arrive dy-
namically over time, the problem resembles a 2-machine online
flow shop scheduling problem where jobs (packets) do not reveal
their information until they arrive. For this problem, only a limited
amount of negative results is known [6,20,23,26,30]. Specifically,
no online algorithm can ensure a makespan within a factor of 1.349
of the optimum in all cases [24]. We also notice that no exist-
ing work gives a concrete solution, even a heuristic algorithm, that
jointly considers both makespan and fairness.

3. FAIRNESS, EFFICIENCY, AND THEIR
TRADEOFF IN THE FLUID MODEL

The difficulty of makespan minimization is mainly introduced
by the combinatorial nature of multi-resource scheduling. One ap-
proach to circumvent this problem is to consider a fluid relaxation,
where packets are served in arbitrarily small increments on all re-
sources. For each packet, this is equivalent to processing it simul-
taneously on all resources with the same progress, and head-of-line
packets of backlogged flows can also be served in parallel, at (po-
tentially) different processing rates. Such a parallel processing fluid
model eliminates the need for discussing the scheduling orders of
flows. Instead, it allows us to focus on the resource shares allocated
to flows, hence relaxing a combinatorial optimization problem to
a simpler dynamic resource allocation problem. While in general,
optimally solving such a dynamic problem requires knowing future
packet arrivals, we show in this section that, under some practical
assumptions, a greedy algorithm gives an optimal online schedule
with the minimum makespan. We can then strike a balance between
efficiency and fairness by imposing some fairness constraints to the
fluid schedule. We shall discuss later in §4 and §5 how this fluid
schedule is implemented in practice with a packet-by-packet track-
ing algorithm at acceptable complexity.

3.1 Fluid Relaxation
In the fluid model, a flow is relaxed to a fluid where each of

its packets is served simultaneously on all resources with the same
progress. Packets of different flows are also served in parallel. The
schedule needs to decide, at each time, the resource share allocated
to each backlogged flow. In particular, let Bt be the set of flows that
are backlogged at time t. Let at

i,r be the fraction (share) of resource
r allocated to flow i at time t. The fluid schedule determines, at
each time t, the resource allocation at

i,r for each backlogged flow i
and each resource r.

Two constraints must be satisfied when making resource alloca-
tion decisions. First, we must ensure that no resource is allocated
more than its total availability:

X

i2Bt

at
i,r  1, r = 1, 2. (9)

The second constraint ensures that a packet is processed at a con-
sistent rate across resources. In particular, for a backlogged flow i
and its head-of-line packet at time t, let ⌧ t

i,r be its packet processing
time on resource r, and

ri = argmax

r
⌧ t
i,r (10)

Table 1: Main notations used in the fluid model. The superscript t
is dropped when time can be clearly inferred from the context.

Notation Explanation
n maximum number of flows that are concur-

rently backlogged
↵ fairness knob specified by the network operator
B (or Bt) set of flows that are currently backlogged (at

time t)
di (or dti) dominant share allocated to flow i (at time t)
¯d (or ¯dt) fair dominant share (at time t), given by (16)
⌧i,r (or ⌧ t

i,r) packet processing time on resource r required
by the head-of-line packet of flow i (at time t)

⌧̄i,r (or ⌧̄ t
i,r) normalized ⌧i,r (or ⌧̄ t

i,r), defined by (12)

be its dominant resource. The processing rate that this packet re-
ceives on resource r is computed as the ratio between the resource
share allocated and the processing time required: at

i,r/⌧
t
i,r . To en-

sure a consistent processing rate, we have

at
i,r/⌧

t
i,r = at

i,r0/⌧
t
i,r0 , for all r and r0.

Substituting ri into r0 above, we see a linear relation between the
allocation share of resource r and that of the dominant resource:

at
i,r =

⌧ t
i,r

⌧ t
i,ri

at
i,ri = ⌧̄ t

i,rd
t
i, (11)

where

⌧̄ t
i,r = ⌧ t

i,r/⌧
t
i,ri (12)

is the normalized packet processing time on resource r, and

dti = at
i,ri (13)

is the dominant share allocated to flow i at time t. Plugging (11)
into (9), we combine the two constraints into one feasibility con-
straint of a fluid schedule:

X

i2Bt

⌧̄ t
i,rd

t
i  1, r = 1, 2. (14)

Before we discuss the tradeoff between fairness and efficiency,
we first consider two special cases, where either fairness or effi-
ciency is the only objective to optimize in the fluid model. For ease
of presentation, we drop the superscript t when time can be clearly
inferred from the context. Table 1 summarizes the main notations
used in the fluid model.

3.2 Fluid Schedule with Perfect Fairness
We first consider the fairness objective. To achieve perfect DRF,

the fluid schedule enforces strict max-min fairness on flows’ dom-
inant shares, under the feasibility constraint. Specifically, the fluid
schedule solves the following DRF allocation problem [14, 22] at
each time t:

max

di
min

i2B
di

s.t.
X

i2B

⌧̄i,rdi  1, r = 1, 2.
(15)

Let n be the number of backlogged flows. The optimal solution,
denoted by ¯d = (

¯d
1

, . . . , ¯dn), allocates each backlogged flow the
same dominant share, i.e.,

¯di = ¯d = 1/max

�P
i ⌧̄i,1,

P
i ⌧̄i,2

 
. (16)
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two resources, i.e., CPU and link bandwidth, as these are
the two most concerned middlebox resources for deep packet
inspection [8], [11]. We note that even for such a 2-resource
scenario, designing a scheduling algorithm for dynamic packet
arrivals with the minimum makespan is very challenging. In
fact, for 2-machine flow shop online scheduling, Vestjens [28]
shows that no deterministic online algorithm can ensure a
makespan that is within a factor of 1.618 of the optimal one;
Seiden [30] shows that no randomized online algorithm can
ensure a makespan that is within a factor of 1.349 of the
optimal one.

IV. FAIRNESS-EFFICIENCY TRADEOFFS IN THE FLUID

As a special case of the tradeoff problem, in this section,
we ignore fairness considerations and focus on pursuing the
highest scheduling efficiency, which is equivalent to minimiz-
ing the makespan of a schedule. In fact, even this is a very
challenging problem, as we see below.

The difficulty of makespan minimization is mainly intro-
duced by the combinatorial nature of the scheduling problem.
To circumvent this problem, we consider a fluid relaxation
where packets are served in arbitrarily small increments on
all resources. For each packet, this is equivalent to process it
simultaneously on all resources at the same progress; packets
of multiple backlogged flows can also be served in parallel,
at different processing rates. Such a parallel processing model
eliminates the necessity of discussing the scheduling orders of
flows and packets, converting a combinatorial scheduling prob-
lem to a much simpler resource allocation problem. Our idea is
to find an optimal schedule with the minimum makespan in the
simplified fluid model. We will then implement the obtained
fluid schedule by a packet-by-packet tracking algorithm. This
approach has also been widely used to design traditional fair
queueing algorithms, e.g., WFQ [1], PGPS [2], WF2Q [5]. In
these works, the design of a tracking algorithm is the main
challenge, because the fluid schedule, i.e., GPS [1], [2], [5], is
very clear and easy to obtain. However, in our problem, even
the latter becomes a challenge: The fluid schedule with the
minimum makespan remains unclear. This is the main problem
targeted in the next subsection.

A. The Greedy Fluid Schedule
The fluid schedule: Since flows are processed in parallel

in the fluid model, the scheduler needs to decide, at any time
t, the resources allocated to each flow to process its head-
of-line packet. In particular, let Bt be the set of flows that
are backlogged at time t. Let x

t
i,r be the fraction (share)

of resource r allocated to process the head-of-line packet of
backlogged flow i at time t. The problem of optimal fluid
scheduling is to make a resource allocation decision at all
time t – determining x

t
i,r for each backlogged flow i and

each resource r – such that the makespan of the schedule
is minimized.

However, there are several constraints when making re-
source allocation decisions at time t. For ease of presentation,
we will drop the superscript t when the time t can be clearly

inferred from the context. The first constraint is that the
resource allocation must lead to a consistent packet processing
rate across all resources for a head-of-line packet, say, 1/2
packet per second. In particular, for a backlogged flow i and
its head-of-line packet, let ⌧i,r be its packet processing time
on resource r, and

ri = argmax

r
⌧i,r

its dominant resource. The processing rate the head-of-line
packet receives on resource r is computed as the ratio between
the resource share allocated and the processing time required,
i.e., xi,r/⌧i,r. To ensure a consistent processing rate, we have

xi,r/⌧i,r = xi,r0/⌧i,r0 , for all r and r

0.

The equation above suggests a linear relation between the
allocation share of a resource r and that of the dominant
resource ri:

xi,r =

⌧i,r

⌧i,ri

xi,ri = ⌧̄i,rxi,ri , (6)

where
⌧̄i,r = ⌧i,r/⌧i,ri

is the normalized packet processing time on resource r.
Equation (6) shows that making resource allocation decisions
at some time t is equivalent to determining xi,ri for each
backlogged flow i. For ease of presentation, we denote

di = xi,ri

as the dominant share allocated to the head-of-line packet of
flow i.

The second allocation constraint is to ensure the feasibility,
that no resource is allocated more than its availability, i.e.,

X

i2Bt

xi,r  1, r = 1, 2.

Plugging (6), we have the equivalent constraints as follows:
X

i2Bt

⌧̄i,rdi  1, r = 1, 2. (7)

For a given time t, we define the dominant throughput
as the sum of the dominant share allocated, i.e.,

P
i2Bt

di.
To minimize the makespan, we propose a fluid schedule that
maximizes the dominant throughput at all times. Specifically,
the schedule solves the following constrained optimization
problem to determine the resource allocations for every flow
at every time t:

max

di�0

X

i2Bt

di

s.t.
X

i2Bt

⌧̄i,rdi  1, r = 1, 2.

(8)

If the optimal solutions d⇤ are not unique, the schedule
chooses any one of those that maximize the overall resource

5

Resource constraints

Maximize system dominant share
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↵ 2 [0, 1]

↵

↵, a network operator can flexibly specify the restrictive-
ness of the fairness requirement. The larger the parameter
↵, the more restrictive the fairness requirement. As the two
extreme cases, setting ↵ = 0 means that fairness is not con-
cerned at all; setting ↵ = 1 means that perfect fairness must
be reinforced at all times.

To strike a balance between fairness and efficiency, we
let a network operator specify the parameter ↵ based on the
fairness requirement, and try to minimize the makespan un-
der the corresponding ↵-portion fairness constraints. Since
minimizing makespan is, in a practical sense, equivalent to
maximizing the dominant throughput, we obtain a simple
heuristic, called tradeoff fluid, that maximizes the dominant
throughput subject to the ↵-portion fairness at all times:

max

di

X

i2B
di

s.t.
X

i2B
⌧̄i,rdi  1, r = 1, 2,

di � ↵ ¯d, 8i 2 B,

(7)

where the fair share ¯d is computed by (5). We see that the
tradeoff fluid captures both DRGPS [31] and the greedy fluid
(6) as special cases with ↵ = 1 and 0, respectively.

The tradeoff problem (7) has a closed-form solution, based
on which the tradeoff fluid can be easily computed. Since
each flow is guaranteed to receive a dominant share of ↵ ¯d,
we denote

˜di = di � ↵ ¯d (8)

as the bonus dominant share allocated to flow i. Substitut-
ing (8) to (7), we equivalently rewrite (7) as a problem of
determining the flows’ bonus dominant shares:

max

˜di�0

X

i2B

˜di + |B|↵ ¯d

s.t.
X

i2B
⌧̄i,r ˜di  µr r = 1, 2 ,

(9)

where

µr = 1� ↵ ¯d
X

i2B
⌧̄i,r, r = 1, 2, (10)

and is the remaining share of resource r. Because |B|↵ ¯d is a
constant at time t, it can be simply omitted from the objec-
tive. Without loss of generality, we sort all the backlogged
flows at time t based on the ratio of the processing demands
on the two resources required by their head-of-line packets
as follows:

⌧̄
1,1/⌧̄1,2 � · · · � ⌧̄n,1/⌧̄n,2 . (11)

The following theorem shows that at most two flows are
awarded the bonus share at a time. The proof is deferred
to our technical report [29].

Theorem 3. There exists an optimal solution ˜d⇤ to (9)
where ˜d⇤i = 0 for all 1 < i < n. In particular, the optimal

solution d̃⇤ is given in the following three cases.
Case 1: µ

1

/µ
2

< ⌧̄n,1/⌧̄n,2. In this case, resource 1 is
fully utilized, with ˜d⇤n = µ

1

/⌧̄n,1 and ˜d⇤i = 0 for all i < n.
Case 2: µ

1

/µ
2

> ⌧̄
1,1/⌧̄1,2. In this case, resource 2 is

fully utilized, with ˜d⇤
1

= µ
2

/⌧̄
1,2 and ˜d⇤i = 0 for all i > 1.

Case 3: ⌧̄n,1/⌧̄n,2  µ
1

/µ
2

 ⌧̄
1,1/⌧̄1,2. In this case, both

resources are fully utilized, and we have

˜d⇤i =

8
<

:

(µ
1

⌧̄n,2 � µ
2

⌧̄n,1)/(⌧̄1,1⌧̄n,2 � ⌧̄
1,2⌧̄n,1), i = 1;

(µ
2

⌧̄
1,1 � µ

1

⌧̄
1,2)/(⌧̄1,1⌧̄n,2 � ⌧̄

1,2⌧̄n,1), i = n;
0, o.w.

To better appreciate Theorem 3, we give an intuitive ex-
planation as follows. The first two cases of the theorem cor-
respond to the scenario where the remaining amounts of the
two resources are unbalanced and cannot be fully utilized at
the same time. In this case, to achieve higher resource uti-
lization, the tradeoff fluid chooses the flow (either Flow 1 or
Flow n) whose processing demands match more closely to
the remaining resource shares. The third case discussed by
the theorem corresponds to the scenario where the remaining
amounts of the two resources are balanced, and can be fully
utilized by choosing two flows (Flow 1 and Flow n) with
complementary resource requirements. In any case, Theo-
rem 3 states that the tradeoff fluid favors at most two flows,
allocating them more dominant shares than others. We refer
to these two flows as favored flows while all the other flows
as regular flows.

Once the bonus dominant share is determined, the optimal
solution d⇤ to (7) can be easily computed as the sum of the
base and the bonus dominant share:

d⇤i =

˜d⇤i + ↵ ¯d, for all i. (12)

4. PACKET-BY-PACKET TRACKING
So far, all our discussions are based on an idealized fluid

model. In practice, however, packets are processed as enti-
ties, and cannot be transmitted before the CPU processing
completes. In this section, we present a discrete tracking al-
gorithm that implements the tradeoff fluid as a packet-by-
packet schedule in the real world. We show that the discrete
schedule is asymptotically close to the fluid, in terms of both
fairness and efficiency. We start with a justification between
the two tracking approaches.

4.1 Start-Time Tracking vs. Finish-Time
Tracking

In general, given a fluid, two tracking algorithms can im-
plement it in the real world, the start-time tracking and the
finish-time tracking. The former tracks the order of packet
start time in the fluid – the packet that starts service the ear-
liest in the fluid is scheduled the first. In fair queueing, FQS
[15] uses this approach to track GPS. Finish-time tracking,
on the other hand, assigns the highest scheduling priority
to the packet that completes service the earliest in the fluid.
WFQ [9, 20] tracks GPS based on this approach.

6
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if it satisfies (17). If it does, then pi is the pivotal packet
and the search stops. Otherwise, the processing of packet pi
on resource 2 is delayed for a certain amount of time after
the processing completes on resource 1. This implies that the
processing of pi on resource 2 starts immediately after its
previous packet pi�1

completes processing on resource 2:

f

D

i,1 < s

D

i,2 = f

D

i�1,2 . (18)

We continue the search to pi�1

and check if it satisfies (17). If
it does, then pi�1

is the pivotal packet because the processing
of pi�1

and pi is continuous on resource 2, and the search
stops. Otherwise, we must have

f

D

i�1,1 < s

D

i�1,2 = f

D

i�2,2 ,

for the similar reason as that of (18). We continue the search
to pi�2

. Note that the search is guaranteed to stop at packet p
1

,
because it is the first packet scheduled and there is no delay
between the processing on the two resources. In this case, p

1

is the pivotal packet.
Lemma 3: For any Fluid and its corresponding Discrete,

we have
s

D

i,1  s

F

i + (n� 1)⌧

max

, for all i, (19)

where n is the maximum number of packets that can be
processed simultaneously in the Fluid.

Proof: For any packet pi, let pj be the earliest-scheduled
packet where pj , pj+1

, . . . , pi are continuously processed on
resource 1 in the Discrete, i.e.,

j = argmin

1li
{fD

l,1 = s

D

l�1,1} .

The reason that pj is not processed right after its previous
packet completes processing on resource 1 is because it has not
yet arrived at that time. Packet pj should hence be scheduled
immediately upon its arrival in the Discrete, which implies
s

D

j,1  s

F

j .
Now for the Fluid, consider the time interval [sFj , sFi ), during

which packets pj , . . . , pi�1

start processing. When packet pi
starts processing at time s

F

i , there are at most (n � 1) other
packets that have not yet completed processing, all of which
must start earlier than pi. Therefore, the workload processed
by the Fluid in [s

F

j , s
F

i ) is at least

j�1X

l=i

⌧

1

(pl)� (n� 1)⌧

max  s

F

i � s

F

j  s

F

i � s

D

j,1 ,

We then have

s

F

i � s

D

j,1 +

j�1X

l=i

⌧

1

(pl)� (n� 1)⌧

max

= s

D

i,1 � (n� 1)⌧

max

,

(20)

where the equality holds because packets pj , . . . , pi are pro-
cessed continuously on resource 1 in the Discrete.

The following theorem is specific for the Discrete schedule
that tracks the Fluid described in the previous section. Without
loss of generality, we limit the discussion to a busy period of

the Fluid.
Theorem 5: For the Fluid obtained by Theorem 4 and its

corresponding Discrete, we have

f

D

N,2  f

F

N + 2⌧

max

.

Proof: By Lemma 2, for the Discrete, there exists a pivotal
packet pk, such that

f

D

N,2 = f

D

k,1 +

NX

i=k

⌧

2

(pi) = s

D

k,1 + ⌧

1

(pk)+

NX

i=k

⌧

2

(pi) . (21)

We note the following two facts. First, we have
NX

i=k

⌧

2

(pi)  f

F

N � s

F

k (22)

because packets pk, . . . , pN are all processed after s

F
k in the

Fluid. On the other hand, by Theorem 4, at each time there
are at most two packets being processed simultaneously in the
Fluid. With this result and by Lemma 3, we have

s

D

k,1 � s

F

k  ⌧

max (23)

for the pivotal packet pk . Plugging (22) and (23) into (21),
we have

f

D

N,2  f

F

N + ⌧

max

+ ⌧

1

(pk)  f

F

N + 2⌧

max

.

V. PACKET-BY-PACKET TRACKING

A. The Fluid Schedule

We first find the dominant service each flow should receive
under the fair schedule. In particular, a fair allocation can be
obtained by solving the following problem.

max

di

min

i2Bt

di

s.t.
X

i2Bt

⌧̄i,rdi  1, r = 1, 2 .

(24)

Let ¯d = (

¯

d

1

, . . . ,

¯

dn) be the solution to (24). We have

¯

di =
¯

d = 1/max {
P

i ⌧̄i,1,
P

i ⌧̄i,2} .

The fairness-efficiency tradeoff can be expressed by a param-
eter ↵ 2 [0, 1].

The fluid schedule is obtained by solving the following
efficiency maximization problem with the fairness constraint:

max

di

X

i2Bt

di

s.t.
X

i2Bt

⌧̄i,rdi  1, r = 1, 2,

di � ↵

¯

d, 8i 2 Bt .

(25)

We now show that the optimization problem (25) has some
special structure based on which an optimal solution can be
easily constructed. Since each flow is guaranteed to receive
a dominant share of ↵

¯

d, problem (25) can be equivalently

8

Fairness constraint

Resource constraint

↵ 2 [0, 1]



Implement the fluid model via 
packet-by-packet tracking
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Start-Time Tracking
‣ Maintain the Tradeoff Fluid as a reference system in the 

background 

‣ In the real world, whenever there is a packet scheduling 
opportunity, the one that starts the earliest in the Tradeoff 
Fluid is scheduled first 

‣ An O(log n) implementation based on a special structure of 
the Tradeoff Fluid 

‣ Asymptotically close to the fluid model in terms of both 
makespan and fairness guarantee
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Experiment Setup
‣ Prototype implementation in Click modular router 

‣ 60 UDP flows each sending 2,000 800-byte pkts/s 

‣ Three middlebox processing modules 

‣ Packet checking (bandwidth-bound): Flows 1~20  

‣ Statistical monitoring (bandwidth-bound): Flow 21~40 

‣ IPsec (CPU-bound): Flows 41~60
28



Scenario 1: No packet drop
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Makespan
‣ Each flow sends 10s traffic 

!

!

!

‣ Trading off 15% of fairness is sufficient to achieve the 
shortest makespan (20% throughput improvement)

30

by its head-of-line packet is simply

Ri = Fi � V (t), (16)

which is a dual of (15).
We also need to remove the virtual finish time, Fi, from

the heap. To do so, we maintain an index for each regular
flow, recording the location of its virtual finish time stored in
the heap. Following this index, we can easily locate the posi-
tion of Fi and delete it from the heap, followed by some stan-
dard “trickle-down” operations to preserve the heap property
in O(log n) time.

To summarize, our approach maintains the fluid schedule
by identifying favored and regular flows, tracking their work
progress, and handling the potential identity switching. We
show that any of these operations can be accomplished in
O(log n) time. As a result, maintaining the fluid schedule
takes O(log n) time per event.

5.4 Start-Time Tracking and Complexity
With the fluid schedule maintained as a reference system,

the implementation of start-time tracking is straightforward.
Whenever a packet starts in the fluid schedule, it is added to
a FIFO queue. Upon a scheduling opportunity, the scheduler
polls the queue and retrieves a packet to schedule. This en-
sures that packets are scheduled in order of their start times
in the fluid schedule. To minimize the update frequency, the
scheduler lazily updates the fluid schedule only when the
FIFO queue is empty.

We now analyze the scheduling complexity of the afore-
mentioned implementation. The scheduling decisions are
made by updating the fluid schedule in an event-driven ba-
sis. For each event, the update takes O(log n) time. Note
that there are only two types of events in the fluid schedule,
new head-of-line and packet departure. Because a packet
served in the fluid schedule triggers exactly these two events
over the entire scheduling period, scheduling N packets trig-
gers 2N updates in the fluid schedule, with the overall com-
plexity O(2N log n). On average, the scheduling decision is
made in O(2 log n) time per packet, the same order as that
of DRFQ [12].

6. EVALUATION
We evaluate the tradeoff algorithm via both our prototype

implementation and trace-driven simulation. We use a pro-
totype implementation to investigate the detailed function-
ing of the algorithm, in a microscopic view. We then take
a macroscopic view to evaluate the algorithm using trace-
driven simulation, where flows dynamically join and depart
the system.

6.1 Experimental Results
We have prototyped our tradeoff algorithm as a new sched-

uler in the Click modular router [17], based on the O(log n)
implementation given in the previous section. The sched-
uler classifies packets to flows (based on the IP prefix and

Table 1: Schedule makespan observed in Click at different
fairness levels. The queue capacity is infinite.

↵ Makespan (s) Normalized Makespan (%)
1.00 55.68 100.00
0.95 52.50 94.28
0.90 48.97 87.95
0.85 47.17 84.72
0.70 47.13 84.64
0.60 47.07 84.54
0.50 47.07 84.54
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Figure 2: Overall resource utilization observed in Click. No
packet drops.

port number) and identifies the types of packet processing
based on the port number specified by a flow class table.
The scheduler also exposes an interface that allows the oper-
ator to dynamically configure the tradeoff parameter ↵. Our
implementation consists of roughly 1,000 lines of C++ code.

We run our Click implementation in user mode on a Dell
PowerEdge server with an Intel Xeon 3.0 GHz processor and
1 Gbps Ethernet interface. To make fairness relevant, we
throttle the outgoing bandwidth to 200 Mbps while keep-
ing the inbound bandwidth as is. We also throttle the Click
module to use only 20% CPU so that CPU could also be a
bottleneck. We configure three packet processing modules
in Click to emulate a multi-functioning middlebox: packet
checking, statistical monitoring, and IPsec. The former two
modules are bandwidth-bound, though statistical monitoring
requires more CPU processing time than packet checking
does. The IPsec module encrypts packets using AES (128-
bit key length) and is CPU-bound. We configure another
server as a traffic source, initiating 60 UDP flows each send-
ing 2000 800-byte packets per second to the Click router.
The first 20 flows pass through the packet checking mod-
ule; the next 20 flows pass through the statistical monitoring
module; and the last 20 flows pass through the IPsec module.

6.1.1 Fairness-Efficiency Tradeoff
We first evaluate the achieved tradeoff between fairness

and makespan. To fairly compare the makespan at differ-
ent fairness levels, it is critical to ensure the same traffic

9
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Figure 3: Dominant share
each flow receives per second
in Click. No packet drops.
The strict fair share is 2%.
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(b) Dominant share.
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(c) Per-packet latency

Figure 4: Average resource utilization and dominant share each flow receives in Click at
different fairness levels. The queue capacity is 200 packets. The measurement of resource
utilization and dominant share is conducted every second over the entire schedule.

input when running the algorithm with different values of
the tradeoff parameter ↵. Therefore, we initially consider
an idealized scenario where each flow queue has infinite ca-
pacity and never drops packets. Table 1 lists the observed
makespans with various fairness requirements, in an experi-
ment where each flow keeps sending packets for 10 seconds.
We see that, as expected, trading off some level of fairness
leads to a shorter makespan and higher efficiency. Further-
more, the marginal improvement of efficiency is decreas-
ing. This suggests that one does not need to compromise too
much fairness in order to achieve high efficiency. In our ex-
periment, trading off 15% of fairness shortens the makespan
by 15.3% from the strictly fair schedule (↵ = 1), which is
equivalent to a 18.1% throughput enhancement and is near-
optimal as seen in Table 1. Fig. 2 gives a detailed look into
the achieved resource utilization over time, at four fairness
levels. We see that strictly fair queueing (↵ = 1) wastes
30% of CPU cycles, leaving the bandwidth as the bottleneck
at the beginning. This situation remains until bandwidth-
bound flows finish, at which time the bottleneck shifts to
CPU. By relaxing fairness, CPU-bound flows receive more
services, leading to a steady increase of CPU utilization up
to 100%. Meanwhile, bandwidth-bound flows experience
slightly longer completion times due to the fairness tradeoff.

We now verify the fairness guarantee. We run the sched-
uler at various fairness levels. At each level, for each flow,
we measure its received dominant share every second for
the first 20 seconds, during which all flows are backlogged.
Fig. 3 shows the results, where each cross (“x”) corresponds
to the measured share of a flow. As expected, under strict
fairness (↵ = 1), all flows receive the same dominant share
(around 2%). As ↵ decreases, the fairness requirement re-
laxes. Some flows are hence favored and are allocated more
dominant share, while others receive less. However, the min-
imum dominant share a flow receives is lower bounded by
the ↵-portion of the fair share, shown as the solid line in
Fig. 3. This shows that the algorithm is correctly operating
at the desired fairness level.

We next extend the experiment to a more practical setup,
where each flow queue has a limited capacity and drops pack-
ets when it is full. We set the queue capacity to 200 packets

for each flow and repeat the previous experiments. In this
case, comparing makespan is inappropriate as the scheduler
may drop different packets when running at different fairness
level. We instead measure the resource utilization achieved
every second over the entire scheduling period. Fig. 4a illus-
trates the average utilization of both CPU and bandwidth,
where the error bar shows one standard deviation. Simi-
lar to the previous experiments, a fairness degradation of
15% is sufficient to achieve the optimal efficiency, enhanc-
ing the CPU utilization from 71% to 100%. Further trading
off fairness is not well justified. As shown in Fig. 4b, the
increased CPU throughput is mainly used to process those
CPU-bound flows (Flows 41 to 60), doubling their dominant
shares. Meanwhile, the dominant share received by all the
other flows is at least 85% of the fair share, as promised by
the algorithm. We also depict the per-packet latency CDF in
Fig. 4c. We see that trading off fairness for efficiency signifi-
cantly improves the tail latency, usually caused by flows that
finish the last. On the other hand, flows whose shares have
been traded off see slightly longer delays of their packets.
Fortunately, these latency penalties are strictly bounded—
thanks to the fairness guarantee—and are compensated by
the significant latency improvement of favored flows.

6.1.2 Service Isolation
We next examine the impact of fairness tradeoff on service

isolation. We initiate 6 UDP flows sending 800-byte pack-
ets. Flows 1 to 3 are elephant flows, each sending 20,000
packets per second, and undergo the checking, monitoring,
and IPsec modules, respectively. Flows 4 to 6 are mice flows,
each sending 2 packets per second, and undergo the check-
ing, monitoring, and IPsec modules, respectively. The queue
capacity is set to 200 packets. Fig. 5 shows the per-packet
latency of each flow at different fairness levels. We see that
the tradeoff mainly affects those high-rate flows. For mice
flows, even if they may receive less resource share when
↵ < 1, the guaranteed share is sufficient to accommodate
their low-rate traffic. As a result, their packets are scheduled
almost immediately upon arrival, with two orders of magni-
tude lower latency than the elephant flows.

We also compare our tradeoff scheduler against other fair

10



Scenario 2: buffer size=200
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Figure 4: Dominant share each
flow receives per second in Click.
No packet drops. The strict fair
share is 2%.
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(b) Dominant share.
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(c) Per-packet latency

Figure 5: Average resource utilization and dominant share each flow receives in Click at different fair-
ness levels. The queue capacity is 200 packets. The measurement of resource utilization and dominant
share is conducted every second over the entire schedule.

is inappropriate as the scheduler may drop different packets when
running at different fairness level. We instead measure the resource
utilization achieved every second over the entire scheduling period.
Fig. 5a illustrates the average utilization of both CPU and band-
width, where the error bar shows one standard deviation. Similar
to the previous experiments, a fairness degradation of 15% is suffi-
cient to achieve the optimal efficiency, enhancing the CPU utiliza-
tion from 71% to 100%. Further trading off fairness is not well
justified. As shown in Fig. 5b, the increased CPU throughput is
mainly used to process those CPU-bound flows (Flows 41 to 60),
doubling their dominant shares. Meanwhile, the dominant share
received by all the other flows is at least 85% of the fair share,
as promised by the algorithm. We also depict the per-packet la-
tency CDF in Fig. 5c. We see that trading off fairness for effi-
ciency significantly improves the tail latency, usually caused by
flows that finish the last. On the other hand, flows whose shares
have been traded off see slightly longer delays of their packets. For-
tunately, these latency penalties are strictly bounded—thanks to the
fairness guarantee—and are compensated by the significant latency
improvement of favored flows.

We have also measured the scheduling overhead in the experi-
ments. In particular, we configure the tradeoff scheduler for strict
fair queueing by setting ↵ = 1. We then compare the incurred CPU
overhead with that of MR3 [32], a low complexity fair scheduler.
Our measurement shows that the tradeoff scheduler introduces 1%
CPU overhead compared with MR3.

6.1.2 Service Isolation
We next examine the impact of fairness tradeoff on service iso-

lation. We initiate 6 UDP flows sending 800-byte packets. Flows
1 to 3 are elephant flows, each sending 20,000 packets per second,
and undergo the checking, monitoring, and IPsec modules, respec-
tively. Flows 4 to 6 are mice flows, each sending 2 packets per
second, and undergo the checking, monitoring, and IPsec modules,
respectively. The queue capacity is set to 200 packets. Fig. 6 shows
the per-packet latency of each flow at different fairness levels. We
see that the tradeoff mainly affects those high-rate flows. For mice
flows, even if they may receive less resource share when ↵ < 1,
the guaranteed share is sufficient to accommodate their low-rate
traffic. As a result, their packets are scheduled almost immediately
upon arrival, with two orders of magnitude lower latency than the
elephant flows.

We also compare our tradeoff scheduler against other fair queue-
ing algorithms. In particular, we have implemented MR3 [32] and
GMR3 [35] as two other round-robin O(1) schedulers in Click,
and conducted the same experiments mentioned above. We find
that they achieve almost the same makespan and resource utiliza-
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(a) Elephant flows.
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(b) Mice flows.

Figure 6: Mean per-packet latency of elephant (sending 20,000
pkts/s) and mice flows (sending 2 pkts/s) in Click. The error bar
shows the standard deviation.

tion as that of the tradeoff scheduler running with the strict fairness
requirement (↵ = 1). This should come with no surprises, as all
the existing multi-resource fair queueing algorithms are essentially
different approximations to the fluid schedule with perfect DRF.
These results are omitted to avoid redundancy.

6.2 Trace-Driven Simulation
Next, we use trace-driven simulation to further evaluate the pro-

posed algorithm from a macroscopic perspective. We have written
a packet-level simulator consisting of 3,000 lines of C++ code and
fed it with real-world traces [2] captured in a university switch.
The traces are dominated by UDP packets. Based on the IP pre-
fix and port number, we classify packets in the traces into nearly
3,000 flows and synthesize the input traffic by randomly assigning
each flow to one of three middlebox modules: basic forwarding,
statistical monitoring, and IPsec. The CPU processing time of each
module follows a linear model based on the measurement results
of [13]. The flow queue size is set to 200 packets, and the outgo-
ing bandwidth is set to 200 Mbps. We linearly scale up the traffic
by 5⇥ to simulate a heavy load. Depending on the total resource
consumption, the synthesized traffic is classified into the follow-
ing three patterns: CPU-bound traffic where the CPU processing
time exceeds 1.2⇥ the transmission time, bandwidth-bound traf-
fic where the transmission time exceeds 1.2⇥ the CPU time, and
balanced traffic otherwise.

Fig. 7 shows the mean utilization achieved at various fairness
levels, where each data point is averaged over 10 runs under the
corresponding traffic pattern. The error bar shows one standard de-
viation. We observe similar trends in all three patterns, that trading
off fairness leads to higher utilization on both resources. Simi-
lar to our Click implementation results, we see that the marginal
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Figure 4: Dominant share each
flow receives per second in Click.
No packet drops. The strict fair
share is 2%.
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(b) Dominant share.
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(c) Per-packet latency

Figure 5: Average resource utilization and dominant share each flow receives in Click at different fair-
ness levels. The queue capacity is 200 packets. The measurement of resource utilization and dominant
share is conducted every second over the entire schedule.

is inappropriate as the scheduler may drop different packets when
running at different fairness level. We instead measure the resource
utilization achieved every second over the entire scheduling period.
Fig. 5a illustrates the average utilization of both CPU and band-
width, where the error bar shows one standard deviation. Similar
to the previous experiments, a fairness degradation of 15% is suffi-
cient to achieve the optimal efficiency, enhancing the CPU utiliza-
tion from 71% to 100%. Further trading off fairness is not well
justified. As shown in Fig. 5b, the increased CPU throughput is
mainly used to process those CPU-bound flows (Flows 41 to 60),
doubling their dominant shares. Meanwhile, the dominant share
received by all the other flows is at least 85% of the fair share,
as promised by the algorithm. We also depict the per-packet la-
tency CDF in Fig. 5c. We see that trading off fairness for effi-
ciency significantly improves the tail latency, usually caused by
flows that finish the last. On the other hand, flows whose shares
have been traded off see slightly longer delays of their packets. For-
tunately, these latency penalties are strictly bounded—thanks to the
fairness guarantee—and are compensated by the significant latency
improvement of favored flows.

We have also measured the scheduling overhead in the experi-
ments. In particular, we configure the tradeoff scheduler for strict
fair queueing by setting ↵ = 1. We then compare the incurred CPU
overhead with that of MR3 [32], a low complexity fair scheduler.
Our measurement shows that the tradeoff scheduler introduces 1%
CPU overhead compared with MR3.

6.1.2 Service Isolation
We next examine the impact of fairness tradeoff on service iso-

lation. We initiate 6 UDP flows sending 800-byte packets. Flows
1 to 3 are elephant flows, each sending 20,000 packets per second,
and undergo the checking, monitoring, and IPsec modules, respec-
tively. Flows 4 to 6 are mice flows, each sending 2 packets per
second, and undergo the checking, monitoring, and IPsec modules,
respectively. The queue capacity is set to 200 packets. Fig. 6 shows
the per-packet latency of each flow at different fairness levels. We
see that the tradeoff mainly affects those high-rate flows. For mice
flows, even if they may receive less resource share when ↵ < 1,
the guaranteed share is sufficient to accommodate their low-rate
traffic. As a result, their packets are scheduled almost immediately
upon arrival, with two orders of magnitude lower latency than the
elephant flows.

We also compare our tradeoff scheduler against other fair queue-
ing algorithms. In particular, we have implemented MR3 [32] and
GMR3 [35] as two other round-robin O(1) schedulers in Click,
and conducted the same experiments mentioned above. We find
that they achieve almost the same makespan and resource utiliza-
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(a) Elephant flows.

4 5 6
0.1

0.2

0.3

0.4

Flow ID

M
e

a
n

 L
a

te
n

cy
 (

m
s)

 

 

α = 0.8 α = 0.9 α = 1

(b) Mice flows.

Figure 6: Mean per-packet latency of elephant (sending 20,000
pkts/s) and mice flows (sending 2 pkts/s) in Click. The error bar
shows the standard deviation.

tion as that of the tradeoff scheduler running with the strict fairness
requirement (↵ = 1). This should come with no surprises, as all
the existing multi-resource fair queueing algorithms are essentially
different approximations to the fluid schedule with perfect DRF.
These results are omitted to avoid redundancy.

6.2 Trace-Driven Simulation
Next, we use trace-driven simulation to further evaluate the pro-

posed algorithm from a macroscopic perspective. We have written
a packet-level simulator consisting of 3,000 lines of C++ code and
fed it with real-world traces [2] captured in a university switch.
The traces are dominated by UDP packets. Based on the IP pre-
fix and port number, we classify packets in the traces into nearly
3,000 flows and synthesize the input traffic by randomly assigning
each flow to one of three middlebox modules: basic forwarding,
statistical monitoring, and IPsec. The CPU processing time of each
module follows a linear model based on the measurement results
of [13]. The flow queue size is set to 200 packets, and the outgo-
ing bandwidth is set to 200 Mbps. We linearly scale up the traffic
by 5⇥ to simulate a heavy load. Depending on the total resource
consumption, the synthesized traffic is classified into the follow-
ing three patterns: CPU-bound traffic where the CPU processing
time exceeds 1.2⇥ the transmission time, bandwidth-bound traf-
fic where the transmission time exceeds 1.2⇥ the CPU time, and
balanced traffic otherwise.

Fig. 7 shows the mean utilization achieved at various fairness
levels, where each data point is averaged over 10 runs under the
corresponding traffic pattern. The error bar shows one standard de-
viation. We observe similar trends in all three patterns, that trading
off fairness leads to higher utilization on both resources. Simi-
lar to our Click implementation results, we see that the marginal
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Figure 4: Dominant share each
flow receives per second in Click.
No packet drops. The strict fair
share is 2%.
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(b) Dominant share.
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(c) Per-packet latency

Figure 5: Average resource utilization and dominant share each flow receives in Click at different fair-
ness levels. The queue capacity is 200 packets. The measurement of resource utilization and dominant
share is conducted every second over the entire schedule.

is inappropriate as the scheduler may drop different packets when
running at different fairness level. We instead measure the resource
utilization achieved every second over the entire scheduling period.
Fig. 5a illustrates the average utilization of both CPU and band-
width, where the error bar shows one standard deviation. Similar
to the previous experiments, a fairness degradation of 15% is suffi-
cient to achieve the optimal efficiency, enhancing the CPU utiliza-
tion from 71% to 100%. Further trading off fairness is not well
justified. As shown in Fig. 5b, the increased CPU throughput is
mainly used to process those CPU-bound flows (Flows 41 to 60),
doubling their dominant shares. Meanwhile, the dominant share
received by all the other flows is at least 85% of the fair share,
as promised by the algorithm. We also depict the per-packet la-
tency CDF in Fig. 5c. We see that trading off fairness for effi-
ciency significantly improves the tail latency, usually caused by
flows that finish the last. On the other hand, flows whose shares
have been traded off see slightly longer delays of their packets. For-
tunately, these latency penalties are strictly bounded—thanks to the
fairness guarantee—and are compensated by the significant latency
improvement of favored flows.

We have also measured the scheduling overhead in the experi-
ments. In particular, we configure the tradeoff scheduler for strict
fair queueing by setting ↵ = 1. We then compare the incurred CPU
overhead with that of MR3 [32], a low complexity fair scheduler.
Our measurement shows that the tradeoff scheduler introduces 1%
CPU overhead compared with MR3.

6.1.2 Service Isolation
We next examine the impact of fairness tradeoff on service iso-

lation. We initiate 6 UDP flows sending 800-byte packets. Flows
1 to 3 are elephant flows, each sending 20,000 packets per second,
and undergo the checking, monitoring, and IPsec modules, respec-
tively. Flows 4 to 6 are mice flows, each sending 2 packets per
second, and undergo the checking, monitoring, and IPsec modules,
respectively. The queue capacity is set to 200 packets. Fig. 6 shows
the per-packet latency of each flow at different fairness levels. We
see that the tradeoff mainly affects those high-rate flows. For mice
flows, even if they may receive less resource share when ↵ < 1,
the guaranteed share is sufficient to accommodate their low-rate
traffic. As a result, their packets are scheduled almost immediately
upon arrival, with two orders of magnitude lower latency than the
elephant flows.

We also compare our tradeoff scheduler against other fair queue-
ing algorithms. In particular, we have implemented MR3 [32] and
GMR3 [35] as two other round-robin O(1) schedulers in Click,
and conducted the same experiments mentioned above. We find
that they achieve almost the same makespan and resource utiliza-
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Figure 6: Mean per-packet latency of elephant (sending 20,000
pkts/s) and mice flows (sending 2 pkts/s) in Click. The error bar
shows the standard deviation.

tion as that of the tradeoff scheduler running with the strict fairness
requirement (↵ = 1). This should come with no surprises, as all
the existing multi-resource fair queueing algorithms are essentially
different approximations to the fluid schedule with perfect DRF.
These results are omitted to avoid redundancy.

6.2 Trace-Driven Simulation
Next, we use trace-driven simulation to further evaluate the pro-

posed algorithm from a macroscopic perspective. We have written
a packet-level simulator consisting of 3,000 lines of C++ code and
fed it with real-world traces [2] captured in a university switch.
The traces are dominated by UDP packets. Based on the IP pre-
fix and port number, we classify packets in the traces into nearly
3,000 flows and synthesize the input traffic by randomly assigning
each flow to one of three middlebox modules: basic forwarding,
statistical monitoring, and IPsec. The CPU processing time of each
module follows a linear model based on the measurement results
of [13]. The flow queue size is set to 200 packets, and the outgo-
ing bandwidth is set to 200 Mbps. We linearly scale up the traffic
by 5⇥ to simulate a heavy load. Depending on the total resource
consumption, the synthesized traffic is classified into the follow-
ing three patterns: CPU-bound traffic where the CPU processing
time exceeds 1.2⇥ the transmission time, bandwidth-bound traf-
fic where the transmission time exceeds 1.2⇥ the CPU time, and
balanced traffic otherwise.

Fig. 7 shows the mean utilization achieved at various fairness
levels, where each data point is averaged over 10 runs under the
corresponding traffic pattern. The error bar shows one standard de-
viation. We observe similar trends in all three patterns, that trading
off fairness leads to higher utilization on both resources. Simi-
lar to our Click implementation results, we see that the marginal



Conclusions
‣ We have identified the problem of fairness-efficiency 

tradeoffs for multi-resource packet scheduling 

‣ We have designed a scheduling algorithm to achieve a 
flexible tradeoff between fairness and efficiency for packet 
processing that requires both CPU and link bandwidth 

‣ We have prototyped the tradeoff algorithm in Click. 
Experimental results show that slight fairness tradeoff is 
sufficient to achieve the highest efficiency
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