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Middleboxes and Deep Packet Inspection

» Process packets based on payload

» |IPsec, Monitoring, Firewalls, WAN optimization, etc
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Consumption of Multiple Resources

» Packet processing requires multiple types of resources
(e.qg., CPU, memory b/w, link b/w)

» Different middlebox (MB) modules consume different
amounts of resources
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Resources should be shared fairly
and efficiently among flows



Falrness

» Predictable service isolation

» The service a flow receives in an n-flow system is at
least 1/n of that it achieves when the flow monopolizes
all resources

» Dominant Resource Fairness (DRF)

» Flows receive approximately the same processing time
on the dominant resources of their packets



cfficiency

» High resource utilization given a non-empty system, with
high traffic throughput

» Important in today’s enterprise networks, as a surging
volume of traffic now passes through MBs




However, fairness and efficiency are
conflicting objectives in the presence of
multiple resources



Fair but Inefficient
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(a) A packet schedule that 1s fair but inefficient.

» Fair: both flows receive 9 time units to process on their
dominant resources in each rounao

» Inefficient; link is idle at 1/3 of time



Efficient but Unfair
CPU |pl|p2|p3|p4|pS|p6|p7 p8p9 pl0| -

Link pl P2 P3 p4 p5 p6 p7 p8 0 p9
0 2 4 6 3 10 12 14 16 1820222426T1me

(b) A packet schedule that 1s efficient but unfair.

» Unfair: Flow 1 receives 96% of the link bandwidth; Flow 2
receives 36% of the CPU time

» Efficient: 100% CPU and link utilization given a non-
empty system



ldeally...

» Allow the network operator to flexibly specity the tradeoft
preference

» Many applications may have loose fairness
requirements

» Implement the specified tradeoff via a queueing algorithm
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However...

» EXisting multi-resource queueing algorithms focus only on
fairness, without efficiency consideration

» The tradeoft problem has never been mentioned
before, and is unique to multi-resource scheduling

» Even the efficiency measure is unclear!
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1he Efficiency Measure



Schedule Makespan

» Time elapsed from the arrival of the first packet to the
time when all packets finish processing on all resources

» The completion time of the last flow

Max efficiency = Min makespan

13



Quantifying the Efficiency Loss

» Theoretical results
» m: # of resource types concerned

» the makespan of fair gueueing could be up to m times
the optimal makespan

» Experiment confirms 20% throughput loss of existing
multi-resource fair queueing
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Makespan minimization is notoriously hard,
especially when there are more than two
types of resources concerned (NP-hard)



We limit our discussion to the two most
concerned types of resources for packet
processing— CPU and link bandwidth



Our Approach

» Relax the scheduling problem to an idealized fluid model

» Discuss the tradeoff between fairness and efficiency in
the fluid model

» Implement the fluid model in the real world via a packet-
by-packet tracking algorithm
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The Fluid Relaxation: packets are
assumed to receive services In arbitrarily
small iIncrements on all resources
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Fluid Relaxation

» Discrete schedule
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» Fluid relaxation
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Fluid w/ the Perfect Fairness

» Implement the strict DRF allocation at all times
Max-min flow’s dominant share

max mind;
d; 1e€B
S.t. Zﬂ,rdi < 1, T = 1,2 .
1eb Resource constraints

» All flows recelve the same fair dominant share

CZ: 1/ max {ZZ Ti,1, ZZ 7__@',2}
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Fluid w/ the Optimal Efficiency

» Greedily maximizes the system dominant share at all

times

Maximize system dominant share

st Y Tpdi <1, r=1,2.

Resource constraints
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Falrness-cfficiency lradeoft



Specifying Fairness Requirement

» Let d be the fair dominant share under DRF
» Let a € |0, 1] be a fairness knob specified by the operator

» Fairness constraint: flows receive at least a-portion of
fair dominant share

Fair share under DRF
d; > OéCZ, Vi € B,

Dominant share of flow /
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Falrness-cfficiency l[radeoffs

» Maximize the system dominant share under a specified
tradeoff level (quantified by fairness knob a € |0, 1|)

max Z d;
© B, Resource constraint
S.t. Z Tird; <1, r=12,
iEBt

dz‘ > de_, V1 € Bt .
Falrness constraint
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Implement the fluid model via
packet-by-packet tracking



Start-Time Tracking

» Maintain the Tradeoff Fluid as a reference system in the
background

» In the real world, whenever there is a packet scheduling
opportunity, the one that starts the earliest in the Tradeoff
Fluid is scheduled first

» An O(log n) iImplementation based on a special structure of
the Tradeoft Fluid

» Asymptotically close to the fluid model in terms of both
makespan and fairness guarantee
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Evaluation



Experiment Setup

» Prototype implementation in Click modular router
» 60 UDP flows each sending 2,000 800-byte pkts/s
» Three middlebox processing modules
» Packet checking (bandwidth-bound): Flows 1~20
» Statistical monitoring (bandwidth-bound): Flow 21~40

» |IPsec (CPU-bound): Flows 41~60
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Scenario 1: No packet drop



Viakespan

» Each flow sends 10s traffic

o Makespan (s) | Normalized Makespan (%)
1.00 55.68 100.00
0.95 52.50 04.28
0.90 48.97 87.95
0.85 47.17 84.72
0.70 47.13 84.64
0.60 47.07 84.54
0.50 47.07 84.54

» Trading off 15% of fairness is sufficient to achieve the
shortest makespan (20% throughput improvement)



Falrness
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Scenario 2: buffer size=200



Resource Utllization
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Dominant Share
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Per-Packet Latency
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Conclusions

» We have identified the problem of fairness-efticiency
tradeoffs for multi-resource packet scheduling

» We have designed a scheduling algorithm to achieve a
flexible tradeoff between fairness and efficiency for packet
processing that requires both CPU and link bandwidth

» We have prototyped the tradeoff algorithm in Click.
Experimental results show that slight fairness tradeoff is
sufficient to achieve the highest efficiency
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Thank you!

welwang@ece.utoronto.ca
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