On the Fairness-Efficiency Tradeoff for Packet Processing with Multiple Resources

Wei Wang, Chen Feng, Baochun Li, Ben Liang Department of Electrical and Computer Engineering University of Toronto December 4th, 2014

Middleboxes and Deep Packet Inspection

- Process packets based on payload
 - ► IPsec, Monitoring, Firewalls, WAN optimization, etc

Consumption of Multiple Resources

- Packet processing requires multiple types of resources (e.g., CPU, memory b/w, link b/w)
- Different middlebox (MB) modules consume different amounts of resources

Resources should be shared fairly and efficiently among flows

Fairness

- Predictable service isolation
 - The service a flow receives in an n-flow system is at least 1/n of that it achieves when the flow monopolizes all resources
- Dominant Resource Fairness (DRF)
 - Flows receive approximately the same processing time on the dominant resources of their packets

Efficiency

- High resource utilization given a non-empty system, with high traffic throughput
 - Important in today's enterprise networks, as a surging volume of traffic now passes through MBs

However, fairness and efficiency are **conflicting** objectives in the presence of multiple resources

Fair but Inefficient

(b) A packet schedule that is efficient but unfair.

- Unfair: Flow 1 receives 96% of the link bandwidth; Flow 2 receives 36% of the CPU time
- Efficient: 100% CPU and link utilization given a nonempty system

Ideally...

- Allow the network operator to flexibly specify the tradeoff preference
 - Many applications may have loose fairness requirements
- Implement the specified tradeoff via a queueing algorithm

However...

- Existing multi-resource queueing algorithms focus only on fairness, without efficiency consideration
 - The tradeoff problem has never been mentioned before, and is **unique** to multi-resource scheduling
- Even the efficiency measure is unclear!

The Efficiency Measure

Schedule Makespan

- Time elapsed from the arrival of the first packet to the time when all packets finish processing on all resources
 - The completion time of the last flow

Max efficiency = Min makespan

Quantifying the Efficiency Loss

- Theoretical results
 - ► *m*: # of resource types concerned
 - the makespan of fair queueing could be up to m times the optimal makespan
- Experiment confirms 20% throughput loss of existing multi-resource fair queueing

Makespan minimization is notoriously hard, especially when there are more than two types of resources concerned (NP-hard) We limit our discussion to the two most concerned types of resources for packet processing—CPU and link bandwidth

Our Approach

- Relax the scheduling problem to an idealized *fluid model*
- Discuss the tradeoff between fairness and efficiency in the fluid model
- Implement the fluid model in the real world via a packetby-packet tracking algorithm

The Fluid Relaxation: packets are assumed to receive services in arbitrarily small increments on all resources

Fluid Relaxation

Discrete schedule

► Fluid re

Fluid w/ the Perfect Fairness

Implement the strict DRF allocation at all times

 $\begin{array}{ll} & \mbox{Max-min flow's dominant share} \\ & \mbox{max} & \min_{i \in \mathcal{B}} d_i \\ & \mbox{s.t.} & \sum_{i \in \mathcal{B}} \bar{\tau}_{i,r} d_i \leq 1, \quad r = 1,2 \ . \\ & \mbox{Resource constraints} \end{array}$

All flows receive the same fair dominant share

$$\bar{d} = 1/\max\left\{\sum_{i} \bar{\tau}_{i,1}, \sum_{i} \bar{\tau}_{i,2}\right\}$$

Fluid w/ the Optimal Efficiency

 Greedily maximizes the system dominant share at all times

Maximize system dominant share

Fairness-Efficiency Tradeoff

Specifying Fairness Requirement

- Let \overline{d} be the fair dominant share under DRF
- Let $\alpha \in [0,1]$ be a *fairness knob* specified by the operator
- Fairness constraint: flows receive at least α -portion of fair dominant share

 $d_i \geq \alpha \overline{d}, \quad \forall i \in \mathcal{B}$ Dominant share of flow *i*

Fair share under DRF

Fairness-Efficiency Tradeoffs

• Maximize the system dominant share under a specified tradeoff level (quantified by fairness knob $\alpha \in [0, 1]$)

$$\begin{array}{ll} \max_{d_{i}} & \sum_{i \in \mathcal{B}_{t}} d_{i} \\ \text{s.t.} & \sum_{i \in \mathcal{B}_{t}} \bar{\tau}_{i,r} d_{i} \leq 1, \quad r = 1, 2, \\ d_{i} \geq \alpha \bar{d}, \quad \forall i \in \mathcal{B}_{t} \\ \end{array}$$

$$\begin{array}{l} \text{Fairness constraint} \end{array}$$

Implement the fluid model via packet-by-packet tracking

Start-Time Tracking

- Maintain the Tradeoff Fluid as a reference system in the background
- In the real world, whenever there is a packet scheduling opportunity, the one that starts the **earliest** in the Tradeoff Fluid is scheduled first
- An O(log n) implementation based on a special structure of the Tradeoff Fluid
- Asymptotically close to the fluid model in terms of both makespan and fairness guarantee

Evaluation

Experiment Setup

- Prototype implementation in Click modular router
- ► 60 UDP flows each sending 2,000 800-byte pkts/s
- Three middlebox processing modules
 - Packet checking (bandwidth-bound): Flows 1~20
 - Statistical monitoring (bandwidth-bound): Flow 21~40
 - ► IPsec (CPU-bound): Flows 41~60

Scenario 1: No packet drop

Makespan

Each flow sends 10s traffic

α	Makespan (s)	Normalized Makespan (%)
1.00	55.68	100.00
0.95	52.50	94.28
0.90	48.97	87.95
0.85	47.17	84.72
0.70	47.13	84.64
0.60	47.07	84.54
0.50	47.07	84.54

Fairness

Scenario 2: buffer size=200

Resource Utilization

Dominant Share

Per-Packet Latency

Conclusions

- We have identified the problem of fairness-efficiency tradeoffs for multi-resource packet scheduling
- We have designed a scheduling algorithm to achieve a flexible tradeoff between fairness and efficiency for packet processing that requires both CPU and link bandwidth
- We have prototyped the tradeoff algorithm in Click.
 Experimental results show that slight fairness tradeoff is sufficient to achieve the highest efficiency

Thank you!

weiwang@ece.utoronto.ca http://iqua.ece.toronto.edu/~weiwang/