Dominant Resource Fairness in Cloud Computing Systems with Heterogeneous Servers

Wei Wang, Baochun Li, Ben Liang Department of Electrical and Computer Engineering University of Toronto April 30, 2014

Introduction

Cloud computing system represents unprecedented heterogeneity

Server specification

Resource demand profiles of computing tasks

Configurations of servers in one of Google's clusters

CPU and memory units are normalized to the maximum server

Number of servers	CPUs	Memory
6732	0.50	0.50
3863	0.50	0.25
1001	0.50	0.75
795	1.00	1.00
126	0.25	0.25
52	0.50	0.12
5	0.50	0.03
5	0.50	0.97
3	1.00	0.50
1	0.50	0.06

Heterogeneous resource demand

How should resources be allocated *fairly* and *efficiently*?

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

State-of-the-Art Resource Allocation Mechanisms

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Partition a server's resources into slots

E.g., a slot = (1 CPU core, 2 GB RAM)

Allocate resources to users at the granularity of slots

- Hadoop Fair Scheduler & Capacity Scheduler
- Dryad Quincy scheduler

Ignores the heterogeneity of both server specifications and demand profiles

Dominant resource

The one that requires the most allocation share

Dominant resource

The one that requires the most allocation share

For example

A cluster: (9 CPUs, 18 GB RAM) Job of user 1: (1 CPU, 4 GB RAM) Job of user 2: (3 CPUs, 1 GB RAM)

Dominant resource

The one that requires the most allocation share

For example

A cluster: (9 CPUs, 18 GB RAM)

Job of user 1: (1 CPU, 4 GB RAM)

Job of user 2: (3 CPUs, 1 GB RAM)

DRF allocation

Equalize the *dominant share* each user receives 3 jobs for User 1: (3 CPUs, 12 GB) 2 jobs for User 2: (6 CPUs, 2 GB) Equalized dominant share = 2/3

Why DRF?

Addresses the demand heterogeneity

Why DRF?

Addresses the demand heterogeneity

Highly attractive allocation properties [Ghodsi11]

- Pareto optimality
- Envy freeness
- Truthfulness
- Sharing incentive
- and more...

DRF assumes an *all-in-one* resource model

The entire resource pool is modeled as one super computer

Ignores the heterogeneity of servers

Allocation depends only on the total amount of resources

May lead to an infeasible allocation

The same example

A cluster: (9 CPUs, 18 GB)

Job of user 1: (1 CPU, 4 GB)

Job of user 2: (3 CPUs, 1 GB)

DRF allocation

3 jobs for User 1: (3 CPUs, 12 GB) 2 jobs for User 2: (6 CPUs, 2 GB)

The same example

A cluster: (9 CPUs, 18 GB)

Job of user 1: (1 CPU, 4 GB)

Job of user 2: (3 CPUs, 1 GB)

DRF allocation

3 jobs for User 1: (3 CPUs, 12 GB) 2 jobs for User 2: (6 CPUs, 2 GB)

The same example

A cluster: (9 CPUs, 18 GB)

Job of user 1: (1 CPU, 4 GB)

Job of user 2: (3 CPUs, 1 GB)

DRF allocation

3 jobs for User 1: (3 CPUs, 12 GB) 2 jobs for User 2: (6 CPUs, 2 GB)

User 1 can schedule at most 2 jobs!

Per-Server DRF

For each server, allocate its resources to all users, using DRF

However...

Per-server DRF may lead to an arbitrarily inefficient allocation See the paper for details

Can the attractiveness of DRF extend to a heterogeneous environment?

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The ambiguity of dominant resource

The same example

```
A cluster: (9 CPUs, 18 GB)
Job of user 1: (1 CPU, 4 GB)
```


The ambiguity of dominant resource

The same example

```
A cluster: (9 CPUs, 18 GB)
Job of user 1: (1 CPU, 4 GB)
```


How to define dominant resource?

For server 1, the dominant resource is CPU

For server 2, the dominant resource is memory

For the entire resource pool, the dominant resource is memory

Our answer: DRFH

A generalization of DRF mechanism in Heterogeneous environments

Equalizes every user's global dominant share

Retains almost all the attractive allocation properties of DRF

- Pareto optimality
- Envy-freeness
- Truthfulness
- Weak sharing incentive
- and more...

Easy to implement

DRFH Allocation

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A global view of dominant resource

Global dominant resource

The one that requires the maximum allocation share of the entire resource pool

The same example

A cluster: (9 CPUs, 18 GB) Job of user 1: (1 CPU, 4 GB)

(1 CPU, 14 GB) (8 CPUs, 4 GB)

Memory is the global dominant resource

Key intuition

Max-min fairness on the global dominant resources, subject to resource constraints per server

DRFH Properties

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness property

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

DRFH is envy-free

No user can schedule more computing tasks by taking the other's resource allocation

No one will envy the other's allocation

DRFH is envy-free

No user can schedule more computing tasks by taking the other's resource allocation

No one will envy the other's allocation

DRFH is truthful

No user can schedule more computing tasks by misreporting its resource demand

Strategic behaviours are commonly seen in real system [Ghodsi11]

DRFH is envy-free

No user can schedule more computing tasks by taking the other's resource allocation

No one will envy the other's allocation

DRFH is truthful

No user can schedule more computing tasks by misreporting its resource demand

Strategic behaviours are commonly seen in real system [Ghodsi11]

DRFH is Pareto optimal

No user can schedule more tasks without decreasing the number of tasks scheduled for the others

No resource that could be utilized to serve a user is left idle

Service isolation

Equal partition

Allocation **A** is an equal partition if it divides every resource evenly among all *n* users

$$\sum_{l \in S} A_{ilr} = 1/n, \quad \forall r \in R, \ i \in U$$

Allocation share of resource r user i receives on server l

Equal partition

Allocation **A** is an equal partition if it divides every resource evenly among all *n* users

$$\sum_{l \in S} A_{ilr} = 1/n, \quad \forall r \in R, \ i \in U$$

Allocation share of resource r user i receives on server l

Weak sharing incentive

There exists an equal allocation **A'** under which each user schedules fewer tasks than those under DRFH

DRFH is unanimously preferred to an equal allocation by all users

Comparison

DRFH

Pareto optimality

Envy freeness

Truthfulness

Weak sharing incentive

DRF (all-in-one model)

Pareto optimality Envy freeness Truthfulness Strong sharing incentive

Comparison

DRFH

- Pareto optimality
- Envy freeness
- Truthfulness
- Weak sharing incentive

DRF (all-in-one model)

- Pareto optimality
- Envy freeness
- Truthfulness
- Strong sharing incentive

DRFH retains almost all the attractive properties of DRF

Trace-Driven Simulation

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Resource utilization

Job completion times

Conclusions

- We have studied a multi-resource fair allocation problem in a heterogeneous cloud computing system
- We have generalized DRF to DRFH and shown that it possesses a set of highly attractive allocation properties
- We have designed an effective heuristic algorithm that implements DRFH in a real-world system

http://iqua.ece.toronto.edu/~weiwang/