
Dominant Resource Fairness in Cloud Computing 
Systems with Heterogeneous Servers

Wei Wang, Baochun Li, Ben Liang 
Department of Electrical and Computer Engineering  

University of Toronto 
April 30, 2014



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Introduction

Cloud computing system represents unprecedented 
heterogeneity 

Server specification 
Resource demand profiles of computing tasks

2



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Configurations of servers in one of Google’s clusters 

CPU and memory units are normalized to the maximum server

Heterogenous servers

3

1

Dominant Resource Fairness in Cloud Computing
Systems with Heterogeneous Servers

Wei Wang, Baochun Li, Ben Liang
Department of Electrical and Computer Engineering

University of Toronto

Abstract—We study the multi-resource allocation problem in
cloud computing systems where the resource pool is constructed
from a large number of heterogeneous servers, representing
different points in the configuration space of resources such as
processing, memory, and storage. We design a multi-resource
allocation mechanism, called DRFH, that generalizes the notion
of Dominant Resource Fairness (DRF) from a single server to
multiple heterogeneous servers. DRFH provides a number of
highly desirable properties. With DRFH, no user prefers the
allocation of another user; no one can improve its allocation
without decreasing that of the others; and more importantly, no
user has an incentive to lie about its resource demand. As a direct
application, we design a simple heuristic that implements DRFH
in real-world systems. Large-scale simulations driven by Google
cluster traces show that DRFH significantly outperforms the
traditional slot-based scheduler, leading to much higher resource
utilization with substantially shorter job completion times.

I. INTRODUCTION

Resource allocation under the notion of fairness and effi-
ciency is a fundamental problem in the design of cloud com-
puting systems. Unlike traditional application-specific clusters
and grids, a cloud computing system distinguishes itself with
unprecedented server and workload heterogeneity. Modern
datacenters are likely to be constructed from a variety of server
classes, with different configurations in terms of processing ca-
pabilities, memory sizes, and storage spaces [1]. Asynchronous
hardware upgrades, such as adding new servers and phasing
out existing ones, further aggravate such diversity, leading to
a wide range of server specifications in a cloud computing
system [2]. Table I illustrates the heterogeneity of servers in
one of Google’s clusters [2], [3].

In addition to server heterogeneity, cloud computing sys-
tems also represent much higher diversity in resource demand
profiles. Depending on the underlying applications, the work-
load spanning multiple cloud users may require vastly different
amounts of resources (e.g., CPU, memory, and storage). For
example, numerical computing tasks are usually CPU inten-
sive, while database operations typically require high-memory
support. The heterogeneity of both servers and workload
demands poses significant technical challenges on the resource
allocation mechanism, giving rise to many delicate issues
— notably fairness and efficiency — that must be carefully
addressed.

Despite the unprecedented heterogeneity in cloud comput-
ing systems, state-of-the-art computing frameworks employ
rather simple abstractions that fall short. For example, Hadoop
[4] and Dryad [5], the two most widely deployed cloud
computing frameworks, partition a server’s resources into
bundles — known as slots — that contain fixed amounts

TABLE I
CONFIGURATIONS OF SERVERS IN ONE OF GOOGLE’S CLUSTERS [2], [3].
CPU AND MEMORY UNITS ARE NORMALIZED TO THE MAXIMUM SERVER

(HIGHLIGHTED BELOW).

Number of servers CPUs Memory
6732 0.50 0.50
3863 0.50 0.25
1001 0.50 0.75
795 1.00 1.00
126 0.25 0.25
52 0.50 0.12
5 0.50 0.03
5 0.50 0.97
3 1.00 0.50
1 0.50 0.06

of different resources. The system then allocates resources
to users at the granularity of these slots. Such a single
resource abstraction ignores the heterogeneity of both server
specifications and demand profiles, inevitably leading to a
fairly inefficient allocation [6].

Towards addressing the inefficiency of the current allo-
cation system, many recent works focus on multi-resource
allocation mechanisms. Notably, Ghodsi et al. [6] suggest
a compelling alternative known as the Dominant Resource
Fairness (DRF) allocation, in which each user’s dominant
share — the maximum ratio of any resource that the user has
been allocated in a server — is equalized. The DRF allocation
possesses a set of highly desirable fairness properties, and has
quickly received significant attention in the literature [7], [8],
[9], [10]. While DRF and its subsequent works address the
demand heterogeneity of multiple resources, they all ignore
the heterogeneity of servers, limiting the discussions to a
hypothetical scenario where all resources are concentrated
in one super computer1. Such an all-in-one resource model
drastically contrasts the state-of-the-practice infrastructure of
cloud computing systems. In fact, with heterogeneous servers,
even the definition of dominant resource is unclear: Depending
on the underlying server configurations, a computing task may
bottleneck on different resources in different servers. We shall
note that naive extensions, such as applying the DRF allocation
to each server separately, leads to a highly inefficient allocation
(details in Sec. III-D).

This paper represents the first rigorous study to propose
a solution with provable operational benefits that bridge the
gap between the existing multi-resource allocation models and
the prevalent datacenter infrastructure. We propose DRFH,
a generalization of DRF mechanism in Heterogeneous en-

1While [6] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Heterogeneous resource demand

4

sharing incentive, strategy-proofness, Pareto efficiency,
and envy-freeness. DRF provides incentives for users to
share resources by guaranteeing that no user is better off
in a system in which resources are statically and equally
partitioned among users. Furthermore, DRF is strategy-
proof, as a user cannot get a better allocation by lying
about her resource demands. DRF is Pareto-efficient as
it allocates all available resources subject to satisfying
the other properties, and without preempting existing al-
locations. Finally, DRF is envy-free, as no user prefers
the allocation of another user. Other solutions violate at
least one of the above properties. For example, the pre-
ferred [3, 22, 33] fair division mechanism in microeco-
nomic theory, Competitive Equilibrium from Equal In-
comes [30], is not strategy-proof.

We have implemented and evaluated DRF in
Mesos [16], a resource manager over which multiple
cluster computing frameworks, such as Hadoop and MPI,
can run. We compare DRF with the slot-based fair shar-
ing scheme used in Hadoop and Dryad and show that
slot-based fair sharing can lead to poorer performance,
unfairly punishing certain workloads, while providing
weaker isolation guarantees.

While this paper focuses on resource allocation in dat-
acenters, we believe that DRF is generally applicable to
other multi-resource environments where users have het-
erogeneous demands, such as in multi-core machines.

The rest of this paper is organized as follows. Sec-
tion 2 motivates the problem of multi-resource fairness.
Section 3 lists fairness properties that we will consider in
this paper. Section 4 introduces DRF. Section 5 presents
alternative notions of fairness, while Section 6 analyzes
the properties of DRF and other policies. Section 7 pro-
vides experimental results based on traces from a Face-
book Hadoop cluster. We survey related work in Sec-
tion 8 and conclude in Section 9.

2 Motivation

While previous work on weighted max-min fairness has
focused on single resources, the advent of cloud com-
puting and multi-core processors has increased the need
for allocation policies for environments with multiple
resources and heterogeneous user demands. By multi-
ple resources we mean resources of different types, in-
stead of multiple instances of the same interchangeable
resource.

To motivate the need for multi-resource allocation, we
plot the resource usage profiles of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October
2010) in Figure 1. The placement of a circle in Figure 1
indicates the memory and CPU resources consumed by
tasks. The size of a circle is logarithmic to the number of
tasks in the region of the circle. Though the majority of
tasks are CPU-heavy, there exist tasks that are memory-

Figure 1: CPU and memory demands of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October 2010).
Each bubble’s size is logarithmic in the number of tasks in its
region.

heavy as well, especially for reduce operations.
Existing fair schedulers for clusters, such as Quincy

[18] and the Hadoop Fair Scheduler [2, 34], ignore the
heterogeneity of user demands, and allocate resources at
the granularity of slots, where a slot is a fixed fraction
of a node. This leads to inefficient allocation as a slot is
more often than not a poor match for the task demands.

Figure 2 quantifies the level of fairness and isola-
tion provided by the Hadoop MapReduce fair sched-
uler [2, 34]. The figure shows the CDFs of the ratio
between the task CPU demand and the slot CPU share,
and of the ratio between the task memory demand and
the slot memory share. We compute the slot memory
and CPU shares by simply dividing the total amount of
memory and CPUs by the number of slots. A ratio of
1 corresponds to a perfect match between the task de-
mands and slot resources, a ratio below 1 corresponds to
tasks underutilizing their slot resources, and a ratio above
1 corresponds to tasks over-utilizing their slot resources,
which may lead to thrashing. Figure 2 shows that most of
the tasks either underutilize or overutilize some of their
slot resources. Modifying the number of slots per ma-
chine will not solve the problem as this may result either
in a lower overall utilization or more tasks experiencing
poor performance due to over-utilization (see Section 7).

3 Allocation Properties

We now turn our attention to designing a max-min fair al-
location policy for multiple resources and heterogeneous
requests. To illustrate the problem, consider a system
consisting of 9 CPUs and 18 GB RAM, and two users:
user A runs tasks that require h1 CPUs, 4 GBi each, and
user B runs tasks that require h3 CPUs, 1 GBi each.
What constitutes a fair allocation policy for this case?

2

Ghodsi et al. NSDI11



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How should resources be 
allocated fairly and efficiently?



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

State-of-the-Art Resource 
Allocation Mechanisms



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Single-resource abstraction

Partition a server’s resources into slots 

E.g.,  a slot = (1 CPU core, 2 GB RAM) 

Allocate resources to users at the granularity of slots 

Hadoop Fair Scheduler & Capacity Scheduler 
Dryad Quincy scheduler 

Ignores the heterogeneity of both server specifications and 
demand profiles
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Dominant Resource Fairness (DRF)

Dominant resource 

The one that requires the most allocation share

For example 

A cluster: (9 CPUs, 18 GB RAM) 
Job of user 1: (1 CPU, 4 GB RAM) 
Job of user 2: (3 CPUs, 1 GB RAM)

DRF allocation 

Equalize the dominant share each user receives 
3 jobs for User 1: (3 CPUs, 12 GB) 
2 jobs for User 2: (6 CPUs, 2 GB) 
Equalized dominant share = 2/3
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Why DRF?

Addresses the demand heterogeneity

Highly attractive allocation properties [Ghodsi11] 

Pareto optimality 
Envy freeness 
Truthfulness 
Sharing incentive 
and more…
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May lead to an infeasible allocation
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as one big server1. Such an all-in-one resource model not
only contrasts the prevalent datacenter infrastructure – where
resources are distributed to a large number of servers – but
also ignores the server heterogeneity: the allocations depend
only on the total amount of resources pooled in the system,
irrespective of the underlying resource distribution of servers.
In fact, when servers are heterogeneous, even the definition of
dominant resource is not so clear. Depending on the underlying
server configurations, a computing task may bottleneck on
different resources in different servers. We shall see that naive
extensions, such as applying the DRF allocation to each server
separately, may lead to a highly inefficient allocation (details
in Sec. 3.4).

This paper represents a rigorous study to propose a so-
lution with provable operational benefits that bridge the gap
between the existing multi-resource allocation models and the
state-of-the-art datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large number of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire resource pool. We systematically analyze DRFH
and show that it retains most of the desirable properties
that the all-in-one DRF model provides for a single server
[7]. Specifically, DRFH is Pareto optimal, where no user is
able to increase its allocation without decreasing other users’
allocations. Meanwhile, DRFH is envy-free in that no user
prefers the allocation of another one. More importantly, DRFH
is group strategyproof in that no user can schedule more
computing tasks by forming a coalition with others to claim
more resources that are not needed. The users hence have no
incentive to misreport their actual resource demands. In addi-
tion, DRFH offers some level of service isolation by ensuring
the sharing incentive property in a weak sense – it allows users
to execute more tasks than those under some “equal partition”
where the entire resource pool is evenly allocated among all
users. DRFH also satisfies a set of other important properties,
namely single-server DRF, single-resource fairness, bottleneck
fairness, and population monotonicity (details in Sec. 3.3).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[4]. Our simulation results show that compared with the tra-
ditional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

The remainder of this paper is organized as follows. We
briefly revisit the DRF allocation and point out its limitations
in heterogeneous environments in Sec. 2. We then formulate
the allocation problem with heterogeneous servers in Sec. 3,

1. While [7] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.

Memory

CPUs

Server 1 Server 2
(1 CPU, 14 GB) (8 CPUs, 4 GB)

Fig. 1. An example of a system consisting of two hetero-
geneous servers, in which user 1 can schedule at most
two tasks each demanding 1 CPU and 4 GB memory.
The resources required to execute the two tasks are also
highlighted in the figure.

where a set of desirable allocation properties are also defined.
In Sec. 4, we propose DRFH and analyze its properties.
Sec. 6 dedicates to some practical issues on implementing
DRFH. We evaluate the performance of DRFH via trace-driven
simulations in Sec. 6. We survey the related work in Sec. 7
and conclude the paper in Sec. 8.

2 LIMITATIONS OF DRF ALLOCATION IN HET-
EROGENEOUS SYSTEMS
In this section, we briefly review the DRF allocation [7] and
show that it may lead to an infeasible allocation when a cloud
system is composed of multiple heterogeneous servers.

In DRF, the dominant resource is defined for each user as
the one that requires the largest fraction of the total availability.
The mechanism seeks a maximum allocation that equalizes
each user’s dominant share, defined as the fraction of the
dominant resource the user has been allocated. Consider an
example given in [7]. Suppose that a computing system has 9
CPUs and 18 GB memory, and is shared by two users. User 1
wishes to schedule a set of (divisible) tasks each requiring
h1 CPU, 4 GBi, and user 2 has a set of (divisible) tasks
each requiring h3 CPU, 1 GBi. In this example, the dominant
resource of user 1 is the memory as each of its task demands
1/9 of the total CPU and 2/9 of the total memory. On the
other hand, the dominant resource of user 2 is CPU, as each
of its task requires 1/3 of the total CPU and 1/18 of the total
memory. The DRF mechanism then allocates h3 CPU, 12 GBi
to user 1 and h6 CPU, 2 GBi to user 2, where user 1 schedules
three tasks and user 2 schedules two. It is easy to verify that
both users receive the same dominant share (i.e., 2/3) and no
one can schedule more tasks by allocating additional resources
(there is 2 GB memory left unallocated).

The DRF allocation above is based on a simplified all-in-one
resource model, where the entire system is modeled as one big
server. The allocation hence depends only on the total amount
of resources pooled in the system. In the example above, no
matter how many servers the system has, and what each server
specification is, as long as the system has 9 CPUs and 18 GB
memory in total, the DRF allocation will always schedule three
tasks for user 1 and two for user 2. However, this allocation
may not be possible to implement, especially when the system
consists of heterogeneous servers. For example, suppose that
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as one big server1. Such an all-in-one resource model not
only contrasts the prevalent datacenter infrastructure – where
resources are distributed to a large number of servers – but
also ignores the server heterogeneity: the allocations depend
only on the total amount of resources pooled in the system,
irrespective of the underlying resource distribution of servers.
In fact, when servers are heterogeneous, even the definition of
dominant resource is not so clear. Depending on the underlying
server configurations, a computing task may bottleneck on
different resources in different servers. We shall see that naive
extensions, such as applying the DRF allocation to each server
separately, may lead to a highly inefficient allocation (details
in Sec. 3.4).

This paper represents a rigorous study to propose a so-
lution with provable operational benefits that bridge the gap
between the existing multi-resource allocation models and the
state-of-the-art datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large number of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire resource pool. We systematically analyze DRFH
and show that it retains most of the desirable properties
that the all-in-one DRF model provides for a single server
[7]. Specifically, DRFH is Pareto optimal, where no user is
able to increase its allocation without decreasing other users’
allocations. Meanwhile, DRFH is envy-free in that no user
prefers the allocation of another one. More importantly, DRFH
is group strategyproof in that no user can schedule more
computing tasks by forming a coalition with others to claim
more resources that are not needed. The users hence have no
incentive to misreport their actual resource demands. In addi-
tion, DRFH offers some level of service isolation by ensuring
the sharing incentive property in a weak sense – it allows users
to execute more tasks than those under some “equal partition”
where the entire resource pool is evenly allocated among all
users. DRFH also satisfies a set of other important properties,
namely single-server DRF, single-resource fairness, bottleneck
fairness, and population monotonicity (details in Sec. 3.3).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[4]. Our simulation results show that compared with the tra-
ditional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

The remainder of this paper is organized as follows. We
briefly revisit the DRF allocation and point out its limitations
in heterogeneous environments in Sec. 2. We then formulate
the allocation problem with heterogeneous servers in Sec. 3,

1. While [7] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.

Memory

CPUs

Server 1 Server 2
(1 CPU, 14 GB) (8 CPUs, 4 GB)

Fig. 1. An example of a system consisting of two hetero-
geneous servers, in which user 1 can schedule at most
two tasks each demanding 1 CPU and 4 GB memory.
The resources required to execute the two tasks are also
highlighted in the figure.

where a set of desirable allocation properties are also defined.
In Sec. 4, we propose DRFH and analyze its properties.
Sec. 6 dedicates to some practical issues on implementing
DRFH. We evaluate the performance of DRFH via trace-driven
simulations in Sec. 6. We survey the related work in Sec. 7
and conclude the paper in Sec. 8.

2 LIMITATIONS OF DRF ALLOCATION IN HET-
EROGENEOUS SYSTEMS
In this section, we briefly review the DRF allocation [7] and
show that it may lead to an infeasible allocation when a cloud
system is composed of multiple heterogeneous servers.

In DRF, the dominant resource is defined for each user as
the one that requires the largest fraction of the total availability.
The mechanism seeks a maximum allocation that equalizes
each user’s dominant share, defined as the fraction of the
dominant resource the user has been allocated. Consider an
example given in [7]. Suppose that a computing system has 9
CPUs and 18 GB memory, and is shared by two users. User 1
wishes to schedule a set of (divisible) tasks each requiring
h1 CPU, 4 GBi, and user 2 has a set of (divisible) tasks
each requiring h3 CPU, 1 GBi. In this example, the dominant
resource of user 1 is the memory as each of its task demands
1/9 of the total CPU and 2/9 of the total memory. On the
other hand, the dominant resource of user 2 is CPU, as each
of its task requires 1/3 of the total CPU and 1/18 of the total
memory. The DRF mechanism then allocates h3 CPU, 12 GBi
to user 1 and h6 CPU, 2 GBi to user 2, where user 1 schedules
three tasks and user 2 schedules two. It is easy to verify that
both users receive the same dominant share (i.e., 2/3) and no
one can schedule more tasks by allocating additional resources
(there is 2 GB memory left unallocated).

The DRF allocation above is based on a simplified all-in-one
resource model, where the entire system is modeled as one big
server. The allocation hence depends only on the total amount
of resources pooled in the system. In the example above, no
matter how many servers the system has, and what each server
specification is, as long as the system has 9 CPUs and 18 GB
memory in total, the DRF allocation will always schedule three
tasks for user 1 and two for user 2. However, this allocation
may not be possible to implement, especially when the system
consists of heterogeneous servers. For example, suppose that

User 1 can schedule at most 2 jobs!
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as one big server1. Such an all-in-one resource model not
only contrasts the prevalent datacenter infrastructure – where
resources are distributed to a large number of servers – but
also ignores the server heterogeneity: the allocations depend
only on the total amount of resources pooled in the system,
irrespective of the underlying resource distribution of servers.
In fact, when servers are heterogeneous, even the definition of
dominant resource is not so clear. Depending on the underlying
server configurations, a computing task may bottleneck on
different resources in different servers. We shall see that naive
extensions, such as applying the DRF allocation to each server
separately, may lead to a highly inefficient allocation (details
in Sec. 3.4).

This paper represents a rigorous study to propose a so-
lution with provable operational benefits that bridge the gap
between the existing multi-resource allocation models and the
state-of-the-art datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large number of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire resource pool. We systematically analyze DRFH
and show that it retains most of the desirable properties
that the all-in-one DRF model provides for a single server
[7]. Specifically, DRFH is Pareto optimal, where no user is
able to increase its allocation without decreasing other users’
allocations. Meanwhile, DRFH is envy-free in that no user
prefers the allocation of another one. More importantly, DRFH
is group strategyproof in that no user can schedule more
computing tasks by forming a coalition with others to claim
more resources that are not needed. The users hence have no
incentive to misreport their actual resource demands. In addi-
tion, DRFH offers some level of service isolation by ensuring
the sharing incentive property in a weak sense – it allows users
to execute more tasks than those under some “equal partition”
where the entire resource pool is evenly allocated among all
users. DRFH also satisfies a set of other important properties,
namely single-server DRF, single-resource fairness, bottleneck
fairness, and population monotonicity (details in Sec. 3.3).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[4]. Our simulation results show that compared with the tra-
ditional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

The remainder of this paper is organized as follows. We
briefly revisit the DRF allocation and point out its limitations
in heterogeneous environments in Sec. 2. We then formulate
the allocation problem with heterogeneous servers in Sec. 3,

1. While [7] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.
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(1 CPU, 14 GB) (8 CPUs, 4 GB)

Fig. 1. An example of a system consisting of two hetero-
geneous servers, in which user 1 can schedule at most
two tasks each demanding 1 CPU and 4 GB memory.
The resources required to execute the two tasks are also
highlighted in the figure.

where a set of desirable allocation properties are also defined.
In Sec. 4, we propose DRFH and analyze its properties.
Sec. 6 dedicates to some practical issues on implementing
DRFH. We evaluate the performance of DRFH via trace-driven
simulations in Sec. 6. We survey the related work in Sec. 7
and conclude the paper in Sec. 8.

2 LIMITATIONS OF DRF ALLOCATION IN HET-
EROGENEOUS SYSTEMS
In this section, we briefly review the DRF allocation [7] and
show that it may lead to an infeasible allocation when a cloud
system is composed of multiple heterogeneous servers.

In DRF, the dominant resource is defined for each user as
the one that requires the largest fraction of the total availability.
The mechanism seeks a maximum allocation that equalizes
each user’s dominant share, defined as the fraction of the
dominant resource the user has been allocated. Consider an
example given in [7]. Suppose that a computing system has 9
CPUs and 18 GB memory, and is shared by two users. User 1
wishes to schedule a set of (divisible) tasks each requiring
h1 CPU, 4 GBi, and user 2 has a set of (divisible) tasks
each requiring h3 CPU, 1 GBi. In this example, the dominant
resource of user 1 is the memory as each of its task demands
1/9 of the total CPU and 2/9 of the total memory. On the
other hand, the dominant resource of user 2 is CPU, as each
of its task requires 1/3 of the total CPU and 1/18 of the total
memory. The DRF mechanism then allocates h3 CPU, 12 GBi
to user 1 and h6 CPU, 2 GBi to user 2, where user 1 schedules
three tasks and user 2 schedules two. It is easy to verify that
both users receive the same dominant share (i.e., 2/3) and no
one can schedule more tasks by allocating additional resources
(there is 2 GB memory left unallocated).

The DRF allocation above is based on a simplified all-in-one
resource model, where the entire system is modeled as one big
server. The allocation hence depends only on the total amount
of resources pooled in the system. In the example above, no
matter how many servers the system has, and what each server
specification is, as long as the system has 9 CPUs and 18 GB
memory in total, the DRF allocation will always schedule three
tasks for user 1 and two for user 2. However, this allocation
may not be possible to implement, especially when the system
consists of heterogeneous servers. For example, suppose that
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as one big server1. Such an all-in-one resource model not
only contrasts the prevalent datacenter infrastructure – where
resources are distributed to a large number of servers – but
also ignores the server heterogeneity: the allocations depend
only on the total amount of resources pooled in the system,
irrespective of the underlying resource distribution of servers.
In fact, when servers are heterogeneous, even the definition of
dominant resource is not so clear. Depending on the underlying
server configurations, a computing task may bottleneck on
different resources in different servers. We shall see that naive
extensions, such as applying the DRF allocation to each server
separately, may lead to a highly inefficient allocation (details
in Sec. 3.4).

This paper represents a rigorous study to propose a so-
lution with provable operational benefits that bridge the gap
between the existing multi-resource allocation models and the
state-of-the-art datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large number of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire resource pool. We systematically analyze DRFH
and show that it retains most of the desirable properties
that the all-in-one DRF model provides for a single server
[7]. Specifically, DRFH is Pareto optimal, where no user is
able to increase its allocation without decreasing other users’
allocations. Meanwhile, DRFH is envy-free in that no user
prefers the allocation of another one. More importantly, DRFH
is group strategyproof in that no user can schedule more
computing tasks by forming a coalition with others to claim
more resources that are not needed. The users hence have no
incentive to misreport their actual resource demands. In addi-
tion, DRFH offers some level of service isolation by ensuring
the sharing incentive property in a weak sense – it allows users
to execute more tasks than those under some “equal partition”
where the entire resource pool is evenly allocated among all
users. DRFH also satisfies a set of other important properties,
namely single-server DRF, single-resource fairness, bottleneck
fairness, and population monotonicity (details in Sec. 3.3).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[4]. Our simulation results show that compared with the tra-
ditional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

The remainder of this paper is organized as follows. We
briefly revisit the DRF allocation and point out its limitations
in heterogeneous environments in Sec. 2. We then formulate
the allocation problem with heterogeneous servers in Sec. 3,

1. While [7] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.

Memory

CPUs

Server 1 Server 2
(1 CPU, 14 GB) (8 CPUs, 4 GB)

Fig. 1. An example of a system consisting of two hetero-
geneous servers, in which user 1 can schedule at most
two tasks each demanding 1 CPU and 4 GB memory.
The resources required to execute the two tasks are also
highlighted in the figure.

where a set of desirable allocation properties are also defined.
In Sec. 4, we propose DRFH and analyze its properties.
Sec. 6 dedicates to some practical issues on implementing
DRFH. We evaluate the performance of DRFH via trace-driven
simulations in Sec. 6. We survey the related work in Sec. 7
and conclude the paper in Sec. 8.

2 LIMITATIONS OF DRF ALLOCATION IN HET-
EROGENEOUS SYSTEMS
In this section, we briefly review the DRF allocation [7] and
show that it may lead to an infeasible allocation when a cloud
system is composed of multiple heterogeneous servers.

In DRF, the dominant resource is defined for each user as
the one that requires the largest fraction of the total availability.
The mechanism seeks a maximum allocation that equalizes
each user’s dominant share, defined as the fraction of the
dominant resource the user has been allocated. Consider an
example given in [7]. Suppose that a computing system has 9
CPUs and 18 GB memory, and is shared by two users. User 1
wishes to schedule a set of (divisible) tasks each requiring
h1 CPU, 4 GBi, and user 2 has a set of (divisible) tasks
each requiring h3 CPU, 1 GBi. In this example, the dominant
resource of user 1 is the memory as each of its task demands
1/9 of the total CPU and 2/9 of the total memory. On the
other hand, the dominant resource of user 2 is CPU, as each
of its task requires 1/3 of the total CPU and 1/18 of the total
memory. The DRF mechanism then allocates h3 CPU, 12 GBi
to user 1 and h6 CPU, 2 GBi to user 2, where user 1 schedules
three tasks and user 2 schedules two. It is easy to verify that
both users receive the same dominant share (i.e., 2/3) and no
one can schedule more tasks by allocating additional resources
(there is 2 GB memory left unallocated).

The DRF allocation above is based on a simplified all-in-one
resource model, where the entire system is modeled as one big
server. The allocation hence depends only on the total amount
of resources pooled in the system. In the example above, no
matter how many servers the system has, and what each server
specification is, as long as the system has 9 CPUs and 18 GB
memory in total, the DRF allocation will always schedule three
tasks for user 1 and two for user 2. However, this allocation
may not be possible to implement, especially when the system
consists of heterogeneous servers. For example, suppose that

How to define dominant 
resource? 

For server 1, the dominant 
resource is CPU 
For server 2, the dominant 
resource is memory 
For the entire resource pool, the 
dominant resource is memory 
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as one big server1. Such an all-in-one resource model not
only contrasts the prevalent datacenter infrastructure – where
resources are distributed to a large number of servers – but
also ignores the server heterogeneity: the allocations depend
only on the total amount of resources pooled in the system,
irrespective of the underlying resource distribution of servers.
In fact, when servers are heterogeneous, even the definition of
dominant resource is not so clear. Depending on the underlying
server configurations, a computing task may bottleneck on
different resources in different servers. We shall see that naive
extensions, such as applying the DRF allocation to each server
separately, may lead to a highly inefficient allocation (details
in Sec. 3.4).

This paper represents a rigorous study to propose a so-
lution with provable operational benefits that bridge the gap
between the existing multi-resource allocation models and the
state-of-the-art datacenter infrastructure. We propose DRFH,
a DRF generalization in Heterogeneous environments where
resources are pooled by a large number of heterogeneous
servers, representing different points in the configuration space
of resources such as processing, memory, and storage. DRFH
generalizes the intuition of DRF by seeking an allocation that
equalizes every user’s global dominant share, which is the
maximum ratio of any resources the user has been allocated
in the entire resource pool. We systematically analyze DRFH
and show that it retains most of the desirable properties
that the all-in-one DRF model provides for a single server
[7]. Specifically, DRFH is Pareto optimal, where no user is
able to increase its allocation without decreasing other users’
allocations. Meanwhile, DRFH is envy-free in that no user
prefers the allocation of another one. More importantly, DRFH
is group strategyproof in that no user can schedule more
computing tasks by forming a coalition with others to claim
more resources that are not needed. The users hence have no
incentive to misreport their actual resource demands. In addi-
tion, DRFH offers some level of service isolation by ensuring
the sharing incentive property in a weak sense – it allows users
to execute more tasks than those under some “equal partition”
where the entire resource pool is evenly allocated among all
users. DRFH also satisfies a set of other important properties,
namely single-server DRF, single-resource fairness, bottleneck
fairness, and population monotonicity (details in Sec. 3.3).

As a direct application, we design a heuristic scheduling
algorithm that implements DRFH in real-world systems. We
conduct large-scale simulations driven by Google cluster traces
[4]. Our simulation results show that compared with the tra-
ditional slot schedulers adopted in prevalent cloud computing
frameworks, the DRFH algorithm suitably matches demand
heterogeneity to server heterogeneity, significantly improving
the system’s resource utilization, yet with a substantial reduc-
tion of job completion times.

The remainder of this paper is organized as follows. We
briefly revisit the DRF allocation and point out its limitations
in heterogeneous environments in Sec. 2. We then formulate
the allocation problem with heterogeneous servers in Sec. 3,

1. While [7] briefly touches on the case where resources are distributed to
small servers (known as the discrete scenario), its coverage is rather informal.

Memory

CPUs

Server 1 Server 2
(1 CPU, 14 GB) (8 CPUs, 4 GB)

Fig. 1. An example of a system consisting of two hetero-
geneous servers, in which user 1 can schedule at most
two tasks each demanding 1 CPU and 4 GB memory.
The resources required to execute the two tasks are also
highlighted in the figure.

where a set of desirable allocation properties are also defined.
In Sec. 4, we propose DRFH and analyze its properties.
Sec. 6 dedicates to some practical issues on implementing
DRFH. We evaluate the performance of DRFH via trace-driven
simulations in Sec. 6. We survey the related work in Sec. 7
and conclude the paper in Sec. 8.

2 LIMITATIONS OF DRF ALLOCATION IN HET-
EROGENEOUS SYSTEMS
In this section, we briefly review the DRF allocation [7] and
show that it may lead to an infeasible allocation when a cloud
system is composed of multiple heterogeneous servers.

In DRF, the dominant resource is defined for each user as
the one that requires the largest fraction of the total availability.
The mechanism seeks a maximum allocation that equalizes
each user’s dominant share, defined as the fraction of the
dominant resource the user has been allocated. Consider an
example given in [7]. Suppose that a computing system has 9
CPUs and 18 GB memory, and is shared by two users. User 1
wishes to schedule a set of (divisible) tasks each requiring
h1 CPU, 4 GBi, and user 2 has a set of (divisible) tasks
each requiring h3 CPU, 1 GBi. In this example, the dominant
resource of user 1 is the memory as each of its task demands
1/9 of the total CPU and 2/9 of the total memory. On the
other hand, the dominant resource of user 2 is CPU, as each
of its task requires 1/3 of the total CPU and 1/18 of the total
memory. The DRF mechanism then allocates h3 CPU, 12 GBi
to user 1 and h6 CPU, 2 GBi to user 2, where user 1 schedules
three tasks and user 2 schedules two. It is easy to verify that
both users receive the same dominant share (i.e., 2/3) and no
one can schedule more tasks by allocating additional resources
(there is 2 GB memory left unallocated).

The DRF allocation above is based on a simplified all-in-one
resource model, where the entire system is modeled as one big
server. The allocation hence depends only on the total amount
of resources pooled in the system. In the example above, no
matter how many servers the system has, and what each server
specification is, as long as the system has 9 CPUs and 18 GB
memory in total, the DRF allocation will always schedule three
tasks for user 1 and two for user 2. However, this allocation
may not be possible to implement, especially when the system
consists of heterogeneous servers. For example, suppose that

Memory is the global dominant resource
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CPU Memory
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CPU Memory
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User1 User2

Server 1 Server 2

42%
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Fig. 2. DRF allocation for the example shown in Fig. 1, where user 1 is
allocated 5 tasks in server 1 and 1 in server 2, while user 2 is allocated 1
task in server 1 and 5 in server 2.

Single-resource fairness: If there is a single resource in the
system, then the resulting allocation should be reduced to a
max-min fair allocation.

Bottleneck fairness: If all users bottleneck on the same
resource (i.e., having the same global dominant resource), then
the resulting allocation should be reduced to a max-min fair
allocation for that resource.

Population monotonicity: If a user leaves the system and
relinquishes all its allocations, then the remaining users will
not see any reduction in the number of tasks scheduled.

In addition to the aforementioned properties, sharing in-
centive is another important property that has been frequently
mentioned in the literature [6], [7], [8], [10]. It ensures that
every user’s allocation is not worse off than that obtained by
evenly dividing the entire resource pool. While this property is
well defined for a single server, it is not for a system containing
multiple heterogeneous servers, as there is an infinite number
of ways to evenly divide the resource pool among users, and
it is unclear which one should be chosen as a benchmark. We
defer the discussions to Sec. IV-D, where we justify between
two possible alternatives. For now, our objective is to design an
allocation mechanism that guarantees all the properties defined
above.

D. Naive DRF Extension and Its Inefficiency

It has been shown in [6], [10] that the DRF allocation satis-
fies all the desirable properties mentioned above when there is
only one server in the system. The key intuition is to equalize
the fraction of dominant resources allocated to each user in the
server. When resources are distributed to many heterogeneous
servers, a naive generalization is to separately apply the DRF
allocation per server. Since servers are heterogeneous, a user
might have different dominant resources in different servers.
For instance, in the example of Fig. 1, user 1’s dominant
resource in server 1 is CPU, while its dominant resource in
server 2 is memory. Now apply DRF in server 1. Because
CPU is also user 2’s dominant resource, the DRF allocation
lets both users have an equal share of the server’s CPUs, each
allocated 1. As a result, user 1 schedules 5 tasks onto server
1, while user 2 schedules 1 onto the same server. Similarly, in
server 2, memory is the dominant resource of both users and
is evenly allocated, leading to 1 task scheduled for user 1 and
5 for user 2. The resulting allocations in the two servers are
illustrated in Fig. 2, where both users schedule 6 tasks.

Unfortunately, this allocation violates Pareto optimality and
is highly inefficient. If we instead allocate server 1 exclusively
to user 1, and server 2 exclusively to user 2, then both users
schedule 10 tasks, more than those scheduled under the DRF
allocation. In fact, we see that naively applying DRF per
server may lead to an allocation with arbitrarily low resource
utilization.

The failure of the naive DRF extension to the heterogeneous
environment necessitates an alternative allocation mechanism,
which is the main theme of the next section.

IV. DRFH ALLOCATION AND ITS PROPERTIES

In this section, we describe DRFH, a generalization of DRF
in a heterogeneous cloud computing system where resources
are distributed in a number of heterogeneous servers. We
analyze DRFH and show that it provides all the desirable
properties defined in Sec. III.

A. DRFH Allocation
Instead of allocating separately in each server, DRFH jointly

considers resource allocation across all heterogeneous servers.
The key intuition is to achieve the max-min fair allocation for
the global dominant resources. Specifically, given allocation
Ail, let Gil(Ail) be the fraction of global dominant resources
user i receives in server l, i.e.,

Gil(Ail) = Nil(Ail)Dir⇤i
= min

r2R
{Ailr/dir} . (2)

We call Gil(Ail) the global dominant share user i receives
in server l under allocation Ail. Therefore, given the overall
allocation Ai, the global dominant share user i receives is

Gi(Ai) =

X

l2S

Gil(Ail) =

X

l2S

min

r2R
{Ailr/dir} . (3)

DRFH allocation aims to maximize the minimum global dom-
inant share among all users, subject to the resource constraints
per server, i.e.,

max

A
min

i2U
Gi(Ai)

s.t.
X

i2U

Ailr  clr, 8l 2 S, r 2 R .
(4)

Recall that without loss of generality, we assume non-
wasteful allocation A (see Sec. III-B). We have the following
structural result.

Lemma 1: For user i and server l, an allocation Ail is
non-wasteful if and only if there exists some gil such that
Ail = gildi. In particular, gil is the global dominant share
user i receives in server l under allocation Ail, i.e.,

gil = Gil(Ail) .

Proof: (() We start with the necessity proof. Since Ail =

gildi, for all resource r 2 R, we have

Ailr/Dir = gildir/Dir = gilDir⇤i
.

As a result,

Nil(Ail) = min

r2R
{Ailr/Dir} = gilDir⇤i

.

Total availability of 
resource r on server lAllocation share of 

resource r user i receives 
on server l

Global dominant share
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Before we proceed, it is worth mentioning that the per-
server partitioning above cannot be directly implemented in
practice. With a large number of users, in each server, ev-
eryone will be allocated a very small fraction of the server’s
availability. In practice, such a small slice of resources usually
cannot be used to run any computing task. However, per-
server partitioning may be interpreted as follows. Since a cloud
system is constructed by pooling hundreds of thousands of
servers [2], [3], the number of users is typically far smaller
than the number of servers [7], [14], i.e., k � n. An equal
partition could randomly allocate to each user k/n servers,
which is equivalent to randomly allocating each server to each
user with probability 1/n. It is easy to see that the mean
number of tasks scheduled for each user under this random
allocation is

P
l Ni(ci/n), the same as that obtained under

the per-server partitioning.
Unfortunately, the following proposition shows that DRFH

may violate the sharing incentive property in the strong sense.
The proof gives a counterexample.

Proposition 4: DRFH does not satisfy the property of strong
sharing incentive.

Proof: Consider a system consisting of two servers. Server
1 has 1 CPU and 2 GB memory; server 2 has 4 CPUs and 3
GB memory. There are two users. Each instance of the task of
user 1 demands 1 CPU and 1 GB memory; each of user 2’s
tasks demands 3 CPUs and 2 GB memory. In this case, we
have c1 = (1/5, 2/5)T , c2 = (4/5, 3/5)T , D1 = (1/5, 1/5)T ,
D2 = (3/5, 2/5)T , d1 = (1, 1)T , and d2 = (1, 2/3)T . It is
easy to verify that under DRFH, the global dominant share
both users receive is 12/25. On the other hand, under the per-
server partitioning, the global dominant shares user 1 and user
2 receive are 2/5 and 1/2, respectively. User 1 hence prefers
the per-server partitioning to DRFH.

While DRFH may violate the strong sharing incentive
property, we shall show via trace-driven simulations in Sec. 6
that this only happens in rare cases.

4.5.2 Weak Sharing Incentive

The strong sharing incentive property is defined by choosing
the per-server partitioning as a benchmark, which is only one
of many different ways to evenly divide the total availability.
In general, any equal partition that allocates an equal share of
every resource can be used as a benchmark. This allows us to
relax the sharing incentive definition. We first define an equal
partition as follows.

Definition 3 (Equal partition): Allocation A is an equal
partition if it divides every resource evenly among all users,
i.e., X

l2S

Ailr = 1/n, 8r 2 R, i 2 U .

It is easy to verify that the aforementioned per-server
partition is an equal partition. We are now ready to define
the weak sharing incentive property as follows.

Definition 4 (Weak sharing incentive): Allocation A
satisfies the weak sharing incentive property if there exists
an equal partition A0 under which each user schedules fewer
tasks than those under A, i.e.,

Ni(Ai) � Ni(A
0
i), 8i 2 U .

In other words, the property of weak sharing incentive only
requires the allocation to be better off than one equal partition,
without specifying its specific form. It is hence a more relaxed
requirement than the strong sharing incentive property.

The following proposition shows that DRFH satisfies the
sharing incentive property in the weak sense. The proof is
constructive.

Proposition 5 (Weak sharing incentive): DRFH satisfies
the property of weak sharing incentive.

Proof: Let g be the global dominant share each user receives
under a DRFH allocation A, and gil the global dominant share
user i receives in server l. We construct an equal partition A0

under which users schedule fewer tasks than those under A.
Case 1: g � 1/n. In this case, let A0 be any equal partition.

We show that each user schedules fewer tasks under A0 than
those under A. To see this, consider the DRFH allocation A.
Since it is non-wasteful, the number of tasks user i schedules
is

Ni(Ai) = g/Dir⇤i
� 1/nDir⇤i

.

On the other hand, the number of tasks user i schedules under
A0 would be at most

Ni(A
0
i) =

P
l2S minr{A0

ilr/Dir}


P
l2S A0

ilr/Dir⇤i

= 1/nDir⇤i

 Ni(Ai) .

Case 2: g < 1/n. In this case, no resource has been fully
allocated under A, i.e.,

X

i2U

X

l2S

Ailr =

X

i2U

X

l2S

gildir 
X

i2U

X

l2S

gil =
X

i2U

g < 1

for all resource r 2 R. Let

Llr = clr �
X

i2U

Ailr

be the amount of resource r left unallocated in server l,
Further, let

Lr =

X

l2S

Llr = 1�
X

i2U

X

l2S

Ailr

be the total amount of resource r left unallocated.
We are now ready to construct an equal partition A0 based

on A. Since A0 should allocate each user 1/n of the total
availability of every resource r, the additional amount of
resource r user i needs to obtain is

uir = 1/n�
X

l2S

Ailr .

It is easy to see that uir > 0, 8i 2 U, r 2 R. The demanded
fraction of unallocated resource r for user i is

fir = uir/Lr .

As a result, we can construct A0 by reallocating those leftover
resources in each server to users, in proportion to their
demands, i.e.,

A0
ilr = Ailr + Llrfir, 8i 2 U, l 2 S, r 2 R .

Allocation share of resource r user i receives on server l
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Before we proceed, it is worth mentioning that the per-
server partitioning above cannot be directly implemented in
practice. With a large number of users, in each server, ev-
eryone will be allocated a very small fraction of the server’s
availability. In practice, such a small slice of resources usually
cannot be used to run any computing task. However, per-
server partitioning may be interpreted as follows. Since a cloud
system is constructed by pooling hundreds of thousands of
servers [2], [3], the number of users is typically far smaller
than the number of servers [7], [14], i.e., k � n. An equal
partition could randomly allocate to each user k/n servers,
which is equivalent to randomly allocating each server to each
user with probability 1/n. It is easy to see that the mean
number of tasks scheduled for each user under this random
allocation is

P
l Ni(ci/n), the same as that obtained under

the per-server partitioning.
Unfortunately, the following proposition shows that DRFH

may violate the sharing incentive property in the strong sense.
The proof gives a counterexample.

Proposition 4: DRFH does not satisfy the property of strong
sharing incentive.

Proof: Consider a system consisting of two servers. Server
1 has 1 CPU and 2 GB memory; server 2 has 4 CPUs and 3
GB memory. There are two users. Each instance of the task of
user 1 demands 1 CPU and 1 GB memory; each of user 2’s
tasks demands 3 CPUs and 2 GB memory. In this case, we
have c1 = (1/5, 2/5)T , c2 = (4/5, 3/5)T , D1 = (1/5, 1/5)T ,
D2 = (3/5, 2/5)T , d1 = (1, 1)T , and d2 = (1, 2/3)T . It is
easy to verify that under DRFH, the global dominant share
both users receive is 12/25. On the other hand, under the per-
server partitioning, the global dominant shares user 1 and user
2 receive are 2/5 and 1/2, respectively. User 1 hence prefers
the per-server partitioning to DRFH.

While DRFH may violate the strong sharing incentive
property, we shall show via trace-driven simulations in Sec. 6
that this only happens in rare cases.

4.5.2 Weak Sharing Incentive

The strong sharing incentive property is defined by choosing
the per-server partitioning as a benchmark, which is only one
of many different ways to evenly divide the total availability.
In general, any equal partition that allocates an equal share of
every resource can be used as a benchmark. This allows us to
relax the sharing incentive definition. We first define an equal
partition as follows.

Definition 3 (Equal partition): Allocation A is an equal
partition if it divides every resource evenly among all users,
i.e., X

l2S

Ailr = 1/n, 8r 2 R, i 2 U .

It is easy to verify that the aforementioned per-server
partition is an equal partition. We are now ready to define
the weak sharing incentive property as follows.

Definition 4 (Weak sharing incentive): Allocation A
satisfies the weak sharing incentive property if there exists
an equal partition A0 under which each user schedules fewer
tasks than those under A, i.e.,

Ni(Ai) � Ni(A
0
i), 8i 2 U .

In other words, the property of weak sharing incentive only
requires the allocation to be better off than one equal partition,
without specifying its specific form. It is hence a more relaxed
requirement than the strong sharing incentive property.

The following proposition shows that DRFH satisfies the
sharing incentive property in the weak sense. The proof is
constructive.

Proposition 5 (Weak sharing incentive): DRFH satisfies
the property of weak sharing incentive.

Proof: Let g be the global dominant share each user receives
under a DRFH allocation A, and gil the global dominant share
user i receives in server l. We construct an equal partition A0

under which users schedule fewer tasks than those under A.
Case 1: g � 1/n. In this case, let A0 be any equal partition.

We show that each user schedules fewer tasks under A0 than
those under A. To see this, consider the DRFH allocation A.
Since it is non-wasteful, the number of tasks user i schedules
is

Ni(Ai) = g/Dir⇤i
� 1/nDir⇤i

.

On the other hand, the number of tasks user i schedules under
A0 would be at most

Ni(A
0
i) =

P
l2S minr{A0

ilr/Dir}


P
l2S A0

ilr/Dir⇤i

= 1/nDir⇤i

 Ni(Ai) .

Case 2: g < 1/n. In this case, no resource has been fully
allocated under A, i.e.,

X

i2U

X

l2S

Ailr =

X

i2U

X

l2S

gildir 
X

i2U

X

l2S

gil =
X

i2U

g < 1

for all resource r 2 R. Let

Llr = clr �
X

i2U

Ailr

be the amount of resource r left unallocated in server l,
Further, let

Lr =

X

l2S

Llr = 1�
X

i2U

X

l2S

Ailr

be the total amount of resource r left unallocated.
We are now ready to construct an equal partition A0 based

on A. Since A0 should allocate each user 1/n of the total
availability of every resource r, the additional amount of
resource r user i needs to obtain is

uir = 1/n�
X

l2S

Ailr .

It is easy to see that uir > 0, 8i 2 U, r 2 R. The demanded
fraction of unallocated resource r for user i is

fir = uir/Lr .

As a result, we can construct A0 by reallocating those leftover
resources in each server to users, in proportion to their
demands, i.e.,

A0
ilr = Ailr + Llrfir, 8i 2 U, l 2 S, r 2 R .

Allocation share of resource r user i receives on server l
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DRFH retains almost all the attractive properties of DRF
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Trace-Driven Simulation
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Fig. 5. Time series of CPU and memory utilization.
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(a) CDF of job completion times.
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Fig. 6. DRFH improvements on job completion times over Slots scheduler.

This observation is consistent with findings in the homoge-
neous environment where all servers are of the same hardware
configurations [6]. As for the DRFH implementations, we
see that Best-Fit DRFH leads to uniformly higher resource
utilization than the First-Fit alternative at all times.

The high resource utilization of Best-Fit DRFH naturally
translates to shorter job completion times shown in Fig. 6a,
where the CDFs of job completion times for both Best-Fit
DRFH and Slots scheduler are depicted. Fig. 6b offers a more
detailed breakdown, where jobs are classified into 5 categories
based on the number of its computing tasks, and for each
category, the mean completion time reduction is computed.
While DRFH shows no improvement over Slots scheduler
for small jobs, a significant completion time reduction has
been observed for those containing more tasks. Generally,
the larger the job is, the more improvement one may expect.
Similar observations have also been found in the homogeneous
environments [6].

Fig. 6 does not account for partially completed jobs and
focuses only on those having all tasks finished in both Best-
Fit and Slots. As a complementary study, Fig. 7 computes the
task completion ratio — the number of tasks completed over
the number of tasks submitted — for every user using Best-
Fit DRFH and Slots schedulers, respectively. The radius of
the circle is scaled logarithmically to the number of tasks the
user submitted. We see that Best-Fit DRFH leads to higher
task completion ratio for almost all users. Around 20% users
have all their tasks completed under Best-Fit DRFH but do
not under Slots.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Task completion ratio w/ Slots

T
a
sk

 c
o
m

p
le

tio
n
 r

a
tio

 w
/ 

D
R

F
H

← y = x

Fig. 7. Task completion ratio of
users using Best-Fit DRFH and Slots
schedulers, respectively. Each bub-
ble’s size is logarithmic to the num-
ber of tasks the user submitted.
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Fig. 8. Task completion ratio of
users running on dedicated clouds
(DCs) and the shared cloud (SC).
Each circle’s radius is logarithmic to
the number of tasks submitted.

Sharing incentive: Our final evaluation is on the sharing
incentive property of DRFH. As mentioned in Sec. IV-D,
for each user, we run its computing tasks on a dedicated
cloud (DC) that is a proportional subset of the original shared
cloud (SC). We then compare the task completion ratio in DC
with that obtained in SC. Fig. 8 illustrates the results. While
DRFH does not guarantee 100% sharing incentive for all users,
it benefits most of them by pooling their DCs together. In
particular, only 2% users see fewer tasks finished in the shared
environment. Even for these users, the task completion ratio
decreases only slightly, as can be seen from Fig. 8.

VII. CONCLUDING REMARKS

In this paper, we study a multi-resource allocation problem
in a heterogeneous cloud computing system where the resource
pool is composed of a large number of servers with differ-
ent configurations in terms of resources such as processing,
memory, and storage. The proposed multi-resource allocation
mechanism, known as DRFH, equalizes the global dominant
share allocated to each user, and hence generalizes the DRF
allocation from a single server to multiple heterogeneous
servers. We analyze DRFH and show that it retains almost
all desirable properties that DRF provides in the single-server
scenario. Notably, DRFH is envy-free, Pareto optimal, and
truthful. We design a Best-Fit heuristic that implements DRFH
in a real-world system. Our large-scale simulations driven by
Google cluster traces show that, compared to the traditional
single-resource abstraction such as a slot scheduler, DRFH
achieves significant improvements in resource utilization, lead-
ing to much shorter job completion times.
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Fig. 4. CPU, memory, and global dominant share for three users on a 100-
server system with 52.75 CPU units and 51.32 memory units in total.

TABLE II
RESOURCE UTILIZATION OF THE SLOTS SCHEDULER WITH DIFFERENT

SLOT SIZES.
Number of Slots CPU Utilization Memory Utilization

10 per maximum server 35.1% 23.4%
12 per maximum server 42.2% 27.4%
14 per maximum server 43.9% 28.0%
16 per maximum server 45.4% 24.2%
20 per maximum server 40.6% 20.0%

units and 51.32 memory units in total. User 1 joins the system
at the beginning, requiring 0.2 CPU and 0.3 memory for each
of its task. As shown in Fig. 4, since only user 1 is active at the
beginning, it is allocated 40% CPU share and 62% memory
share. This allocation continues until 200 s, at which time
user 2 joins and submits CPU-heavy tasks, each requiring 0.5
CPU and 0.1 memory. Both users now compete for computing
resources, leading to a DRFH allocation in which both users
receive 44% global dominant share. At 500 s, user 3 starts
to submit memory-intensive tasks, each requiring 0.1 CPU
and 0.3 memory. The algorithm now allocates the same global
dominant share of 26% to all three users until user 1 finishes
its tasks and departs at 1080 s. After that, only users 2 and
3 share the system, each receiving the same share on their
global dominant resources. A similar process repeats until all
users finish their tasks. Throughout the simulation, we see that
the Best-Fit DRFH algorithm precisely achieves the DRFH
allocation at all times.

Resource utilization: We next evaluate the resource uti-
lization of the proposed Best-Fit DRFH algorithm. We take
the 24-hour computing demand data from the Google traces
and simulate it on a smaller cloud computing system of
2,000 servers so that fairness becomes relevant. The server
configurations are randomly drawn from the distribution of
Google cluster servers in Table I. We compare Best-Fit DRFH
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Fig. 5. Time series of CPU and memory utilization.
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Fig. 6. DRFH improvements on job completion times over Slots scheduler.

with two other benchmarks, the traditional Slots schedulers
that schedules tasks onto slots of servers (e.g., Hadoop Fair
Scheduler [23]), and the First-Fit DRFH that chooses the
first server that fits the task. For the former, we try different
slot sizes and chooses the one with the highest CPU and
memory utilization. Table II summarizes our observations,
where dividing the maximum server (1 CPU and 1 memory in
Table I) into 14 slots leads to the highest overall utilization.

Fig. 5 depicts the time series of CPU and memory utilization
of the three algorithms. We see that the two DRFH implemen-
tations significantly outperform the traditional Slots scheduler
with much higher resource utilization, mainly because the
latter ignores the heterogeneity of both servers and workload.
This observation is consistent with findings in the homoge-
neous environment where all servers are of the same hardware
configurations [6]. As for the DRFH implementations, we
see that Best-Fit DRFH leads to uniformly higher resource
utilization than the First-Fit alternative at all times.

The high resource utilization of Best-Fit DRFH naturally
translates to shorter job completion times shown in Fig. 6a,
where the CDFs of job completion times for both Best-Fit
DRFH and Slots scheduler are depicted. Fig. 6b offers a more
detailed breakdown, where jobs are classified into 5 categories
based on the number of its computing tasks, and for each
category, the mean completion time reduction is computed.
While DRFH shows no improvement over Slots scheduler
for small jobs, a significant completion time reduction has
been observed for those containing more tasks. Generally,
the larger the job is, the more improvement one may expect.
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Conclusions

We have studied a multi-resource fair allocation problem in a 
heterogeneous cloud computing system 

We have generalized DRF to DRFH and shown that it possesses 
a set of highly attractive allocation properties 

We have designed an effective heuristic algorithm that 
implements DRFH in a real-world system  
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