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Background

Middleboxes (MBs) are ubiquitous in today’s networks

The sheer number is on par with the L2/L3 infrastructures [Sherry12]

Perform a wide range of critical network functionalities

E.g., WAN optimization, intrusion detection and prevention, etc.
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Background

MBs perform deep packet processing based on packet 
contents

Require multiple MB resources, e.g., CPU, link bandwidth

Flows may have heterogenous resource demands

Basic Forwarding: Bandwidth intensive
IP Security Encryption: CPU intensive
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Figure 1: Normalized resource usage of four middlebox func-
tions implemented in Click: basic forwarding, flow monitoring,
redundancy elimination, and IPSec encryption.

of servers than users, they decide how many resources each user
should get on each server. In contrast, middleboxes require sharing
in time; given a small number of resources (e.g., NICs or CPUs)
that can each process only one packet at a time, the scheduler must
interleave packets to achieve the right resource shares over time.
Achieving DRF allocations in time is challenging, especially doing
so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were
active [24]. This memoryless property is key to guaranteeing that
flows cannot be starved in a work-conserving system.

We design a new queuing algorithm called Dominant Resource
Fair Queuing (DRFQ), which generalizes the concept of virtual
time from classical fair queuing [10, 24] to multiple resources that
are consumed at different rates over time. We evaluate DRFQ using
a Click [22] implementation and simulations, and we show that it
provides better isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:
1. We identify the problem of multi-resource fair queueing, which

is a generalization of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling
schemes—bottleneck fairness and per-resource fairness—and
show that they suffer from problems including poor isolation,
oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that pro-
vides both share guarantees and strategy-proofness: Dominant
Resource Fair Queuing (DRFQ). DRFQ implements DRF allo-
cations in the time domain.

2. MOTIVATION
Others have observed that middleboxes and software routers can

bottleneck on any of CPU, memory bandwidth, and link bandwidth,
depending on the processing requirements of the traffic. Dreger
et al. report that CPU can be a bottleneck in the Bro intrusion
detection system [13]. They demonstrated that, at times, the CPU
can be overloaded to the extent that each second of incoming traffic
requires 2.5 seconds of CPU processing. Argyraki et al. [8] found
that memory bandwidth can be a bottleneck in software routers,
especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For
example, many middleboxes let encrypted SSL flows pass through
without processing.

To confirm and quantify these observations, we measured the re-
source footprints of several canonical middlebox applications im-
plemented in Click [22]. We developed a trace generator that takes
in real traces with full payloads [4] and analyzes the resource con-
sumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications.
Each application’s maximum resource consumption was normal-
ized to 1. We see that the resource consumption varies across mod-

Figure 2: Performing fair sharing based on a single resource
(NIC) fails to meet the share guarantee. In the steady-state pe-
riod from time 2–11, flow 2 only gets a third of each resource.

ules: basic forwarding uses a higher relative fraction of link band-
width than of other resources, redundancy elimination bottlenecks
on memory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for dif-
ferent traffic (e.g., HTTP caching for some flows and basic forward-
ing for others), and future software-defined middlebox proposals
suggest consolidating more functions onto the same device [28,
27]. Moreover, further functionality is being incorporated into hard-
ware accelerators [30, 23, 5], increasing the resource diversity of
middleboxes. Thus, packet schedulers for middleboxes will need
to take into account flows’ consumption across multiple resources.

Finally, we believe multi-resource scheduling to be important in
other contexts too. One such example is multi-tenant scheduling
in deep software stacks. For example, a distributed key-value store
might be layered on top of a distributed file system, which in turn
runs over the OS file system. Different layers in this stack can
bottleneck on different resources, and it is desirable to isolate the
resource consumption of different tenants’ requests. Another ex-
ample is virtual machine (VM) scheduling inside a hypervisor. Dif-
ferent VMs might consume different resources, so it is desirable to
fairly multiplex their access to physical resources.

3. BACKGROUND
Designing a packet scheduler for multiple resources turns out to

be non-trivial due to several problems that do not occur with one
resource [16]. In this section, we review these problems and pro-
vide background on the allocation scheme we ultimately build on,
DRF. In addition, given that our goal is to design a packet queuing
algorithm that achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur

in multi-resource scheduling and shows that several simple schedul-
ing schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isola-
tion. Fair queuing ensures that each of n flows can get a guaranteed
1
n fraction of a resource (e.g., link bandwidth), regardless of the de-
mand of other flows [24].1 Weighted fair queuing generalizes this
concept by assigning a weight wi to each flow and guaranteeing
that flow i can get at least wiP

j2W wj
of the sole resource, where W

is the set of active flows.
We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight wi should
get at least wiP

j2W wj
fraction of one of the resources it uses.

1By “flow,” we mean a set of packets defined by a subset of header
fields. Administrators can choose which fields to use based on or-
ganizational policies, e.g., to enforce weighted fair shares across
users (based on IP addresses) or applications (based on ports).
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How to let !ows fairly 
share multiple resources 
for packet processing? 
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Desired Fair Queueing Algorithm

Fairness

Each !ow should receive service (i.e., throughput) at least at the level 
when every resource is equally allocated

Low Complexity

To schedule packets at high speeds, the scheduling decision has to be 
made at low time complexity

Implementation

The scheduling algorithm should also be simple enough so that it can 
be easily implemented in practice
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The Status Quo

Traditional fair queueing algorithms have only a single 
resource to schedule, i.e., output bandwidth

Switches simply forward the packet to the next hop
WFQ, WF2Q, SFQ, DRR, etc.

Simply extending single-resource fair queueing fails to achieve 
fairness in the multi-resource setting [Ghodsi12]

Per-resource fairness
Bottleneck fairness

Dominant Resource Fair Queueing (DRFQ) [Ghodsi12]

Implements near-perfect Dominant Resource Fairness (DRF) in the 
time domain

6
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However...

DRFQ is expensive to implement at high speeds

Requires O(log n) time complexity per packet
n could be very large

Given the ever growing line rate and the increasing volume of traffic passing 
through MBs 

Recent software-de"ned MB innovations further aggravate 
this scalability problem

More software-de#ned MBs are consolidated onto the same 
commodity servers

They will see an increasing amount of traffic passing through them

7



Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Our Contributions

A new multi-resource fair queueing algorithm

Multi-Resource Round Robin (MR3)
Near-perfect fairness across !ows
O(1) time complexity per packet
Very easy to implement in practice

MR3 is the "rst multi-resource fair queueing algorithm that 
achieves nearly perfect fairness with O(1) time complexity
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Preliminaries
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Dominant Resource Fairness (DRF)

Dominant Resource

The resource that requires the most processing time to process a 
packet

For example

A packet p requiring 1 CPU time and 3 transmission time
Dominant resource is the link bandwidth

DRF

Flows receive the same processing time on their dominant resources
Max-min fairness on !ows’ dominant resources
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find a variety of applications in other multi-resource schedul-
ing contexts, e.g., VM scheduling inside a hypervisor.

II. RELATED WORK

Unlike switches and routers where the output bandwidth
is the only shared resource, middleboxes handle a variety
of hardware resources and require a more complex packet
scheduler. Many recent measurements, such as [6], [11], [17],
report that packet processing in a middlebox may bottleneck
on any of CPU, memory bandwidth, and link bandwidth,
depending on the network functions applied to the traffic
flow. Such a multi-resource setting significantly complicates
the scheduling algorithm. As pointed out in [11], simply
applying traditional fair queueing schemes [4], [5], [8], [9],
[18], [19] per resource (i.e., per-resource fairness) or on the
bottleneck resource (i.e., bottleneck fairness) fails to offer
service isolation: by strategically claiming some resources that
are not needed, a flow may increase its service share at the
price of other flows.

Ghodsi et al. [11] suggest a promising scheduler that
implements Dominant Resource Fairness (DRF) in the time
domain and therefore achieves service isolation across multi-
ple resources. Their design, referred to as DRFQ, schedules
packets in a way such that flows receive roughly the same
processing time on their most congested resources. Following
this intuition, Wang et al. [20] extend the idealized GPS model
[4], [5] to Dominant Resource GPS (DRGPS) that implements
the strict DRF at all times. By emulating DRGPS, well-known
fair queueing algorithms, such as WFQ [4] and WF2Q [21],
can have direct extensions in the multi-resource setting. While
all these algorithms achieve nearly perfect service isolation,
they are timestamp-based schedulers and are expensive to
implement. In particular, packets, upon their arrivals, are
stamped some timestamps and are scheduled in increasing
order of their timestamps. To maintain the right scheduling
order, the scheduler has to select a packet with the earliest
timestamp among n active flows, requiring O(log n) time
complexity per packet. With a large number of flows passing
through a middlebox, these algorithms are hard to implement
at high speeds.

Such a challenge to reduce the scheduling complexity
should come at no surprise to network researchers. When there
is only a single resource to schedule, round-robin schedulers
[9], [15], [16], [22] have been proposed to multiplex the output
bandwidth of switches and routers, in which flows are served
in a round-robin fashion. These algorithms eliminate the sort-
ing bottleneck associated with timestamp-based schedulers,
and achieve O(1) time complexity per packet. Due to their
extreme simplicity, they have been widely implemented in
high-speed routers such as Cisco GSR [23].

Despite the successful applications of round-robin algo-
rithms in traditional L2/L3 devices, it remains unclear whether
their attractiveness, i.e., the implementation simplicity and low
time complexity, extends to multi-resource scheduling, and if
it does, how a round-robin scheduler should be designed and

implemented in middleboxes. We answer these questions in
the following sections.

III. MULTI-RESOURCE ROUND ROBIN

In this section, we revisit round-robin algorithms in the
traditional fair queueing literature and discuss the challenges
of extending them to the multi-resource setting. We see
that directly applying them to schedule multiple middlebox
resources may lead to arbitrary unfairness across flows. Before
we inspect this problem in depth, we first introduce some basic
concepts that will be used throughout the paper.

A. Preliminaries
Packet Processing Time: Depending on the network func-

tions applied to a flow, processing a packet of the flow may
consume different amounts of middlebox resources. Following
[11], we define the packet processing time as a metric to
measure the resource requirements of a packet. Specifically,
for packet p, its packet processing time on resource r, denoted
⌧r(p), is defined as the time required to process the packet on
resource r, normalized to the middlebox’s processing capacity
of resource r. For example, a packet may require 10 µs to
process using one CPU core. A middlebox with 2 CPU cores
can process 2 such packets in parallel. As a result, the packet
processing time of this packet on CPU is 5 µs.

Dominant Resource Fairness (DRF): The recently pro-
posed Dominant Resource Fairness (DRF) [12] serves as a
promising notion of fairness for multi-resource scheduling.
Informally speaking, with DRF, any two flows receive the
same processing time on their dominant resources in all
backlogged periods. The dominant resource is the one that
requires the most packet processing time. Specifically, for a
packet p, its dominant resource, denoted d(p), is defined as

d(p) = argmax

r
{⌧r(p)} . (1)

For example, consider two flows in Fig. 1a. Flow 1 sends
packets P1, P2, . . ., while flow 2 sends packets Q1, Q2, . . ..
Packet P1 requires 1 time unit for CPU processing and 3
time units for link transmission, and has the processing time
h1, 3i. All the other packets require the same processing time
h3, 3i on both CPU and link bandwidth. In this case, the
dominant resource of packet P1 is the link bandwidth, while
the dominant resource of packets Q1, P2, Q2, P3, . . . is CPU
(or bandwidth). We see that the scheduling scheme shown in
Fig. 1a achieves DRF, under which both flows receive the same
processing time on their dominant resources (see Fig. 1b).

It has been shown in [20] that by achieving strict DRF at
all times, the resulting scheduling scheme offers the following
properties.

Predictable Service Isolation: For each flow i, the received
service is at least at the level when every resource is equally
allocated.

Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be used to serve
a backlogged flow is wasted in idle.
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Design Objective

We use Relative Fairness Bound (RFB) to measure the fairness 
of a scheduling algorithm

                  : the packet processing time !ow i receives on its dominant 
resource in the time interval

Referred to as the dominant services                

Objective

RFB as a small constant
O(1) scheduling complexity per packet

11

Ti(t1, t2)
(t1, t2)

P1

Q1P1CPU
Link ...

P2

P2

P3

Q1

Q2

Q2

...

P3

Q3

Time20 6 124 8 10 14

(a) The scheduling discipline.

P1

Q1CPU
Link ...P2

Q2 ...

P3

Q3

Time20 6 124 8 10 14

(b) The processing time received on the dominant resources.

Fig. 1. Illustration of a scheduling discipline that achieves DRF.

Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be utilized to
increase the throughput of a backlogged flow is wasted in idle.

Due to these highly desired scheduling properties, DRF is
adopted as the notion of fairness for multi-resource scheduling.
To measure how well a packet scheduler approximates DRF,
the following Relative Fairness Bound (RFB) is used as a
fairness metric [12], [20]:

Definition 1: For any packet arrivals, let Ti(t1, t2) be the
packet processing time flow i receives on its dominant resource
in the time interval (t1, t2). Ti(t1, t2) is referred to as the
dominant service flow i receives in (t1, t2). Let B(t1, t2) be
the set of flows that are backlogged in (t1, t2). The Relative
Fairness Bound (RFB) is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)
|Ti(t1, t2)� Tj(t1, t2)| . (2)

We require a scheduling scheme to have a small RFB, such
that the difference between the normalized dominant service
received by any two flows i and j, over any backlogged time
period (t1, t2), is bounded by a small constant.

B. Challenges of Round-Robin Extension
As mentioned in Sec. II, among various scheduling schemes,

round-robin algorithm is of particular attractiveness for practi-
cal implementation due to its extreme simplicity and constant
time complexity. To extend it to the multi-resource setting
with DRF, a natural way is to directly apply it on flows’
dominant resources, such that in each round, flows receive
roughly the same dominant services. Such a general extension
can be applied to many well-known round-robin algorithms.
However, a naive extension may lead to arbitrary unfairness.

Take the well-known Deficit Round Robin (DRR) [10] as an
example. When there is a single resource, DRR assigns some
predefined quantum size to each flow. Each flow maintains a
deficit counter, whose value is the current unused transmission
quota. In each round, DRR polls every backlogged flow and
transmits its packets up to an amount of data equal to the sum
of its quantum and deficit counter. The unused transmission
quota will be carried over to the next round as the value of the
flow’s deficit counter. Similar to the single-resource case, one
can apply DRR [10] on flows’ dominant resources as follows.
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(a) Direct application of DRR to schedule multiple resources.
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(b) The dominant services received by two flows.

Fig. 2. Illustration of a direct DRR extension. Each packet of flow 1 has
processing time h7, 6.9i, while each packet of flow 2 has processing time
h1, 7i.

Initially, the algorithm assigns a predefined quantum size to
each flow, which is also the amount of dominant service the
flow is allowed to receive in one round. Each flow maintains a
deficit counter that measures the current unused portion of the
allocated dominant service. Packets are scheduled in rounds,
and in each round, each backlogged flow schedules as many
packets as it has, as long as the dominant service consumed
does not exceed the sum of its quantum and deficit counter.
The unused portion of this amount is carried over to the next
round as the new value of the deficit counter.

As an example, consider two flows where flow 1 sends P1,
P2, . . . , while flow 2 sends Q1, Q2, . . . . Each packet of flow
1 has processing time h7, 6.9i, i.e., it requires 7 time units
for CPU processing and 6.9 time units for link transmission.
Each packet of flow 2 requires processing time h1, 7i. Fig. 2a
illustrates the resulting schedule of the above naive DRR
extension, where the quantum size assigned to both flows is 7.
In round 1, both flows receive a quantum of 7, and can process
1 packet each, which consumes all the quantum awarded on
the dominant resources in this round. Such a process repeats
in the following rounds. As a result, packets of the two flows
are scheduled alternately. Since in each round, the received
quantum is always used up, the deficit counter remains 0 in
the end of each round.

Similar to single-resource DRR, the extension above sched-
ules packets in O(1) time1. However, such an extension fails
to provide fair services in terms of DRF. Instead, it may lead to
arbitrary unfairness with an unbounded RFB. Fig. 2b depicts
the dominant services received by two flows. We see that
flow 1 receives nearly two times the dominant service flow
2 receives. With more packets being scheduled, the service
gap increases, eventually leading to an unbounded RFB.

1The O(1) time complexity is conditioned on the quantum size being at
least the maximum packet processing time.
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When there is a single 
resource to schedule...
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Fair Queueing Based on Round Robin

Round-robin (RR) scheme

Flows are served in rounds
In each round, each !ow transmits roughly the same amounts of bits

A credit system is maintained to track the amounts of bits transmitted

RR is an ideal single-resource packet scheduler

Nearly perfect fairness with O(1) RFB
O(1) time complexity
Simple, and widely implemented in high-speed routers

E.g., Cisco GSR
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Will the attractiveness of 
RR extend to the multi-

resource setting?
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The First Try

Intuition

DRF implements max-min fairness on !ows’ dominant resources
Simply applying RR to !ows’ dominant resources

Approach

Maintain a credit system to track the dominant service a !ow has 
received
Ensure that !ows receive roughly the same processing time on their 
dominant resources in each round
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Credit System

Active !ows are served in rounds

Each !ow i maintains a credit account

Balance:
The dominant service !ow i is allowed to consume in one round

Whenever a packet p is processed, 
Flow i is allowed to process packet, as long as               

A new round begins when all active !ows have been served in 
the previous round

All !ows receive a credit, i.e.,                         , after which                for all i

16

Bi

Bi � 0

Bi = Bi + c Bi � 0

Bi = Bi � domProcTime(p)
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However...

Root cause

Heterogeneous resource demand
Inconsistent work progress on different resources
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Such a simple extension may lead to arbitrary unfairness!
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Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be utilized to
increase the throughput of a backlogged flow is wasted in idle.

Due to these highly desired scheduling properties, DRF is
adopted as the notion of fairness for multi-resource scheduling.
To measure how well a packet scheduler approximates DRF,
the following Relative Fairness Bound (RFB) is used as a
fairness metric [12], [20]:

Definition 1: For any packet arrivals, let Ti(t1, t2) be the
packet processing time flow i receives on its dominant resource
in the time interval (t1, t2). Ti(t1, t2) is referred to as the
dominant service flow i receives in (t1, t2). Let B(t1, t2) be
the set of flows that are backlogged in (t1, t2). The Relative
Fairness Bound (RFB) is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)
|Ti(t1, t2)� Tj(t1, t2)| . (2)

We require a scheduling scheme to have a small RFB, such
that the difference between the normalized dominant service
received by any two flows i and j, over any backlogged time
period (t1, t2), is bounded by a small constant.

B. Challenges of Round-Robin Extension
As mentioned in Sec. II, among various scheduling schemes,

round-robin algorithm is of particular attractiveness for practi-
cal implementation due to its extreme simplicity and constant
time complexity. To extend it to the multi-resource setting
with DRF, a natural way is to directly apply it on flows’
dominant resources, such that in each round, flows receive
roughly the same dominant services. Such a general extension
can be applied to many well-known round-robin algorithms.
However, a naive extension may lead to arbitrary unfairness.

Take the well-known Deficit Round Robin (DRR) [10] as an
example. When there is a single resource, DRR assigns some
predefined quantum size to each flow. Each flow maintains a
deficit counter, whose value is the current unused transmission
quota. In each round, DRR polls every backlogged flow and
transmits its packets up to an amount of data equal to the sum
of its quantum and deficit counter. The unused transmission
quota will be carried over to the next round as the value of the
flow’s deficit counter. Similar to the single-resource case, one
can apply DRR [10] on flows’ dominant resources as follows.
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Fig. 2. Illustration of a direct DRR extension. Each packet of flow 1 has
processing time h7, 6.9i, while each packet of flow 2 has processing time
h1, 7i.

Initially, the algorithm assigns a predefined quantum size to
each flow, which is also the amount of dominant service the
flow is allowed to receive in one round. Each flow maintains a
deficit counter that measures the current unused portion of the
allocated dominant service. Packets are scheduled in rounds,
and in each round, each backlogged flow schedules as many
packets as it has, as long as the dominant service consumed
does not exceed the sum of its quantum and deficit counter.
The unused portion of this amount is carried over to the next
round as the new value of the deficit counter.

As an example, consider two flows where flow 1 sends P1,
P2, . . . , while flow 2 sends Q1, Q2, . . . . Each packet of flow
1 has processing time h7, 6.9i, i.e., it requires 7 time units
for CPU processing and 6.9 time units for link transmission.
Each packet of flow 2 requires processing time h1, 7i. Fig. 2a
illustrates the resulting schedule of the above naive DRR
extension, where the quantum size assigned to both flows is 7.
In round 1, both flows receive a quantum of 7, and can process
1 packet each, which consumes all the quantum awarded on
the dominant resources in this round. Such a process repeats
in the following rounds. As a result, packets of the two flows
are scheduled alternately. Since in each round, the received
quantum is always used up, the deficit counter remains 0 in
the end of each round.

Similar to single-resource DRR, the extension above sched-
ules packets in O(1) time1. However, such an extension fails
to provide fair services in terms of DRF. Instead, it may lead to
arbitrary unfairness with an unbounded RFB. Fig. 2b depicts
the dominant services received by two flows. We see that
flow 1 receives nearly two times the dominant service flow
2 receives. With more packets being scheduled, the service
gap increases, eventually leading to an unbounded RFB.

1The O(1) time complexity is conditioned on the quantum size being at
least the maximum packet processing time.
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Fig. 1. Illustration of a scheduling discipline that achieves DRF.

Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be utilized to
increase the throughput of a backlogged flow is wasted in idle.

Due to these highly desired scheduling properties, DRF is
adopted as the notion of fairness for multi-resource scheduling.
To measure how well a packet scheduler approximates DRF,
the following Relative Fairness Bound (RFB) is used as a
fairness metric [12], [20]:

Definition 1: For any packet arrivals, let Ti(t1, t2) be the
packet processing time flow i receives on its dominant resource
in the time interval (t1, t2). Ti(t1, t2) is referred to as the
dominant service flow i receives in (t1, t2). Let B(t1, t2) be
the set of flows that are backlogged in (t1, t2). The Relative
Fairness Bound (RFB) is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)
|Ti(t1, t2)� Tj(t1, t2)| . (2)

We require a scheduling scheme to have a small RFB, such
that the difference between the normalized dominant service
received by any two flows i and j, over any backlogged time
period (t1, t2), is bounded by a small constant.

B. Challenges of Round-Robin Extension
As mentioned in Sec. II, among various scheduling schemes,

round-robin algorithm is of particular attractiveness for practi-
cal implementation due to its extreme simplicity and constant
time complexity. To extend it to the multi-resource setting
with DRF, a natural way is to directly apply it on flows’
dominant resources, such that in each round, flows receive
roughly the same dominant services. Such a general extension
can be applied to many well-known round-robin algorithms.
However, a naive extension may lead to arbitrary unfairness.

Take the well-known Deficit Round Robin (DRR) [10] as an
example. When there is a single resource, DRR assigns some
predefined quantum size to each flow. Each flow maintains a
deficit counter, whose value is the current unused transmission
quota. In each round, DRR polls every backlogged flow and
transmits its packets up to an amount of data equal to the sum
of its quantum and deficit counter. The unused transmission
quota will be carried over to the next round as the value of the
flow’s deficit counter. Similar to the single-resource case, one
can apply DRR [10] on flows’ dominant resources as follows.
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(a) Direct application of DRR to schedule multiple resources.
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(b) The dominant services received by two flows.

Fig. 2. Illustration of a direct DRR extension. Each packet of flow 1 has
processing time h7, 6.9i, while each packet of flow 2 has processing time
h1, 7i.

Initially, the algorithm assigns a predefined quantum size to
each flow, which is also the amount of dominant service the
flow is allowed to receive in one round. Each flow maintains a
deficit counter that measures the current unused portion of the
allocated dominant service. Packets are scheduled in rounds,
and in each round, each backlogged flow schedules as many
packets as it has, as long as the dominant service consumed
does not exceed the sum of its quantum and deficit counter.
The unused portion of this amount is carried over to the next
round as the new value of the deficit counter.

As an example, consider two flows where flow 1 sends P1,
P2, . . . , while flow 2 sends Q1, Q2, . . . . Each packet of flow
1 has processing time h7, 6.9i, i.e., it requires 7 time units
for CPU processing and 6.9 time units for link transmission.
Each packet of flow 2 requires processing time h1, 7i. Fig. 2a
illustrates the resulting schedule of the above naive DRR
extension, where the quantum size assigned to both flows is 7.
In round 1, both flows receive a quantum of 7, and can process
1 packet each, which consumes all the quantum awarded on
the dominant resources in this round. Such a process repeats
in the following rounds. As a result, packets of the two flows
are scheduled alternately. Since in each round, the received
quantum is always used up, the deficit counter remains 0 in
the end of each round.

Similar to single-resource DRR, the extension above sched-
ules packets in O(1) time1. However, such an extension fails
to provide fair services in terms of DRF. Instead, it may lead to
arbitrary unfairness with an unbounded RFB. Fig. 2b depicts
the dominant services received by two flows. We see that
flow 1 receives nearly two times the dominant service flow
2 receives. With more packets being scheduled, the service
gap increases, eventually leading to an unbounded RFB.

1The O(1) time complexity is conditioned on the quantum size being at
least the maximum packet processing time.
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Enforce consistent work progress across resources

Allow only one packet to be processed at one time
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Signi#cantly high delay with low resource utilization

It is to be emphasized that the problem of arbitrary un-
fairness is not limited to DRR extension only, yet generally
extends to all round-robin variants. For example, one can
extend Surplus Round Robin (SRR) [16] and Elastic Round
Robin (ERR) [17] to the multi-resource setting in a similar way
(more details will be given in Sec. IV). It is easy to verify
that running the example above will give exactly the same
schedule shown in Fig. 2a with an unbounded RFB2. In fact,
due to the heterogeneous resource requirements among flows,
a service round may span different time intervals on different
resources. As a result, the work progress on one resource may
be far ahead of that on the other. For example, in Fig. 2a, when
CPU starts to process packet P6, the transmission of packet P3
remains unfinished. It is such a progress mismatch that leads
to a significant gap between the two flows’ dominant services.

In summary, directly applying round-robin algorithms on
flows’ dominant resources fails to provide fair services. A new
design is therefore required. We preview the basic idea in the
next subsection.

C. Deferring the Scheduling Opportunity
The key reason that direct round-robin extensions fails is

because they cannot track flows’ dominant services in real-
time. Take the DRR extension as an example. In Fig. 2a,
after packet Q1 is completely processed on CPU, flow 2’s
deficit counter is updated to 0, meaning that flow 2 has already
used up the quantum allocated for dominant services (i.e.,
link transmission) in round 1. This allows packet P2 to be
processed but erroneously, as the actual consumption of this
quantum incurs only when packet Q1 is transmitted on the
link, after the transmission of packet P1.

To circumvent this problem, a simple fix is to withhold
the scheduling opportunity of every packet until its previous
packet is completely processed on all resources, which allows
the scheduler to track the dominant services accurately. Fig. 3
depicts the resulting schedule when applying this fix to the
DRR extension shown in Fig. 2a. We see that the difference be-
tween the dominant services received by two flows is bounded
by a small constant. However, such a fairness improvement
is achieved at the expense of significantly lower resource
utilization. Even though multiple packets can be processed in
parallel on different resources, the scheduler serves only one
packet at a time, leading to poor resource utilization and high
packet latency. As a result, this simple fix cannot meet the
demand of high-speed networks.

To strike a balance between fairness and latency, packets
should not be deferred as long as the difference of two
flows’ dominant services is small. This can be achieved by
bounding the progress gap on different resources by a small
amount. In particular, we may serve flows in rounds as follows.
Whenever a packet p of a flow i is ready to be processed
on the first resource (usually CPU) in round k, the scheduler
checks the work progress on the last resource (usually the link

2In either SRR or ERR extension, by scheduling 1 packet, each flow uses
up all the quantum awarded in each round. As a result, packets of the two
flows are scheduled alternately, the same as that in Fig. 2a.
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Fig. 3. Naive fix of the DRR extension shown in Fig. 2a by withholding the
scheduling opportunity of every packet until its previous packet is completely
processed on all resources.
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(b) The dominant services received by two flows.

Fig. 4. Illustration of a schedule by MR3.

bandwidth). If flow i has already received services on the last
resource in the previous round k � 1, or it is a new arrival,
then packet p is scheduled immediately. Otherwise, packet p
is withheld until flow i starts to receive service on the last
resource in round k � 1. As an example, Fig. 4a depicts the
resulting schedule with the same input traffic as that in the
previous example of Fig. 2a. In round 1, both packets P1 and
Q1 are scheduled without delay because both flows are new
arrivals. In round 2, packet P2 (resp., Q2) is also scheduled
without delay, because when it is ready to be processed, flow
1 (resp., flow 2) has already started its service on the link
bandwidth in round 1. In round 3, while packet P3 is ready to
be processed right after packet Q2 is completely processed on
CPU, it has to wait until P2 starts to be transmitted, as it has
to wait until flow 1 receives service on the link bandwidth in
round 2. Similar process repeats for all the subsequent packets.

We will show later in Sec. V that such a simple idea leads
to nearly perfect fairness across flows, without incurring high
packet latency. In fact, the schedule in Fig. 4a incurs the same
packet latency as that in Fig. 2a, but is much fairer. As we
see from Fig. 4b, the difference between dominant services
received by two flows is bounded by a small constant.

IV. MR3 DESIGN

While the general idea introduced in the previous section is
simple, implementing it as a concrete round-robin algorithm
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(a) The scheduling discipline.
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(b) The processing time received on the dominant resources.

Fig. 1. Illustration of a scheduling discipline that achieves DRF.

Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be utilized to
increase the throughput of a backlogged flow is wasted in idle.

Due to these highly desired scheduling properties, DRF is
adopted as the notion of fairness for multi-resource scheduling.
To measure how well a packet scheduler approximates DRF,
the following Relative Fairness Bound (RFB) is used as a
fairness metric [12], [20]:

Definition 1: For any packet arrivals, let Ti(t1, t2) be the
packet processing time flow i receives on its dominant resource
in the time interval (t1, t2). Ti(t1, t2) is referred to as the
dominant service flow i receives in (t1, t2). Let B(t1, t2) be
the set of flows that are backlogged in (t1, t2). The Relative
Fairness Bound (RFB) is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)
|Ti(t1, t2)� Tj(t1, t2)| . (2)

We require a scheduling scheme to have a small RFB, such
that the difference between the normalized dominant service
received by any two flows i and j, over any backlogged time
period (t1, t2), is bounded by a small constant.

B. Challenges of Round-Robin Extension
As mentioned in Sec. II, among various scheduling schemes,

round-robin algorithm is of particular attractiveness for practi-
cal implementation due to its extreme simplicity and constant
time complexity. To extend it to the multi-resource setting
with DRF, a natural way is to directly apply it on flows’
dominant resources, such that in each round, flows receive
roughly the same dominant services. Such a general extension
can be applied to many well-known round-robin algorithms.
However, a naive extension may lead to arbitrary unfairness.

Take the well-known Deficit Round Robin (DRR) [10] as an
example. When there is a single resource, DRR assigns some
predefined quantum size to each flow. Each flow maintains a
deficit counter, whose value is the current unused transmission
quota. In each round, DRR polls every backlogged flow and
transmits its packets up to an amount of data equal to the sum
of its quantum and deficit counter. The unused transmission
quota will be carried over to the next round as the value of the
flow’s deficit counter. Similar to the single-resource case, one
can apply DRR [10] on flows’ dominant resources as follows.
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(a) Direct application of DRR to schedule multiple resources.
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(b) The dominant services received by two flows.

Fig. 2. Illustration of a direct DRR extension. Each packet of flow 1 has
processing time h7, 6.9i, while each packet of flow 2 has processing time
h1, 7i.

Initially, the algorithm assigns a predefined quantum size to
each flow, which is also the amount of dominant service the
flow is allowed to receive in one round. Each flow maintains a
deficit counter that measures the current unused portion of the
allocated dominant service. Packets are scheduled in rounds,
and in each round, each backlogged flow schedules as many
packets as it has, as long as the dominant service consumed
does not exceed the sum of its quantum and deficit counter.
The unused portion of this amount is carried over to the next
round as the new value of the deficit counter.

As an example, consider two flows where flow 1 sends P1,
P2, . . . , while flow 2 sends Q1, Q2, . . . . Each packet of flow
1 has processing time h7, 6.9i, i.e., it requires 7 time units
for CPU processing and 6.9 time units for link transmission.
Each packet of flow 2 requires processing time h1, 7i. Fig. 2a
illustrates the resulting schedule of the above naive DRR
extension, where the quantum size assigned to both flows is 7.
In round 1, both flows receive a quantum of 7, and can process
1 packet each, which consumes all the quantum awarded on
the dominant resources in this round. Such a process repeats
in the following rounds. As a result, packets of the two flows
are scheduled alternately. Since in each round, the received
quantum is always used up, the deficit counter remains 0 in
the end of each round.

Similar to single-resource DRR, the extension above sched-
ules packets in O(1) time1. However, such an extension fails
to provide fair services in terms of DRF. Instead, it may lead to
arbitrary unfairness with an unbounded RFB. Fig. 2b depicts
the dominant services received by two flows. We see that
flow 1 receives nearly two times the dominant service flow
2 receives. With more packets being scheduled, the service
gap increases, eventually leading to an unbounded RFB.

1The O(1) time complexity is conditioned on the quantum size being at
least the maximum packet processing time.
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The Right Timing for Scheduling

Enforce a roughly consistent work progress without sacri"cing 
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Progress control mechanism

Bound the progress gap between any two resources by 1 round
A packet p of !ow i is ready to be processed in round k
Check the work progress on the last resource
Process p immediately if

Flow i is a new arrival

i has already received services on the last resource in the previous round k-1

Otherwise, withhold p until the condition above is satis#ed
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It is to be emphasized that the problem of arbitrary un-
fairness is not limited to DRR extension only, but generally
extends to all round-robin variants. For example, one can
extend Surplus Round Robin (SRR) [15] and Elastic Round
Robin (ERR) [16] to the multi-resource setting in a similar
way (more details will be given in Sec. IV). It is easy to
verify that running the example above will give exactly the
same schedule shown in Fig. 2a with unbounded RFB2. In fact,
due to the heterogeneous resource requirements among flows,
a service round may span different time intervals on different
resources. As a result, the work progress on one resource may
be far ahead of that on the other. For example, in Fig. 2a, when
CPU starts to process packet P6, the transmission of packet P3
remains unfinished. It is such a progress mismatch that leads
to a significant gap between the two flows’ dominant services.

In summary, directly applying round-robin algorithms on
flows’ dominant resources fails to provide fair services. A new
design is therefore required. We preview the basic idea in the
next subsection.

C. Deferring the Scheduling Opportunity
The key reason that direct round-robin extensions fails is

because they cannot track flows’ dominant services in real-
time. Take the DRR extension as an example. In Fig. 2a,
after packet Q1 is completely processed on CPU, flow 2’s
deficit counter is updated to 0, meaning that flow 2 has already
used up the quantum allocated for dominant services (i.e., link
transmission) in round 1. This allows P2 to be processed but
erroneously, as the actual consumption of this quantum incurs
only when Q1 is transmitted on the link, after the transmission
of packet P1.

To circumvent this problem, a simple fix is to withhold
the scheduling opportunity of every packet until its previous
packet is completely processed on all resources, which allows
the scheduler to track the dominant services accurately. Fig. 3
depicts the resulting schedule when applying this fix to the
DRR extension shown in Fig. 2a. We see that the difference be-
tween the dominant services received by two flows is bounded
by a small constant. However, such a fairness improvement
is achieved at the expense of significantly lower resource
utilization. Even though multiple packets can be processed in
parallel on different resources, the scheduler serves only one
packet at a time, leading to poor resource utilization and high
packet latency. As a result, this simple fix cannot meet the
demand of high-speed networks.

To strike a balance between fairness and latency, packets
should not be deferred as long as the difference of two
flows’ dominant services is small. This can be achieved by
bounding the progress gap on different resources by a small
amount. In particular, we may serve flows in rounds as follows.
Whenever a packet p of a flow i is ready to be processed
on the first resource (usually CPU) in round k, the scheduler
checks the work progress on the last resource (usually the link

2In either SRR or ERR extension, by scheduling 1 packet, each flow uses
up all the quantum awarded in each round. As a result, packets of the two
flows are scheduled alternately, the same as that in Fig. 2a.
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Fig. 3. Naive fix of the DRR extension shown in Fig. 2a by withholding the
scheduling opportunity of every packet until its previous packet is completely
processed on all resources.
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(b) The dominant services received by two flows.

Fig. 4. Illustration of a schedule by MR3.

bandwidth). If flow i has already received services on the last
resource in the previous round k � 1, or it is a new arrival,
then packet p is scheduled immediately. Otherwise, packet p
is withheld until flow i starts to receive service on the last
resource in round k � 1. As an example, Fig. 4a depicts the
resulting schedule with the same input traffic as that in the
previous example of Fig. 2a. In round 1, both packets P1 and
Q1 are scheduled without delay because both flows are new
arrivals. In round 2, packet P2 (resp., Q2) is also scheduled
without delay, because when it is ready to be processed, flow
1 (resp., flow 2) has already started its service on the link
bandwidth in round 1. In round 3, while packet P3 is ready to
be processed right after packet Q2 is completely processed on
CPU, it has to wait until packet P2 starts to be transmitted, as it
has to wait until flow 1 receives service on the link bandwidth
in round 2. Similar process repeats for all the subsequent
packets.

We will show later in Sec. V that such a simple idea leads
to nearly perfect fairness across flows, without incurring high
packet latency. In fact, the schedule in Fig. 4a incurs the same
packet latency as that in Fig. 2a, but is much more fair. As we
see from Fig. 4b, the difference between dominant services
received by two flows is bounded by a small constant.

IV. MR3 DESIGN

While the general idea introduced in the previous section is
simple, implementing it as a concrete round-robin algorithm
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MR3 Recap

Flows are served in rounds
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Track the dominant services a !ow has received

Decide the scheduling order
Similar to the single-resource scenario

Progress control mechanism

Ensure a roughly consistent work progress across resources
Decide the right timing for scheduling
Unique to the multi-resource scenario
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Properties of MR3

O(1) time complexity

Nearly perfect fairness with O(1) RFB

Slight delay increase as compared with DRFQ

Easy to implement

No a priori information about packet processing is required
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TABLE I
PERFORMANCE COMPARISON BETWEEN MR3 AND DRFQ, WHERE L IS

THE MAXIMUM PACKET PROCESSING TIME; m IS THE NUMBER OF
RESOURCES; AND n IS THE NUMBER OF BACKLOGGED FLOWS.

Performance MR3 DRFQ [11]
Complexity O(1) O(logn)

Fairness (RFB) 4L 2L
Startup Latency 2(m+ n� 1)L nL

Single Packet Delay (4m+ 4n� 2)L Unknown

metrics are widely used in the fair queueing literature to
measure the latency performance: startup latency [11], [16]
and single packet delay [22]. The former measures how long
it takes for a previously inactive flow to receive service after
it becomes active, while the latter measures the latency from
the time when a packet reaches the head of the input queue
to the time when this packet finishes service on all resources.

Our analysis begins with the startup latency. Let m be
the number of resources concerned, and n the number of
backlogged flows. We have the following theorem.

Theorem 3: Under MR3, for any newly backlogged flow
i, the startup latency SLi is bounded by

SLi  2(m+ n� 1)L . (10)

We next state the following theorem on the single packet
delay.

Theorem 4: Under MR3, for any packet p, the single
packet delay SPD(p) is bounded by

SPD(p)  (4m+ 4n� 2)L . (11)

Table I summarizes the derived performance of MR3, as
compared with those of DRFQ [11]. We see that MR3 sig-
nificantly reduces the time complexity per packet. Similar
to DRFQ, MR3 also achieves nearly perfect fairness across
flows. The price we paid, however, is longer startup latency for
newly active flows. Since the number of middlebox resources
is typically much smaller than the number of active flows, i.e.,
m ⌧ n, the startup latency bound of MR3 is two times that of
DRFQ, i.e., 2(m+n� 1)L ⇡ 2nL. Since single packet delay
is usually hard to analyze, no analytical delay bound is given
in [11]. We experimentally compare the latency performance
of MR3 and DRFQ in the next section.

VI. SIMULATION RESULTS

As a complementary study of theoretical analysis, we eval-
uate the performance of MR3 via extensive simulations. In
particular, (1) we would like to confirm experimentally that
MR3 offers predictable service isolation and is superior to the
naive first-come-first-served (FCFS) scheduler, as the theory
indicates. (2) We want to confirm that MR3 can quickly adapt
to traffic dynamics and achieve nearly perfect DRF across
flows. (3) We compare the latency performance of MR3 with
DRFQ [11] to see if the extremely low time complexity of
MR3 is achieved at the expense of significant packet delay. (4)
We also investigate how sensitive the performance of MR3 is
when packet size distributions and arrival patterns change.

General Setup: All simulation results are based on our
event-driven packet simulator written with 3,000 lines of C++

TABLE II
LINEAR MODEL FOR CPU PROCESSING TIME IN 3 MIDDLEBOX MODULES.

MODEL PARAMETERS ARE BASED ON THE MEASUREMENT RESULTS
REPORTED IN [11].

Module CPU processing time (µs)
Basic Forwarding 0.00286⇥ PacketSizeInBytes + 6.2

Statistical Monitoring 0.0008⇥ PacketSizeInBytes + 12.1
IPSec Encryption 0.015⇥ PacketSizeInBytes + 84.5

0 5 10 15 20 25 30
0

5

10

15

Flow ID
D

o
m

in
a

n
t 

S
e

rv
ic

e
 (

s)
 

 

FCFS

MR3

(a) Dominant service received.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Flow ID

T
h

ro
u

g
h

p
u

t 
(1

0
3
 p

kt
s/

s)

 

 

FCFS

MR3

(b) Packet throughput of flows.

Fig. 6. Dominant services and packet throughput received by different flows
under FCFS and MR3. Flows 1, 11 and 21 are ill-behaving.

codes. We assume resources are consumed serially, with CPU
processing first, followed by link transmission. We implement
3 schedulers, FCFS, DRFQ and MR3. The last two inspect
the flows’ input queues and decide which packet should be
processed next, based on their algorithms. By default, packets
follow Poisson arrivals. The simulator simulates resource con-
sumption of packet processing in 3 typical middlebox modules,
each corresponds to one type of flows, basic forwarding, per-
flow statistical monitoring, and IPSec encryption. The first
two modules are bandwidth-bound, with statistical monitoring
consuming slightly more CPU resources than basic forward-
ing, while IPSec is CPU intensive. For direct comparison, we
set the packet processing times required for each middlebox
module the same as those in [11], which are based on real
measurements. In particular, the CPU processing time of each
module is observed to follow a simple linear model based on
packet size x, i.e., ↵kx + �k, where ↵k and �k are linear
parameters of module k. Table II summarizes the detailed
parameters based on the measurement results reported in [11].
The link transmission time is proportional to the packet size,
and the output bandwidth of the middlebox is set to 200 Mbps.

Service Isolation: We start off by confirming that MR3

offers nearly perfect service isolation, which naive FCFS
fails to provide. We initiate 30 flows that send 1300-byte
UDP packets for 30 seconds. Flows 1 to 10 undergo basic
forwarding; 11 to 20 undergo statistical monitoring; 21 to 30
undergo IPSec encryption. We generate 3 rogue flows, i.e.,
1, 11 and 21, each sending 10,000 pkts/s. All other flows
behaves normally, each sending 1,000 pkts/s. Fig. 6a shows the
dominant services received by different flows under FCFS and
MR3. We see that under FCFS, rogue flows grab an arbitrary
share of middlebox resources, while under MR3, flows receive
fair services on their dominant resources. This result is further
confirmed in Fig. 6b: Under FCFS, the presence of rogue
flows squeezes normal traffics to almost zero. In contrast,
MR3 ensures that all flows receive deserved, though uneven,

8
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Basic forwarding
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Figure 1: Normalized resource usage of four middlebox func-
tions implemented in Click: basic forwarding, flow monitoring,
redundancy elimination, and IPSec encryption.

of servers than users, they decide how many resources each user
should get on each server. In contrast, middleboxes require sharing
in time; given a small number of resources (e.g., NICs or CPUs)
that can each process only one packet at a time, the scheduler must
interleave packets to achieve the right resource shares over time.
Achieving DRF allocations in time is challenging, especially doing
so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were
active [24]. This memoryless property is key to guaranteeing that
flows cannot be starved in a work-conserving system.

We design a new queuing algorithm called Dominant Resource
Fair Queuing (DRFQ), which generalizes the concept of virtual
time from classical fair queuing [10, 24] to multiple resources that
are consumed at different rates over time. We evaluate DRFQ using
a Click [22] implementation and simulations, and we show that it
provides better isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:
1. We identify the problem of multi-resource fair queueing, which

is a generalization of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling
schemes—bottleneck fairness and per-resource fairness—and
show that they suffer from problems including poor isolation,
oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that pro-
vides both share guarantees and strategy-proofness: Dominant
Resource Fair Queuing (DRFQ). DRFQ implements DRF allo-
cations in the time domain.

2. MOTIVATION
Others have observed that middleboxes and software routers can

bottleneck on any of CPU, memory bandwidth, and link bandwidth,
depending on the processing requirements of the traffic. Dreger
et al. report that CPU can be a bottleneck in the Bro intrusion
detection system [13]. They demonstrated that, at times, the CPU
can be overloaded to the extent that each second of incoming traffic
requires 2.5 seconds of CPU processing. Argyraki et al. [8] found
that memory bandwidth can be a bottleneck in software routers,
especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For
example, many middleboxes let encrypted SSL flows pass through
without processing.

To confirm and quantify these observations, we measured the re-
source footprints of several canonical middlebox applications im-
plemented in Click [22]. We developed a trace generator that takes
in real traces with full payloads [4] and analyzes the resource con-
sumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications.
Each application’s maximum resource consumption was normal-
ized to 1. We see that the resource consumption varies across mod-

Figure 2: Performing fair sharing based on a single resource
(NIC) fails to meet the share guarantee. In the steady-state pe-
riod from time 2–11, flow 2 only gets a third of each resource.

ules: basic forwarding uses a higher relative fraction of link band-
width than of other resources, redundancy elimination bottlenecks
on memory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for dif-
ferent traffic (e.g., HTTP caching for some flows and basic forward-
ing for others), and future software-defined middlebox proposals
suggest consolidating more functions onto the same device [28,
27]. Moreover, further functionality is being incorporated into hard-
ware accelerators [30, 23, 5], increasing the resource diversity of
middleboxes. Thus, packet schedulers for middleboxes will need
to take into account flows’ consumption across multiple resources.

Finally, we believe multi-resource scheduling to be important in
other contexts too. One such example is multi-tenant scheduling
in deep software stacks. For example, a distributed key-value store
might be layered on top of a distributed file system, which in turn
runs over the OS file system. Different layers in this stack can
bottleneck on different resources, and it is desirable to isolate the
resource consumption of different tenants’ requests. Another ex-
ample is virtual machine (VM) scheduling inside a hypervisor. Dif-
ferent VMs might consume different resources, so it is desirable to
fairly multiplex their access to physical resources.

3. BACKGROUND
Designing a packet scheduler for multiple resources turns out to

be non-trivial due to several problems that do not occur with one
resource [16]. In this section, we review these problems and pro-
vide background on the allocation scheme we ultimately build on,
DRF. In addition, given that our goal is to design a packet queuing
algorithm that achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur

in multi-resource scheduling and shows that several simple schedul-
ing schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isola-
tion. Fair queuing ensures that each of n flows can get a guaranteed
1
n fraction of a resource (e.g., link bandwidth), regardless of the de-
mand of other flows [24].1 Weighted fair queuing generalizes this
concept by assigning a weight wi to each flow and guaranteeing
that flow i can get at least wiP

j2W wj
of the sole resource, where W

is the set of active flows.
We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight wi should
get at least wiP

j2W wj
fraction of one of the resources it uses.

1By “flow,” we mean a set of packets defined by a subset of header
fields. Administrators can choose which fields to use based on or-
ganizational policies, e.g., to enforce weighted fair shares across
users (based on IP addresses) or applications (based on ports).
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TABLE I
PERFORMANCE COMPARISON BETWEEN MR3 AND DRFQ, WHERE L IS

THE MAXIMUM PACKET PROCESSING TIME; m IS THE NUMBER OF
RESOURCES; AND n IS THE NUMBER OF BACKLOGGED FLOWS.

Performance MR3 DRFQ [11]
Complexity O(1) O(logn)

Fairness (RFB) 4L 2L
Startup Latency 2(m+ n� 1)L nL

Single Packet Delay (4m+ 4n� 2)L Unknown

metrics are widely used in the fair queueing literature to
measure the latency performance: startup latency [11], [16]
and single packet delay [22]. The former measures how long
it takes for a previously inactive flow to receive service after
it becomes active, while the latter measures the latency from
the time when a packet reaches the head of the input queue
to the time when this packet finishes service on all resources.

Our analysis begins with the startup latency. Let m be
the number of resources concerned, and n the number of
backlogged flows. We have the following theorem.

Theorem 3: Under MR3, for any newly backlogged flow
i, the startup latency SLi is bounded by

SLi  2(m+ n� 1)L . (10)

We next state the following theorem on the single packet
delay.

Theorem 4: Under MR3, for any packet p, the single
packet delay SPD(p) is bounded by

SPD(p)  (4m+ 4n� 2)L . (11)

Table I summarizes the derived performance of MR3, as
compared with those of DRFQ [11]. We see that MR3 sig-
nificantly reduces the time complexity per packet. Similar
to DRFQ, MR3 also achieves nearly perfect fairness across
flows. The price we paid, however, is longer startup latency for
newly active flows. Since the number of middlebox resources
is typically much smaller than the number of active flows, i.e.,
m ⌧ n, the startup latency bound of MR3 is two times that of
DRFQ, i.e., 2(m+n� 1)L ⇡ 2nL. Since single packet delay
is usually hard to analyze, no analytical delay bound is given
in [11]. We experimentally compare the latency performance
of MR3 and DRFQ in the next section.

VI. SIMULATION RESULTS

As a complementary study of theoretical analysis, we eval-
uate the performance of MR3 via extensive simulations. In
particular, (1) we would like to confirm experimentally that
MR3 offers predictable service isolation and is superior to the
naive first-come-first-served (FCFS) scheduler, as the theory
indicates. (2) We want to confirm that MR3 can quickly adapt
to traffic dynamics and achieve nearly perfect DRF across
flows. (3) We compare the latency performance of MR3 with
DRFQ [11] to see if the extremely low time complexity of
MR3 is achieved at the expense of significant packet delay. (4)
We also investigate how sensitive the performance of MR3 is
when packet size distributions and arrival patterns change.

General Setup: All simulation results are based on our
event-driven packet simulator written with 3,000 lines of C++

TABLE II
LINEAR MODEL FOR CPU PROCESSING TIME IN 3 MIDDLEBOX MODULES.

MODEL PARAMETERS ARE BASED ON THE MEASUREMENT RESULTS
REPORTED IN [11].

Module CPU processing time (µs)
Basic Forwarding 0.00286⇥ PacketSizeInBytes + 6.2

Statistical Monitoring 0.0008⇥ PacketSizeInBytes + 12.1
IPSec Encryption 0.015⇥ PacketSizeInBytes + 84.5
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(b) Packet throughput of flows.

Fig. 6. Dominant services and packet throughput received by different flows
under FCFS and MR3. Flows 1, 11 and 21 are ill-behaving.

codes. We assume resources are consumed serially, with CPU
processing first, followed by link transmission. We implement
3 schedulers, FCFS, DRFQ and MR3. The last two inspect
the flows’ input queues and decide which packet should be
processed next, based on their algorithms. By default, packets
follow Poisson arrivals. The simulator simulates resource con-
sumption of packet processing in 3 typical middlebox modules,
each corresponds to one type of flows, basic forwarding, per-
flow statistical monitoring, and IPSec encryption. The first
two modules are bandwidth-bound, with statistical monitoring
consuming slightly more CPU resources than basic forward-
ing, while IPSec is CPU intensive. For direct comparison, we
set the packet processing times required for each middlebox
module the same as those in [11], which are based on real
measurements. In particular, the CPU processing time of each
module is observed to follow a simple linear model based on
packet size x, i.e., ↵kx + �k, where ↵k and �k are linear
parameters of module k. Table II summarizes the detailed
parameters based on the measurement results reported in [11].
The link transmission time is proportional to the packet size,
and the output bandwidth of the middlebox is set to 200 Mbps.

Service Isolation: We start off by confirming that MR3

offers nearly perfect service isolation, which naive FCFS
fails to provide. We initiate 30 flows that send 1300-byte
UDP packets for 30 seconds. Flows 1 to 10 undergo basic
forwarding; 11 to 20 undergo statistical monitoring; 21 to 30
undergo IPSec encryption. We generate 3 rogue flows, i.e.,
1, 11 and 21, each sending 10,000 pkts/s. All other flows
behaves normally, each sending 1,000 pkts/s. Fig. 6a shows the
dominant services received by different flows under FCFS and
MR3. We see that under FCFS, rogue flows grab an arbitrary
share of middlebox resources, while under MR3, flows receive
fair services on their dominant resources. This result is further
confirmed in Fig. 6b: Under FCFS, the presence of rogue
flows squeezes normal traffics to almost zero. In contrast,
MR3 ensures that all flows receive deserved, though uneven,

8
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Fig. 7. Latency comparison between DRFQ and MR3.

flows squeezes normal traffics to almost zero. In contrast,
MR3 ensures that all flows receive deserved, though uneven,
throughput based on their dominant resource requirements,
irrespective of the presence and (mis)behaviour of other traffic.

Latency: We next evaluate the latency price MR3 pays for
its extremely low time complexity, as compared with DRFQ
[12]. We implement DRFQ and measure the startup latency
as well as the single packet delay of both algorithms. In
particular, 150 UDP flows start generating traffic in serial,
where flow 1 is active at time 0, followed by flow 2 at time
0.2, and flow 3 at time 0.3, and so on. A flow randomly
chooses one of the three middlebox modules to pass through.
To congest the middlebox resources, the packet arrival rate of
each flow is set to 500 pkts/s, and the packet size is uniformly
drawn from 200 B to 1300 B. Fig. 7a depicts the per-flow
startup latency using both DRFQ and MR3. Clearly, the dense
and sequential flow starting times in this example represent a
worst-case scenario for a round-robin scheduler. We see that
under MR3, flows joining the system later see larger startup
latency, while under DRFQ, the startup latency is relatively
consistent. This is because under MR3, a newly active flow
will have to wait for a whole round before getting served.
The more active flows, the more time is required to finish
serving one round. As a result, the startup latency is linearly
dependent on the number of active flows. While this is also
true for DRFQ in the worst-case analysis (see Table I), our
simulation results show that on average, the startup latency of
DRFQ is smaller than MR3. However, we see next that this
advantage of DRFQ comes at the expense of highly uneven
single packet delays.

Compared with the startup latency, single packet delay is a
much more important delay metric. As we see from Fig. 7b,
MR3 exhibits more consistent packet delay performance, with
all packets delayed less than 15 ms. In contrast, the latency
distribution of DRFQ is observed to have a long tail: 90%
packets are delayed less than 5 ms while the rest 10% are
delayed from 5 ms to 50 ms. Further investigation reveals that
these 10% packets are uniformly distributed among all flows.
All results above indicate that the low time complexity and
near-perfect fairness of MR3 is achieved at the expense of
only slight increase in packet latency.

Dynamic Allocation: We further investigate if the DRF
allocation achieved by MR3 can quickly adapt to traffic
dynamics. To congest middlebox resources, we initiate 3 UDP
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Fig. 8. MR3 can quickly adapt to traffic dynamics and achieve DRF across
all 3 flows.

flows each sending 20,000 1300-byte packets per second.
Flow 1 undergoes basic forwarding and is active in time
interval (0, 15). Flow 2 undergoes statistical monitoring and is
active in two intervals (3, 10) and (20, 30). Flow 3 undergoes
IPSec encryption and is active in (5, 25). The input queue of
each flow can cache up to 1,000 packets. Fig. 8 shows the
resource share allocated to each flow over time. Since flow
1 is bandwidth-bound and is the only active flow in (0, 3),
it receives 20% CPU share and all bandwidth. In (3, 5), both
flows 1 and 2 are active. They equally share the bandwidth
on which both flows bottleneck. Later, when flow 3 becomes
active at time 5, all three flows are backlogged in (5, 10).
Because flow 3 is CPU-bound, it grabs only 10% bandwidth
share from 2 and 3, respectively, yet is allocated 40% CPU
share. Similar DRF allocation is also observed in subsequent
time intervals. Through the whole process, we see that MR3

quickly adapts to traffic dynamics, leading to nearly perfect
DRF across flows.

Sensitivity: Our final experiment is to evaluate the perfor-
mance sensitivity of MR3 under a mixture of different packet
size distributions and arrival patterns. The simulator generates
24 UDP flows with arrival rate 10,000 pkts/s each. Flows 1
to 8 undergo basic forwarding; 9 to 16 undergo statistical
monitoring; 17 to 24 undergo IPSec encryption. The 8 flows
passing through the same middlebox module is further divided
into 4 groups. Flows in group 1 send large packets with
1400 B; Flows in group 2 send small packets with 200 B;
Flows in group 3 send bimodal packets that alternate between
small and large; Flows in group 4 send packet with random
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Fig. 9. Fairness and delay sensitivity of MR3 in response to mixed packet sizes and arrival distributions.

size uniformly drawn from 200 B to 1400 B. Each group
contains exactly 2 flows, with exponential and constant packet
interarrival times, respectively. The input queue of each flow
can cache up to 1,000 packets. The simulation lasts for 30
seconds. Fig. 9a shows the dominant services received by all
24 flows, where no paritcular pattern is observed in response
to distribution changes of packet sizes and arrivals. Figs. 9b,
9c and 9d show the average single packet delay observed in
three middlebox modules, respectively. We find that while the
latency performance is highly consistent under different arrival
patterns, it is affected by the distribution of packet size. In
general, flows with small packets are slightly preferred and
will see smaller latency than those with large packets. Similar
preference for small-packet flows has also been observed in
our experiments with DRFQ.

VII. CONCLUDING REMARKS

The potential congestion of multiple resources in a middle-
box complicates the design of packet scheduling algorithms.
Previously proposed multi-resource fair queueing schemes
require O(log n) complexity per packet and are expensive to
implement at high speeds. In this paper, we present MR3,
a multi-resource fair queueing algorithm with O(1) time
complexity. MR3 serves flows in rounds. It keeps track of the
work progress on each resource and withholds the scheduling
opportunity of a packet until the progress gap between any
two resources falls below one round. Our theoretical analyses
have indicated that MR3 implements near-perfect DRF across
flows. The price we have paid is a slight increase of packet
latency. We have also validated our theoretical results via
extensive simulation studies. To our knowledge, MR3 is the
first multi-resource fair queueing algorithm that offers near-
perfect fairness with O(1) time complexity. We believe that
MR3 should be easy to implement, and may find applications
in other multi-resource scheduling contexts where jobs must be
scheduled as entities, e.g., VM scheduling inside a hypervisor.
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Conclusions

We propose MR3 and evaluate its performance both 
analytically and experimentally

The "rst multi-resource fair queueing algorithm 

achieves nearly perfect fairness 
O(1) time complexity
Slight increase of packet latency as compared with DRFQ

MR3 could be easily extended to some other multi-resource 
scheduling contexts

E.g., VM scheduling inside a hypervisor
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