

Similarity Query Processing for High-Dimensional Data

Jianbin Qin
Shenzhen Institute of Computing
Sciences
Shenzhen University

Wei Wang
University of New South
Wales

Chuan Xiao Osaka University and Nagoya University Ying Zhang
University of
Technology Sydney



Outline

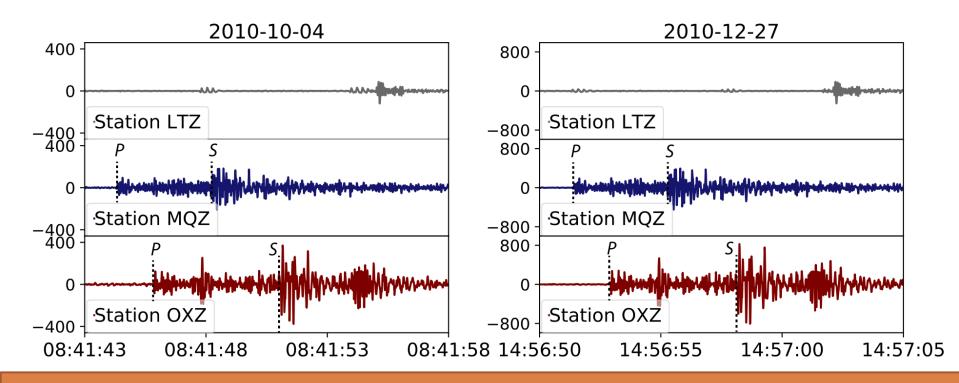
- □ Introduction
- Exact Query Processing
- Approximate Query Processing
- Selectivity Estimation
- □ Open Problems

Introduction

- High-dimensional data is abundant
 - Traditional sources:
 - **Time-series** [EZPB19], scientific applications
 - Document, multimedia, strings, feature vectors
 - New data sources:
 - Embedding from deep learning models
- Growing size and complexity
 - Web, social network, IoT
 - NOAA (USA) collects 100TB sensing data / day for weather forecasting
 - A variety of similarity/distance functions concerned

Example: Scientific Applications

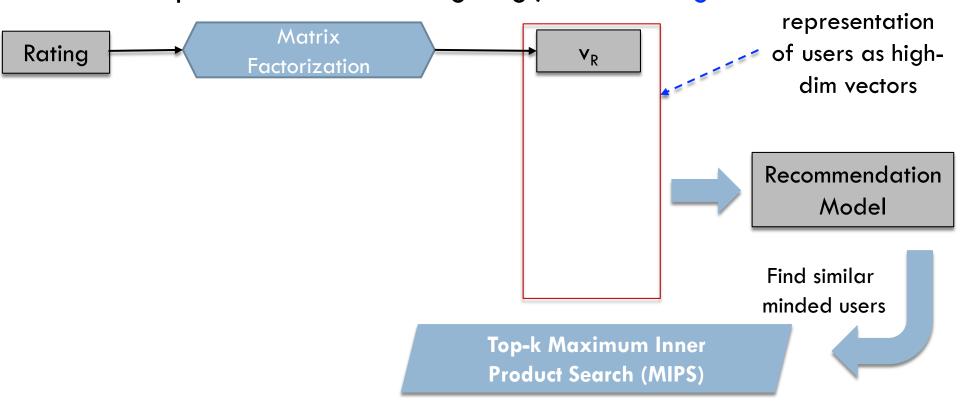
 High-dimensional data in huge volumes in scientific domains [YHEB17, RYBE+18]



Research Question: Whether the magnitude 4.7 earthquake in Arkansa 2011 was caused by wastewater injection

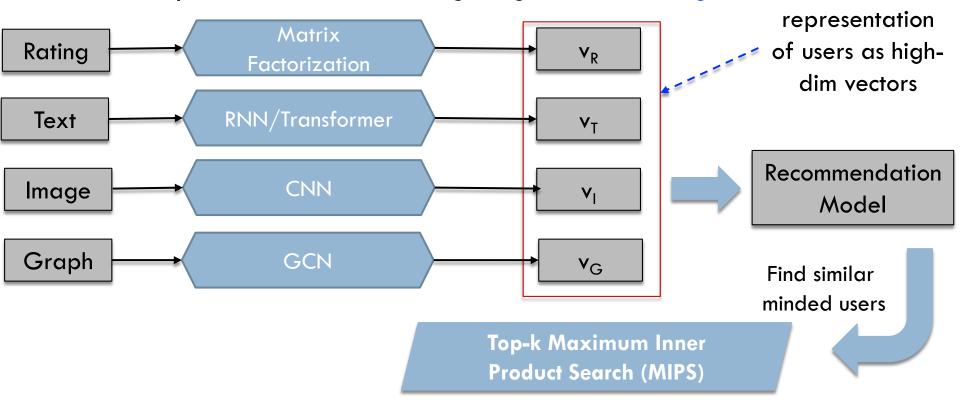
Example: Embedding Vectors

- DL presents a unified and engineering-friendly way to handle various information sources
 - Representation learning: e.g., embedding



Example: Embedding Vectors

- DL presents a unified and engineering-friendly way to handle various information sources
 - Representation learning: e.g., embedding



Example: Usage in Machine/Deep Learning

- □ Kernel trick
 - $\square \varphi$: mapping low-dim feature vectors to high-dim vectors

$$\langle \varphi(x), \varphi(x') \rangle = \mathcal{K}(x, x')$$

- □ Feature hashing trick
 - $lue{\varphi}$: random mapping high-dim feature vectors to low-dim vectors

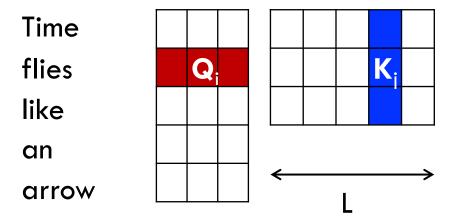
$$\mathbb{E}\left[\left\langle \varphi(x), \varphi\left(x'\right)\right\rangle\right] = \left\langle x, x'\right\rangle$$

Improves efficiency, scalability and sometimes effectiveness

Example: Usage in Machine/Deep Learning

- □ Reformer [KKL20]
 - Speed up self-attention

Attention(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
) = softmax $\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}}\right)\mathbf{V}$



Find batch top-k \mathbf{K}_{i} 's for each \mathbf{Q}_{i}

Scale to long sequences, $O(L \log L)$ instead of $O(L^2)$

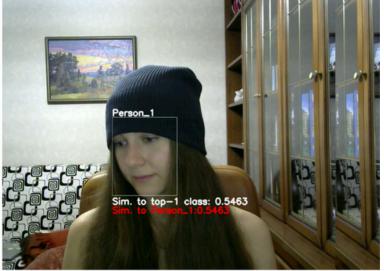
Usage in Machine/Deep Learning

- Q-learning with nearest neighbor [SX18]
 - □ Idea:
 - \blacksquare quantization of the state space X into $\{c_i\}_{i=1}^N$
 - (non-parametric) kernel ridge regression for new (x, a) values

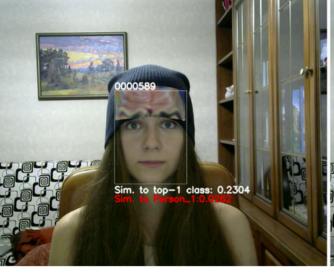
$$\hat{q}(x, a) = \sum_{i=1}^{n} K(x, c_i) q(c_i, a)$$
$$= \sum_{K(c, x) \le h} K(x, c) q(c, a)$$

Example: Adversarial Machine

Learning



 $sim \geq 0.54$



Adversarial sticker on the forehead

 $sim \leq 0.28$

[KP19]

Example: Adversarial Machine Learning

 Local intrinsic dimensionality (LID) is an important feature to detect adversarial examples [MLWE+18]

$$\widehat{\text{LID}}(x) = -\left(\frac{1}{k} \sum_{i=1}^{k} \log \frac{r_i(x)}{r_k(x)}\right)^{-1}$$

 High-dimensional geometry explains the existence of adversarial examples [GMFS+18] require kNN queries

kNN queries are also useful in

- outlier/novelty detection
- kNN classification
- zero/few-shot learning

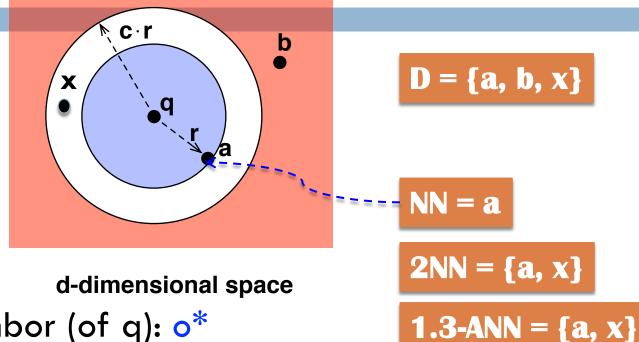
Problem Definitions

- Database object & the query
 - d-dimensional point/vectors ∈ R^d
- Distance or similarity functions
 - □ dist(u, v) L_p distar
 - L_p distance (0< $p\le2$, ∞), Hamming dist, edit dist ...
 - sim(u, v)

cosine similarity/inner product, Jaccard

- Query types
 - k-nearest neighbor queries (kNN)
 - range queries
 - conjunctive queries
 - similarity/distance join queries (top-k, range, closest pair, containment, ...)

NN and kNN



- □ Nearest Neighbor (of q): o*
 - \square dist(o*, q) = min {dist(o, q), o \in D}
 - Generalizes to k-NN
- c-Approximate NN: o
 - \square dist(o, q) \leq c * dist(o*, q)

dist() is typically L_2 distance

high-dimensional convex body



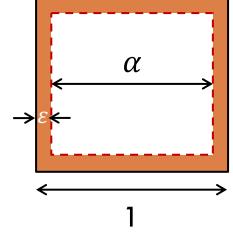
- Non-intuitive high-dimensional Geometry
 - Sampling uniformly within a unit hypercube \rightarrow samples are within a thin ε 'shell'

■ Vol(r) =
$$\alpha^{d} \approx e^{-2\varepsilon d} \rightarrow 0 \ (\alpha < 1)$$

- Angle between two vectors
 - random Radamacher vectors →

$$\Pr\left[\left|\cos\left(\theta_{x,y}\right)\right| > \sqrt{\frac{\log c}{d}}\right] < \frac{1}{c}$$

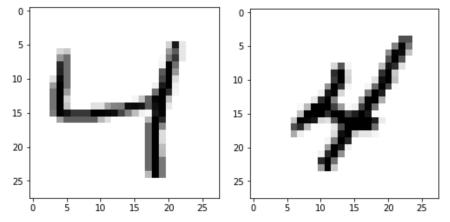
orthogonal w.h.p

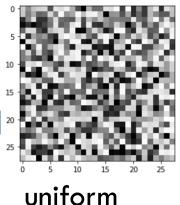


Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis: Fundamental Concepts and Algorithms.

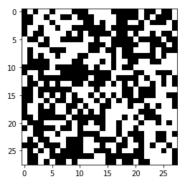
- Curse of Dimensionality / Concentration of Measure
 - Under some assumptions, maxdist(q, D)/mindist(q, D)
 converges to 1
 - Key assumption: independent distribution in each dimension
 - k-NN is still meaningful for real datasets
 - Hard to find algorithms sub-linear in n (# of points) and polynomial in d (# of dimensions)
 - Approximate version (c-ANN) is not much easier

- No idea of the distribution of real data
 - Manifold hypothesis

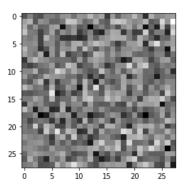




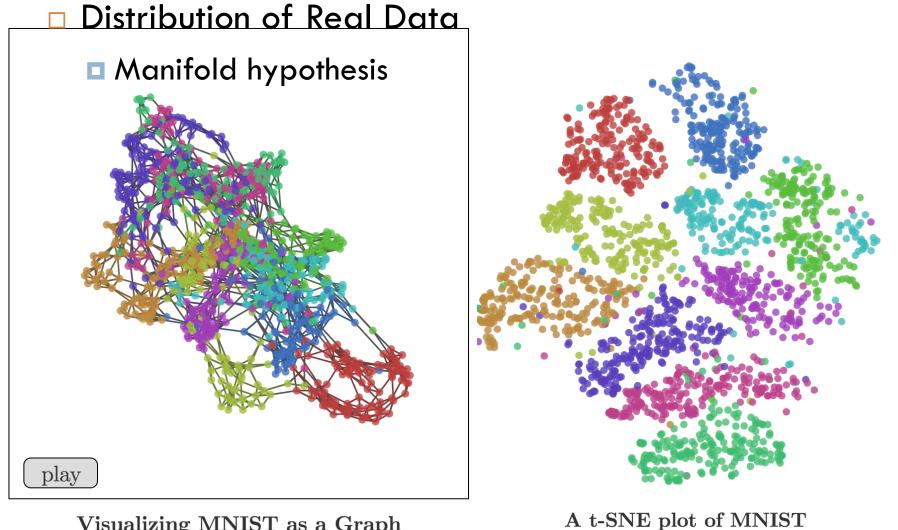
uniform



Radamacher



Gaussian



Visualizing MNIST as a Graph

- Large data size
 - \blacksquare 1KB for a single point with 256 dims \rightarrow 1B pts = 1TB
 - ~100 SIFT vectors per image
 - High-dimensionality (e.g., documents → millions of dimensions)
- Variety of distance/similarity functions
 - Less of an issue in the DL era