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Introduction

High-dimensional data is abundant

Traditional sources:
Time-series [EZPB19], scientific applications

Document, multimediaq, strings, feature vectors

New data sources:

Embedding from deep learning models

Growing size and complexity

Web, social network, loT

NOAA (USA) collects 100TB sensing data / day for
weather forecasting

A variety of similarity /distance functions concerned



Example: Scientific Applications
B

o High-dimensional data in huge volumes in scientific
domains [YHEB17, RYBE+18]
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Research Question: Whether the magnitude 4.7 earthquake in Arkansa

2011 was caused by wastewater injection



Example: Embedding Vectors
.

o DL presents a unified and engineering-friendly way
to handle various information sources

o1 Representation learning: e.g., embedding

representation

Matrix

o > -~ of users as high-
Factorization -7 g

e " dim vectors

i

Find similar

minded users

Top-k Maximum Inner
Product Search (MIPS)




Example: Embedding Vectors
.

o DL presents a unified and engineering-friendly way
to handle various information sources

o1 Representation learning: e.g., embedding

representation

Matrix

- > -~ of users as high-
Factorization - 9

le =~ dim vectors

o

Find similar

RNN /Transformer

minded users

Top-k Maximum Inner

Product Search (MIPS)




Example: Usage in Machine /Deep

Learnin
_

1 Kernel trick

o @: mapping low-dim feature vectors to high-dim vectors

(p(x), ¢ (2")) = K(z,z')

-1 Feature hashing trick

o @: random mapping high-dim feature vectors to low-
dim vectors

L [(p(2), 0 (2))] = (z,2)

Improves efficiency, scalability and sometimes effectiveness



Example: Usage in Machine /Deep

Learnin
n_

1 Reformer [KKL20]

o Speed up self-attention QK'~
Attention(Q, K V) = soft max ( = ) v

Time Find batch top-k K.’s for each Q,

flies m
like
an

arrow L

Scale to long sequences, O(L log L)
instead of O(L?)



Usage in Machine/Deep Learning
=

7 Q-learning with nearest neighbor [SX18]

o ldea:

= quantization of the state space X into {¢};-N

® (non-parametric) kernel ridge regression for new (x, a)
values

G(x,a) = ZK(x,ci) q(c;,a)
= Z K (z,c)q(c,a)

K(c,z)<h

Reinforcement Learning has been used in several DB problems, including Neo query

optimizer [MNMZ+19]



Example: Adversarial Machine
Learning
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Example: Adversarial Machine

Learnin
n_

0 Local intrinsic dimensionality (LID) is
an important feature to detect
adversarial exqmples [MLWE+18]

~1
LID ( Z log rila )

kNN queries are

0 High-dimensional geometry also useful in

: . outlier /novelt
explains the existence of utlier /novelty

adversarial examples [GMFS+1 8]

detection
kNN classification

zero/few-shot
learning







Problem Definitions

EEE I ==
1 Database object & the query
1 d-dimensional point/vectors € R
o Distance or similarity functions
=NCIE((VAYI L distance (0<p<2, ©), Hamming dist, edit dist ...

o sim(u, v)

cosine similarity /inner product, Jaccard

7 Query types
o1 k-nearest neighbor queries (kNN)
o range queries
I conjunctive queries

o similarity /distance join queries (top-k, range, closest
pair, containment, ...)



NN and kNN

d-dimensional space

-1 Nearest Neighbor (of q): o*
o dist(o™®, q) = min {dist(o, q), o € D}
o1 Generalizes to k-NN

o c-Approximate NN: o
o dist(o, q) < ¢ * dist(o™, q)

dist() is typically L, distance




Challenges /1 o vy \/%

= Non-intuitive high-dimensional Geometry

Sampling uniformly within a unit hypercube = samples
are within a thin & ‘shell’

® Vol(r) = a? = e2¢d 2 0 (a < 1)

Angle between two vectors

® random Radamacher vectors =

log c 1
[cos (0z,y)] > Cgi ] < !

Pr

Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis: Fundamental Concepts and
Algorithms.



Challenges /1

Curse of Dimensionality / Concentration of Measure

Under some assumptions, maxdist(q, D)/mindist(q, D)
converges to 1
Key assumption: independent distribution in each dimension

k-NN is still meaningful for real datasets

Hard to find algorithms sub-linear in n (# of points) and
polynomial in d (# of dimensions)

Approximate version (c-ANN) is not much easier

Asymptotic Geometric Analysis, Part |. Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali
Milman



Challenges /2

1 No idea of the distribution of real data

Manifold hypothesis
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https:/ /deepai.org/machine-learning-glossary-and-terms /manifold-hypothesis



https: //colah.github.io /posts/2014-10-Visualizing-MNIST/

Challenges /2

o1 Manifold hypothesis

Visualizing MNIST as a Graph A t-SNE plot of MNIST



Challenges /3

1 Large data size

1KB for a single point with 256 dims =» 1B pts = 1TB
m ~100 SIFT vectors per image

High-dimensionality (e.g., documents = millions of
dimensions)

0 Variety of distance /similarity functions

Less of an issue in the DL era



