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The Order-Preserving SubMatrices (OPSMs) capture consensus trends over columns shared by rows in a
data matrix. Mining OPSM patterns discovers important and interesting local correlations in many real ap-
plications, such as those involving biological data or sensor data. The prevalence of uncertain data in various
applications, however, poses new challenges for OPSM mining, since data uncertainty must be incorporated
into OPSM modeling and the algorithmic aspects.

In this paper, we define new probabilistic matrix representations to model uncertain data with continuous
distributions. A novel Probabilistic Order-Preserving SubMatrix (POPSM) model is formalized in order to
capture similar local correlations in probabilistic matrices. The POPSM model adopts a new probabilistic
support measure that evaluates the extent to which a row belongs to a POPSM pattern. Due to the intrinsic
high computational complexity of the POPSM mining problem, we utilize the anti-monotonic property of the
probabilistic support measure and propose an efficient Apriori-based mining framework called PROBAPRI to
mine POPSM patterns. The framework consists of two mining methods, UNIAPRI and NORMAPRI, which are
developed for mining POPSM patterns respectively from two representative types of probabilistic matrices,
the UniDist matrix (assuming uniform data distributions) and the NormDist matrix (assuming normal data
distributions). We show that the NORMAPRI method is practical enough for mining POPSM patterns from
probabilistic matrices that model more general data distributions.

We demonstrate the superiority of our approach by two applications. First, we use two biological datasets
to illustrate that the POPSM model better captures the characteristics of the expression levels of biologically
correlated genes, and greatly promotes the discovery of patterns with high biological significance. Our result
is significantly better than the counterpart OPSMRM (OPSM with Repeated Measurement) model which
adopts a set-valued matrix representation to capture data uncertainty. Second, we run the experiments on
an RFID trace dataset and show that our POPSM model is effective and efficient in capturing the common
visiting subroutes among users.
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Fig. 1. An order-preserving submatrix (P,Q) with P = {g1, g2, g3}, Q = {t2, t3, t4}, and the consensus
trend represented by [t3 ≺ t2 ≺ t4].

1. INTRODUCTION
Matrices are a common data presentation in many applications, such as those involv-
ing biological data [Seidel 2008] or sensor data [Rashidi et al. 2011; Gu et al. 2011]. For
example, in bioinformatics, the DNA microarray data can be organized as a gene ex-
pression matrix, where rows correspond to genes, columns correspond to experimental
conditions, and an entry stores the expression level of a gene measured under a certain
condition. Various submatrix models have been proposed to capture different local cor-
relations existing among a set of rows and a set of columns in a data matrix [Madeira
and Oliveira 2004]. The Order-Preserving SubMatrix (OPSM) model [Ben-Dor et al.
2002], which is a well-known submatrix model, aims to capture the correlation that
the entry values of a set of rows follow a consensus trend under a set of columns. An
OPSM example is given in Figure 1. In the matrix shown in the left table, the sub-
matrix with the row set P = {g1, g2, g3} and the column set Q = {t2, t3, t4} is an OPSM
pattern, since, by ordering the entry values of every row in P under the columns in
Q in increasing order, all the rows in P follow the same varying trend represented by
the order [t3 ≺ t2 ≺ t4]. The OPSM pattern is highlighted using real lines in the right
diagram of Figure 1.

Given a data matrix, mining the submatrices that satisfy the OPSM model is called
the OPSM mining problem. The OPSM patterns mined from different application data
have led to the discovery of interesting knowledge, such as common functional ontolo-
gies of gene sets [Ben-Dor et al. 2002] and similar sequential behaviors shared by user
groups [Pei et al. 2001; Rashidi et al. 2011]. Therefore, even having the complexity
of NP-completeness [Ben-Dor et al. 2002], the OPSM mining problem has still been
receiving a lot of research attention [Liu and Wang 2003; Gao et al. 2006; Chui et al.
2008; Zhang et al. 2008; Fang et al. 2010; Fang et al. 2012; Yip et al. 2013].

Currently, most of the work studies the OPSM mining problem under the assump-
tion of having only deterministic data in matrices, such as the real-valued matrices
and the set-valued matrices in which each entry stores a single or a set of real values.
On the other hand, uncertain data are ubiquitous in many data-intensive applications
[Ré et al. 2008; Li and Deshpande 2010; Soliman and Ilyas 2009; Aggarwal et al. 2009;
Zhao et al. 2012; Muzammal and Raman 2011]. The prevalence of uncertain data in
various applications, however, poses new challenges for OPSM mining, since it is non-
trivial to incorporate data uncertainty into OPSM modeling and the algorithmic as-
pects. We now use the following two application examples to illustrate the importance
of the OPSM model in capturing local correlations in uncertain data.
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Table I. A UniDist Matrix MU (G,T ) with G = {g1, g2, g3}
and T = {t1, t2, t3, t4}
PPPPPPG

T
t1 t2 t3 t4

g1 [7, 8] [6, 7] [2, 4] [10, 12]

g2 [4, 8] [7, 8] [3, 5] [14, 15]

g3 [4, 8] [3, 5] [3, 7] [9, 11]

Example 1.1. In gene expression analysis, the expression levels of genes under differ-
ent experimental conditions are monitored. Due to inevitable noise contamination, the
experiment concerning a gene under a certain condition is usually repeated multiple
times, and the noisy replicates are assumed to follow a Gaussian (or normal) distribu-
tion according to the studies in [Hughes et al. 2000; Lee et al. 2000]. Thus, to better
describe the characteristics of such noisy gene expression data, each entry in the gene
expression matrix, which corresponds to the expression level of a gene under a certain
condition, should be associated with a normal distribution. Although the OPSM model
is known to be effective for discovering biological correlations in real-valued gene ex-
pression matrices [Ben-Dor et al. 2002], it has to be adapted for the gene expression
matrix having normally distributed probabilistic data.

Example 1.2. In order to track visitors’ routes within a building, visitors are given
RFID tags to wear and they are detected by RFID readers (or antennas) [Ré et al. 2008;
Welbourne et al. 2008]. At an RFID detection site, a visitor may be continuously de-
tected, which implies the probability of his/her stay at a particular location. Such RFID
data can be organized as a probabilistic matrix where rows are visitors, columns are
RFID detection sites, and each entry stores a time range indicating the stay of a visi-
tor at a certain location. We are then able to find groups of visitors who likely share a
common visiting subroute, which can be represented by a probabilistic OPSM model.

To better model the data uncertainty as discussed in the above examples, we propose
the probabilistic matrices, where each entry is associated with a continuous probabilis-
tic distribution. Two commonly used distributions are the uniform and normal distri-
butions. When the uniform distribution is assumed, we call such a probabilistic matrix
a UniDist matrix. Table I shows an example of a UniDist matrix with 3 rows and 4
columns, denoted by MU (G,T ). The entry MU (g2, t3) stores a range [3, 5], which means
that the corresponding entry value is uniformly distributed in the range between 3
and 5.

In scientific studies, the normal distribution is fundamental to modeling empirical
data distributions. For example, it is recognized that the normal distribution is de-
sirable for modeling the noisy gene expression data generated from the microarray
experiments [Hughes et al. 2000; Lee et al. 2000; Nguyen et al. 2010]. When the nor-
mal distribution is considered, we call such a probabilistic matrix a NormDist matrix
and denote it by MN (G,T ). An entry MN (gi, tj) in a NormDist matrix is represented
by a pair (µij , σij), where µij and σij are respectively the mean and standard deviation.

In this paper, we focus on tackling the OPSM mining problem based on two types
of probabilistic matrices, the UniDist matrix and the NormDist matrix. However, we
emphasize that the OPSM model defined based on the NormDist matrix and the corre-
sponding mining method are flexible, in the sense that they can be adapted to dealing
with probabilistic matrices having more general continuous distributions. This benefit
will be further elaborated when the NormDist matrix is discussed.

Referring again to Figure 1, the submatrix (P,Q) is called an OPSM, if, for every row
in P , its entry values under columns in Q induce an identical order of Q. The induced
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(a) g1 under Q with τQ = [t3 ≺ t1 ≺ t4] (b) g2 under Q with τQ = [t3 ≺ t1 ≺ t4] and
τ ′Q = [t1 ≺ t3 ≺ t4]

Fig. 2. Illustration of the order-preserving relationship in the UniDist matrix (g1 and g2 under Q =
{t1, t3, t4} as shown in Table I). Given a range [l, u], the probability density within the range is computed by
1

u−l
.

order of a row g under Q is acquired by sorting the numerical entry values of g un-
der Q in increasing order, and then replacing the values by the corresponding column
labels. However, the concept of induced order of the OPSM model is not applicable to
probabilistic matrices.

Let us analyze the problem by referring to the UniDist matrix shown in Table I as an
example. If the range entries of row g1 under the columns Q = {t1, t3, t4} are arranged
along the axis, we find that the values covered by the range MU (g1, t3) are smaller
than the values covered by the range MU (g1, t1), and in addition, the values covered
by both MU (g1, t3) and MU (g1, t1) are smaller than the values covered by the range
MU (g1, t4), as illustrated in Figure 2(a). If the induced order of a row is determined
by the relationship among values in the ranges, we can say that the induced order of
row g1 under Q is τQ = [t3 ≺ t1 ≺ t4], or in other words, row g1 supports the order
τQ. However, if we arrange the entries of row g2 under Q along the axis in a similar
way, the entries MU (g2, t3) and MU (g2, t1) overlap on a subrange [4, 5], as illustrated in
Figure 2(b). Thus, g2 is found to support both τQ and another possible order τ ′Q = [t1 ≺
t3 ≺ t4]. A similar problem also exists in the NormDist matrix. The fact that a row
may support more than one order in the probabilistic matrices makes it necessary to
evaluate the extent to which a row supports an order. Intuitively, in the above example,
g1 should be regarded as better supporting the order τQ than g2 does. Motivated by this
observation, we define a new measure, called probabilistic support, to evaluate the
extent to which a row supports an order, or in other words, it is the probability that a
row is likely to induce an order. Based on the probabilistic support, a new OPSM model
called Probabilistic OPSM (POPSM) is defined.

Mining OPSM patterns from a real-valued matrix is an intrinsically difficult prob-
lem, which is proved to be NP-complete [Ben-Dor et al. 2002]. When mining POPSM
patterns from the probabilistic matrices, we utilize the following strategies to design
an efficient mining method. First, we prove the anti-monotonic property of the new
probabilistic support measure, and make use of it to control the number of candidate
patterns. Then, by combining a prefix-tree structure and the dynamic programming
techniques, we are able to efficiently verify the candidate patterns and exhaustively
mine all valid POPSM patterns from the UniDist matrix and the NormDist matrix.

In summary, we tackle a new problem of mining probabilistic OPSM patterns. The
main contributions arising from this study are twofold.
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— In the modeling aspect, we propose new probabilistic matrix representations to in-
corporate the data uncertainty commonly existing in many applications. Based on
two types of probabilistic matrices, namely the UniDist matrix and the NormDist
matrix, we define a new probabilistic OPSM model by adopting the probabilistic sup-
port measure that evaluates the extent to which a row is likely to induce an order.
We compare our model with the counterpart OPSM with Repeated Measurements
(OPSMRM) model [Chui et al. 2008; Yip et al. 2013], which is defined based on the
set-valued matrices. We demonstrate the superiority of the POPSM model by running
experiments on two real biological datasets and one RFID dataset.
Specifically, in the experiments using biological datasets, based on both the UniDist
and NormDist matrices, the fraction of POPSM patterns that reach the highest sig-
nificance level is larger than the fraction of the OPSMRM patterns that reach the
same level, while the fraction of the POPSM patterns that fall in the lowest signifi-
cance level is less than that of the OPSMRM patterns at the same level. Using the
RFID trace data, we show that the common subroutes of a set of users can be accu-
rately discovered with the adoption of the POPSM model.

— In the algorithmic aspect, we propose an efficient Apriori-based POPSM mining
framework called PROBAPRI. There are two versions of PROBAPRI, denoted by
UNIAPRI and NORMAPRI, which, respectively, mine POPSM patterns from the Uni-
Dist and NormDist matrices. PROBAPRI employs a CandTree structure to organize
the POPSM patterns. Two dynamic programming (DP) techniques are developed for
computing the probabilistic support. By interweaving the traversal of CandTree and
the computation of the DP functions, the POPSM patterns can be efficiently veri-
fied during the mining process. NORMAPRI adopts the spline technique [Heath 2002]
to approximate the normal distributions with simpler low-degree polynomials. The
approximation step is general enough to deal with other continuous distributions.
Thus, NORMAPRI is capable of mining POPSM patterns from more general proba-
bilistic matrices.

The organization of the rest of this paper is as follows. We present the related work
in Section 2. The notations and terminologies are introduced in Section 3. In Section 4,
after introducing the probabilistic support measure, we define the Probabilistic OPSM
(POPSM) model. The POPSM mining method PROAPRI is discussed in Section 5. Ex-
periments on synthetic and real datasets are presented in Section 6. Finally, we con-
clude the paper in Section 7.

2. RELATED WORK
The problem of mining submatrix patterns was first studied over forty years ago for an-
alyzing voting data [Hartigan 1972], where the voting data are organized as a matrix
with voters as rows, candidates as columns and voting scores as entries. It is nearly
impossible to find a group of voters who gave the same voting scores over all the can-
didates or to find a group of candidates who received the same voting scores from all
the voters, especially when the number of voters and candidates is large. However, it is
also observed that a subset of voters are likely to have common preferences over a sub-
set of candidates, and such local correlations can be captured by submatrix patterns.
As matrices become a common data representation in many application domains, the
problem of mining submatrix patterns has been extensively studied for revealing var-
ious local correlations, which is usually known as subspace clustering [Parsons et al.
2004; Kriegel et al. 2009], co-clustering [Wang et al. 2011; Ding et al. 2006; Ji et al.
2012], and biclustering [Cheng and Church 2000; Madeira and Oliveira 2004]. We now
give more details of the work.
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2.1. Subspace Clustering, Co-Clustering, and Biclustering
Studies about subspace clustering are motivated by the observation that the data
points which are irrelevant in high dimensional space may be well clustered or corre-
lated in lower dimensional subspaces [Parsons et al. 2004; Kriegel et al. 2009]. These
studies aim to identify a subset of attributes or features that form a subspace, and find
the data points that form a cluster over the subspace. If high-dimensional data are
organized as a matrix, the subspace features together with the clustered data points
correspond to the submatrix patterns in the matrix. However, different from the order-
preserving relationship required by the OPSM model, the criteria for subspace clus-
tering are usually the Euclidean distance between data points [Agrawal et al. 1998;
Aggarwal et al. 1999; Moise and Sander 2008], the linearity correlation among data
points [Günnemann et al. 2012], the density of clusters [Kailing et al. 2004], or the
statistical significance of clusters [Moise and Sander 2008].

Another stream of submatrix pattern mining work aims to partition a matrix into
grid-distributed disjoint submatrices such that the subset of rows and the subset of
columns in each individual submatrix are expected to be highly correlated with each
other. This category of problems is usually called co-clustering, and has mainly been
studied in recommender systems and text mining [Daruru et al. 2009; Banerjee et al.
2004; Dhillon et al. 2003; Pan et al. 2008; Long et al. 2005; Ji et al. 2012]. The grid dis-
tribution structure of submatrix patterns required by the co-clustering methods avoids
the explosion of the number of mined patterns, which however is rather restrictive. In
order to achieve a grid structure that optimizes the overall pattern scores, the quality
of a part of submatrix patterns usually has to be sacrificed.

Cheng and Church [Cheng and Church 2000] first adopted the submatrix mining
methods to analyze the biological gene expression data and called the problem bi-
clustering. Biclustering methods aim to formulate different submatrix models so as to
capture the biological correlations among a subset of genes and a subset of conditions.
Madeira et al. [Madeira and Oliveira 2004] classified existing submatrix models into
four categories: submatrix with constant values [Busygin et al. 2002], submatrix with
constant rows or constant columns [Getz et al. 2000; Pandey et al. 2009; Gupta et al.
2010], submatrix with coherent values [Cho et al. 2004; Pontes et al. 2010], and sub-
matrix with coherent evolutions [Murali and Kasif 2003; Tanay et al. 2002; Gupta and
Aggarwal 2010; Li et al. 2009; Madeira et al. 2010]. The OPSM model belongs to the
fourth category according to this classification.

2.2. Mining Order-Preserving Submatrices
The Order-Preserving Submatrix (OPSM) model, proposed by Ben-Dor et al. [Ben-Dor
et al. 2002], aims to capture the fact that the entry values of a set of rows exhibit the
same trend under a set of columns. A comparative study conducted by Prelić et al.
[Prelić et al. 2006] showed that, compared to five other coherent-value or coherent-
evolution submatrix models [Cheng and Church 2000; Prelić et al. 2006; Tanay et al.
2002; Murali and Kasif 2003; Ihmels et al. 2002], the OPSM model better captures
the association of correlated genes and conditions and promotes the discovery of a
larger fraction of biologically significant patterns. However, it is also recognized that
the OPSM model may be too strict to be practical, since real gene expression data
are noisy and the identical trend is usually hard to preserve [Ben-Dor et al. 2002]. To
address this problem, various noise-tolerant OPSM models have been proposed in liter-
ature, such as the Approximate Order-Preserving Cluster (AOPC) model [Zhang et al.
2008], the Relaxed Order-Preserving SubMatrix (ROPSM) model [Fang et al. 2010],
the Bucket Order-Preserving SubMatrix (BOPSM) model [Fang et al. 2012], the Gen-
eralized BOPSM (GeBOPSM) model [Fang et al. 2012], and the error-tolerated OPSM
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model [Cheung et al. 2007]. The AOPC model relaxes the condition that all the rows
in an OPSM should induce the same linear order of columns, and only requires a pre-
specified fraction of rows to induce the same linear order. The ROPSM model further
relaxes the AOPC model, and allows all the rows in an ROPSM pattern to induce or-
ders similar to the backbone order of the pattern. The BOPSM model tries to capture
the consensus staged trend of a set of rows over a set of columns, and requires ev-
ery row in a BOPSM pattern to induce an identical bucket order (i.e., an order of sets).
The GeBOPSM model is a generalization of AOPC, ROPSM, and BOPSM. It allows the
rows in a GeBOPSM pattern to induce bucket orders which are similar to the backbone
order of the GeBOPSM pattern. The error-tolerated OPSM model still requires all the
rows in a pattern to induce an identical order of a set of columns but allows the entry
values of a row under two adjacent columns to violate the ordering relationship within
a pre-specified error threshold. However, due to different scalings of expression values
of different genes, it is difficult to set a proper absolute error threshold to guarantee
that all the rows in a pattern still follow a consensus varying trend.

While the OPSM model and several other noise-tolerant OPSM models are all de-
fined based on real-valued data matrices, an alternative way to address the issue of
noisy data is to keep a set of replicates for each entry in the matrix, and such data
matrices can be presented as set-valued matrices [Hughes et al. 2000; Nguyen et al.
2010; Ideker et al. 2001]. In a set-valued matrix, it is actually assumed that the set of
replicates in every entry are equally likely to be observed. If an entry stores a set of k
replicates, all of them have an equal probability of 1

k . Therefore, a set-valued matrix
can be regarded as a probabilistic matrix with discrete distribution. Based on the set-
valued matrices, an OPSM with Repeated Measurement (OPSMRM) model [Chui et al.
2008; Yip et al. 2013] was introduced, where a fractional support measure is adopted to
evaluate the extent to which a row supports a linear order. However, when the number
of replicates is small, as the noisy and true replicates have equally large probabilities,
the fractional support is easily affected by one or two noisy replicates. On the other
hand, when the number of replicates grows, the cost of computing the fractional sup-
port increases sharply, which greatly degrades the performance of mining OPSMRM
patterns.

Continuous distributions such as normal distribution are known to be effective for
smoothing out the influence of noise in scientific experiments, and thus are commonly
adopted to infer the error model of scientific data. For example, the observational error
in gene expression analysis, which may be caused by instrumental limits or measure-
ment errors, is assumed to follow a normal distribution [Hughes et al. 2000; Nguyen
et al. 2010; Chia and Karuturi 2010]. Thus, a gene expression matrix can be presented
as a probabilistic matrix with normal distribution. Probabilistic matrices are also a
natural representation of the data arising from many sensor applications such as RFID
tracking systems [Ré et al. 2008]. For example, when a user is detected at a particular
RFID detection site within a time range, such trace data can then be represented as
a probabilistic matrix with uniform distribution. The POPSM model proposed in this
paper is defined based on such probabilistic matrices with continuous distributions.
We summarize the characteristics of the OPSM model and its variants in Table II.

Ben-Dor et al. proved that mining OPSM patterns is an NP-complete problem [Ben-
Dor et al. 2002]. Then, they proposed a model-based method which aims to mine the
best OPSM in terms of the statistical significance, since patterns with high statisti-
cal significance are regarded more likely to be biologically significant. Their method
keeps a limited number of partial models which are smaller OPSM patterns. Then,
it expands the partial models into larger and thus more statistically significant pat-
terns. Their method, however, is heuristic-based, and the significance of the mined
OPSM patterns is very sensitive to the selection of the partial models. Trapp et al.

ACM Transactions on Database Systems, Vol. 39, No. 1, Article A, Publication date: January 2014.



A:8 Q. Fang et al.

Table II. A Summary of OPSM Related Models

Models Matrix Types Pattern Characteristics References

OPSM
Real-valued matrices Strict order-preserving

[Ben-Dor et al. 2002]

Twig OPSM [Gao et al. 2006]

AOPC

Real-valued matrices Relaxed order-preserving

[Zhang et al. 2008]

ROPSM [Fang et al. 2010]

BOPSM, GeBOPSM [Fang et al. 2012]

Error-tolerated OPSM [Cheung et al. 2007]

OPSMRM Set-valued matrices Fractional support to order
[Chui et al. 2008]

[Yip et al. 2013]

POPSM
Probabilistic matrices

Probabilistic support to order This work
with continuous distributions

[Trapp and Prokopyev 2010] and Humrich et al. [Humrich et al. 2011] both made use
of integer programming techniques and proposed similar methods for mining the max-
imal OPSM pattern. While Ben-Dor et al., Trapp et al., and Humrich et al.’s work all
aimed to mine a single optimal OPSM pattern, Liu et al. [Liu and Wang 2003] pro-
posed a tree-based OPSM mining method, called OPC-Tree, to exhaustively mine all
the OPSM patterns that satisfy some size thresholds. However, when the number of
columns in the data matrix increases, the size of the tree grows extremely large, and
the performance of pattern mining is greatly degraded. Cheung et al. [Cheung et al.
2007] adopted the sequential pattern mining method in [Agrawal and Srikant 1995;
Srikant and Agrawal 1996], and developed an Apriori-based method to exhaustively
mine OPSM patterns that satisfy some size thresholds. A post-processing solution was
additionally designed to combine mined OPSM patterns into error-tolerated OPSM
patterns [Cheung et al. 2007]. Gao et al. proposed a KiWi framework in [Gao et al.
2006; Gao et al. 2012] to mine twig OPSM patterns, which contain a large number of
columns and very few rows. The framework expands a limited number of linear orders
of columns in a breadth-first manner, and applies very strong conditions for pruning
those linear orders that are less likely to grow into twig OPSM patterns. Their method
is shown to be efficient but valid twig OPSM patterns may also get pruned. Zhang et
al. [Zhang et al. 2008] adopted a similar pattern merging strategy as in [Cheung et al.
2007] to mine AOPC patterns. Taking a set of OPSM patterns as input, The AOPC
mining method merges pairs of OPSM patterns into AOPC patterns in a greedy way
until no more AOPC patterns can be generated. Fang et al. [Fang et al. 2010] proposed
a pattern growth method, which expands seed OPSM patterns into ROPSM patterns.
Later, they developed an Apriori-based method for mining BOPSM patterns and uti-
lized the anti-monotonic property of the BOPSM model to control candidate generation
[Fang et al. 2012]. However, the BOPSM model is defined based on the real-valued ma-
trices and the rows in the BOPSM patterns are assumed to induce consensus bucket
orders. Thus, the proof of the anti-monotonic property of the BOPSM model is different
from that of the anti-monotonic property of the POPSM model. An efficient prefix-tree
structure was designed to maintain the BOPSM patterns, which motivates us to em-
ploy the CandTree to compactly organize the POPSM patterns in this work.

The OPSMRM mining method [Chui et al. 2008; Yip et al. 2013] also follows the
Apriori-based framework, and consists of the following two steps. First, an Apriori-
based method is taken to exhaustively mine frequent orders of columns. An order is
regarded frequent if the sum of fractional supports contributed by all the rows exceeds
a certain threshold. In this step, the anti-monotonic property of the fractional support
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measure is made use of. However, as the fractional support is defined based on the set-
valued matrices, its computation method and the proof of the anti-monotonic property
are different from our work that involves the notion of probabilistic support. Then, for
each frequent order, the set of rows whose fractional supports to it satisfy another in-
clusion threshold are picked. The selected rows, together with the columns involved in
the order, form an OPSMRM pattern. The inclusion threshold plays the similar role as
the support threshold in our POPSM model. The OPSMRM mining process, however,
has the following implications. In the first step, although the fractional support of ev-
ery row with respect to an order is small, this order may still be regarded as frequent
due to a large enough sum of the fractional supports contributed by all the rows. Then
in the second step, a frequent order may fail to lead to a valid OPSMRM pattern if none
of the rows has a large enough fractional support that satisfies the inclusion threshold.
Another possibility is that, very few rows have large enough fractional supports with
respect to the frequent order, and this order finally leads to a very small and hence
statistically insignificant patterns [Ben-Dor et al. 2002].

2.3. Sequential Pattern Mining
If a data matrix is transformed into a set of attribute (i.e., column label) sequences or-
dered by their values in every row, the matrix can be viewed as a transaction database
with a collection of sequences. Accordingly, the OPSM mining problem is converted to a
frequent sequential pattern mining problem [Agrawal and Srikant 1995; Srikant and
Agrawal 1996].

However, due to some unique properties of the OPSM mining problem, using fre-
quent sequential pattern mining methods for mining OPSM patterns is not satisfac-
tory from the efficiency view point. First, each attribute appears at most once in each
sequence. Second, as the data matrices in an OPSM mining application are usually
very dense, the transformed sequences are also dense, in the sense that every attribute
may appear in most of the sequences. As a result, the searching space of the depth-first
sequential pattern mining methods would be extremely large, while few candidates
can be pruned in the first few rounds of the breadth-first pattern mining methods. Liu
et al. [Liu and Wang 2003] took into account the characteristics of the OPSM mining
problem, and proposed an OPSM mining method called OPC-Tree, which improves the
basic techniques of a well-known efficient frequent sequential pattern mining method
called PrefixSpan [Pei et al. 2001; Pei et al. 2004]. The OPC-Tree was shown to outper-
form PrefixSpan in mining OPSMs. Agrawal et al. proposed an Apriori-based sequen-
tial mining method [Agrawal and Srikant 1995; Srikant and Agrawal 1996], based
on which the BOPSM mining method [Fang et al. 2012] and the OPSMRM mining
method [Chui et al. 2008] were respectively developed. The PROBAPRI method pro-
posed in this work also adopts the Apriori-based framework, but we apply it to dealing
with the probabilistic data with continuous distributions. Kum et al. [Kum et al. 2003]
studied the problem of mining approximate frequent sequential patterns. They first
clustered input sequences into disjoint sets, and then looked for consensus patterns
within each cluster. However, unlike the support requirement for mining OPSM pat-
terns, the consensus patterns were evaluated based on their global support, and thus
a frequent consensus pattern is not necessarily supported by a large enough number
of sequences.

Aggarwal et al. [Aggarwal et al. 2009], Muzammal et al. [Muzammal and Raman
2011] and Zhao et al. [Zhao et al. 2012] studied the problem of mining frequent pat-
terns or frequent sequential patterns in the context of uncertain data. However, the
uncertain data are modeled as discrete values rather than continuous distributions.
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2.4. Modeling Probabilistic Data with Continuous Distributions
The uncertain data in [Li and Deshpande 2010; Soliman and Ilyas 2009] are mod-
eled using continuous distributions. But their work are related to the problem of top-k
query processing and ranking in uncertain databases. We are essentially studying the
submatrix pattern mining problem. In Soliman et al.’s work, a positional probability
is needed to be computed, and the formulation of the probability is similar to that
of our probabilistic support. However, they only considered the uniform distribution.
The Monte-Carlo integration method proposed for computing the positional probability
only returns an approximate answer. In Li et al.’s work, the spline technique was also
adopted to approximate complex continuous distributions with piecewise polynomials.
However, the techniques they proposed to compute a parameterized ranking function
is totally different from the techniques we proposed for mining POPSM patterns.

Li et al. also discussed two other approximation techniques for continuous distri-
butions, the Monte Carlo method and the discretization method. The Monte Carlo
method approximates a continuous distribution by a set of independent random sam-
ples drawn from the distribution, which converts a probabilistic matrix to a set-valued
matrix. This approximation is not applicable for mining POPSM patterns. The dis-
cretization method approximates a continuous distribution by piecewise histograms,
which can be perceived as a specialization of the spline approximation.

3. PRELIMINARIES
In this section, we introduce some notations and terminologies that are used through-
out the paper.

3.1. UniDist Matrix and Range
We denote an m-by-n UniDist matrix by MU (G,T ), where G is a set of m rows and
T is a set of n columns (or items). The entry MU (gi, tj) under row gi and column tj
is represented by a range Rij = [lij , uij ], where lij and uij are respectively the lower
and upper bounds of the range. We call the set of range entries of a row gi under the
columns in T , i.e., {[li1, ui1], . . . , [lin, uin]}, the record of gi.

For each entry MU (gi, tj), its possible replicates are assumed to be uniformly dis-
tributed within the range, and thus it can also be denoted by a random variable MU

ij

with its probability density function (PDF) given by

pUij(x) =

{
1

uij−lij if x ∈ [lij , uij ]

0 otherwise.
(1)

For example, the entryMU (g1, t3) in the UniDist matrix shown in Table I is [2, 4]. Thus,
the corresponding random variable MU

13 has the probability density of 1
4−2 = 0.5 within

the range [2, 4] and 0 out of the range. When there is no ambiguity, we may use the
notations MU (gi, tj), Rij , [lij , uij ], and MU

ij interchangeably to represent an entry in a
given UniDist matrix.

In many real-life applications, the entry values in the data matrix are collected in-
dependently. For example, when the DNA microarray technology is adopted for gene
expression analysis, the expression level of every gene under every condition is moni-
tored and measured independently [Seidel 2008]. Therefore, the entries in the gener-
ated gene expression matrix can be regarded as independent of each other. In the RFID
applications, an RFID reader is supposed to detect different RFID tags separately and
two RFID readers do not influence each other [Welbourne et al. 2008]. Thus, the in-
dependence assumption also holds in the RFID data matrix. We now assume that the
random variables MU

ij , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, be independent of each other.
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Given a set of ranges {[l1, u1], . . . , [lk, uk]}, we can sort them in increasing or-
der of their middle point values given by li+ui

2 , and get an ordered range set
〈[li1 , ui1 ], . . . , [lik , uik ]〉, where 〈i1, . . . , ik〉 is a permutation of the values 1 to k. We say
that the range Ri = [li, ui] is smaller than (or larger than) the range Rj = [lj , uj ] if li+ui

2

is smaller than (or larger than) lj+uj
2 . The difference between Ri and Rj , denoted by

D(Ri, Rj), is given by

D(Ri, Rj) = |
li + ui

2
− lj + uj

2
|.

We say that two ranges Ri = [li, ui] and Rj = [lj , uj ] are disjoint if ui < lj or uj < li.
Notably, the fact that Ri is smaller than (or larger than) Rj does not necessarily mean
that Ri and Rj are disjoint.

3.2. NormDist Matrix
Similarly to MU (G,T ), we denote a NormDist matrix by MN (G,T ). The entry
MN (gi, tj) is represented by a normal distribution (µij , σij), where µij and σij are re-
spectively the mean and the standard deviation. Similarly, we call the set of entries
of a row gi under the columns in T , i.e., {(µi1, σi1), . . . , (µin, σin)}, the record of gi. In
addition, an entry MN (gi, tj) can be denoted by a random variable MN

ij with its PDF
given by

pNij (x) =
1√
2πσ2

ij

e
−

(x−µij)
2

2σ2
ij . (2)

Similarly to MU
ij , the random variables in a NormDist matrix, MN

ij with 1 ≤ i ≤ m
and 1 ≤ j ≤ n, are also regarded as mutually independent. When there is no ambiguity,
we use the notations MN (gi, tj), (µij , σij), and MN

ij interchangeably to represent an
entry.

Given two random variables MN
1 and MN

2 with the normal distributions (µ1, σ1) and
(µ2, σ2), we say that MN

1 is smaller than (or larger than) MN
2 if µ1 < µ2 (or µ1 > µ2).

The difference between MN
1 and MN

2 , denoted by D(MN
1 ,M

N
2 ), is given by

D(MN
1 ,M

N
2 ) = |µ1 − µ2|.

3.3. Probabilistic Matrices
When there is no ambiguity, we collectively call both the UniDist matrix and the Norm-
Dist matrix as the probabilistic matrices and use M(G,T ) to denote such matrices. The
entry M(gi, tj) with gi ∈ G and tj ∈ T is also denoted by Mij .

3.4. Order
Given a set of k items Q = {t1, . . . , tk}, a linear order (or simply an order) of Q is
represented as τQ = [ti1 ≺ ti2 ≺ · · · ≺ tik ], and the ordering relation “ ≺ ” satisfies the
criteria of antisymmetry, transitivity, and linearity. Q is called the associated item set
of τQ, and τQ is said to be a size-k order.

Given two orders τ1 and τ2 with their associated item sets Q1 and Q2, we say that
τ1 is a sub-order of τ2, if Q1 ⊆ Q2, and for all pairs of items ti, tj ∈ Q1, (ti ≺ tj) ∈ τ1
implies (ti ≺ tj) ∈ τ2.

4. THE PROBABILISTIC OPSM MODEL
In this section, we first introduce a new measure, called probabilistic support, to eval-
uate the extent to which a row probably induces (or supports) an order. We then incor-
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Fig. 3. Relative positions between two ranges R1 and R2

porate this measure into a new OPSM model called Probabilistic OPSM (or POPSM
for short).

4.1. Probabilistic Support Measure
Definition 4.1 (Probabilistic Support). Given a row gi and a set of columns Q in a

probabilistic matrix M , the probabilistic support of gi with respect to (w.r.t.) τQ = [t1 ≺
· · · ≺ tr], denoted by PS(gi, τQ), is given by

PS(gi, τQ) = P (Mi1 < Mi2 < · · · < Mir),

where Mij is the random variable corresponding to the entry M(gi, tj) with 1 ≤ j ≤ r,
and P (Mi1 < · · · < Mir) is the probability that the random event (Mi1 < · · · < Mir)
occurs.

Based on the theory of order statistics [Ahsanullah et al. 2013], given a set of random
variables M1,M2, . . . ,Mr with the corresponding PDFs as p1(x), p2(x), . . ., pr(x), the
probability of the random event (M1 < · · · < Mr) is given by

P (M1 < · · · < Mr) =

∫ +∞

−∞
p1(x1)dx1

r∏
i=2

[∫ +∞

xi−1

pi(xi)dxi

]
. (3)

In a UniDist matrix, the PDF of a random variable is given in Formula (1), and all
the random variables are independent of each other as we have illustrated in Section
3. By replacing the PDF pi(x) of Mi with I(x∈Ri)

ui−li , Formula (3) is transformed into the
following expression:

P (M1 < · · · < Mr) =

∫ +∞

−∞

I(x1 ∈ R1)

u1 − l1
dx1

r∏
i=2

[∫ +∞

xi−1

I(xi ∈ Ri)

ui − li
dxi

]
,

=

∫ +∞
−∞ I(x1 ∈ R1)dx1

∏r
i=2

[∫ +∞
xi−1

I(xi ∈ Ri)dxi

]
∏r

i=1(ui − li)
, (4)

where Ri = [li, ui] is the range corresponding to Mi and I(·) is an indicator function.
We now use two random variables M1 and M2 with uniform distribution to illustrate

how the probability of the random event (M1 < M2) varies with the relative position
of the two corresponding ranges. Suppose that the associated ranges of M1 and M2 are
respectively R1 = [l1, u1] and R2 = [l2, u2], and the range sizes (u1− l1) and (u2− l2) are
fixed. There are altogether six possible relative positions between R1 and R2 as shown
in Figure 3.

— Case (a): R1 is smaller than R2, and they are disjoint. In this case, the probability is
1.0.
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— Case (b): R1 is smaller than R2, but they overlap each other. According to Formula
(4), the probability is given by

1− (u1 − l2)2

2(u1 − l1)(u2 − l2)
.

There are three sub-cases concerning the varying trend of the probability.
• If (u1−l1) < (u2−l2), asD(R1, R2) decreases from (u2−l1)

2 to (u2−u1)
2 , the probability

monotonically decreases from 1 to
(
1− u1−l1

2(u2−l2)

)
;

• if (u1− l1) > (u2− l2), as D(R1, R2) decreases from (u2−l1)
2 to (l2−l1)

2 , the probability
monotonically decreases from 1 to

(
1− u2−l2

2(u1−l1)

)
;

• if (u1 − l1) = (u2 − l2), as D(R1, R2) decreases from (u2−l1)
2 to 0, the probability

monotonically decreases from 1 to 1
2 .

For all three sub-cases, the probability monotonically decreases as D(R1, R2) gets
smaller.

— Case (c): R2 contains R1. In this case, the probability falls in the range[
u1 − l1

2(u2 − l2)
, 1− u1 − l1

2(u2 − l2)

]
.

When D(R1, R2) equals to 0, the probability equals to 1
2 .

— Case (d): R1 contains R2. This case is symmetric with Case (c), and the probability
falls in the range [

u2 − l2
2(u1 − l1)

, 1− u2 − l2
2(u1 − l1)

]
.

When D(R1, R2) equals 0, the probability equals 1
2 .

— Case (e): R1 is larger than R2, and they overlap each other. In this case, the proba-
bility is given by

(u2 − l1)2

2(u1 − l1)(u2 − l2)
.

Similarly to Case (b), there are also three sub-cases concerning the varying trend of
the probability.
• If (u1− l1) < (u2− l2), as D(R1, R2) increases from (l1−l2)

2 to (u1−l2)
2 , the probability

monotonically decreases from u1−l1
2(u2−l2) to 0;

• if (u1− l1) > (u2− l2), as D(R1, R2) increases from (u1−u2)
2 to (u1−l2)

2 , the probability
monotonically decreases from u2−l2

2(u1−l1) to 0;

• if (u1 − l1) = (u2 − l2), as D(R1, R2) increases from 0 to (u1−l2)
2 , the probability

monotonically decreases from 1
2 to 0.

For all three sub-cases, the probability monotonically decreases as D(R1, R2) gets
larger.

— Case (f): R1 is larger than R2 and they are disjoint. In this case, the probability
equals 0.

Considering the probability P (M1 < M2), where M1 and M2 are random variables
that follow normal distribution, we can observe the varying trends similar to that of
uniform distribution. In other words, when M1 is smaller than M2, the probability is
larger than 0.5, and monotonically decreases from 1 to 0.5 as D(M1,M2) gets smaller.
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When M1 is larger than M2, the probability is smaller than 0.5 and monotonically
decreases from 0.5 to 0 as D(M1,M2) gets larger. Strictly speaking, the domain of
a normal distribution is infinite, and thus the probability only infinitely approaches 1
whenM1 is smaller thanM2 andD(M1,M2) gets extremely large. At the other extreme,
the probability infinitely approaches 0 when M2 is smaller than M1 and D(M1,M2)
gets extremely large.

From the above analysis, Formula (3) well reflects the positional relationship and
the difference between random variables. Thus, we adopt Formula (3) to formulate our
probabilistic support measure.

The probabilistic support holds the anti-monotonic property, which is formally stated
in Theorem 4.2.

THEOREM 4.2. [Anti-Monotonicity] Given a threshold α, if the probabilistic support
of a row g w.r.t. an order τQ is larger than or equal to α, the probabilistic support of g
w.r.t. all the sub-orders of τQ is also larger than or equal to α.

Proof: Let g be a row and {t1, . . . , tk} be a set of k columns in a probabilistic matrix.
Suppose the entries of g under {t1, . . . , tk} correspond to the random variables {M1, . . . ,
Mk}. To establish the proof, we only need to show that

P (M1 < · · · < Mk) ≤ P (M1 < · · · < Mr−1 < Mr+1 < · · · < Mk),

with 1 ≤ r ≤ k, which is straightforward.
Since the occurrence of the random event (M1 < · · · < Mk) implies the occurrence of

the event (M1 < · · · < Mr−1 < Mr+1 < · · · < Mk), the probability P (M1 < · · · < Mk) is
thus no larger than the probability P (M1 < · · · < Mr−1 < Mr+1 < · · · < Mk). 2

4.2. The POPSM Model
Using the probabilistic support measure, we now formalize the probabilistic OPSM
model.

Definition 4.3 (Probabilistic OPSM (POPSM)). Given a probabilistic matrix
M(G,T ) and a support threshold α, a submatrix (P,Q) with P ⊆ G and Q ⊆ T is
said to be a POPSM pattern, if there exists an order τQ such that, for all gi ∈ P , the
probabilistic support gi w.r.t. τQ is larger than or equal to α, that is,

∀gi ∈ P ,PS(gi, τQ) ≥ α.

We call the order τQ the backbone order of the POPSM (P,Q), and the rows in P the
supporting rows of τQ.

Since a POPSM pattern (P,Q) is associated with a backbone order τQ, we denote
such a pattern by (P,Q : τQ). A POPSM pattern (P,Q : τQ) is said to be maximal, if
there does not exist any other POPSM pattern (P ′, Q′ : τQ′) such that P ⊆ P ′, Q ⊆ Q′,
and τQ is a sub-order of τQ′ .

Based on the anti-monotonic property of the probabilistic support, we are able to
straightforwardly deduce that the POPSM model also satisfies the anti-monotonic
property. That means, given a POPSM pattern (P,Q : τQ), all the submatrices (P ′, Q′)
of (P,Q) are also POPSM patterns with the backbone order τQ′ being a sub-order of
τQ. We will make use of the anti-monotonic property of the POPSM model to develop
an efficient POPSM mining algorithm in Section 5.

Now, we formally define the POPSM mining problem.

Definition 4.4 (The POPSM Mining Problem). Given a probabilistic matrix
M(G,T ), a support threshold α, and two size thresholds rmin and cmin, we aim to
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ALGORITHM 1: PROBAPRI

Input: Probabilistic matrix M(G,T ); support threshold α; size thresholds rmin and cmin

Variable: Ck - the set of size-k candidate orders; Fk - the set of size-k frequent orders
F1 ={size-1 frequent orders};
for (k = 2;Fk−1 6= φ; k ++) do
Ck= GENCAND(Fk−1) ;
COUNTSUP(M, Ck, α);
Fk = {τ |τ ∈ Ck, supp(τ) ≥ rmin} ;
if k ≥ cmin && Fk 6= φ then

Put POPSM patterns in output pool;
end

end
Output maximal POPSM patterns;

exhaustively mine from M all the maximal POPSM patterns that contain at least rmin

rows and cmin columns.

As very small patterns possibly exist in the matrix randomly and they are likely to
reveal trivial biological correlations [Ben-Dor et al. 2002; Liu and Wang 2003; Fang
et al. 2010], we include two size thresholds rmin and cmin in Definition 4.4 to avoid
mining too many small POPSM patterns.

5. MINING PROBABILISTIC OPSM
In this section, we exploit the anti-monotonic property of the POPSM model and
adopt an Apriori-based framework to develop a new POPSM mining method called
PROBAPRI. There are two versions of PROBAPRI, UNIAPRI and NORMAPRI, respec-
tively developed for mining POPSM patterns from the UniDist matrix and the Norm-
Dist matrix. If not explicitly specified, the procedures presented are applicable to both
UNIAPRI and NORMAPRI.

5.1. PROBAPRI Algorithm
Given a probabilistic matrix M(G,T ) and a support threshold α, a naı̈ve way to mine
POPSM patterns can be carried out as follows: for every set of columns Q with Q ⊆ T
and |Q| ≥ cmin, and every possible order τQ of Q, we simply check all the rows in
G to examine if the probabilistic support of a row w.r.t. τQ is larger than or equal
to α. Let P be the set of supporting rows of τQ. If |P | ≥ rmin, then (P,Q) is a valid
POPSM pattern with τQ as the backbone order. However, such an exhaustive search is
apparently infeasible, since the number of such orders is prohibitively large, especially
when the number of columns in T is large.

The anti-monotonic property of the POPSM model is important in developing a more
efficient approach for mining POPSM patterns. Intuitively, before searching the sup-
porting rows of an order, we first check whether all its sub-orders are supported by at
least rmin rows. If not, we then confirm that the order does not give rise to any valid
POPSM and, thus, can be discarded. This idea motivates us to develop an Apriori-
based framework to mine POPSM patterns, as detailed in Algorithm 1.

In Algorithm 1, if a size-k order has at least rmin supporting rows, we call it a size-k
frequent order. Any size-k order can be a size-k candidate order. We denote by Ck and
Fk a set of size-k candidate orders and the set of all size-k frequent orders, respectively.
First, the set of size-1 frequent orders, i.e., F1, is generated, which contains orders with
every single column in T . Then, the GENCAND procedure detailed in Section 5.2 is in-
voked to generate Ck from Fk−1. The candidate generation algorithm GENCAND aims
to reduce the size of Ck as much as possible, but still guarantees that all the size-k
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F3: five size-3 frequent orders

τ1 [t1 ≺ t2 ≺ t3]

τ2 [t1 ≺ t2 ≺ t4]

τ3 [t1 ≺ t3 ≺ t4]

τ4 [t2 ≺ t3 ≺ t4]

τ5 [t2 ≺ t4 ≺ t3]

Fig. 4. A CandTree example

frequent orders are included in Ck. Next, the COUNTSUP procedure detailed in Section
5.3 is invoked to verify the candidate orders in Ck. Specifically, the COUNTSUP proce-
dure counts the number of supporting rows for each candidate order. Those candidate
orders that are supported by at least rmin rows are called the size-k frequent orders
and form the set Fk. If k is larger than or equal to cmin and Fk is not empty, the POPSM
patterns (P,Q : τQ) are placed in an output pool, where τQ is a frequent order in Fk,
and P is the set of supporting rows of τQ. Finally, we output those maximal POPSM
patterns as the result.

5.2. Candidate Generation
The GENCAND procedure generates the set of size-k candidate orders Ck. This proce-
dure applies to both the UniDist matrix and the NormDist matrix.

Since the candidate order set Ck must contain all the size-k frequent orders, we
may simply include in Ck all possible size-k orders. However, the size of Ck increases
exponentially when k gets larger. As all the candidate orders in Ck need to be further
verified in COUNTSUP which is a time-consuming process, we expect to exclude from Ck
as many as possible orders which cannot be frequent. The anti-monotonic property is
utilized to achieve this goal. Based on the property, a size-k order cannot be a frequent
order if any of its size-(k − 1) sub-order is not frequent. Therefore, the search space
for size-k candidate orders can be restricted to the size-k orders, of which all the size-
(k − 1) sub-orders are in Fk−1. The GENCAND procedure is thus designed to generate
Ck based on Fk−1.

A prefix-sharing tree structure called CandTree is employed to organize frequent or
candidate orders, and the candidate generation process is implemented by updating
the tree. Figure 4 presents a CandTree example, where five size-3 frequent orders are
listed in the left table, and the subtree inside the rectangle in the right diagram is the
corresponding CandTree. In the CandTree, all the orders are organized in the prefix-
sharing manner, and a path leading from root to a leaf node exactly corresponds to an
order. For example, the rightmost path leading from root to nodes t2, t4, and finally t3
corresponds to the order τ5 in the table. Each leaf node in the CandTree is associated
with a bitmap, where the ith bit corresponds to the ith row in the input probabilistic
matrix. It is set to 1 if the probabilistic support of row gi to the corresponding order is
larger than or equal to the threshold α; otherwise, it is set to 0. Note that the nonleaf
nodes in the CandTree of Fk−1 were once leaf nodes in the CandTree of Fr with r <
(k − 1). Thus, every node in the CandTree except root is actually associated with a
bitmap.
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ALGORITHM 2: GENCAND

Input: CandTree(Fk−1)
Output: CandTree(Ck)
Variable: τ [p] - the order corresponding to the path from root to p
while there are unvisited nodes in CandTree(Fk−1) do

Depth-first traversal to node p with |τ [p]| = k − 2;
for p’s child nodes t1 and t2 do

Insert t2 as a child of t1;
end

end
for all newly inserted leaf nodes t do

if any size-(k − 1) sub-order of τ [t] /∈ Fk−1 then
Undo insertion of node t;

end
end
Prune the subtrees not containing any newly-inserted leaf node.

The GENCAND procedure takes the CandTree of Fk−1 as input and returns an up-
dated CandTree, where each path leading from root to a leaf node exactly corresponds
to a size-k candidate order. We call the updated tree the CandTree of Ck. GENCAND
consists of three steps, and the details are shown in Algorithm 2. First, given the
CandTree of Fk−1, a depth-first traversal is carried out. When there are still unvisited
nodes, the tree traversal continues until a non-leaf node p is reached such that the
number of nodes along the path leading from root to p (with root excluded) is k − 2.
For each pair of p’s child nodes t1 and t2, t2 is inserted as a child of t1. In this step,
instead of inserting all the size-k orders, we only insert those orders, of which the two
size-(k − 1) sub-orders that share a size-(k − 2) prefix are frequent. The search space
of size-k candidate orders is thus reduced. After finishing the tree traversal, for each
newly inserted node t, the path leading from root to t forms a size-k order τ [t]. Then, a
pruning step is carried out to further examine whether all the size-(k−1) sub-orders of
τ [t] are in Fk−1. If not, τ [t] is surely not a frequent order, and can be excluded from Ck
as well. Thus, the insertion of node t is revoked. Since the size-(k − 1) frequent orders
are stored in the CandTree of Fk−1, the pruning step can be efficiently accomplished
by scanning the CandTree. After pruning, the remaining size-k orders form the set of
size-k candidate orders Ck. Finally, the tree is trimmed by deleting those subtrees that
do not contain any newly inserted leaf node, since these subtrees do not lead to any
valid size-k candidate orders. The updated tree is the CandTree of Ck.

We further illustrate GENCAND using the example in Figure 4. The CandTree of
F3 is traversed until node t2, which is marked with “∗”, is reached. For the two child
nodes of t2 (i.e., t3 and t4), one is inserted as a child of the other. Then, the tree traversal
continues until all the nodes are visited. Finally, only two new leaf nodes (i.e. t3 and
t4) are inserted, which are highlighted in bold font. For the newly inserted node t4, the
path leading from root to it represents the order τ [t4] = [t1 ≺ t2 ≺ t3 ≺ t4]. Since all
the size-3 sub-orders of τ [t4], i.e., τ1, τ2, τ3 and τ4 in the table of F3, are frequent, τ [t4]
is a size-4 candidate order. Similarly, the path leading from root to the other newly
inserted node t3 corresponds to another size-4 order τ [t3] = [t1 ≺ t2 ≺ t4 ≺ t3]. One of
the size-3 sub-orders of τ [t3], i.e., [t1 ≺ t4 ≺ t3], is not in F3, which means that it is not
frequent. Thus, the order τ [t3] is surely not a frequent order and the insertion of node
t3 is revoked. Finally, we prune three subtrees with their root nodes marked with “#”,
since none of these three subtrees contains any newly inserted leaf node and so they
would not lead to any size-4 candidate order. The updated tree is the CandTree of C4.
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Notably, GENCAND is said to be complete, in the sense that all size-k frequent orders
are included in Ck. We now justify its completeness.

Assume that Fk−1 contains all size-(k − 1) frequent orders. Let τ = [t1 ≺ · · · ≺ tk] be
a size-k frequent order. According to the anti-monotonic property of the probabilistic
support, all the supporting rows of τ should also be the supporting rows of the size-
(k − 1) sub-orders of τ . In other words, if τ is a frequent order, all the size-(k − 1)
sub-orders of τ must also be frequent and in Fk−1. Suppose there are τ1 = [t1 ≺ · · · ≺
tk−2 ≺ tk−1] and τ2 = [t1 ≺ · · · ≺ tk−2 ≺ tk], which are two frequent size-(k − 1) sub-
orders of τ . Since τ1 and τ2 only differ in the last item, the node that corresponds to
item tk−1 in τ1 and the node that corresponds to item tk in τ2 are two leaf nodes in the
CandTree of Fk−1, and they share the same parent node tk−2. According to GENCAND,
a new node tk is then inserted as a child node of tk−1, and the path leading from root
to the newly inserted tk corresponds to the order τ . As all the size-(k − 1) sub-orders
of τ are frequent and in Fk−1, the insertion of the new node tk does not get revoked in
the pruning step. Thus, the order τ is generated and added to Ck.

5.3. Support Counting
After the set of size-k candidate orders Ck is generated, the COUNTSUP procedure is
invoked to verify whether the orders in Ck are frequent or not. Dynamic programming
(DP) techniques are developed to compute the probabilistic support of a row w.r.t. a
candidate order. If the probabilistic support of at least rmin rows w.r.t. a candidate
order is larger than or equal to the support threshold α, the candidate order is called
frequent. The frequent candidate orders form the size-k frequent order set Fk.

We develop two DP techniques, respectively called static DP (SDP) and dynamic
DP (DDP), for computing the probabilistic support of a row w.r.t. a candidate order.
SDP disregards the size of the candidate order to which the probabilistic support is
computed, and breaks down the computation into a fixed number of subproblems. In
contrast, for a candidate order with smaller size, DDP breaks down the computation
of its probabilistic support into a fewer number of subproblems. Furthermore, when
these two techniques are adopted to compute the probabilistic support w.r.t. the same
candidate order, the number of subproblems divided by DDP is no more than the num-
ber of subproblems divided by SDP. Thus, compared to SDP, DDP saves computational
cost by solving fewer number of subproblems. However, DDP has to spend some extra
time for dynamically forming the subproblems when running the process of dynamic
programming. Our experiments in Section 6.4 show that both techniques exhibit their
efficiency under different scenarios. For the sake of clarity, when we employ SDP or
DDP to compute the probabilistic support of a row w.r.t. a candidate order in a UniDist
matrix, we respectively call them the UNISDP and UNIDDP methods. When they are
employed to compute the probabilistic support in a NormDist matrix, we respectively
call them the NORMSDP and NORMDDP methods. Table III summarizes the four DP
methods corresponding to different probabilistic matrices.

Table III. The DP methods corresponding to different types of probabilistic ma-
trices
hhhhhhhhhhhhhDP Technique

Matrix Type
UniDist Matrix NormDist Matrix

Static DP UNISDP NORMSDP

Dynamic DP UNIDDP NORMDDP

For either SDP or DDP, its recursive DP equations for the two types of matrices are
similar, except that more complex preprocessing steps are needed when it is applied to
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Fig. 5. The effective range [y2, x2] = [3, 15] of row g2 (in Table I) and its six subranges {s(1)2 , . . . , s
(6)
2 }

the NormDist matrix. For simplicity in presentation, the formulation of the DP equa-
tions which is common for UniSDP and NormSDP (or respectively for UniDDP and
NormDDP) is detailed when we introduce UniSDP (or respectively UniDDP). When
introducing NormSDP and NormDDP, we just focus on explaining the different pre-
processing steps adopted by them. Then, we show that the COUNTSUP procedure com-
bines any of the DP methods with the traversal of CandTree to compute the probabilis-
tic support of a row w.r.t. all the candidate orders in Ck in an efficient way.

5.3.1. Static DP for UniDist matrix - UNISDP. We now detail the UNISDP method for com-
puting the probabilistic support of a row w.r.t. an order in an m-by-n UniDist matrix
MU (G,T ). Before applying the dynamic programming technique, there are two pre-
processing steps to be carried out as follows:

(1) First, for the record of each row gi, i.e., {[li1, ui1], . . . , [lin, uin]}, we define xi =
max{uij |1 ≤ j ≤ n} and yi = min{lij |1 ≤ j ≤ n}. The range [yi, xi] is called the
effective range of gi. Every range entry [lij , uij ] with 1 ≤ j ≤ n is fully covered by
the effective range, and the probability that any corresponding random variable
Mij is located outside the effective range is 0.

(2) Then, all lij ’s and uij ’s with 1 ≤ j ≤ n are sorted in non-decreasing order, and these
2n values divide the range [yi, xi] into pi subranges s(j)i with 1 ≤ j ≤ pi. The number
of subranges pi is at most 2n− 1. We sort the pi subranges in nondecreasing order
of their middle point values, and get an ordered subrange set Si = 〈s(1)i , . . . , s

(pi)
i 〉

corresponding to row gi. Note that for any two adjacent subranges in Si, there
exists at least one random variable in {Mi1, . . . ,Min} such that, its probability
densities in these two subranges are different.

Figure 5 shows the effective range of row g2 in Table I which is [3, 15]. The effective
range is divided into six subranges that are sorted and indicated as 〈s(1)2 , . . ., s(6)2 〉.

Given a row gi with its ordered subrange set Si = 〈s(1)i , . . . , s
(pi)
i 〉, and a size-k order

τQ = [tj1 ≺ tj2 ≺ · · · ≺ tjk ], the probabilistic support of gi w.r.t. τQ, i.e., PS(gi, τQ) =
P (Mij1 < · · · < Mijk), is computed as follows.

We first create a table ZU (R,C) with k rows and pi columns for dynamic program-
ming. The xth row rx corresponds to the size-x prefix sub-order of τQ, i.e., [tj1 ≺ · · · ≺
tjx ], and the yth column cy corresponds to the first y subranges in Si, i.e., 〈s(1)i , . . . , s

(y)
i 〉.

The entry ZU (rx, cy) is the probability of the random event (Mij1 < · · · < Mijx) with
Mij1 , . . . ,Mijx located in the first y subranges. Thus, the entry ZU (rk, cpi) is the proba-
bility of the event (Mij1 < · · · < Mijk) with Mij1 , . . . ,Mijk in all the pi subranges, which
actually is PS(gi, τQ). Further, the entry ZU (rx, cy) equals the sum of the following
three parts:
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(1) the probability of (Mij1 < · · · < Mijx) with Mij1 , . . ., Mijx in the first (y − 1) sub-
ranges; and

(2) the probability of (Mij1 < · · · < Mijx) with Mij1 , . . ., Mijx in the yth subrange; and
(3) the probability of (Mij1 < · · · < Mijz ) with 1 ≤ z < x and Mij1 , . . ., Mijz in the

first (y − 1) subranges, multiplied by the probability of (Mij(z+1)
< · · · < Mijx) with

Mij(z+1)
, . . ., Mijx in the yth subrange s(y)i .

The dynamic programming equation can then be written as:

ZU (rx, cy) = ZU (rx, cy−1) + P (Mij1 < · · · < Mijx |s
(y)
i )+

x−1∑
z=1

ZU (rz, cy−1)P (Mij(z+1)
< · · · < Mijx |s

(y)
i ), (5)

where P (Mij1 < · · · < Mijx |s
(y)
i ) is the probability of the event (Mij1 < · · · < Mijx) with

Mij1 , . . . ,Mijx in the subrange s(y)i . As Mij1 , . . ., Mijx all follow uniform distributions
with the PDFs pij1 , . . ., pijx , P (Mij1 < · · · < Mijx |s

(y)
i ) is then computed as

P (Mij1 < · · · < Mijx |s
(y)
i ) =

|s(y)i |x

x!
·

x∏
k=1

[
pijkI(s

(y)
i ⊆ [lijk , uijk ])

]
,

where I(·) is the indicator function in usual convention.
Assume that the maximal length of the mined patterns is L, which is usually much

smaller than the number of columns n in the UniDist matrix. The time complexity
for constructing the DP table ZU (R,C), i.e., the time for computing the probabilistic
support of a row w.r.t. an order, is O(L2× (2n− 1)) = O(L2n). However, we will show in
Section 5.3.5 that, by combining the computation of the DP table with the traversal of
the CandTree, the time for computing the probabilistic support of a row w.r.t. an order
is only O(Ln).

5.3.2. Dynamic DP for UniDist Matrix - UNIDDP. In the UNISDP method, each row gi is
converted to at most (2n − 1) subranges based on the range entries of gi under T .
Accordingly, the table constructed for dynamic programming contains at most (2n− 1)
columns, which makes the DP process time-consuming.

However, we find that the associated column set Q of a candidate order τQ is usually
a small subset of T , and, with xQi = max{lij , uij |tj ∈ Q} and yQi = min{lij , uij |tj ∈
Q}, the probability that the random variable Mij with tj ∈ Q falls out of the range
[yQi , x

Q
i ] is 0. Thus, we call [yQi , x

Q
i ] the effective range of gi over Q, or simply the Q-

based effective range. Since [yQi , x
Q
i ] is a subrange of [yi, xi], instead of applying the DP

technique over [yi, xi], we only need to apply it over the smaller range [yQi , x
Q
i ] to obtain

the probabilistic support of gi w.r.t. τQ.
In addition, we find that there may exist pairs of adjacent subranges in the ordered

subrange set Si, such that the probability density of Mij (with tj ∈ Q) in the adjacent
subranges are the same. During the dynamic programming process, such adjacent sub-
ranges can be merged, which accordingly leads to a smaller DP table.

Let us consider row g2 shown in Figure 5 again. Suppose that the probabilistic sup-
port of g2 w.r.t. an order τQ = [t3 ≺ t1] with Q = {t1, t3} is computed. We get the
Q-based effective range [yQ2 , x

Q
2 ], which is [3, 8], and know that the probability densi-

ties of the random variables M23 and M21 outside [yQ2 , x
Q
2 ] are both 0. Furthermore, for

the two adjacent subranges s(3)2 and s
(4)
2 , the probability density of M23 in them are
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ALGORITHM 3: UNIDDP
Input: Row gi with the record {[li1, ui1], . . . , [lin, uin]}; a size-k order τQ = [tj1 ≺ tj2 ≺ · · · ≺ tjk ]
Output: The probabilistic support of gi w.r.t. τQ
Variable: The ordered subrange set Si = 〈s(1)i , . . . , s

(|Si|)
i 〉

Q:1 = {tj1}, and τQ:1 = [tj1 ]; // τQ:1 is the size-1 prefix sub-order of τQ
Initialize Si to 〈[lij1 , uij1 ]〉;
Construct a DP table ZU (R,C) with |Q:1| rows and |Si| columns;
for x = 2 to k do

Q:x = Q:(x−1) ∪ tjx and τQ:x = [tj1 ≺ · · · ≺ tjx ];
Insert a row in ZU after the last row ; // corresponds to newly appended tjx
for v ∈ {lijx , uijx} do

if there exists s(y)i ∈ Si such that v ∈ s(y)i then
Update Si by splitting s(y)i into two subranges s(y1)i and s(y2)i ;
Insert a column in ZU before the yth column;

else if v < the lower bound of s(1)i then
Insert a new subrange [v, lower bound of s(1)i ] in Si before s(1)i ;
Insert a column in ZU before the first column;

else if v > the upper bound of s(|Si|)i then
Insert a new subrange [upper bound of s(|Si|)i , v] in Si after s(|Si|)i ;
Insert a column in ZU after the last column ;

end
end
Compute the inserted (2|Q:x|+ |Si| − 2) entries in ZU using Formula (5);

end
Return ZU (rk, c|Si|); // stores the probabilistic support of gi to τQ

both 0 and the probability density of M21 in them are both 0.25. Therefore, these two
adjacent subranges can be merged into one, and the Q-based effective range [yQ2 , x

Q
2 ] is

accordingly divided into the three subranges of [3, 4], [4, 5], and [5, 8].
Motivated by the above observation, we propose to dynamically form subranges dur-

ing the DP process. This idea leads to the development of a dynamic DP method called
UNIDDP. Generally, in order to compute the probabilistic support of a row gi w.r.t.
a size-k order τQ, UNIDDP computes the probabilistic support of gi w.r.t. the size-x
prefix sub-order of τQ by utilizing the DP table constructed for the size-(x − 1) prefix
sub-order until x increases from 1 to k.

The details of the UNIDDP method are shown in Algorithm 3. The record of row gi,
i.e., {[li1, ui1], . . . , [lin, uin]}, and a size-k order τQ = [tj1 ≺ tj2 ≺ · · · ≺ tjk ] are taken
as an input. UNIDDP starts by computing the probabilistic support of gi w.r.t. the
size-1 prefix sub-order of τQ, which we denote by τQ:1

= [tj1 ] with Q:1 = {tj1}. The
ordered subrange set Si is initialized with a single subrange [lij1 , uij1 ]. Then, a DP
table ZU (R,C) corresponding to τQ:1

and containing |Q:1| rows and |Si| columns is
constructed. The DP mechanism of UNIDDP is the same as that of UNISDP. That
is, the xth row in ZU corresponds to the size-x prefix sub-order of τQ, i.e., τQ:x

, the
yth column corresponds to the first y subranges in Si, and the entry ZU (rx, cy) is the
probability of the random event (Mij1 < · · · < Mijx) with Mij1 , . . ., Mijx in the first y
subranges. Suppose we denote by ZU

x−1 the DP table corresponding to τQ:(x−1)
. UNIDDP

efficiently gets the DP table ZU
x based on ZU

x−1 in the following way. First, a new row
is inserted in ZU

x−1 after the last row, which corresponds to the xth item tjx in τQ:x
.
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Fig. 6. Approximation of the normal distribution (0, 2) using a cubic spline with 6 pieces

Then, the range [lijx , uijx ] is imposed on the Q:(x−1)-based effective range, which is
already divided into a set of subranges and stored in Si. If lijx or uijx falls within some
existing subrange, say s(y)i , in Si, it splits s(y)i into two new subranges s(y1)

i and s(y2)
i . Si

is then updated with s(y)i being replaced by s(y1)
i and s(y2)

i . As these two new subranges
are ranked y and (y + 1) in Si, a new column is inserted in the DP table before the yth
column. The new yth column corresponds to the first y subranges in the updated Si, i.e.,
〈s(1)i , . . . , s

(y−1)
i , s

(y1)
i 〉. The new (y+1)th column corresponds to the first y+1 subranges

in the updated Si which actually cover the same range as the first y subranges in Si
before splitting. Thus, the columns after the yth column in the updated DP table do
not need to be recomputed. If lijx or uijx falls before s(1)i or after s(|Si|)i , a new subrange
is inserted to Si before s(1)i or after s(|Si|)i , and a new column corresponding to this new
subrange is inserted in ZU

x . Similarly, except the newly inserted column, none of the
other columns in the updated DP table needs to be recomputed. Finally, Formula (5) is
employed to compute the values of newly inserted entries in the DP table ZU , and the
updated ZU is the DP table corresponding to the size-x prefix sub-order. When x equals
k, the entry ZU (rk, c|Si|) stores the probabilistic support of row gi w.r.t. the size-k order
τQ.

The DP table constructed by UNIDDP contains at most (2L − 1) columns with L as
the maximal length of the mined patterns. Thus, the time cost incurred by UNIDDP is
O(L2×(2L−1)) = O(L3). Similarly, by combining the computation of the DP table with
the traversal of the CandTree, the time cost for computing the probabilistic support of
a row w.r.t. an order is reduced to O(L2).

5.3.3. Static DP for NormDist Matrix - NORMSDP. While it is computationally inefficient to
directly deal with the normal distribution when computing the probabilistic support,
we propose to adopt the spline technique to approximate the normal distribution as
piecewise low-degree polynomials. This approach is desirable, since spline interpola-
tion guarantees good approximation ratio, and the technique has been well studied in
the area of approximation theory [Heath 2002]. Figure 6(a) shows a cubic spline ap-
proximation of a normal distribution having the mean value µ = 0 and the standard
deviation σ = 2. The approximation range is [µ − 3σ, µ + 3σ], and it is uniformly di-
vided into six intervals. Within each interval, the density function is expressed using
a third-order polynomial. For example, the polynomial corresponding to the interval
[−3σ,−2σ] is f(x) = 0.001x3 − 0.004x2 + 0.002. Figure 6(b) focuses on the part of the
curve on the interval [µ− 3σ, µ− 2σ].

Note that, although the domain of a normal distribution spans the whole real line,
the approximation range with 2σ from the mean already accounts for about 95% of the
distribution. For many types of uncertain data such as noisy gene expression data, this
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approximation range should be able to cover the majority of the true replicates in prac-
tice. Thus, we simply assume that the probability density outside the approximation
range is 0.

Next, we introduce the NORMSDP method which takes the SDP technique to com-
pute the probabilistic support of a row w.r.t. a candidate order in the NormDist matrix.
The preprocessing consists of the following three steps:

(1) First, the cubic spline technique is used to convert every entry MN
ij = (µij , σij) in

a NormDist matrix to a set of polynomials. Specifically, we fix the approximation
range to [µij − t ∗ σij , µij + t ∗ σij ] where t can be set to 1, 2, or 3. To guarantee the
approximation ratio as well as the computational efficiency, the number of inter-
vals q for cubic spline approximation is commonly set to 4 or 6 in practice. Then,
the approximation range of every normal distribution is divided into q intervals by
q + 1 breakpoints, and each interval is approximated by a third-order polynomial.
Any entry MN

ij in the NormDist matrix can thus be represented as (Bij , Fij), where
Bij = {b(1)ij , . . . , b

(q+1)
ij } is the set of q + 1 breakpoints and Fij = {f (1)ij (·), . . . , f (q)ij (·)}

is the set of q polynomials corresponding to each interval.
(2) Second, for every row gi with its record {(Bi1, Fi1), . . . , (Bin, Fin)}, we define xi =

max{b(k)ij |1 ≤ k ≤ q + 1, 1 ≤ j ≤ n} and yi = min{b(k)ij |1 ≤ k ≤ q + 1, 1 ≤ j ≤ n},
and call [yi, xi] the effective range of gi over T . Then, all the breakpoints b(k)ij with
1 ≤ k ≤ q + 1 and 1 ≤ j ≤ n are sorted in non-decreasing order, and these n(q + 1)

breakpoints divide [yi, xi] into pi subranges s(k)i with 1 ≤ k ≤ pi. The number of
subranges pi is at most n(q + 1)− 1.

(3) Finally, similarly to the second preprocessing step of UNISDP, we get the ordered
subrange set of row gi, and denote it by Si = 〈s(1)i , . . . , s

(pi)
i 〉. For an entry MN

ij , its
probability density within any subrange s(k)i is 0 if s(k)i is disjoint from its approxi-
mation range, or is f (r)ij (·) if s(k)i ⊆ [b

(r)
ij , b

(r+1)
ij ].

After preprocessing, the DP process of NORMSDP is similar to that of UNISDP.
Specifically, in order to compute the probabilistic support of a row gi w.r.t. a size-k
order τQ, a k-by-pi DP table ZN (R,C) is first created, with the xth row corresponding
to the size-x prefix sub-order of τQ and the yth column corresponding to the first y
subranges in Si. Then, Formula (5) is employed to incrementally compute the support.
The only difference is that, in the subranges, each random variable is now associated
with a polynomial (or 0) in NORMSDP, while it is associated with a constant (or 0) in
UNISDP.

As the number of intervals q is set to 4 or 6 during cubic spline approximation, at
most 5n or 7n subranges are generated for each row in the third preprocessing step. In
addition, the time for computing an entry in the ZN table is O(L2). Thus, the time cost
for computing the ZN table in NORMSDP is O(L3n).

5.3.4. Dynamic DP for NormDist Matrix - NORMDDP. As the DP table constructed by
NORMSDP contains up to (q + 1)n columns, which makes the DP process quite time-
consuming, we similarly adopt the DDP technique to reduce the size of the DP table.

Generally, after preprocessing, the NORMDDP method also adopts an incremental
way to compute the probabilistic support of a row gi w.r.t. a size-k order τQ. It constructs
the DP table corresponding to the size-x prefix sub-order of τQ, denoted as τQ:x , based
on the DP table corresponding to the order τQ:(x−1)

. When x increases to k, the entry
in the last row and last column of the DP table stores the probabilistic support of gi
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w.r.t. τQ. Since the NORMDDP method is similar to UNIDDP, we omit the details of
NORMDDP.

We denote by ZN
x−1 the DP table corresponding to the order τQ:(x−1)

. TheQ:(x−1)-based
effective range of gi is acquired by setting the lower and upper bounds respectively to
min{b(k)ij |1 ≤ k ≤ q + 1, tj ∈ Q:(x−1)} and max{b(k)ij |1 ≤ k ≤ q + 1, tj ≤ Q:(x−1)}. The
Q:(x−1)-based effective range is divided into subranges that are sorted and stored in
Si = 〈s(1)i , s

(2)
i , . . .〉. The DP table for the order τQ:x

is then constructed in the following
way. First, a new row is inserted in ZN

x−1 after the last row, which corresponds to the
xth item tjx in τQ:x . Then, the approximation range of the entry Mijx , which is interpo-
lated and represented as (Bijx , Fijx), is imposed on the Q:(x−1)-based effective range.
Similarly to the UNIDDP method, for each breakpoint b(z)ijx

in Bijx , NORMDDP checks
whether it splits some existing subrange in Si or introduces a new subrange to Si. Ev-
ery update in Si is followed by an insertion of a new column in the DP table. As there
are (q + 1) breakpoints in Bijx , at most (q + 1) new columns will be inserted in the DP
table. Finally, Formula (5) is adopted to compute the values of newly inserted entries,
and the resultant updated DP table is ZN

x that corresponds to the order τQ:x .
As the DP table constructed by NORMDDP contains at most ((q + 1)L− 1) columns,

with L as the maximum length of candidate orders, the time cost by NORMDDP is
O(L4).

5.3.5. COUNTSUP. The COUNTSUP procedure combines any version of the four DP
methods introduced above with the traversal of the CandTree, and efficiently com-
putes the probabilistic support of a row w.r.t. all the candidate orders. The details of
COUNTSUP are given in Algorithm 4.

The input matrix M(G,T ) is either a UniDist matrix or a NormDist matrix. Accord-
ingly, the DP table is either ZU (R,C) or ZN (R,C). For each row gi in G, the CandTree
is traversed in the depth-first manner. When a non-leaf node p is reached and if the ith
bit in the bitmap of p is 1, it means that the probabilistic support of row gi w.r.t. the
order τ [p] satisfies the threshold. An SDP or DDP method is then used to compute the
support. The SDP methods, such as UNISDP and NORMSDP, employ the DP function
shown in Formula (5) to compute the entries in the lth row of the DP table, where
l is the number of items in the order τ [p]. The DDP methods, such as UNIDDP and
NORMDDP, first update the current DP table to make it correspond to the order τ [p],
and then employ the DP function to compute the values of inserted entries. After the
probabilistic support of gi w.r.t. τ [p] is computed, the COUNTSUP method continues to
traverse the children of node p. On the other hand, if the ith bit in the bitmap of p is
0, it means that the probabilistic support of gi w.r.t. τ [p] does not satisfy the threshold.
Due to the anti-monotonic property, the probabilistic supports of gi w.r.t. all the orders
with τ [p] as a prefix would not satisfy the threshold either, and thus COUNTSUP stops
traversing the subtree rooted at p and backtracks to the next unvisited node. If either
DDP method is adopted, the update operations over the DP table for the nodes along
the backtracking route need to be revoked. If a leaf node p is reached, one of the DP
methods is adopted to compute the DP table, and the probabilistic support of row gi
w.r.t. the candidate order τ [p], i.e., PS(gi, τ [p]), equals Z(rl, c|Si|). If PS(gi, τ [p]) ≥ α, the
ith bit in the bitmap of p is set to 1; otherwise, it is set to 0. The size-k frequent order
set Fk contains all the orders corresponding to the path from root to the leaf nodes, of
which the number of 1’s in the bitmap is at least rmin.

When UNISDP or UNIDDP is adopted in COUNTSUP, we call the PROBAPRI algo-
rithm UNIAPRI; when NORMSDP or NORMDDP is adopted, we call the PROBAPRI
algorithm NORMAPRI. Recall that the difference between the DP methods for the Uni-
Dist matrix and the DP methods for the NormDist matrix is that, the PDFs associ-
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ALGORITHM 4: COUNTSUP

Input: Probabilistic matrix M(G,T ); CandTree(Ck); support threshold α
Variable: DP table Z(R,C); Si - the ordered subrange set of row gi; τ [p] - the order

corresponding to the path from root to p
for each row gi in G do

while there are unvisited nodes in CandTree(Ck) do
Traverse to a node p in the depth-first manner;
if p is a nonleaf node then

if p.bm[i] == 1 then //the bitmap of p
l = |τ [p]|;
if UNISDP or NORMSDP is adopted then

Compute the entries in row l of Z;
else if UNIDDP or NORMDDP is adopted then

Update the DP table Z corresponding to τ [p] ;
Compute the values of inserted entries in Z;

end
Continue to traverse p’s children;

else
Stop traversing p’s children, backtrack to next unvisited node;
if UNIDDP or NORMDDP is adopted then

Revoke the updating of Z for the nodes along the backtracking route;
end

end
else //p is a leaf node

l = |τ [p]|;
if UNISDP or NORMSDP is adopted then

Compute the entries in row l of Z;
else if UNIDDP or NORMDDP is adopted then

Update the DP table Z corresponding to τ [p] ;
Compute the values of inserted entries in Z;

end
PS(gi, τ [p]) = Z(rl, c|Si|);
if PS(gi, τ [p]) ≥ α then

Set p.bm[i] = 1;
else

Set p.bm[i] = 0;
end

end
end

end

ated with the random variables in UNISDP and UNIDDP are constants, while the
PDFs associated with the random variables in NORMSDP and NORMDDP are poly-
nomials. Since polynomials are a more general case compared to constants, in this
sense, NORMAPRI generalizes UNIAPRI. In addition, the spline technique adopted by
NORMAPRI in the preprocessing step is flexible. By using appropriate spline interpola-
tion, NORMAPRI can be adapted to dealing with other probabilistic matrices that have
more general continuous distributions.

5.4. Complexity Analysis
We now study the complexity of GENCAND and COUNTSUP, which are the core proce-
dures of the PROBAPRI algorithm.
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Fig. 7. The effectiveness of GENCAND in controlling the number of candidate orders

The computational cost of the Apriori-based methods is not likely to be well bounded
due to the possible exponential number of candidates generated during candidate gen-
eration. For example, suppose, in an m-by-n probabilistic matrix, every possible size-
cmin order of columns is supported by at least rmin rows. Then, at the kth round of
candidate generation with 1 < k ≤ cmin, no size-k order can be pruned by the GEN-
CAND procedure since all its size-(k− 1) sub-orders are frequent. The number of size-k
candidate orders generated by GENCAND is n!

(n−k)! , and it is the upper-bound of the
number of candidate orders that can be generated at the kth round. However, such an
extreme case rarely happens in real application data, and the Apriori-based methods
are usually shown to be practically efficient [Aggarwal et al. 2009; Fang et al. 2012].
Therefore, we conduct an experiment using a real dataset to study the effectiveness of
the GENCAND procedure in controlling the number of candidate orders. We use a Uni-
Dist matrix with 205 rows and 20 columns. It is converted from a real yeast dataset by
adopting the Std method with the approximation range set to [µ−σ, µ+σ]. The matrix
conversion methods are explained in detail in Section 6.1. The POPSM patterns with
at least 60 rows and 5 columns are mined from the UniDist matrix with the support
threshold α respectively set to 0.2 and 0.4. Given a data matrix with 20 columns, the
upper-bound of the number of candidate orders that can be generated at the kth round
of candidate generation is 20!

(20−k)! . Figures 7(a) and 7(b) show the numbers of the can-
didate orders generated by GENCAND before and after the pruning step, the number
of frequent orders, and the corresponding upper-bound at each round under two α set-
tings. The series “#candidates (bp)” and “#candidates (ap)” respectively correspond to
the number of candidate orders before and after pruning.

When α equals 0.2, the mining process requires eight rounds as shown in Figure 7(a).
At all the rounds, the number of candidate orders after pruning is no more than 4.5
times the number of frequent orders, and it is several orders of magnitude fewer than
the corresponding upper-bound starting from the fifth round. At the fourth round, the
numbers of candidate orders before and after pruning both reach the maximum, which
are respectively 6 times and 3 times the number of frequent orders in the same round.
The number of candidate orders before pruning becomes about 50 times the number
of frequent orders at the seventh round, which seems to be a big difference. However,
the absolute numbers of those candidate orders and frequent orders both decrease
substantially in the last several rounds. In addition, the pruning step is efficient, which
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reduces the number candidate orders to only 4.5 times the number of frequent orders.
Similar results can be observed when α equals 0.4. Therefore, GENCAND is efficient in
controlling the number of candidate orders during candidate generation.

At the kth round of candidate verification, the COUNTSUP procedure needs to tra-
verse the CandTree of Ck for m times, where m is the number of rows in the input
matrix. Since each node in CandTree is visited for at most one time in one traversal,
at most km|Ck| nodes are visited where |Ck| is the size of the set Ck. When a tree node
is visited, one of the four DP methods is invoked to update their respective DP tables.
We have respectively illustrated the time complexity of the four DP methods in Section
5.3. For ease of presentation, we summarize in Table IV the computational cost of the
four DP methods at each node visit, and accordingly compute the cost of COUNTSUP at
the kth round. Although the time complexity of COUNTSUP contains up to the fourth
power of k which seems time-consuming, k is the size of the candidate orders and thus
is usually a small value. Therefore, COUNTSUP is still practically efficient.

Table IV. Time complexity of COUNTSUP corresponding to four DP methods

DP Method Cost of DP process at a node visit Cost of COUNTSUP at the kth round

UNISDP O(kn) O(k2mn|Ck|)

UNIDDP O(k2) O(k3m|Ck|)

NORMSDP O(k2n) O(k3mn|Ck|)

NORMDDP O(k3) O(k4m|Ck|)

6. EXPERIMENTS
In this section, we study the performance of the POPSM model and the PROBAPRI
framework on both synthetic datasets and real datasets. For clarity in our result pre-
sentation, we denote the POPSM model by U-POPSM for the UniDist matrix and by
N-POPSM for the NormDist matrix, and compare these two POPSM models with the
OPSMRM model [Chui et al. 2008; Yip et al. 2013] and the OPSM model [Ben-Dor et al.
2002]. We also compare the POPSM mining methods with that of OPSMRM. By set-
ting the number of replicates to be 1, we employ the OPSMRM mining method to mine
OPSM patterns. We implement the more efficient HT-Bound as the pruning strategy
for the OPSMRM mining method. All the algorithms are implemented in C++, and all
the experiments are conducted on a Macbook Pro with 2.53GHZ CPU and 4G memory.

6.1. Data Preparation
Three real datasets are used in our experiments: a yeast galactose dataset [Ideker
et al. 2001; Yeung et al. 2003] (or simply the yeast dataset), a rat circadian dataset
[Nguyen et al. 2010] (or simply the rat dataset), and an RFID user trace dataset1 (or
simply the RFID dataset).

The yeast dataset contains 205 genes and 20 experimental conditions, and there are
four replicates for each entry of the matrix. This set-valued matrix has been used for
mining OPSMRM patterns. We generate a real-valued matrix by taking the average
of the four replicates of an entry as the new single entry value, and the generated
matrix is taken as input for mining OPSM patterns. We adopt two methods to convert
the original set-valued matrix into a UniDist matrix. First, we set the range of every
entry by taking the smallest and largest values of the four replicates as the lower and
upper bounds, which we call the MinMax method. Second, we compute the mean µ and

1http://lahar.cs.washington.edu/displayPage.php?path=./content/Download/RFIDData/rfidData.html
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the standard deviation σ based on the replicates of every entry and set the range to
[µ − t ∗ σ, µ + t ∗ σ] where t is set to 1, 2, or 3, and we call this the Std method. By
using the Std method, we expect the range covers the distribution of true replicates
and reduces the influence of possibly noisy ones. To generate the NormDist matrix, we
compute the mean and standard deviation of an entry based on the replicates. During
the cubic spline approximation, the approximation range is set to be [µ− t ∗ σ, µ+ t ∗ σ]
and the range is divided into q pieces, where t is set to the values in {1, 2, 3} and q is
set to the values in {4, 6, 8, 10}.

The rat dataset contains 527 genes and 10 conditions, and it is extracted using two-
sample t-test from a larger dataset, which is collected by examining the fluctuation of
gene expressions in the rat livers within the 24 hour circadian cycle. It is also a set-
valued matrix, and the number of replicates under a condition varies from 2 to 6. We
adopt the same method used in the yeast dataset to convert the rat dataset into the
UniDist matrix and the NormDist matrix.

The RFID dataset contains the traces of twelve voluntary users in a building with
195 RFID antennas installed. Only 44 antennas are active, that is, they detect the
trace of at least one user for at least one time. The trace of a user consists of a series
of (period, antenna) pairs which indicates the time period during which the user is
continuously detected by the antenna. When a user is detected by the same antenna
at different time periods, we split the raw trace into several new traces in which the
user is detected by any antenna for at most one time. We then generate a UniDist
matrix having 103 rows (i.e., user traces) and 44 columns (i.e., antennas). The set of
timestamps within each time period is enumerated to generate the corresponding set-
valued matrix, and the middle time points are computed to generate the real-valued
matrix.

The synthetic datasets are generated based on the real yeast dataset. To generate
an r-by-c matrix, we first randomly pick r rows and c columns from the original matrix
and generate an r-by-c set-valued matrix. To simulate randomness, each entry in the
matrix is shifted left or right with a small constant, or is kept unchanged with equal
probability. Then, similar methods used for the real datasets are employed to convert
the set-valued matrix into the UniDist or NormDist matrix.

6.2. Evaluation Measures
We now explain the methodology of evaluating the experimental results. There are
three evaluation measures, namely the biological significance of the patterns mined
from the biological datasets, the trace accuracy score of the patterns mined from the
RFID dataset, and the running time for mining patterns in general.

6.2.1. Biological Significance. To compare the effectiveness of different models that pro-
mote the discovery of interesting patterns from gene expression data, we validate the
biological significance of the POPSM, OPSMRM, and OPSM patterns mined from the
two biological datasets. We adopt a measurement called p-value [Zhang et al. 2008;
Fang et al. 2010; Fang et al. 2012], which is well accepted for measuring the associ-
ation between mined patterns and the known gene functional categories. Essentially,
a smaller p-value indicates a stronger association between a pattern and some gene
category, and the pattern is thus regarded as more biologically significant.

6.2.2. Trace Accuracy. The patterns mined from the RFID dataset consists of a set of
users sharing a common subroute passing a subset of antennas. To evaluate whether
the subroute really matches the ground-truth traces of the users, we define a measure
called the trace accuracy score and denote this score by S(P,Q, τQ) where (P,Q : τQ)
is a POPSM, an OPSMRM or an OPSM pattern having τQ as the backbone order. The
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trace accuracy score of a pattern (P,Q : τQ) is computed as follows.

S(P,Q, τQ) =
1

|P |
∑
gi∈P

|LCS(τQ, Tgi)|
|τQ|

,

where Tgi is the ground-truth trace of user gi, and |LCS(τQ, Tgi)| is the length of the
longest common subsequence between the detected subroute τQ and Tgi . The introduc-
tion of the two normalized factors |P | and |τQ| in the score function makes the scores
of patterns with different sizes comparable.

6.2.3. Efficiency. We study the efficiency of different methods by comparing their run-
ning times in two ways. First, we denote by TR-Time the total running time for gener-
ating the patterns. Second, we also study the average time for mining a single pattern,
which is denoted by SP-Time, since the number of patterns mined by one method or
under one setting is not the same as that mined by another method or under another
setting in general.

6.3. Comparison of Data Conversion Methods
Given a set-valued matrix, we use the MinMax or Std methods described in Section
6.1 to convert it to a UniDist or a NormDist matrix. In the first set of experiments,
we use the yeast dataset to study the impact of conversion methods on the quality of
mined U-POPSM and N-POPSM patterns. The DDP technique is adopted for both the
UNIAPRI and NORMAPRI methods.

When the Std method is taken for generating the UniDist matrix, the parameter
t for the approximation range [µ − t ∗ σ, µ + t ∗ σ] is additionally set to 1, 2, and 3.
Including the UniDist matrix generated by MinMax, there are four UniDist matrices
generated by different methods or under different settings. Based on each UniDist
matrix, the UNIAPRI method is employed to mine U-POPSM patterns containing at
least 60 rows and 5 columns, and having α = 0.3. We set four p-value ranges which are
[1e−20,++), [1e−30, 1e−20), [1e−40, 1e−30) and [0, 1e−40), and call them significance
levels. If the p-value of a pattern falls within any range, we say that the pattern reaches
the corresponding significance level. Figure 8(a) shows the fractions of patterns that
are mined from different UniDist matrices and reach different significance levels. The
bar labeled “MinMax” in the figure corresponds to the statistics of the patterns mined
from the UniDist matrix generated by the MinMax method, and the bar labeled “±1σ”
corresponds to the statistics of the patterns mined from the UniDist matrix generated
by the Std method with t = 1. In all the series, the white color is used to show the frac-
tion of the most significant patterns whose p-values fall within the highest significance
level [0, 1e− 40).

Among the patterns mined under the settings “MinMax” and “±1σ”, about 30% of
the patterns have the p-values smaller than 1e− 40, which means that they reach the
highest significance level [0, 1e−40). In contrast, only 15% of the patterns mined under
the setting “±2σ” reach the same level, and no pattern mined under the setting “±3σ”
reaches this significance level. A possible explanation is that the approximation range
[µ − tσ, µ + tσ] with t ≥ 2 is too large, which covers not only the true replicates but
also the noisy ones. Under the uniform distribution model, both the true replicates
and the noisy ones are associated with equally large probability densities, and thus
the quality of mined patterns are affected due to the coverage of noisy replicates by
a larger approximation range. Although the quality of the patterns mined under the
setting “±1σ” and that of the patterns mined under the setting “MinMax” are very
similar, the fraction of patterns that are mined under the setting “±1σ” and reach the
highest significance level, i.e., 31.2%, is slightly larger than that of patterns that are
mined under “MinMax” and reach the same level, i.e., 29.9%. Besides, slightly larger
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Fig. 8. Comparison of matrix conversion methods

fraction of patterns mined under “MinMax” fall within the lower significance level
[1e − 30, 1e − 20). Thus, we generate the UniDist matrix by setting the approximation
range to [µ− σ, µ+ σ] in the subsequent experiments.

When the NORMAPRI method is adopted to mine N-POPSM patterns, we set the
approximation range of the cubic spline to [µ − t ∗ σ, µ + t ∗ σ] with t being equal to
the values in {1, 2, 3}. In addition, the cubic spline technique interpolates a normal
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distribution with q polynomials, where q is set to the values in {4, 6, 8, 10}. For different
combinations of t and q values, we adopt the NORMAPRI method to mine N-POPSM
patterns that contain at least 60 rows and 5 columns and satisfy the support threshold
α = 0.3. The statistics on the quality of the mined patterns are shown in Figure 8(b),
where the bar labeled “±1σ, q=4” corresponds to the results with the approximation
range [µ − σ, µ + σ] and four intervals in the spline approximation. Again, comparing
the three settings of the approximation range, a larger fraction of mined patterns reach
the highest significance level when the approximation range is [µ−σ, µ+σ]. The reason
is similar to that for the UniDist matrix: a larger approximation range is more likely
to cover many noisy replicates, which accordingly influences the quality of the mined
patterns. With the approximation range fixed, the setting of q does not influence the
quality of the mined patterns. For example, when the approximation range is set to [µ−
σ, µ+ σ], no matter what q value is, 32% of the patterns reach the highest significance
level, and 1% of the patterns reach the significance level of [1e− 30, 1e− 20). However,
a larger q implies that a normal distribution is interpolated with more polynomials,
which accordingly influences the efficiency of the NORMAPRI method. Therefore, we
choose [µ−σ, µ+σ] to be the approximation range for the NormDist matrix and always
set q to 4 in the experiments discussed in subsequent sections.

Comparing these two types of the probabilistic matrices, the quality of the N-POPSM
patterns mined from the NormDist matrix is less affected by the conversion methods
and the settings. For example, when the approximation range is [µ− σ, µ+ σ], the per-
centage of the U-POPSM and N-POPSM patterns that reach the highest significance
level are both around 30%. When the approximation range is [µ − 3σ, µ + 3σ], there
are still about 25% of the N-POPSM patterns reaching the highest significance level,
while no U-POPSM pattern reaches the same level. The reason is that, although a
larger approximation range may cover more noisy replicates in the NormDist matrix,
these noisy values are usually farther away from the mean of the range, and so they
are associated with very small probability densities. The influence of such noisy values
to the computation of probabilistic support is then limited, and the quality of mined
N-POPSM patterns can be well maintained. In the UniDist matrix, a larger approx-
imation range also covers more noisy replicates, which however are associated with
equally large probabilities as the true replicates. The inclusion of the noisy replicates
affects the accuracy of the probabilistic supports of rows w.r.t. orders, and accordingly
degrades the quality of mined U-POPSM patterns. Therefore, compared to the UniDist
matrix, the NormDist matrix well smoothes out the influence of noisy replicates to the
quality of mined patterns, and better models the noisy scientific data like the yeast
dataset we are using. However, by carefully choosing the conversion method as well
as the approximation range when generating the UniDist matrix, the quality of the
U-POPSM patterns can still be maintained.

6.4. Scalability of PROBAPRI

In this set of experiments, we use the synthetic datasets to study the efficiency of the
UNIAPRI and NORMAPRI methods w.r.t. the size of the input matrix. As both methods
can adopt either the SDP or the DDP technique for candidate verification, we compare
the TR-Time and SP-Time of each method using the two DP techniques. Following the
convention introduced in Table III, we denote the UNIAPRI method with the static
(or respectively the dynamic) DP technique by UNISDP (or respectively UNIDDP),
and denote the NORMAPRI method with the static (or respectively the dynamic) DP
technique by NORMSDP (or respectively NORMDDP).

First, we set the number of columns c to 15 and 20, vary the number of rows with
the values in {200, 400, 600, 800, 1000}, and adopt the Std method described in Section
6.1 to generate r-by-c UniDist matrices. The approximation range is set to [µ−σ, µ+σ].
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Fig. 9. Running time w.r.t. the size of a UniDist matrix

Then, the UNIAPRI method is adopted to mine U-POPSM patterns. The size threshold
rmin is set to 10%×r, and cmin is varied from 4 to 8 as the number of columns increases
from 10 to 30 in order to control the number of patterns. The support threshold α is
fixed to 0.3. Figures 9(a) and 9(b) show the TR-Time and SP-Time of UNISDP and
UNIDDP w.r.t. the number of rows in the input UniDist matrix. Then, we set the
number of rows r to 200 and 400, and generate the UniDist matrices by varying the
number of columns with the values in {10, 15, 20, 25, 30}. Figures 9(c) and 9(d) show the
TR-Time and SP-Time of UNISDP and UNIDDP w.r.t. the number of columns in the
input matrix.

From Figure 9(a), we find that both the UNISDP and the UNIDDP methods scale
well w.r.t. the number of rows in the UniDist matrix. Specifically, when the number
of columns c is fixed to 15 and the number of rows increases by 5 times, from 200 to
1000, the TR-time increases linearly, from 1.4 to 6.6 seconds for UNISDP and from 1.8
to 8.3 seconds for UNIDDP. The same trend is observed again in Figure 9(b), where
the SP-Time of the two methods is compared. Notably, UNISDP and UNIDDP are
very efficient in mining U-POPSM patterns, and both take less than 0.0015 seconds
for mining a pattern from a UniDist matrix having 1000 rows and 20 columns. In
comparison, these two methods are more affected by the number of columns in the
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Fig. 10. Running time w.r.t. the size of NormDist matrix

input matrix, as shown in Figures 9(c) and 9(d). The reason is that, an increase of the
number of columns results in an increase of the number of candidate orders during the
candidate generation step and, thus, more time is needed to generate and verify the
candidate orders.

Comparing UNISDP and UNIDDP, we find that UNISDP is slightly more efficient
than UNIDDP. The advantage of UNISDP is more apparent when the number of
columns in the matrix is smaller. The reason is that, the DP process needed for can-
didate verification is already very efficient for the UniDist matrix. Although the DDP
technique adopted by UNIDDP is designed to reduce the size of the DP table and
lower the time cost incurred by the DP process, dynamically updating the DP table
takes extra time. Therefore, not much time can be saved eventually. However, when
the number of columns in the input matrix is large enough, the DDP technique is ben-
eficial. For example, when r equals 200 and c equals 30, the TR-Time and SP-Time
of UNISDP are respectively 52.17 and 0.0039 seconds, while those of UNIDDP are
respectively 47.06 and 0.0035 seconds. Since the performance of these two versions
are comparable and both are efficient, we choose the DDP version of UNIAPRI in the
subsequent experiments.
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To study the scalability of the NORMAPRI method, we adopt the Std method to gen-
erate the NormDist matrix with settings t = 1 and q = 4. The number of rows r and
the number of columns c are varied in the same way as they are for generating the
UniDist matrix. When the N-POPSM patterns are mined, the size thresholds rmin is
set to 10% × r, cmin is varied from 4 to 8, and the support threshold α is fixed to 0.3.
Figure 10 shows the TR-Time and SP-Time of NORMSDP and NORMDDP w.r.t. the
size of the input NormDist matrix.

Similarly to the two versions of UNIAPRI, both NORMSDP and NORMDDP scale
well as the number of rows in the input matrix increases, and they are more affected by
the number of columns. Referring to Figures 10(a) and 10(b), we can see that, when the
number of rows increases from 200 to 1000, the TR-Time and SP-Time of NORMSDP
and NORMDDP all linearly increase by about 5 times. However, Figure 10(d) shows
that, as the number of columns increases from 10 to 30, the SP-Time of NORMSDP
increases by about 30 times while the SP-Time of NORMDDP increases by about 10
times. As the DP process in NORMAPRI is time-consuming, the adoption of the DDP
technique greatly improves the efficiency of mining N-POPSM patterns, and the ad-
vantage becomes more apparent when r or c gets larger. When c is 30, the TR-Time
of NORMDDP is 33% of the TR-Time of NORMSDP with r = 20 and is only 22% with
r = 40. The saving of the SP-Time is also up to 70%.

Note that, no matter which DP technique is taken in the UNIAPRI method, the
number of patterns mined from the same UniDist matrix is the same. However, due to
the computation error of cubic polynomial integral, the number of patterns mined by
NORMAPRI using different DP techniques is slightly different. The difference is less
than 0.3%, that is, the number of patterns differs by 3 for every 1000 patterns. Since
the difference is not significant, we adopt the more efficient NORMDDP in NORMAPRI
in the subsequent experiments.

6.5. Experiments on the Yeast Dataset
In this set of experiments, we use the yeast dataset to study the effectiveness of the
POPSM model for discovering significant patterns. We study the settings of the pa-
rameters, such as the size thresholds rmin and cmin, and the support threshold α. The
biological significance of the U-POPSM and N-POPSM patterns is compared with that
of the OPSMRM and OPSM patterns. The efficiency of the corresponding mining meth-
ods is also studied.

6.5.1. Influence of the size thresholds. For real datasets, it is difficult to determine proper
values for the two size thresholds rmin and cmin such that the patterns satisfying the
thresholds are all guaranteed to have good quality. Ben-Dor et al. brought forward
a heuristic solution to this problem [Ben-Dor et al. 2002]. Since patterns with larger
size are statistically less likely to exist by random in a data matrix, these statistically
significant patterns are more probable to reveal important knowledge hidden in the
matrix, and thus should also be biologically significant. Therefore, in order to guaran-
tee the quality of mined patterns, we prefer patterns with larger size. Suppose there
is a random real-valued matrix having 205 rows and 20 columns, which is the same
size as the yeast dataset. Since the number of possible orders of 3 columns is 3! = 6,
we should always be able to find an OPSM pattern with 3 columns and 205

6 ≈ 34 rows,
and so this pattern is of low statistical significance. To guarantee the quality of the
patterns mined from the yeast dataset, we set the size thresholds to be larger than 34
rows and 3 columns.

We study the influence of the size thresholds to the quality of the patterns by fixing
α to 0.3, and varying rmin with the values in {40, 50, 60, 70} and varying cmin with the
values in {4, 5, 6}. Due to space limit, we only present the results with rmin equal to
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Fig. 11. Influence of the size thresholds cmin and rmin

40 and 60. Similarly to the first set of experiments, we also set four significance levels.
Figure 11(a) shows the fraction of patterns that respectively reach each significance
level. The first bar “(40, 4), U-POPSM” corresponds to the distribution of the U-POPSM
patterns mined by UNIAPRI with rmin and cmin respectively set to 40 and 4. We can
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see that, when rmin is smaller than or equal to 50, for all the four pattern types, there
are around 40–90% of the mined patterns falling within the two lowest significance
levels. The quality of the mined patterns however improves substantially when rmin is
larger than or equal to 60. Especially when cmin is larger than or equal to 5, less than
1% of the U-POPSM and N-POPSM paterns, about 2% of the OPSMRM patterns, and
2.5% of the OPSM patterns fall within the two lowest significance levels. On the other
hand, the number of mined patterns decreases a lot when rmin and cmin get larger, as
shown in Figure 11(b). When rmin equals 60 and cmin equals 6, around 470 U-POPSM
and N-POPSM patterns have been mined, but only 11 OPSMRM patterns have been
mined. To achieve a good balance between pattern quality and pattern number, we
therefore respectively set rmin and cmin to 60 and 5 in the experiments.

6.5.2. Influence of the support threshold. As a larger probabilistic support (or fractional
support used by the OPSMRM model) value intuitively implies a better or more per-
suasive support of a row w.r.t. an order. When mining the POPSM or OPSMRM pat-
terns, a support threshold α is needed to exclude those rows whose support to a certain
order is too small to be meaningful. Similarly to the setting of the size thresholds, the
setting of α should ideally be determined by the noise level of the datasets. However,
such prior knowledge about the real datasets is usually not available. Therefore, we
empirically study the influence of the support threshold to the quality of mined pat-
terns.

We fix the size thresholds rmin and cmin to 60 and 5, and vary α from 0.1 to 0.5
for UNIAPRI, NORMAPRI, and the OPSMRM mining method. The OPSMRM mining
method is also employed for mining the OPSM patterns with α = 1. The statistics on
the biological significance of the patterns are shown in Figures 12(a) and 12(b). Fig-
ure 12(a) shows the fractions of patterns that reach the four significance level. For
all U-POPSM, N-POPSM, and OPSMRM patterns, the fraction of the most significant
patterns generally increases as α decreases, and the best result for each model is ob-
tained when α equals 0.2. With the same α value, the fractions of the most significant
U-POPSM and N-POPSM patterns are apparently larger than that of the most signifi-
cant OPSMRM patterns, and the fraction of such N-POPSM patterns is slightly larger
than that of the U-POPSM patterns. On the other hand, less than 0.06% of U-POPSM
and N-POPSM patterns fall within the lowest significance level, while about 10% of
OPSMRM patterns fall within this level. If we consider the absolute number of pat-
terns as shown in Figure 12(b), the advantage of the U-POPSM and N-POPSM models
becomes very clearly. When α is 0.2, 3112 U-POPSM patterns and 3004 N-POPSM
patterns reach the highest significance level, while only 915 OPSMRM patterns and
735 OPSM patterns reach the same level.

We observe that PROBAPRI mines a large fraction of the most significant POPSM
patterns but still keeps the fraction of the least significant ones small. This fact again
confirms the superiority of our probabilistic matrix representation compared to the
set-valued matrix representation. In the set-valued matrix, a small setting of α like
0.2 promotes the discovery of the most significant patterns. However, the noisy repli-
cates, which have an equally large probability as the true replicates, may result in
that uncorrelated rows also satisfy the small threshold and thus are included in many
patterns. The quality of these patterns are degraded, and the fraction of the least sig-
nificant patterns accordingly becomes larger. In contrast, when we convert the yeast
dataset to a NormDist matrix, noisy replicates that are usually far away from the
mean of the approximation range are associated with small probability densities, and
thus their effect to the computation of the probabilistic support is limited. As the prob-
abilistic support based on the NormDist matrix more accurately reflects the supports
of rows w.r.t. orders, the quality of mined N-POPSM patterns are well maintained. By
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Fig. 12. Distribution of the p-values of the patterns mined from the yeast data

carefully choosing the conversion method as well as the approximation range of the
UniDist matrix, the influence of noisy replicates can be eliminated and the quality of
mined U-POPSM pattern are still well controlled.

Let us illustrate the biological significance of mined POPSM patterns with a specific
case. A U-POPSM pattern is mined when α is 0.2, which contains 82 genes and gets
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Fig. 13. Running time w.r.t. the support threshold

the smallest p-value 3.99e − 61. All of the 82 genes in the pattern are annotated with
the same functional Gene Ontology2 (GO) term, and this pattern exactly covers all the
genes that are annotated with this functional GO term in the input data.

Next, we compare the efficiency of different mining methods. Figures 13(a) and 13(b)
respectively show the TR-Time and the SP-Time for mining the four types of patterns.
Referring to Figure 13(a), we can see that the TR-Time for mining U-POPSM, N-
POPSM, and OPSMRM patterns all decreases as α increases, since fewer patterns
are mined by each method. Because the number of patterns mined by each method
is different, we compare the efficiency in terms of the SP-Time, as shown in Figure
13(b), in order to gain better insight of scalability. The SP-Time of U-POPSM is much
shorter than that of OPSMRM for all α values. The SP-Time of N-POPSM is compara-
ble to that of OPSMRM when α is small, and is better controlled when α increases from
0.1 to 0.5. This set of results again demonstrates the superiority of the DDP technique
for improving the efficiency of the NORMAPRI method. Besides, the combination of the
CandTree and the DP process makes the candidate verification process more efficient.
Thus, the SP-Time of POPSM patterns can be better controlled.

From this set of experiments, we can see that, based on the converted UniDist and
NormDist matrices, the POPSM model better promotes the discovery of more signif-
icant patterns compared with the OPSMRM and OPSM models, in the sense that a
larger number and fraction of the most significant patterns are discovered. Comparing
the U-POPSM model and the N-POPSM model, the fraction of N-POPSM patterns that
reach the highest significance level is slightly larger than that of U-POPSM reaching
the same level, although the most significant patterns of both types are similar in
number.

6.6. Experiments on the Rat Dataset
We use another real biological dataset, i.e., the rat dataset, to further study the effec-
tiveness of the U-POPSM and N-POPSM models in identifying significant patterns.

We omit the study of the influence of the size thresholds for this dataset and simply
fix rmin and cmin to 50 and 4. The support threshold α is varied from 0.1 to 0.4. We
set four significance levels [1e − 3,++), [1e − 4, 1e − 3), [1e − 5, 1e − 4), and [0, 1e − 5).
Figures 14(a) and 14(b) show, respectively, the fraction and number of different types

2http://www.geneontology.org/
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Fig. 14. Distribution of the p-values of the patterns mined from the rat data

of patterns that reach each significance level. When the U-POPSM model or the N-
POPSM model is adopted, the fraction of the most significant patterns reaches the
maximum value when α equals 0.3, and when the OPSMRM model is adopted, the
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fraction of the most significant patterns reaches the maximum value when α equals
0.2. Under the best setting for each model, larger fractions of U-POPSM and N-POPSM
patterns reach the highest significance level compared to the OPSMRM and OPSM
patterns. In addition, the fraction of the U-POPSM patterns that fall within the lowest
significance level is the smallest among the four models. If the number of patterns that
reach the highest significance level is compared, both the U-POPSM and N-POPSM
models outperform the OPSMRM model for all α values as well.

6.7. Experiments on the RFID Dataset
In the last set of experiments, we use the RFID dataset to evaluate the capability of the
POPSM model in revealing the common subroutes of the users. Since the RFID dataset
is given as a UniDist matrix, we only study the effectiveness of the U-POPSM model.
We convert the UniDist matrix to a set-valued matrix by enumerating the timestamps
within each range. We also convert the UniDist matrix to a real-valued matrix by
taking the middle time point of each range. We set rmin and cmin to 12 and 9, and
mine U-POPSM, OPSMRM and OPSM patterns. Figure 15 shows the distribution of
the accuracy scores of the patterns. For a particular pattern, the larger its score is,
the more accurate it is at capturing the common subroute of the set of involved users.
When mining U-POPSM and OPSMRM patterns, we vary α from 0.7 to 0.9. In terms
of the fraction of patterns that fall into the highest score range [0.9, 1.0], both methods
achieve the best result when α equals 0.8. The reason may be that, a large setting of
α, say 0.8, would be too strict to tolerate intrinsic noise in RFID data, while setting
α with a smaller value would obscure the true traces of the users. From Figure 15,
we can see that, compared to the OPSMRM and OPSM patterns, a larger fraction of
U-POPSM patterns fall into the highest score range. Furthermore, the accuracy scores
of all the U-POPSM patterns are above 0.7, while more than 25% of the OPSMRM and
OPSM patterns have the accuracy scores below 0.7.
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7. CONCLUSIONS
In this paper, we study the problem of mining probabilistic OPSM patterns from un-
certain data matrices having continuous distributions. We consider two representa-
tive distributions, the uniform distribution and the normal distribution, and accord-
ingly formulate the uncertain data as the UniDist matrix and the NormDist matrix.
Compared to a set-valued matrix representation, our UniDist and NormDist matrix
representations better smooth out the influence of noise in real datasets. Based on
the UniDist and NormDist matrices, we propose a novel probabilistic OPSM (POPSM)
model. We define a new probabilistic support measure that evaluates the extent to
which a row supports an order. The POPSM model uses a backbone order to capture
a consensus trend, and all the rows in a POPSM pattern are required to support the
backbone order of the pattern with sufficiently large probabilistic support.

In order to mine POPSM patterns effectively and efficiently, we develop two new
POPSM mining methods: UNIAPRI for the UniDist matrix and NORMAPRI for the
NormDist matrix. In both UNIAPRI and NORMAPRI, a prefix-tree structure called
CandTree is designed to organize the intermediate patterns in a compact way. Two
novel dynamic programming techniques, the static DP and the dynamic DP, are also
exploited in our methods, and the DP computation process is interwoven with the
traversal of CandTree for efficient pattern verification.

We evaluate our POPSM mining approach on two real biological datasets, one
real RFID dataset, and several synthetic datasets. Our experiments on the biologi-
cal datasets show that, comparing with the counterpart OPSMRM model, the POPSM
model better captures the characteristics of the expression levels of biologically corre-
lated genes, and greatly promotes the discovery of patterns with high biological sig-
nificance. Through the experiments on the RFID data, the POPSM model is shown to
be capable of accuratly discovering users’ common subroutes from noisy trace data.
The experiments on the synthetic datasets demonstrate the efficiency of the UNIAPRI
method. In particular, the dynamic DP technique greatly improves the efficiency of the
NORMAPRI method.

Finally, it is worth noting that, while we study in depth two representative proba-
bilistic distributions of uncertain data in this work, the spline technique adopted by
NORMAPRI is flexible. By using appropriate spline interpolation, NORMAPRI can be
adapted to dealing with other probabilistic matrices that have more general continu-
ous distributions with high accuracy.
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