A Practitioner’s Guide to MXNet

Xingjian Shi

Hong Kong University of Science and Technology (HKUST)

HKUST CSE Seminar, March 31st, 2017
Outline

1 Introduction
 - Deep Learning Basics
 - MXNet Highlights

2 MXNet Basics
 - Getting Started
 - Low-level APIs
 - High-level APIs

3 Advanced Techniques
 - Write New Operators
 - Tricks to Debug the Program

4 Summary
Outline for section 1

1. **Introduction**
 - Deep Learning Basics
 - MXNet Highlights
 - MXNet Highlights

2. **MXNet Basics**
 - Getting Started
 - Low-level APIs
 - High-level APIs

3. **Advanced Techniques**
 - Write New Operators
 - Tricks to Debug the Program

4. **Summary**
Overview of Deep Learning

- **Key of Deep Learning**
 - Hierarchical Model Structure
 - End-to-end Model (Input \rightarrow Model \rightarrow Output)

 ![Figure 1: Example of a FNN](image1)
 ![Figure 2: Example of a RNN](image2)

- **State-of-the-art results in many areas:**
 - Object Detection
 - Machine Translation
 - Speech Synthesis
 -
Computational Challenges

- Models are becoming more and more complicated!

![Figure 3: The first version of GoogLeNet (Szegedy et al., 2015)](image)

- Datasets are becoming larger and larger!
 - ImageNet, MS-COCO, WMT...

- Nowadays we rely on Deep Learning Libraries
 - Theano, Caffe, MatConvNet, Torch, CNTK, TensorFlow and MXNet
 - All have their own advantages and disadvantages. None of them is the best!
MXNet Highlights – Popularity

- MXNet is becoming more and more popular!
- Stars: > 9000, Rank 5th
- Fork: > 3300, Rank 4th
- We’ve joined Apache Incubator.
Efficient

- Fast on single machine (C++ back-end)
- Support automatic parallelization
- Linear scaling w.r.t No. machines and No. GPUs

Figure 4: Scalability experiments on 16x AWS P2.16xlarges. 256 GPUs are used in total. CUDA 7.5 + CUDNN 5.1.
MXNet Highlights

MXNet Highlights – Portability

- Portable
 - Front-end in multiple languages (Common back-end)
 - Support multiple operating systems

Figure 5: Part of the languages that are supported.
MXNet Highlights – Flexibility

- Flexible
 - Support both imperative programming and declarative programming
 - Imperative Programming → Numpy, Matlab, Torch
 - Declarative Programming → Tensorflow, Theano, Caffe
 - Mix the flavor: “Mix-Net”

Example 1: Imperative Programming

```python
import mxnet.nd as nd
a = nd.ones((4, 4))
b = nd.ones((4, 4))
c = a + b
print(c.asnumpy())
```

Example 2: Declarative Programming

```python
import mxnet.sym as sym
import numpy as np
a = sym.Variable('a', shape=(4, 4))
b = sym.Variable('b', shape=(4, 4))
c = a + b
# Compile the executor
exe = c.simple_bind(ctx=mx.cpu())
# Run the executor
exe.forward(a=np.ones((4, 4)))
print(exe.outputs[0].asnumpy())
```
Imperative Programming V.S Declarative Programming

- Imperative Programming
 - Straight-forward. Easy to view the middle level results.
 - Example: L-BFGS, Beam Search...

- Declarative Programming
 - Easier to optimize.
 - After getting the computational graph (logic), we could apply rules to simplify the graph. We can also choose the most efficient implementation to do the real computation.

Example 3: Optimization on the graph–1
```python
import numpy as np
a = np.random((1000000,))
b = np.exp(a)
c = np.log(b)
d = np.exp(c)
print(d)
# Optimized
d = np.exp(a)
```

Example 4: Optimization on the graph–2
```python
import numpy as np
a = np.random((100, 1))
c = np.random((100, 100))
d = np.dot(a, a.T) + c
# We could use a single GER call.
```
Outline for section 2

1. Introduction
 - Deep Learning Basics
 - MXNet Highlights
 - MXNet Highlights

2. MXNet Basics
 - Getting Started
 - Low-level APIs
 - High-level APIs

3. Advanced Techniques
 - Write New Operators
 - Tricks to Debug the Program

4. Summary
Installation on Python

- Using pre-compiled packages
 - Linux, MacOS
 - `pip install mxnet` # CPU
 - `pip install mxnet-mkl` # CPU with MKL-DNN
 - `pip install mxnet-cu75` # GPU with CUDA 7.5
 - `pip install mxnet-cu80` # GPU with CUDA 8.0
 - Windows: will support soon

- Compile from source
 - Clone the latest version
 - `git clone https://github.com/dmlc/mxnet.git`
 - Need compiler that supports C++11
 - CUDA v8.0 + CUDNN v5.1 is the best combination
 - Use Make or CMake to compile
 - Install by running setup
 - `cd mxnet/python`
 - `python setup.py develop --user`
Get Started

Validate the installation

- Quick testing
  ```
  cd mxnet
  # GPU
  nosetests tests/python/gpu/test_operator_gpu.py
  # Only CPU
  nosetests tests/python/unittest/test_operator.py
  ```

- Import the package
  ```
  >>> import mxnet as mx
  ```

- Try the examples
  ```
  cd mxnet/example/image-classification
  python train_cifar10.py --gpus 0
  ```
Overview of Low-level APIs

- NDArray API
 - Imperative programming
- Symbol + Executor API
 - Declarative programming
- KVStore API
 - Key to distributed learning
mxnet.ndarray

Container similar to numpy.ndarray. Support multiple running contexts.

```python
>>> import mxnet as mx
>>> import mxnet.ndarray as nd
>>> x = nd.array([[1, 2, 3], [4, 5, 6]])
>>> x.asnumpy()
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]], dtype=float32)
>>> y = nd.array([[4, 5, 6], [1, 2, 3]], ctx=mx.gpu(0))
>>> z = nd.array([[1, 2, 1], [1, 2, 1]], ctx=mx.gpu(1))
>>> x[:] = y.copyto(mx.cpu())
>>> x.asnumpy()
array([[ 4.,  5.,  6.],
       [ 1.,  2.,  3.]], dtype=float32)
```

Example 5: First glance at NDArray

Need to use `x[:=` **to make sure that we’ve changed the content of** `x` **instead of creating a new variable.**
NDArray

Support most features (auto-broadcasting, axis) in Numpy

```python
>>> import mxnet as mx
>>> import mxnet.ndarray as nd
>>> x = nd.array([[1, 3, 2], [7, 2, 1]])
>>> y = nd.array([4, 5, 6])
>>> z = x + y
>>> z.asnumpy()
array([[5., 8., 8.],
       [11., 7., 7.]], dtype=float32)
>>> nd.argsort(z, axis=0).asnumpy()
array([[0., 1., 2.],
       [1., 2., 0.]], dtype=float32)
```

Example 6: Auto-broadcasting and axis support

- **All OPs will be asynchronous!** The engine will take care of the dependency and try to run them in parallel. We need synchronization before getting the results.
mxnet.symbol

Use symbol to construct the logic. We can suggest the shape of the variable, 0 indicates missing value.

```python
>>> import mxnet as mx
>>> a = mx.sym.Variable('a', shape=(3, 2))
>>> b = mx.sym.Variable('b', shape=(3, 0))
>>> c = 2 * a + b
>>> c.list_arguments()
['a', 'b']
>>> c.infer_shape()
[(3L, 2L), (3L, 2L)], [(3L, 2L)], []
>>> c.eval(a=nd.ones((3, 2)), b=nd.ones((3, 2)))[0].asnumpy()
array([[3.,  3.],
       [3.,  3.],
       [3.,  3.]], dtype=float32)
```

Example 7: Automatic shape inference + Eval
Symbol + Executor

- **Bind** NDArrays to a symbol to construct the **executor**, which is the main object for computation.

  ```python
  >>> a = mx.sym.Variable('a')
  >>> b = mx.sym.Variable('b')
  >>> c = 2 * a + b
  >>> exe = c.simple_bind(mx.cpu(), a=(2,), b=(2,))
  >>> exe.forward(is_train=True)
  >>> exe.backward(out_grads=nd.array([-1, 1]))
  >>> exe.grad_dict['a'].asnumpy()
  array([-2., 2.], dtype=float32)
  >>> exe.grad_dict['b'].asnumpy()
  array([-1., 1.], dtype=float32)
  ```

- We use Reverse-mode Automatic Differentiation. Also known as Back-propagation. Compute vector-Jacobian product.

 \[
 \frac{\partial g(f(x))}{\partial x} = \frac{\partial g(f(x))}{\partial f(x)} \frac{\partial f(x)}{\partial x}
 \]
We have symbols that are commonly used in neural networks.

```python
>>> data = mx.sym.Variable('data')
>>> conv1 = mx.sym.Convolution(data=data,
                              num_filter=16,
                              kernel=(3, 3),
                              name="conv1")
>>> fc1 = mx.sym.FullyConnected(data=conv1,
                              num_hidden=16,
                              name="fc1")

>>> fc1.list_arguments()
[ 'data', 'conv1_weight', 'conv1_bias',
  'fc1_weight', 'fc1_bias']
```

The parameters will be automatically created. We can also explicitly create the parameter symbols.
Symbol + Executor

>>> data = mx.sym.Variable('data')
>>> weight = mx.sym.Variable('weight')
>>> bias = mx.sym.Variable('bias')
>>> conv1 = mx.sym.Convolution(data=data,
 weight=weight,
 bias=bias,
 num_filter=16,
 kernel=(3, 3),
 name="conv1")

>>> conv1.list_arguments()
['data', 'weight', 'bias']
We could construct loss symbols by `make_loss`

```python
>>> data = mx.sym.Variable('data')
>>> label = mx.sym.Variable('label')
>>> loss = mx.sym.mean(mx.sym.softmax_cross_entropy(data=data, label=label))
>>> loss = mx.sym.make_loss(loss, name="cross_entropy")
```

We can group multiple symbols

```python
>>> data = mx.sym.Variable('data')
>>> target = mx.sym.Variable('target')
>>> l2 = mx.sym.mean(mx.sym.square(data - target))
>>> l2 = mx.sym.make_loss(l2, name="l2")
>>> out = mx.sym.Group([l2, data])
>>> out.list_outputs()
[ 'l2_output', 'data_output']
```

Same set of operations as in NDArray are supported!

Symbol API
Symbol + Executor

Straight-forward SGD with Low-level API

```python
>>> data = mx.sym.Variable('data')
>>> target = mx.sym.Variable('target')
>>> weight = mx.sym.Variable('weight')
>>> bias = mx.sym.Variable('bias')
>>> conv1 = mx.sym.Convolution(data=data,
                                weight=weight,
                                bias=bias,
                                num_filter=3,
                                kernel=(3, 3),
                                pad=(1, 1),
                                name="conv1")

>>> l2 = mx.sym.mean(mx.sym.square(conv1 - target))
>>> l2 = mx.sym.make_loss(l2, name="l2")
>>> exe = l2.simple_bind(ctx=mx.gpu(), data=(10, 3, 5, 5),
                        target=(10, 3, 5, 5))

>>> for i in range(10):
    exe.forward(is_train=True, data=..., target=...)
    exe.backward()
    exe.arg_dict['weight'] = lr * exe.grad_dict['weight']
    exe.arg_dict['bias'] = lr * exe.grad_dict['bias']
```
KVStore

- **mxnet.kvstore**
- Implementation of Parameter Server (PS)
- Pull, Push and Update
 - Example: Downpour SGD
 - Client pull the parameter from the server
 - Client compute the gradient
 - Client push the gradient to the server
 - Server will update the stored parameter once receiving gradient
- Use ‘kv.pull()’ and ‘kv.push()’ in MXNet
Overview of High-level APIs

- Low-level APIs are good if you want to implement some brand new algorithms. E.g., implement new distributed machine learning algorithms.
- Just some standard training/testing scheme?
- Use high-level API → `mx.mod.Module`
mxnet.module

First, use symbol API to create your model.

data = mx.sym.Variable('data')
fc1 = mx.sym.FullyConnected(data, name='fc1', num_hidden=128)
act1 = mx.sym.Activation(fc1, name='relu1', act_type='relu')
fc2 = mx.sym.FullyConnected(act1, name='fc2', num_hidden=10)
out = mx.sym.SoftmaxOutput(fc2, name='softmax')

Next, feed a symbol into Module.

create a module by given a Symbol
mod = mx.mod.Module(out)

Now you can use Module APIs.
Module

- **mxnet.module**

 First, use symbol API to create your model.

  ```python
  data=mx.sym.Variable('data')
  fc1=mx.sym.FullyConnected(data, name='fc1', num_hidden=128)
  act1=mx.sym.Activation(fc1, name='relu1', act_type='relu')
  fc2=mx.sym.FullyConnected(act1, name='fc2', num_hidden=10)
  out=mx.sym.SoftmaxOutput(fc2, name='softmax')
  ```

- Next, feed a symbol into **Module**.

- **Automatic data parallel with multiple GPUs in a single machine.**

  ```python
  # create a module by given a Symbol
  mod = mx.mod.Module(out, ctx=[mx.gpu(0), mx.gpu(1), ...])
  ```

- Now, you can use Module APIs.
Then, allocate memory by given input shapes and initialize the module:

```python
mod.bind(data_shapes=data.provide_data,
         label_shapes=data.provide_label)
# initialize parameters with the default initializer
mod.init_params()
```

Now, you can **train** and **predict**.

- Call high-level API
  ```python
  mod.fit(data, num_epoch=10, ...) # train
  mod.predict(new_data) # predict on new data
  ```

- Perform step-by-step computations
  ```python
  # forward on the provided data batch
  mod.forward(data_batch)
  # backward to calculate the gradients
  mod.backward()
  # update parameters using the default optimizer
  mod.update()
  ```
Introduction

High-level APIs

Standard Training/Testing Logic

Training

```python
sym = symbol_builder(ctx=[mx.gpu(0), mx.gpu(1), ...])
net = build_module(sym)
for i in range(TOTAL_TRIAN_BATCH):
    training_batch = draw_batch()  # data + label
    net.forward_backward(data_batch=training_batch)
    net.update()
    logging.info(...)  # Log the statistics
    if (i + 1) % SAVE_ITER == 0:
        net.save_checkpoint(prefix="model", epoch=i)
```

Testing

```python
net = mx.mod.Module.load(prefix="model", epoch=1000)
for i in range(TOTAL_TEST_BATCH):
    testing_batch = draw_batch()  # data
    net.forward(is_train=False, data_batch=testing_batch)
    outputs = net.get_outputs()
    loss += loss_function(outputs, label)
    logging.info(loss)  # Log the loss
```
CNN and RNN

- **CNN**
 Use the given symbols to construct the loss.

 Sample AlexNet

- **RNN**
 The key is to share the parameter symbols. Following is RNN-tanh.

  ```python
  weight = mx.sym.Variable('weight')
bias = mx.sym.Variable('bias')
state = mx.sym.zeros(shape=(0, 0))
for i in range(10):
    state = mx.sym.FullyConnected(
        data=mx.sym.Concat(data[i], state, num_args=2),
        weight=weight,
        bias=bias,
        num_hidden=100)
state = mx.sym.tanh(state)
  ```

 Link to RNN Cells in MXNet
Outline for section 3

1. Introduction
 - Deep Learning Basics
 - MXNet Highlights
 - MXNet Highlights

2. MXNet Basics
 - Getting Started
 - Low-level APIs
 - High-level APIs

3. Advanced Techniques
 - Write New Operators
 - Tricks to Debug the Program

4. Summary
Write New Operators

- Use **CustomOp** in the front-end language (i.e., Python)
 - Can be very fast (use mx.nd)
 - Can also be relatively slow (use numpy)
- Use **C++ (CUDA).**
 - Gain best performance
- Operator testing
 - Use functions in **mx.test_utils** to automatically check the correctness of the forward and backward pass
 - We support automatic gradient checker using central difference.

```python
from mxnet.test_utils import check_numeric_gradient
cHECK_NUMERIC_GRADIENT(YOUR_SYMBOL, location=INPUT_VALUES)
```
Use CustomOps to **view the mid-level result**
- Create some special ops that works like an identity mapping
- Use `asnumpy()` in the CustomOp to synchronize

```python
sym1 = ...  
# Insert our debugging OP
sym1 = custom_debug(sym1)
sym2 = ... sym1 ...
```

Visualize Gradient Statistics
- Gradient Norm, Uphill Steps, ...
- Can be implemented in MXNet using Imperative APIs
Outline for section 4

1. Introduction
 - Deep Learning Basics
 - MXNet Highlights
 - MXNet Highlights

2. MXNet Basics
 - Getting Started
 - Low-level APIs
 - High-level APIs

3. Advanced Techniques
 - Write New Operators
 - Tricks to Debug the Program

4. Summary
Summary

- MXNet is efficient, portable and flexible
- NDArray for imperative programming, Symbol + Executor for declarative programming, KVStore for distributed learning
- Module is used as a high level wrapper of the network
- CustomOp can be implemented via Python/C++ and can be used for debugging