
Continual Observation of Joins under Differential Privacy
WEI DONG, Carnegie Mellon University, USA

ZIJUN CHEN and QIYAO LUO, Hong Kong University of Science and Technology, China

ELAINE SHI, Carnegie Mellon University, USA

KE YI, Hong Kong University of Science and Technology, China

The problem of continual observation under differential privacy has been studied extensively in the literature.

However, all existing works, with the exception of [28, 50], have only studied the simple counting query and

its derivatives. Join queries, which are arguably the most important class of queries in relational databases,

have only been considered in [28, 50], but the solutions offered there have two limitations: First, they only

support a few specific graph pattern queries, which are special cases of joins. Second, they require hard

degree/frequency constraints on the graph/database instance, and the privatized query answers have errors

proportional to these constraints.

In this paper, we propose a new differentially private mechanism for continual observation of joins that

overcomes these two limitations. Our mechanism supports arbitrary joins and predicates, and do not require

any constraints to be given in advance, even over an infinite stream. More importantly, it yields an error that

is proportional to the actual maximum degree/frequencies in the graph/database instance at the current time

of observation. Such an instance-specific utility guarantee is much preferred for the continual observation

problem, where the database size and the query answer may change significantly over time.

CCSConcepts: • Information systems→Database query processing; • Security and privacy→Database
and storage security; • Theory of computation→ Theory of database privacy and security.

Additional Key Words and Phrases: Differential privacy; Join query; Continual observation

ACM Reference Format:
Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. 2024. Continual Observation of Joins under Differential

Privacy. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 128 (June 2024), 27 pages. https://doi.org/10.1145/

3654931

1 INTRODUCTION
Following the influential paper of Dwork et al. [23], a series of works [5, 8–10, 13–15, 17, 24, 28, 30,

31, 41, 47, 49, 53, 55] have extensively studied the problem of continual observation under differential
privacy. In this problem, we are given a query𝑄 and a possibly infinite stream I = (𝑒 (1) , 𝑒 (2) , . . .) of
tuples arriving over time (𝑒 (𝑡) is set to the dummy tuple ⊥ if no tuple arrives at time 𝑡). The goal is

to release the query answer 𝑄 (I(𝑡)) at each time step 𝑡 ∈ Z+ under differential privacy (DP), where
I(𝑡) = {𝑒 (1) , . . . , 𝑒 (𝑡) } is the database instance consisting of all tuples (not including dummy tuples)

that have arrived up until time 𝑡 . Little motivation is needed for this problem, which naturally

arises whenever one wishes to monitor private data that evolves over time.

Authors’ addresses: Wei Dong, wdong2@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, USA; Zijun Chen, zchendg@

cse.ust.hk; Qiyao Luo, qluoak@cse.ust.hk, Hong Kong University of Science and Technology, Hong Kong, China; Elaine

Shi, runting@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, USA; Ke Yi, yike@cse.ust.hk, Hong Kong University of

Science and Technology, Hong Kong, China.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/6-ART128

https://doi.org/10.1145/3654931

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

https://doi.org/10.1145/3654931
https://doi.org/10.1145/3654931
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654931

128:2 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Mechanism Ours [28, 50] Composition

Error level

at time 𝑡

General join

counting queries

poly
(
mf

(
I(𝑡)

)) Not

supported

Ω
(
𝑇

𝑛
2

)
Triangle

counting queries
𝑂̃

(
m̂f

)
Ω(𝑇 1.5) 𝑂̃

((
mf (I(𝑡))

)𝑛−1

)
𝑛-star

counting queries

𝑂̃

((
mf (I(𝑡))

)𝑛−1

)
𝑂̃

(
m̂f

𝑛−1)
Ω(𝑇 𝑛

2)

Table 1. Comparison between our work with prior works. Composition refers to the naïve baseline of using
advanced composition on top of known static join-counting schemes [19, 20]. 𝑇 is the time domain size, 𝑛 is
the number of relations in 𝑄 . mf (I(𝑡)) denotes the maximum frequency of any single attribute in instance I
at time 𝑡 and m̂f is an a-priori upper bound of that. Note that for graph pattern counting queries, m̂f = 𝐷 ,
while mf (I(𝑡)) is the actual maximum degree of the graph at time 𝑡 .

However, all past works in the continual setting, with the exception of the recent two [28, 50],

have only considered the simple counting query (i.e.,𝑄 (I) := |I|) [10, 23], and its derivatives such as

histograms [8, 9, 53], sum queries [5, 15, 33, 47, 55, 56], and linear queries [14, 49]. Most importantly,

all these queries have a bounded global sensitivity GS𝑄 , i.e., the query answer (at any particular

time) changes by at most GS𝑄 if the stream contains one more tuple, e.g., GS𝑄 = 1 for simple

counting. On the other hand, join (counting) queries, which are clearly highly useful, have not been

thoroughly studied. The main technical challenge is that joins have unbounded global sensitivity.

For example, consider a simple two-way join query of the form 𝑄 = |𝑅1 (𝐴) Z 𝑅2 (𝐴, 𝐵) |, i.e., we
want to join the tables 𝑅1 and 𝑅2 based on the attribute 𝐴, and count how many tuples are in

the joined table. Each tuple in the input stream is either of the form 𝑅1: (𝑎) or 𝑅2: (𝑎, 𝑏) where
the markers 𝑅1 and 𝑅2 denote which table the corresponding tuple belongs to. Suppose initially,

the input stream is I =
(
𝑅2: (𝑎1, 𝑏1), 𝑅2: (𝑎1, 𝑏2), . . . , 𝑅2: (𝑎1, 𝑏𝑇)

)
, where all tuples belong to 𝑅2. At

this moment, there is no join result, i.e., 𝑄 (I) = 0. If now a new tuple 𝑅1: (𝑎1) arrives, then 𝑄 (I)
suddenly becomes 𝑇 . The amount of change is 𝑇 , which can be unbounded as 𝑇 goes to infinity.

Fichtenberger et al. [28] and Song et al. [50] have studied the continual observation of joins

under differential privacy, among some other graph problems. However, their solution for joins

has two limitations: First, their mechanism relies on a query-specific method for calculating the

global sensitivity for a given query under the continual setting (see Section 3.4 for more details).

They only give the method for triangles and 𝑛-stars, which do not work for general graph pattern

counting queries. Second, and more importantly, they solve the GS𝑄 = ∞ issue by introducing a

hard, a priori degree constraint 𝐷 on the graph, thus making the global sensitivity bounded. For

example, GS𝑄 = 𝐷 for triangle counting, and GS𝑄 = 𝐷𝑛−1
for 𝑛-star counting. Consequently, their

mechanism has an error proportional to GS𝑄 for every time step. Additionally, another limitation

in their mechanism is that it only supports a finite time domain of a predefined length 𝑇 . The

reason is that they partition the time domain with a tree structure, where the height of the tree

must be predetermined so as to allocate the privacy budget to each level. On the other hand, our

mechanism supports an infinite time domain by adopting a growing tree structure, and we allocate

the privacy budget using a telescoping strategy [10] (see Section 3.4 for more details).

We can generalize their approach to the relational model, where the degree constraints become

frequency constraints. GS𝑄 is thus a function of the these frequency constraints. For example, let

m̂f denote an a-priori upper bound on the maximum frequency of any single attribute in any table.

For simplicity, we will use a single m̂f for all tables here, but our technical sections later will give

more refined bounds when m̂f differs across the tables. Then, for the 𝑛-line path join query of

the form 𝑄 =
��𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) Z . . . Z 𝑅𝑛 (𝐴𝑛, 𝐴𝑛+1)

��
, GS𝑄 can be as large as m̂f

𝑛−1

. For

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:3

a general 𝑛-way join query, the global sensitivity depends on the polymatroid bound [2] of the

boundary queries of the 𝑄 . When 𝑛 = 𝑂 (1), GS𝑄 is a polynomial function (denoted poly(m̂f)) in
the frequency constraint m̂f.

The main drawback of using these hard, a priori frequency constraints is that it is difficult

to predict the parameters in practice, especially when the stream can be unbounded. If set too

conservatively, a large error will be incurred; if set too small, the constraint can be easily violated.

Interestingly, we give an example (see Example 5.1) showing that naïvely clipping the database

using the given frequency constraints not only hurts accuracy but also violates DP.

Another line of work studies DP single-shot join counting queries for a static database. Although

these works [19, 20, 32] can remove the dependency on a-priori frequency constraints, their

techniques do not easily generalize to the continual setting. Specifically, running a single-shot

mechanism on each time step and naïvely applying the advanced composition theorem [26] results

in an error as large as Ω(𝑇𝑛/2), where 𝑛 is the number of relations involved in the query 𝑄 .

Our contributions. This paper proposes the first DP algorithm for general join counting queries

under continual observation with infinite time domain. Our algorithm supports arbitrary joins

(including self-joins) and predicates, which cover all graph pattern counting queries as special cases,

and does not require any constraints on the input stream. More importantly, our algorithm achieves

a time-dependent instance-specific error: the error at any time step 𝑡 depends only on the actual
maximum frequency of any attribute at time step 𝑡 , henceforth denoted mf (I(𝑡)). For example, for

the 𝑛-line path join query, the error at time 𝑡 is 𝑂̃
((

mf (I(𝑡))
)𝑛−1

)
, where the 𝑂̃ notation hides 𝜀 and

polylogarithmic factors. For more general queries where 𝑛 = 𝑂 (1), we achieve poly
(
mf (I(𝑡))

)
error

at time 𝑡 . Later in our technical sections, we will give a more refined bound on the error when the

actual mf differs across the tables. For specific queries such as the 2-line path counting and 𝑛-star

counting query, it can be further demonstrated that such an error is optimal [16]. The comparison

between our mechanism and prior works are shown in Table 1.

We evaluate the performance of our algorithms using seven real-world graph datasets and the

TPC-H benchmark. Our experiments show that for both graph queries and general join queries,

achieving such time-dependent instance-specific error significantly improves the accuracy of the

algorithm in comparison with previous approaches [28, 50] that make use of a priori frequency
constraints, even if they are set to be much smaller than 𝑇 . For example, for 4-star counting query

on a graph dataset with 𝑇 ≈ 10
7
tuples, we improve the the error by 10

14×, in comparison with

prior approaches [28, 50] where we set the a-priori frequency constraint to 𝑇 /1000.

Technical highlight. In achieving this goal, we have resolved two technical difficulties. First,

we design a mechanism to estimate the actual maximum frequency adaptively and in a privacy-

preserving fashion as the database grows. In doing so, we can get rid of all a priori constraints,
even over an infinite stream. Second, since our estimated maximum frequencies can be under-

approximating, using them directly to determine how much noise to add may violate the privacy

requirement. Therefore, we devise a new clipping mechanism so that the clipped database instance

always meets the constraints while preserving differential privacy, which allows for the further

application of the mechanism with frequency constraints. Given that our estimated maximum

frequencies change over time, a new clipping is invoked at each change. To handle an infinite

stream, we allocate the privacy budgets across these clippings in a telescoping manner. We have

built such a system prototype to support a wide range of SQL queries and graph pattern counting

queries.
1

1
Code is available at https://github.com/hkustDB/Dynamic-Join.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:4 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Paper organization. The rest of the paper is organized as follows. Section 2 and Section 3 review

related work and the necessary preliminaries. In Section 4, we show how to generalize the solution

of [28, 50] to arbitrary joins under some given frequency constraints. Section 5 presents our main

result: a new clipping mechanism and how to choose the clipping thresholds adaptively so as to

achieve an instance-specific utility guarantee. Section 6 and 7 discuss how to handle self-joins,

predicates, as well as some implementation details. Experimental results are presented in Section 8

before concluding the paper with some open problems.

2 RELATEDWORK
Answering queries in a relational database under DP has been extensively studied in the static

setting [3, 6, 16, 18–20, 22, 27, 32, 36, 42, 44, 46, 48, 51, 52]. There are two common DP policies

in the relational model: tuple-DP, which protects the privacy of individual tuples, and user-DP,

safeguarding users who may possess multiple tuples. Under tuple-DP, the problem can be trivially

solved by the Laplace mechanism adding only constant noise if the query does not contain joins.

Therefore, significant efforts have been devoted to joins. Most existing works [3, 42, 44, 46, 48]

can only handle restricted types of joins. [32] proposed the first mechanism to support arbitrary

joins, which are further improved by [19, 20]. Recently, query answering under user-DP has also

been studied, where we need additional noise to ensure a higher level privacy protection [6, 16, 18,

22, 27, 36, 52]. As an important special case of join queries, graph pattern counting queries under

DP [4, 12, 34, 35, 45, 57] has also been studied. Note that when the edges of the graph are considered

as a relation, tuple-DP and user-DP degenerate into edge-DP [4, 34, 45, 57] and node-DP [4, 12, 35],

respectively. For more details of answering relational queries under DP in the static setting, see the

survey [21].

Under continual observation, tuple-DP corresponds to event-DP, which protects the privacy of the

tuple at each time step. Research so far has mostly focused on event-DP and queries without joins.

Dwork et al. [23] and Chan et al. [10] initialized the studies by proposing the binary mechanism to

answer counting queries and [13, 15, 24, 30, 31, 41] have proposed techniques to reduce the error,

either by examining specific instances or by relaxing the privacy definition to (𝜀, 𝛿)-DP. Besides
the simple counting query, other queries such as sum [5, 15, 33, 47, 55, 56], histogram [8, 9, 53], and

linear queries [14, 49] have also been explored. For joins, as mentioned earlier, the only existing

work is [28, 50], which has studied some specific graph pattern counting queries. They generalize

the binary mechanism by assuming some a priori degree constraints. A recent work [17] initializes

the study of continual observation under user-DP, but it does not consider joins.

3 PRELIMINARIES
3.1 Notation
We first introduce the notation in the static setting. Let [𝑛] := {1, . . . , 𝑛}, and [𝑖, 𝑗] := {𝑖, . . . , 𝑗}.
Denote R to be the database schema. In this paper, we primarily focus on multi-way join counting

queries in the form of

𝑄 :=
��𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛)

��,
where each 𝑅𝑖 , 𝑖 ∈ [𝑛] is a relation in R, and x𝑖 denotes the set of variables/attributes of 𝑅𝑖 . For any
single variable 𝑥 , we use dom(𝑥) to denote the domain of 𝑥 . For a set of variables x = (𝑥1, . . . , 𝑥𝑘),
define dom(x) = dom(𝑥1) × · · · × dom(𝑥𝑘).
Let I be a database instance of R, and 𝑄 (I) the result of evaluating 𝑄 on I. For each relation

𝑅𝑖 ∈ R, the instance of 𝑅𝑖 in I is denoted by 𝑅𝑖 (I). For brevity, we use 𝐼𝑖 as a shorthand for 𝑅𝑖 (I).
Let 𝑁 =

∑
𝑖 |𝐼𝑖 |, which is the total instance size. In this paper, we follow the convention of data

complexity [1], i.e., the complexity is measured in the instance size 𝑁 while the query size (i.e.,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:5

𝑅!(𝐴, 𝐵)
𝑎! 𝑏!
𝑎! 𝑏"
𝑎! 𝑏#
𝑎" 𝑏!
𝑎" 𝑏"
𝑎# 𝑏#

𝑅"(𝐵, 𝐶)
𝑏! 𝑐!
𝑏! 𝑐"
𝑏" 𝑐!
𝑏" 𝑐"
𝑏# 𝑐!
𝑏# 𝑐"

𝑅#(𝐶, 𝐴)
𝑐! 𝑎!
𝑐! 𝑎"
𝑐! 𝑎#
𝑐" 𝑎!
𝑐" 𝑎"
𝑐" 𝑎#

freq 𝐼!, 𝑎! = 3
freq 𝐼!, 𝑎" = 2
freq 𝐼!, 𝑎# = 1
mf 𝐼!, 𝐴 = 3

freq 𝐼!, 𝑏! = 2
freq 𝐼!, 𝑏" = 2
freq 𝐼!, 𝑏# = 2
mf 𝐼!, 𝐵 = 2

freq 𝐼", 𝑏! = 2
freq 𝐼", 𝑏" = 2
freq 𝐼", 𝑏# = 2
mf 𝐼", 𝐵 = 2

freq 𝐼", 𝑐! = 3
freq 𝐼", 𝑐" = 3
mf 𝐼", 𝐶 = 3

freq 𝐼#, 𝑐! = 3
freq 𝐼#, 𝑐" = 3
mf 𝐼#, 𝐶 = 3

freq 𝐼#, 𝑎! = 2
freq 𝐼#, 𝑎" = 2
freq 𝐼#, 𝑎# = 2
mf 𝐼#, 𝐴 = 2

(𝑎!, 𝑏!) (𝑏!, 𝑐!) (𝑐!, 𝑎!) ⊥ (𝑎!, 𝑏") (𝑏!, 𝑐") (𝑐!, 𝑎") (𝑎!, 𝑏#) (𝑏", 𝑐!) (𝑐!, 𝑎#) …

𝐼!, 𝑁! = 6 𝐼", 𝑁" = 6 𝐼#, 𝑁# = 6

Static setting:

Dynamic setting:

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10 …

𝑄∆ 𝐈 = |𝐼! ⋈ 𝐼" ⋈ 𝐼# | = 12

𝑅!(𝐴, 𝐵)
𝑎! 𝑏!
𝑎! 𝑏"
𝑎! 𝑏#

𝑅"(𝐵, 𝐶)
𝑏! 𝑐!
𝑏! 𝑐"
𝑏" 𝑐!

𝑅#(𝐶, 𝐴)
𝑐! 𝑎!
𝑐! 𝑎"

𝐼!
% , 𝑁!

(%) = 3𝐈(%):

𝑄∆(𝐈(%)) = 2

𝐼"
% , 𝑁"

(%) = 3 𝐼#
% , 𝑁#

(%) = 2

Fig. 1. Example: triangle counting as a joint-counting query 𝑄▽ (I) =
��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴)

��.
the number of relations and number of variables) is taken as a constant. For any I and I′, we write
I ⊆ I′ if 𝐼𝑖 ⊆ 𝐼 ′𝑖 for every 𝑖 ∈ [𝑛].
For any 𝑖 ∈ [𝑛], any x′ ⊆ x𝑖 , and any 𝑎 ∈ dom(x′), let freq(𝐼𝑖 , 𝑎) be the number of times 𝑎

appears in attributes x′ in 𝐼𝑖 , i.e.,

freq(𝐼𝑖 , 𝑎) =
��{𝑒 ∈ 𝐼𝑖 | 𝜋x′𝑒 = 𝑎}|,

and the maximum frequency in attributes x′ in 𝐼𝑖 is

mf (𝐼𝑖 , x′) = max

𝑎∈dom(x′)
freq(𝐼𝑖 , 𝑎).

Example 3.1. The following is the classical triangle query:

𝑄▽ :=

���𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴)
���, (1)

which involves three distinct relations and attributes. Figure 1 shows a particular instance and the

values of freq and mf on this instance.

For counting the number of triangles in a graph, we can model all the edges as tuples in a single

relation Edge(src, dst), and rewrite the query using self-joins and variable renaming:���Edge(𝐴, 𝐵) Z Edge(𝐵,𝐶) Z Edge(𝐶,𝐴)
���.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:6 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Note that for counting some other patterns, predicates are needed to exclude degenerate cases, e.g.,

length-2 paths should be counted by the query���𝜎𝐴≠𝐶 (
Edge(𝐴, 𝐵) Z Edge(𝐵,𝐶)

)���.
For most parts of the paper, we focus on queries without self-joins and predicates, which will be

discussed in Section 6. □

Under continual observation, which we also call the dynamic setting, the database instance

becomes a possibly infinite stream of tuples I =
(
𝑅 (1) : 𝑒 (1) , 𝑅 (2) : 𝑒 (2) , . . .

)
, where tuple 𝑒 (𝑡) is added

to relation 𝑅 (𝑡) at 𝑡 . We set 𝑅 (𝑡) to be NULL and 𝑥 (𝑡) to the dummy tuple ⊥ if no tuple arrives at

time 𝑡 .

For any 𝑡1 ≤ 𝑡2 ∈ Z+, the database instance within the time interval [𝑡1, 𝑡2] is denoted as

I[𝑡1,𝑡2]
:=

(
𝐼
[𝑡1,𝑡2]
1

, . . . , 𝐼
[𝑡1,𝑡2]
𝑛

)
, where

𝐼
[𝑡1,𝑡2]
𝑖

:=
{
𝑒 (𝑡) : 𝑡1 ≤ 𝑡 ≤ 𝑡2, 𝑅

(𝑡) = 𝑅𝑖
}
.

When 𝑡1 = 1, we simplify the notation [𝑡1, 𝑡2] as (𝑡2) like I(𝑡) = I[1,𝑡] , 𝐼 (𝑡)
𝑖

= 𝐼
[1,𝑡]
𝑖

, etc. Specially,

define 𝐼
(0)
𝑖

= ∅ for each 𝑖 ∈ [𝑛].
In the dynamic setting, we wish to continually monitor the query answers, i.e., the query output

also becomes a stream Q(I) :=
(
𝑄 (I(1)), 𝑄 (I(2)), . . .

)
, and it is required that 𝑄 (I(𝑡)) should be

outputted at time 𝑡 . Figure 1 also shows an example in the dynamic setting.

3.2 Differential Privacy
Definition 3.2 (Differential privacy). For any 𝜀 > 0, a mechanismM : I → Y is 𝜀-differentially

private (DP) if for any neighboring instances I ∼ I′ ∈ I and any subset of outputs 𝑌 ⊆ Y,

Pr[M(I) ∈ 𝑌] ≤ 𝑒𝜀 · Pr[M(I′) ∈ 𝑌] .

The exact definition of the neighboring relationship ∼ depends on what information is to be

protected. In relational databases, two definitions have been adopted in the literature: tuple-DP
[3, 19, 20, 32, 42, 44, 46, 48] and user-DP [6, 16, 18, 27, 36, 52], which respectively generalize edge-

DP and node-DP for graph data. In this paper, we adopt the former, while leaving the latter as

an interesting open problem. Under tuple-DP, two instances I and I′ are neighbors if one can

be obtained from the other by inserting/deleting one tuple from some relation. More formally,

define the distance between two relation instances 𝐼𝑖 and 𝐼 ′𝑖 as 𝑑 (𝐼𝑖 , 𝐼 ′𝑖) := |𝐼𝑖 − 𝐼 ′𝑖 | + |𝐼 ′𝑖 − 𝐼𝑖 |, and
for two database instances I and I′, 𝑑 (I, I′) :=

∑
𝑖∈[𝑛] 𝑑 (𝐼𝑖 , 𝐼 ′𝑖). In the dynamic setting, we have

𝑑 (I, I′) :=
∑

𝑡 (|{𝑒 (𝑡) } − {𝑒′(𝑡) }| + |{𝑒′(𝑡) } − {𝑒 (𝑡) }|) (set {⊥} = ∅), i.e., it is the minimum number of

insertions/deletions needed to convert one stream of tuples to the other. For both scenarios, I and
I′ are neighboring instances if 𝑑 (I, I′) = 1.

Note that, in the dynamic setting, the output ofM consists of all the (possibly infinitely many)

privatized query answers 𝑄 (I(𝑡)), and they must jointly satisfy Definition 3.2.

The following essential properties of DP will be useful:

Lemma 3.3 (Post Processing [26]). IfM : I → Y satisfies 𝜀-DP andM′ : Y → Z is any
randomized mechanism, thenM′

(
M(I)

)
satisfies 𝜀-DP.

Lemma 3.4 (Basic Composition Theorem [26]). IfM is an adaptive composition of differentially
private mechanismsM1, . . . ,M𝑘 , where eachM𝑖 satisfies 𝜀-DP, thenM satisfies (𝑘𝜀)-DP.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:7

Algorithm 1: SVT.

Input: 𝜂, 𝜀, 𝑓1 (I), 𝑓2 (I), . . .
1 𝜂 ← 𝜂 + Lap(2/𝜀);
2 for 𝑘 ← 1, 2, . . . do
3 ˜𝑓𝑘 (I) ← 𝑓𝑘 (I) + Lap(4/𝜀);
4 if ˜𝑓𝑘 (I) > 𝜂 then
5 Break;

6 end
7 end
8 return 𝑘 ;

Lemma 3.5 (Group Privacy [26]). IfM is an 𝜀-DP mechanism when neighboring instances are
those with distance 1, thenM satisfies (𝜆𝜀)-DP when neighboring instances are defined as those with
distance less than or equal to 𝜆.

3.3 DP Mechanisms in the Static Setting
In the static setting, the most commonly used DP mechanism is the Laplace Mechanism. We describe

its 𝑑-dimensional version here. Given any query Q : I → R𝑑 , its global sensitivity is defined as

GSQ = maxI∼I′

Q(I) − Q(I′)

1
.

Lemma 3.6 (Laplace Mechanism). Given Q : I → R𝑑 with global sensitivity GSQ, the mechanism
M(I) = Q(I) + 𝛾 preserves 𝜀-DP, where 𝛾 is a 𝑑-dimensional vector where each entry is independently
drawn from the Laplace distribution Lap(GSQ/𝜀).

The utility analysis of the Laplace mechanism makes use of the following concentration property

of the Laplace distribution:

Lemma 3.7 ([10]). Suppose𝛾1, 𝛾2, . . . , 𝛾𝑘 are independent random variables, where each𝛾𝑖 ∼ Lap(𝑏𝑖).
Then for any 𝛽 > 0,

Pr


�����∑︁
𝑖

𝛾𝑖

����� ≥ √︄
8

∑︁
𝑖

𝑏2

𝑖
· log

2

𝛽

 ≤ 𝛽.

Another useful tool is the Sparse Vector Technique (SVT) [25]. Given a threshold 𝜂 and a (possibly

infinite) sequence of 1-dimensional queries, 𝑓1, 𝑓2, . . . , where each has global sensitivity 1, SVT

(described in Algorithm 1) returns the first 𝑘 such that 𝑓𝑘 (I) ≥ 𝜂. Due to the noise, SVT cannot

return such an 𝑘 exactly, but somewhere not too faraway. The formal utility guarantee of SVT is as

follows.

Lemma 3.8 ([17]). Given any 𝜀 > 0, SVT satisfies 𝜀-DP and returns a 𝑘 such that with probability at
least 1 − 𝛽 , 𝑓𝑘 (I) > 𝜂 − 6

𝜀
log(2/𝛽) − 8

𝜀
log(𝑘 + 1) and 𝑓𝑘 ′ (I) < 𝜂 + 8

𝜀
log(2/𝛽) + 6

𝜀
log(𝑘 ′ + 1) for all

𝑘 ′ < 𝑘 .

3.4 Binary Mechanism
A basic DP mechanism in the dynamic setting is the Binary Mechanism (BM) [10, 23]. Assume

for now that the stream has a finite length 𝑇 , which is a power of 2. The idea is to build a binary

hierarchical decomposition of the time domain [1,𝑇] that consists of log𝑇 + 1 levels. On level

ℓ = 0, 1, . . . , log𝑇 , the time domain is partitioned into 𝑇 /2ℓ canonical intervals, each of length 2
ℓ
:

[1, 2ℓ], [2ℓ + 1, 2 · 2ℓ], . . . , [𝑇 − 2
ℓ + 1,𝑇]. Let T be the set of all such canonical intervals. It is clear

that |T | = 2𝑇 − 1 and any interval [1, 𝑡] is the disjoint union of log 𝑡 canonical intervals. We use

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:8 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

R!: (𝑎!, 𝑏!) R": (𝑏!, 𝑐!) R#: (𝑐!, 𝑎!) NULL:⊥ R!: (𝑎!, 𝑏") R": (𝑏!, 𝑐") R#: (𝑐!, 𝑎") R!: (𝑎!, 𝑏#) R": (𝑏", 𝑐!) R#: (𝑐!, 𝑎#) …

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10 …

Level 0: 𝜀! =
"#
$$%&

Level 1: 𝜀% =
"#
&$%&

Level 2: 𝜀$ =
"#
'$%&

Level 3: 𝜀& =
"#
($%&

Δ𝑄∆
",$ (𝐈) Δ𝑄∆

%,& (𝐈) Δ𝑄∆
',((𝐈) Δ𝑄∆

),* (𝐈) Δ𝑄∆
+,", (𝐈)

Δ𝑄∆
",& (𝐈) Δ𝑄∆

',* (𝐈)

Δ𝑄∆
",* (𝐈)

&𝑄∆ 𝐈("&) = (Δ𝑄∆
",* 𝐈 + (Δ𝑄∆

+,", 𝐈

Δ𝑄∆
",* 𝐈 = 𝑄∆ 𝐈 * − 𝑄∆ 𝐈 , = 1

(Δ𝑄∆
",* 𝐈 = Δ𝑄∆

",* 𝐈 + Lap(5"/0 ⋅ GS1𝐐/(𝜀𝜃))
Δ𝑄∆

+,", 𝐈 = 𝑄∆ 𝐈 ", − 𝑄∆ 𝐈 * = 1
(Δ𝑄∆

+,", 𝐈 = Δ𝑄∆
+,", 𝐈 + Lap(3"/0 ⋅ GS1𝐐/(𝜀𝜃))

Fig. 2. A running example of the binary mechanism on 𝑄▽ (I) =
��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴)

��.
Algorithm 2: The Binary Mechanism (BM).

Input: I =
(
𝑅 (1) : 𝑒 (1) , 𝑅 (2) : 𝑒 (2) , . . .

)
, 𝜀, GSΔQ, 𝜃

1 for 𝑡 ← 1, 2, . . . do
2 foreach canonical interval [𝑡1, 𝑡2] such that 𝑡2 = 𝑡 do
3 Δ̃𝑄

[𝑡1,𝑡2] (I) ← Δ𝑄 [𝑡1,𝑡2] (I)
4 +Lap

((
log(𝑡2 − 𝑡1 + 1) + 2

)
1+𝜃 · GSΔQ/(𝜀𝜃)

)
;

5 end
6 S ← BinaryForm([1, 𝑡]);
7 𝑄 (I(𝑡)) ← ∑

[𝑡1,𝑡2]∈S Δ̃𝑄
[𝑡1,𝑡2] (I);

8 end

BinaryForm([1, 𝑡]) to denote this set of canonical intervals that make up [1, 𝑡]. Thus, any query on

I(𝑡) can be answered by just adding up the query results on these canonical intervals.

Next, we release the privatized results of 𝑄 (I[𝑡1,𝑡2]) for all the canonical intervals [𝑡1, 𝑡2] ∈ T .
The observation is that the queries for the canonical intervals on the same level can be regarded as

a high-dimensional query. Specifically, the query on level ℓ is

Q(ℓ) (I) :=

(
𝑄

(
I[1,2

ℓ]), 𝑄 (
I[2

ℓ+1,2·2ℓ]), . . . , 𝑄 (
I[𝑇−2

ℓ+1,𝑇])) . (2)

For the simple counting query, Q(ℓ) has global sensitivity 1, since adding a tuple at any time step

adds 1 to only one canonical interval on each level. Therefore, we can divide the privacy budget by

log𝑇 + 1 via basic composition and then apply the Laplace mechanism on each level, i.e., masking

each 𝑄 (I[𝑡1,𝑡2]) for [𝑡1, 𝑡2] ∈ T with Laplace noise of scale (log𝑇 + 1)/𝜀. Then by Lemma 3.7, the

total noise for answering any 𝑄 (I(𝑡)) is 𝑂 (log
1.5𝑇 /𝜀) with constant probability.

The aforementioned idea works for any decomposable query 𝑄 , i.e., 𝑄 (I[𝑡1,𝑡3]) = 𝑄 (I[𝑡1,𝑡2]) +
𝑄 (I[𝑡2+1,𝑡3]) for any 𝑡1 ≤ 𝑡2 < 𝑡3. However, join queries are not decomposable. To support such

queries, the idea to consider delta queries [28]: Δ𝑄 [𝑡1,𝑡2] (I) := 𝑄 (I(𝑡2)) −𝑄 (I(𝑡1−1)). This way, any
𝑄 (I(𝑡)) is still the sum of 𝑂 (log 𝑡) delta queries and the binary mechanism still works, except that

the high-dimensional query on each level are now formed by the delta queries on this level, i.e., (2)

becomes

ΔQ(ℓ) (I) :=

(
Δ𝑄 [1,2

ℓ] (I),Δ𝑄 [2ℓ+1,2·2ℓ] (I), . . . ,Δ𝑄 [𝑇−2
ℓ+1,𝑇] (I)

)
. (3)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:9

Since ΔQ(ℓ) (I) exhibits the highest sensitivity at level 0, the only remaining issue is to bound

GSΔQ(0) , the global sensitivity of ΔQ(0) (I). For notational simplicity, we just write it as GSΔQ. Note

that for the simple counting query, 𝑄 (I[𝑡1,𝑡2]) and Δ𝑄 [𝑡1,𝑡2] (I) are identical, so GSΔQ = 1. However,

this might not be the case for other queries. [28] has derived GSΔQ for some specific graph pattern

counting queries; later, we will prove a more general result that holds for all monotonic and

supermodular queries, which include all join and graph pattern counting queries as special cases.

To accommodate an infinite stream, we build T incrementally, i.e., it only includes all canonical

intervals [𝑡1, 𝑡2] for 𝑡2 ≤ 𝑡 , where 𝑡 is the current time. Then instead of allocating the privacy

budget equally to all levels, a telescoping strategy [10] is adopted, where the privacy budget for the

𝑖-th level is 𝜀𝑖 := 𝜀𝜃

(𝑖+2)1+𝜃 , where 𝜃 > 0 is any small constant. The detailed algorithm is shown in

Algorithm 2 and a running example is given in Figure 2.

BM has the following utility guarantee:

Lemma 3.9 ([10]). Given any 𝜀, 𝜃 > 0, BM satisfies 𝜀-DP, and for any 𝛽 > 0 and any 𝑡 ∈ N, with
probability at least 1 − 𝛽 , it returns a 𝑄 (I𝑡) such that��𝑄 (I(𝑡)) −𝑄 (I(𝑡))�� =𝑂 (

1

𝜀𝜃
· GSΔQ · log

1.5+𝜃 𝑡 · log(1/𝛽)
)
.

It is worth mentioning that [10] has proposed another technique to handle an infinite stream

without incurring the extra 𝜃 term in utility. However, that solution only works for decomposable

queries.

Notation Meaning

R Database schema

𝑅1, . . . , 𝑅𝑛 Relation names

I, I′ Database instances

𝑒 (𝑡) Tuple coming at time 𝑡

𝐼1, . . . , 𝐼𝑛 Relation instances

I(𝑡) Prefix database instance I of time 𝑡

𝐼
(𝑡)
𝑖

Prefix relation instance 𝐼𝑖 of time 𝑡

mf (𝐼𝑖 , x′) Max-frequency of x′ in instance 𝐼𝑖

m̂f (𝑅𝑖 , x′) An predefined upper bound of m̂f (𝐼𝑖 , x′)
B𝑄,𝑖 Set of boundaries of 𝑅𝑖
𝑚𝑖 𝑚𝑖 = |B𝑄,𝑖 |

𝑚max 𝑚max = max𝑖𝑚𝑖

B𝑄 B𝑄 =
{
(𝑖, x) : x ∈ B𝑄,𝑖

}
Δ𝑄 [𝑡1,𝑡2] (I) Change of 𝑄 between time interval [𝑡1, 𝑡2]

GS𝑄 Global sensitivity of 𝑄

GSΔQ GS of

{
Δ𝑄 [1,1] (I),Δ𝑄 [2,2] (I), . . .

}
Table 2. Notation used in the paper.

4 THE GLOBAL SENSITIVITY OF JOINS
As seen above, to use the BM on any query𝑄 , it boils down to bounding GSΔQ, which can be further

shown to depend on GS𝑄 , the global sensitivity of 𝑄 in the static setting. Below, we first review

and clarify existing work in the static setting, and then extend these results to the dynamic setting.

4.1 The Static Setting
As mentioned, the global sensitivity of joins is unbounded. Thus, all prior work has restricted the

allowable instances with frequency constraints. Specifically, for every 𝑖 ∈ [𝑛] and every subset

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:10 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

of variables x ⊆ x𝑖 , a frequency upper bound m̂f (𝑅𝑖 , x) should be set a priori, and all allowable

instances I = {𝐼𝑖 }𝑖∈[𝑛] must satisfy mf (𝐼𝑖 , x) ≤ m̂f (𝑅𝑖 , x) for all 𝑖, x. Then, GS𝑄 can be bounded in

terms of these frequency constraints. For example, [32, 36] have derived the following bound on

GS𝑄▽ for the triangle query:

GS𝑄▽ ≤ max

(
m̂f (𝑅2, 𝐵) · m̂f (𝑅3, 𝐴), m̂f (𝑅1, 𝐵) · m̂f (𝑅3,𝐶), m̂f (𝑅2,𝐶) · m̂f (𝑅1, 𝐴)

)
. (4)

We observe that this bound is far from tight, and can improve it by borrowing two ideas from the

literature. First, [20] shows that GS𝑄 can be computed from the join size upper bounds of several

sub-queries. Consider again the triangle query. Since GS𝑄 is the maximum amount of change in

𝑄 if one tuple is added/removed from 𝑅1, 𝑅2, or 𝑅3. These changes are precisely captured by the

following sub-queries:

𝑄▽,1 :=

���(𝑎, 𝑏) Z 𝑅2 (𝑏,𝐶) Z 𝑅3 (𝐶, 𝑎)
���,

𝑄▽,2 :=

���𝑅1 (𝐴,𝑏) Z (𝑏, 𝑐) Z 𝑅3 (𝑐, 𝐴)
���,

𝑄▽,3 :=

���𝑅1 (𝑎, 𝐵) Z 𝑅2 (𝐵, 𝑐) Z 𝑅3 (𝑐, 𝑎)
���.

Subsequently, we have GS𝑄▽ ≤ maxI max

{
𝑄▽,1 (I), 𝑄▽,2 (I), 𝑄▽,3 (I)

}
.

More generally, given a query𝑄 , for each relation 𝑅𝑖 we define B𝑄,𝑖 as the boundary of 𝑅𝑖 , which

comprises of the variables that 𝑅𝑖 shares with another relation 𝑅 𝑗 for 𝑗 ∈ [𝑛], i.e.,
B𝑄,𝑖 := {x𝑖 ∩ x𝑗 : 𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖, x𝑖 ∩ x𝑗 ≠ ∅}.

Let𝑚𝑖 = |B𝑄,𝑖 |,𝑚 =
∑

𝑖𝑚𝑖 , and𝑚max = max𝑖𝑚𝑖 . Furthermore, define

B𝑄 :=
{
(𝑖, x) : 𝑖 ∈ [𝑛], x ∈ B𝑄,𝑖

}
.

For example, on the triangle query, we have B𝑄,1 =
{
{𝐴}, {𝐵}

}
, B𝑄,2 =

{
{𝐵}, {𝐶}

}
, B𝑄,3 ={

{𝐶}, {𝐴}
}
, B𝑄 =

{(
1, {𝐴}

)
,
(
1, {𝐵}

)
,

(
2, {𝐵}

)
,
(
2, {𝐶}

)
,
(
3, {𝐶}

)
,
(
3, {𝐴}

)}
, and 𝑚1 = 𝑚2 = 𝑚3 =

2,𝑚 = 6,𝑚max = 2.

Let 𝑄𝑖 be the sub-query of 𝑄 where all variables in B𝑄,𝑖 are set to constants (like 𝑄▽,1, 𝑄▽,2, and

𝑄▽,3 shown above). Then we can bound GS𝑄 as

GS𝑄 ≤ max

𝑖∈[𝑛]
max

I
𝑄𝑖 (I). (5)

It now remains to bound eachmaxI𝑄𝑖 (I) under the given frequency constraints
{
m̂f (𝑅𝑖 , x)

}
(𝑖,x) ∈B𝑄 .

We observe that this is precisely the problem studied in [2, 29], for which the best efficiently com-

putable join size upper bound is the polymatroid bound. Plugging the polymatroid bound into (5)

then yields a bound on GS𝑄 , which is a function of

{
m̂f (𝑅𝑖 , x)

}
(𝑖,x) ∈B𝑄 . The polymatroid bound in

its full generality is complicated; instead, we have derived GS𝑄

({
m̂f (𝑅𝑖 , x)

}
(𝑖,x) ∈B𝑄

)
for several

common queries in Table 3. These bounds are much tighter than the previous bounds [32, 36]. For

example, for the triangle query and suppose all the frequency constraints are equal, then the bound

in Table 3 is quadratically smaller than the previous bound in (4). In the sequel, we often omit the

subscript (𝑖, x) ∈ B𝑄 for notational simplicity.

4.2 The Dynamic Setting
Moving forward to the dynamic setting, we need to bound the global sensitivity of the delta queries

ΔQ. Earlier work [28] has considered this problem for several specific graph pattern counting

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:11

Query GS𝑄

({
m̂f (𝑅𝑖 , x)

}
(𝑖,x) ∈B𝑄

)��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶)
��

max

(
m̂f (𝑅1, 𝐵), m̂f (𝑅2, 𝐵)

)��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶, 𝐷)
��

max

(
m̂f (𝑅2, 𝐵) · m̂f (𝑅3,𝐶), m̂f (𝑅1, 𝐵) · m̂f (𝑅3,𝐶), m̂f (𝑅1, 𝐵) · m̂f (𝑅2,𝐶)

)
��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴)

�� max

(
min

(
m̂f (𝑅2, 𝐵), m̂f (𝑅3, 𝐴)

)
,min

(
m̂f (𝑅1, 𝐵), m̂f (𝑅3,𝐶)

)
,

min

(
m̂f (𝑅2,𝐶), m̂f (𝑅1, 𝐴)

))
��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶)
Z 𝑅3 (𝐶, 𝐷) Z 𝑅4 (𝐷,𝐴)

�� max

(
min

(
m̂f (𝑅2, 𝐵) · m̂f (𝑅3,𝐶), m̂f (𝑅3, 𝐷) · m̂f (𝑅4, 𝐴), m̂f (𝑅2, 𝐵) · m̂f (𝑅4, 𝐴)

)
,

min

(
m̂f (𝑅3,𝐶) · m̂f (𝑅4, 𝐷), m̂f (𝑅1, 𝐵) · m̂f (𝑅4, 𝐴), m̂f (𝑅3,𝐶) · m̂f (𝑅1, 𝐵)

)
,

min

(
m̂f (𝑅4, 𝐷) · m̂f (𝑅1, 𝐴), m̂f (𝑅2,𝐶) · m̂f (𝑅1, 𝐵), m̂f (𝑅4, 𝐷) · m̂f (𝑅2,𝐶)

)
,

min

(
m̂f (𝑅1, 𝐴) · m̂f (𝑅2,𝐶), m̂f (𝑅3, 𝐷) · m̂f (𝑅2,𝐶), m̂f (𝑅3, 𝐷) · m̂f (𝑅1, 𝐴)

))��𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐴,𝐶) Z 𝑅3 (𝐴, 𝐷)
��

max

(
m̂f (𝑅2, 𝐴) · m̂f (𝑅3, 𝐴), m̂f (𝑅1, 𝐴) · m̂f (𝑅3, 𝐴), m̂f (𝑅1, 𝐴) · m̂f (𝑅2, 𝐴)

)
Table 3. Formulating GS𝑄

({
m̂f (𝑅𝑖 , x)

}
(𝑖,x) ∈B𝑄

)
with polymatroid bound for common join counting queries.

queries. Below we prove a more general result that GSΔQ ≤ GS𝑄 as long as 𝑄 is monotonic and
supermodular, i.e., for any I1 ⊆ I2, and any I3,

𝑄 (I1) ≤ 𝑄 (I1 ∪ I3), (Monotonic)

𝑄 (I1 ∪ I3) −𝑄 (I1) ≤ 𝑄 (I2 ∪ I3) −𝑄 (I2). (Supermodular)

Lemma 4.1. For any monotonic and supermodular 𝑄 , we have GSΔQ ≤ GS𝑄 .

Proof. Recall that GSΔQ is the global sensitivity of the following 𝑇 -dimensional query at level 0

(𝑇 can go to infinite):

ΔQ(0) (I) :=

(
Δ𝑄 [1,1] (I),Δ𝑄 [2,2] (I), . . . ,Δ𝑄 [𝑇,𝑇] (I)

)
.

Let I ∼ I′ be any two neighboring input streams. Without loss of generality, assume that only

difference between I and I′ happens at time 𝑡 ′ where 𝑒 (𝑡
′) ≠⊥ while 𝑒′ (𝑡

′) =⊥.
Initially, both instances I and I′ are empty, thus

𝑄 (I(0)) = 𝑄 (I′ (0)). (6)

By the definition GS𝑄 , we have ���𝑄 (I(𝑇)) −𝑄 (I′ (𝑇))��� ≤ GS𝑄 . (7)

Recalling𝑄 (I) = 𝑄 (I(0)) +∑𝑡 Δ𝑄
[𝑡,𝑡] (I) and𝑄 (I′) = 𝑄 (I′ (0)) +∑𝑡 Δ𝑄

[𝑡,𝑡] (I′) and integrating these
with (6) and (7), we have ����∑︁

𝑡

(
Δ𝑄 [𝑡,𝑡] (I) − Δ𝑄 [𝑡,𝑡] (I′)

)���� ≤ GS𝑄 . (8)

For any 𝑡 < 𝑡 ′, it is clear that Δ𝑄 [𝑡,𝑡] (I′) = Δ𝑄 [𝑡,𝑡] (I) and by invoking the monotonic property

of 𝑄 , we have

Δ𝑄 [𝑡
′,𝑡 ′] (I) ≥ 0 = Δ𝑄 [𝑡

′,𝑡 ′] (I′).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:12 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Moreover, for any 𝑡 > 𝑡 ′, the condition I′ (𝑡−1) ⊆ I(𝑡−1)
holds true and 𝑒 (𝑡) = 𝑒′ (𝑡) leading to

Δ𝑄 [𝑡,𝑡] (I) =𝑄
(
I(𝑡−1) ∪ {𝑒 (𝑡) }

)
−𝑄 (I(𝑡−1))

=𝑄
(
I(𝑡−1) ∪ {𝑒′ (𝑡) }

)
−𝑄 (I(𝑡−1))

≥𝑄
(
I′ (𝑡−1) ∪ {𝑒′ (𝑡) }

)
−𝑄 (I′ (𝑡−1))

=Δ𝑄 [𝑡,𝑡] (I′), (9)

where the inequality in the third line is by the supermodular property of 𝑄 .

Combining (8) and (9), we have∑︁
𝑡

���Δ𝑄 [𝑡,𝑡] (I) − Δ𝑄 [𝑡,𝑡] (I′)��� ≤ GS𝑄 ,

as desired. □

Note that any multi-way join query is both monotonic and supermodular. Monotonicity is trivial.

To see supermodularity, consider adding a tuple 𝑒 to I. The join size will increase by |𝑒 Z I|. When I
has more tuples, |𝑒 Z I| cannot be less. Thus, the BM and Lemma 3.9 immediately generalize to any

multi-way join query, with an error proportional to GS𝑄

({
m̂f (𝑅𝑖 , x)

})
. We note that [28] has also

derived GSΔQ for triangle counting query and 𝑛-star counting queries. Our general polymatroid

bound GS𝑄

({
m̂f (𝑅𝑖 , x)

})
degenerates into their bounds on these two specific queries.

5 DYNAMIC CLIPPING MECHANISM
Although Lemma 4.1 has enabled the binary mechanism to work for any multi-way join query, it

is far from satisfactory. First, it requires the frequency constraints

{
m̂f (𝑅𝑖 , x)

}
to be set a priori.

This is problematic, especially for an unbounded stream. In practice, it is also not easy to give a

reasonable constraint for every (𝑖, x) ∈ B𝑄 : The triangle query already requires 6 constraints, other
queries may require more. Second and more importantly, its error at every time step is proportional

to GS𝑄

({
m̂f (𝑅𝑖 , x)

})
, even when the current database is small and nowhere near the constraints.

Ideally, the error should be proportional to GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
, i.e., it only depends on the actual

maximum frequencies of the database at the current time 𝑡 . In this section, we present the main

result of this paper, a dynamic clipping mechanism that achieves this instance-specific error without

requiring any frequency constraints given in advance.

In the static setting, a prevalent technique for achieving an instance-specific error is the clipping
(or truncation) mechanism [16, 32, 36]. For a clipping threshold 𝜏 , all tuples with influence more

than 𝜏 are clipped. Then, the global sensitivity of the query is limited by 𝜏 (or some function of 𝜏)

and the Laplace mechanism is then invoked.

However, a straightforward extension of the clipping mechanism to the dynamic setting will

not work. Let I denote the clipped instance, and I
(𝑡)

and 𝐼
(𝑡)
𝑖 are prefix database instance and

prefix relation instance of time 𝑡 . Suppose we use a clipping threshold 𝜏 (𝑅𝑖 , x) for each (𝑖, x) ∈ B𝑄 ,
and clip an incoming tuple 𝑒 (𝑡) if freq

(
𝐼
(𝑡−1)
𝑖 , 𝜋x𝑒

(𝑡)
)
= 𝜏 (𝑅𝑖 , x) for some (𝑖, x) ∈ B𝑄 . The clipped

database instance will thus satisfy the frequency constraints{
freq(𝐼 (𝑡)𝑖 , x) ≤ 𝜏 (𝑅𝑖 , x)

}
for any times 𝑡 ∈ Z+, and it may appear that we can then use the BM with

GSΔQ = GS𝑄

({
𝜏 (𝑅𝑖 , x)

})
. However, the following example shows that this breaks privacy.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:13

Time 2 Time 5Time 1 Time 10Time 9

Time 12 Time 11

Time 6

Kept tuples Clipped tuples

Time 3Time 4 Time 7Time 8

Time 2 Time 5 Time 10Time 9

Time 12 Time 11

Time 6

Time 3Time 4 Time 7Time 8

Fig. 3. An example showing that the naïvely clipping mechanism breaks privacy.

Example 5.1. Consider the triangle query 𝑄▽ = |𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶,𝐴) |, where
dom(𝐴) = {𝑎1, 𝑎2, . . . , }, dom(𝐵) = {𝑏0, 𝑏1, 𝑏2, . . . , }, dom(𝐶) = {𝑐1, 𝑐2, . . . }. The two neighbor-

ing instances I and I′ are shown in Figure 3, where I has one less tuple at time 1: 𝑒 (1) =⊥. Suppose
𝜏 (𝑅𝑖 , x) = 1 for all (𝑖, x) ∈ B𝑄 , i.e., all the in-degrees and out-degrees are constrained to 1. Then

we see that on the clipped instances, at every time 𝑡 ∈ Z+, we have 𝑄▽ (I
(𝑡)) = ⌊𝑡/4⌋ while

𝑄▽ (I
′ (𝑡)) = 0. On the other hand, GS𝑄

({
𝜏 (𝑅𝑖 , x) = 1

})
= 1, but adding a noise of scale 1 cannot

mask this difference. □

Fundamentally, the key condition needed by the BM is that GS𝑄

({
𝜏 (𝑅𝑖 , x)

})
is the maximum

difference in the query result between any two neighboring instances both satisfying the frequency

constraints. However, while the clipped instance satisfies the frequency constraints after clipping,

two neighboring instances (before clipping) may not be neighbors anymore after the clipping, as

illustrated in the example above.

In the dynamic setting, another challenge is that we must dynamically select a clipping threshold

as the instance grows over time in order to achieve an error that depends on the current instance,

as opposed to the static setting where the threshold is only computed once and for all. Note that

the growing clipping threshold must be continuously selected in a differentially private fashion. In

the next two subsections, we show how to overcome these two challenges.

5.1 A Private Clipping Mechanism
In this subsection, we show how to clip a stream of tuples under a set of fixed clipping threshold{
𝜏 (𝑅𝑖 , x)

}
, so that two neighboring streams are still 𝑘-neighbors after the clipping with 𝑘 equal to

some constant. Then it would be safe to feed the clipped streams to the BM while satisfying DP.

The idea is, in addition to the clipped database instance, we also maintain the unclipped database.

When deciding if a tuple 𝑒 (𝑡) should be clipped, we check its frequencies in the unclipped database: If

freq

(
𝐼
(𝑡−1)
𝑖

, 𝜋x𝑒
(𝑡)

)
≥ 𝜏 (𝑅𝑖 , x) for some (𝑖, x) ∈ B𝑄 in the unclipped database, 𝑒 will be clipped. Note

that the condition uses ≥ instead of = as in the naïvely clipping mechanism, since the frequencies

may exceed the clipping threshold in the unclipped database. Applying our new clipping mechanism

on Example 5.1, the clipped streams are shown in Figure 4, which differ in 2 time steps (time 1 and

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:14 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Time 2 Time 5Time 1 Time 10Time 9

Time 12 Time 11

Time 6

Kept tuples Clipped tuples

Time 3Time 4 Time 7Time 8

Time 2 Time 5 Time 10Time 9

Time 12 Time 11

Time 6

Time 3Time 4 Time 7Time 8

Fig. 4. An example of the new clipping mechanism.

2), i.e., they are still distance-2 neighbors. This means that they can still be fed to BM, except with

a privacy budget of 𝜀/2 by the group privacy property of DP (Lemma 3.5).

It turns out that the general guarantee we can prove below is just slightly worse than this example

(recall that𝑚max = 2 for the triangle query). Here, we use Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
to denote the stream

clipped with thresholds

{
𝜏 (𝑅𝑖 , x)

}
. More formally, Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
=

(
𝑅
(1)

: 𝑒 (1) , 𝑅
(2)

: 𝑒 (2) , . . .
)
, where for each 𝑡 ∈ Z+, let 𝑅 (𝑡) = 𝑅𝑖′ , then

𝑅
(𝑡)

, 𝑒 (𝑡) =

{
𝑅 (𝑡) , 𝑒 (𝑡) ∀x ∈ B𝑄,𝑖′ , freq

(
𝐼
(𝑡−1)
𝑖′ , 𝜋x𝑒

(𝑡−1)
)
< 𝜏 (𝑅𝑖′ , x)

NULL,⊥ Otherwise.

Lemma 5.2. Given any I ∼ I′ and any
{
𝜏 (𝑅𝑖 , x)

}
,

𝑑

(
Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
,Clip

(
I′,

{
𝜏 (𝑅𝑖 , x)

}))
≤ 𝑚max + 1.

Proof. Let us consider two instances I and I′ such that I′ ⊆ I, with I and I′ differing by 𝑒 (𝑡
′)

with 𝑅 (𝑡
′) = 𝑅𝑖′ , i.e., 𝑒

(𝑡 ′) ∈ 𝐼 (𝑡
′)

𝑖′ , 𝑒′ (𝑡
′) =⊥.

Given that I′ ⊆ I, it follows that for any time 𝑡 ∈ Z+, any 𝑖 ∈ [𝑛], any x ⊆ x𝑖 , and any 𝑎 ∈ dom(x),
we always have freq(𝐼 ′ (𝑡)

𝑖
, 𝑎) ≤ freq(𝐼 (𝑡)

𝑖
, 𝑎). As a consequence, excluding the tuple 𝑒 (𝑡 ′) , the clipped

instance of I will not contain any additional tuples compared to the clipped instance of I′, i.e.,����Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
− Clip

(
I′,

{
𝜏 (𝑅𝑖 , x)

})���� ≤ 1. (10)

Furthermore, at any given time 𝑡 ∈ Z+, the tuple 𝑒 (𝑡
′)
will only affect freq

(
𝐼
(𝑡)
𝑖′ , 𝜋x𝑒

(𝑡 ′)
)
for

x ∈ B𝑄,𝑖′ , each of which can at most result in one additional tuple being clipped in I. Recalling the

definition that𝑚𝑖 = |B𝑄,𝑖 |, we have����Clip

(
I′,

{
𝜏 (𝑅𝑖 , x)

})
− Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})���� ≤ 𝑚𝑖 . (11)

Combining (10) and (11), we are able to deduce the conclusion. □

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:15

Algorithm 3: ClipDP.

Input: I =
(
𝑅 (1) : 𝑒 (1) , 𝑅 (2) : 𝑒 (2) , . . .

)
, 𝜀, 𝜃 ,

{
𝜏 (𝑅𝑖 , x)

}
1 Compute GS𝑄

({
𝜏 (𝑅𝑖 , x)

})
as Section 4.1;

2 Initialize BM

(
Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
, 𝜀
𝑚max+1

,GS𝑄

({
𝜏 (𝑅𝑖 , x)

}))
with Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
updated time to

time;

3 for 𝑡 ← 1, 2, . . . do
4 Update Clip

(
I,
{
𝜏 (𝑅𝑖 , x)

})
used in BM;

5 Answer 𝑄 (I(𝑡)) with BM;

6 end

The immediate consequence of this lemma is that, to satisfy 𝜀-DP, it is sufficient to feed the

clipped stream to BM with a privacy budget of 𝜀/(𝑚max + 1). We denote this mechanism as ClipDP

and the details are shown in Algorithm 3. Next, we analyze the utility. The error of ClipDP consists

of two parts: the noise introduced by BM and the bias due the clipping. Feeding the facts that𝑚max

is some small constant, and the clipped stream satisfies the frequency constraints

{
𝜏 (𝑅𝑖 , x)

}
, into

Lemma 3.9, we can get the noise term bounded by𝑂

(
1

𝜀𝜃
·GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
· log

1.5+𝜃 𝑡 · log(1/𝛽)
)
.

We bound the bias in terms of the number of tuples clipped:

ClipNum

(
I(𝑡) ,

{
𝜏 (𝑅𝑖 , x)

})
=

����I(𝑡) − Clip

(
I(𝑡) ,

{
𝜏 (𝑅𝑖 , x)

})����.
Since each clipped tuple can contribute at most GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
number of join results, we

obtain the following utility guarantee:

Theorem 5.3. Given any 𝜀 > 0, 𝜃 > 0, and any clipping thresholds
{
𝜏 (𝑅𝑖 , x)

}
, the mechanism

ClipDP(I, 𝜀, 𝜃, {𝜏 (𝑅𝑖 , x)}) satisfies 𝜀-DP. For any 𝑡 ∈ Z+, with probability at least 1 − 𝛽 , it returns a
𝑄 (I(𝑡)) such that���𝑄 (I(𝑡)) −𝑄 (I(𝑡))��� ≤ 𝑂

(
1

𝜀𝜃
· GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
· log

1.5+𝜃 𝑡 · log(1/𝛽)
)

+GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
· ClipNum

(
I(𝑡) ,

{
𝜏 (𝑅𝑖 , x)

})
.

5.2 Adaptive Clipping Thresholds
Both the error terms in Theorem 5.3 crucially depend on the clipping thresholds

{
𝜏 (𝑅𝑖 , x)

}
. Larger

values of

{
𝜏 (𝑅𝑖 , x)

}
will reduce the bias but increase the noise. The optimal choice of thresholds is{

𝜏 (𝑅𝑖 , x) = mf (𝐼 (𝑡)
𝑖

, x)
}
for each time 𝑡 , which will make the noise term 𝑂̃

(
GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

}))
,

as desired, and the second term 0. However, using these thresholds directly violates DP as they

depend on the actual instance.

To find privacy-preserving and near-optimal clipping thresholds, the idea is to start with a small

threshold 𝜏 (𝑅𝑖 , x) = 2 at the beginning. After excessive tuples have been clipped, we double the

value of 𝜏 (𝑅𝑖 , x) and (conceptually) rerun ClipDP with the new thresholds. To determine the right

moment to double 𝜏 (𝑅𝑖 , x) in a privacy-preserving manner, it is crucial first to establish a method

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:16 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Algorithm 4: DynamicClipDP.

Input: I =
(
𝑅 (1) : 𝑒 (1) , 𝑅 (2) : 𝑒 (2) , . . .

)
, 𝜀, 𝛽 , 𝜃

1 𝑘C ← 1; // Initialize the parameters for the first ClipDP

2 𝜀C ← 𝜀𝜃/22+𝜃
;

3 Let 𝜏 (𝑅𝑖 , x) ← 2 for each (𝑖, x) ∈ B𝑄 ;
4 Start ClipDP

(
I, 𝜀C, 𝜃,

{
𝜏 (𝑅𝑖 , x)

})
;

5 for (𝑖, x) ∈ B𝑄 do
6 𝑘S(𝑖,x) ← 1; // Initialize the parameters for the first SVT associated with 𝜏 (𝑅𝑖 , x)
7 𝜀S(𝑖,x) ← 𝜀𝜃/(𝑚max · 22+𝜃), 𝛽S(𝑖,x) ← 𝛽/(𝑚 · 23);
8 Initialize SVT(𝑖,x) ← SVT

(
0, 𝜀SVT(𝑖,x) , 𝑓1 (I), 𝑓2 (I), . . .

)
with 𝑓𝑡 (I)’s inputted later;

9 end
10 for 𝑡 ← 1, 2, . . . do
11 do
12 SVTStop← False; // Check whether any 𝜏 (𝑅𝑖 , x) needs to be doubled

13 for (𝑖, x) ∈ B𝑄 do
14 Feed 𝑓𝑡 (I) ← ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
− 8

𝜀S(𝑖,x)
log(2/𝛽S(𝑖,x)) −

6

𝜀S(𝑖,x)
log(𝑡 + 1) into

SVT(𝑖,x) ;
15 if SVT(𝑖,x) stops at 𝑡 then
16 𝜏 (𝑅𝑖 , x) ← 𝜏 (𝑅𝑖 , x) · 2; // Double the 𝜏 (𝑅𝑖 , x) and re-run the 𝑘S(𝑖,x) + 1th SVT

associated with 𝜏 (𝑅𝑖 , x)
17 𝑘S(𝑖,x) ← 𝑘S(𝑖,x) + 1;

18 𝜀S(𝑖,x) ← 𝜀𝜃/
(
2𝑚max · (𝑘S(𝑖,x) + 1)1+𝜃

)
, 𝛽S(𝑖,x) ← 𝛽/

(
2𝑚 · (𝑘S(𝑖,x) + 1)2

)
;

19 Re-run SVT(𝑖,x) ← SVT

(
0, 𝜀S(𝑖,x) , 𝑓𝑡 (I), 𝑓𝑡+1 (I), . . .

)
;

20 SVTStop← True;
21 break;
22 end
23 if SVTStop = True then
24 𝑘C ← 𝑘C + 1; // Re-run the ClipDP with updated

{
𝜏 (𝑅𝑖 , x)

}
(𝑖,x) ∈B𝑄

25 𝜀C ← 𝜀𝜃/
(
2 · (𝑘C + 1)1+𝜃

)
;

26 Start ClipDP

(
I, 𝜀C, 𝜃,

{
𝜏 (𝑅𝑖 , x)

})
;

27 while SVTStop = True;
28 Use ClipDP to answer 𝑄 (I(𝑡));
29 end

for quantifying the number of tuples clipped by the current 𝜏 (𝑅𝑖 , x). For any (𝑖, x) ∈ B𝑄 , let

ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
=

���{𝑒 ∈ 𝐼 (𝑡)𝑖
: freq

(
𝐼
(𝑡)
𝑖

, 𝜋x𝑒
)
> 𝜏 (𝑅𝑖 , x)}

���
be the number of tuples in 𝐼

(𝑡)
𝑖

that have been clipped due to 𝜏 (𝑅𝑖 , x). Because a tuple may exceed

multiple clipping thresholds, the total number of clipped tuples is bounded by their sum:

ClipNum

(
I(𝑡) ,

{
𝜏 (𝑅𝑖 , x)

})
≤

∑︁
(𝑖,x) ∈B𝑄

ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
. (12)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:17

The reason we look at ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
instead of the total number of clipped tuples is that

the former is entirely decided locally by 𝐼
(𝑡)
𝑖

. In particular, it has low sensitivity:

Lemma 5.4. Fixed any
{
𝜏 (𝑅𝑖 , x)

}
and consider any I ∼ I′ where the only difference happens in 𝑅𝑖′ .

For any 𝑡 ∈ Z+, any 𝑖 ≠ 𝑖′, and any x ∈ B𝑄,𝑖 we have

ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
= ClipNum

(
𝐼 ′𝑖
(𝑡)
, 𝜏 (𝑅𝑖 , x)

)
.

For any x ⊆ B𝑄,𝑖′ , we have����ClipNum

(
𝐼
(𝑡)
𝑖′ , 𝜏 (𝑅𝑖′ , x)

)
− ClipNum

(
𝐼 ′𝑖′
(𝑡)
, 𝜏 (𝑅𝑖′ , x)

)���� ≤ 1.

Given the preceding discussions, for each (𝑖, x) ∈ B𝑄 , we can employ SVT to pinpoint the time

to double 𝜏 (𝑅𝑖 , x), using the following sensitivity-1 queries

𝑓𝑡 (I) = ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
−

(
8

𝜀
log(2/𝛽) + 8

𝜀
log(𝑡 + 1)

)
for successive 𝑡 with the stopping threshold 𝜂 = 0. The negative term in 𝑓𝑡 (I) is from Lemma 3.8,

which ensures that when the SVT stops, we have ClipNum

(
𝐼
(𝑡)
𝑖

, 𝜏 (𝑅𝑖 , x)
)
> 0 with probability 1− 𝛽 .

This means that the current mf (𝐼 (𝑡)
𝑖

, x) has exceeded 𝜏 (𝑅𝑖 , x) so it is time to double 𝜏 (𝑅𝑖 , x).
As we will invoke both ClipDP and SVT multiple times, the privacy budget must be allocated

properly. First, we equally split the total privacy budget between them. For ClipDP, it is restarted

after each doubling of some 𝜏 (𝑅𝑖 , x). For an unbounded stream, this may happen for an unbounded

number of times, so we allocate the privacy budget using a telescoping series: 𝜀𝜃/
(
2(𝑘 + 1)1+𝜃

)
is assigned for the 𝑘th ClipDP. This ensures that all invocations of ClipDP satisfies 𝜀/2-DP. For
SVT, by Lemma 5.4, the difference between two neighboring streams can only affect one relation,

so each relation will get a privacy budget of 𝜀/2. Each relation has at most𝑚max constraints to

monitor using SVT, and there can be an unlimited number of SVTs for each constraint, so we

assign a privacy budget of 𝜀𝜃/
(
2𝑚max (𝑘 + 1)1+𝜃

)
to its 𝑘th SVT. The detailed algorithm is shown in

Algorithm 4, which we denote by DynamicClipDP.

The privacy and utility guarantees of DynamicClipDP are analyzed in the following theorem.

Theorem 5.5. For any 𝜀 > 0, DynamicClipDP preserves 𝜀-DP. For any 𝛽 > 0, 𝜃 > 0, any I, and
any 𝑡 ∈ Z+, with probability at least 1 − 𝛽 , it returns a 𝑄 (I(𝑡)) such that��𝑄 (I(𝑡)) −𝑄 (I(𝑡))�� ≤ 𝑂

(
1

𝜀𝜃
· GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
· log

1.5+𝜃 𝑡

∑︁
(𝑖,x) ∈B𝑄

(
log

1+𝜃
(
mf (𝐼 (𝑡)

𝑖
, x)

)
· log

(
log(mf (𝐼 (𝑡)

𝑖
, x))/𝛽

)))
.

Proof. The privacy guarantee follows from the preceding discussion. Below we analyze the

utility.

First, by Lemma 3.8, for any (𝑖, x) ∈ B𝑄 and any 𝑘 ∈ Z+, 𝑘th SVT(𝑖,x) stops at 𝑡
′
such that with

probability 1 − 𝛽/
(
2𝑚 · (𝑘 + 1)2

)
,

𝑓𝑡 ′ (𝐺) > −
𝑚max (𝑘 + 1)1+𝜃

𝜀𝜃

(
16 log

(
4𝑚(𝑘 + 1)2/𝛽

)
+ 12 log(𝑡 + 1)

)
,

𝑓𝑡 ′−1 (𝐺) <
𝑚max (𝑘 + 1)1+𝜃

𝜀𝜃

(
16 log

(
4𝑚(𝑘 + 1)2/𝛽

)
+ 12 log(𝑡 + 1)

)
,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:18 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

which imply

ClipNum

(
𝐼
(𝑡 ′)
𝑖

, 2𝑘
)
> 0, (13)

ClipNum

(
𝐼
(𝑡 ′−1)
𝑖

, 2𝑘
)
= 𝑂

(
𝑘1+𝜃

𝜀𝜃

(
log

(
𝑚𝑘/𝛽

)
+ log(𝑡)

))
(14)

Combining the probabilities across all values of 𝑘 and all (𝑖, x) ∈ B𝑄 , we have, with probability at

least 1 − 𝛽/2, (13) and (14) hold for all instances of SVT.

(13) means that for any time 𝑡 ∈ Z+, and any (𝑖, x) ∈ B𝑄 , the 𝜏 (𝑅𝑖 , x) used in BM at time 𝑡 , must

have

𝜏 (𝑅𝑖 , x) ≤ 2 ·mf

(
𝐼
(𝑡)
𝑖

, x
)
, (15)

which implies, it corresponds to 𝑘th instance of SVT(𝑖,x) such that

𝑘 ≤ log

(
mf (𝐼 (𝑡)

𝑖
, x)

)
+ 1. (16)

Now, let us analyze the error. For the bias, incorporating (12), (14), and (16), we have, for each

time 𝑡 ∈ Z+,

ClipNum

(
I(𝑡) ,

{
𝜏 (𝑅𝑖 , x)

})
= 𝑂

(
1

𝜀𝜃

∑︁
(𝑖,x) ∈B𝑄

(
log

1+𝜃
(
mf (𝐼 (𝑡)

𝑖
, x)

) (
log

(
log(mf (𝐼 (𝑡)

𝑖
, x))/𝛽

)
+ log 𝑡

)))
Further integrating this with the fact that each tuple in I(𝑡) contributes at most GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
to 𝑄 (I(𝑡)), we get the desired bias.

For the noise component, we draw from equation (16) that for any 𝑡 ∈ Z+, the 𝑘th ClipDP is

applied under the condition

𝑘 ≤
∑︁

(𝑖,x) ∈B𝑄

log

(
mf (𝐼 (𝑡)

𝑖
, x)

)
+𝑚. (17)

By combining (15) and (17), we have the noise bounded by

𝑂

(
1

𝜀𝜃
· GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
· log

1.5+𝜃 𝑡
∑︁

(𝑖,x) ∈B𝑄

log
1+𝜃

(
mf (𝐼 (𝑡)

𝑖
, x)

)
· log(1/𝛽)

)
.

□

Optimality. The algorithm DynamicClipDP attains an error of 𝑂̃

(
GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

}))
for each

time 𝑡 ∈ Z+ even over an unbounded stream. This matches (up to polylogarithmic factors) the

best-known result utilizing the maximum frequency information to calibrate the noise [32, 36] in

the static setting, which is equivalent to a finite stream of length 𝑡 and the query result is released

only once at the end.

In the static setting, an Ω

(
GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

}))
lower bound has been established for certain

queries [16, 19, 20]. For example, for the line-2 query |𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) |, it has been shown that

no DP mechanism can achieve an error lower than

Ω
(

max

(
mf (𝐼1, 𝐵),mf (𝐼2, 𝐵)

))
,

and for the 𝑛-star query |𝑅1 (𝐴, 𝐵1) Z 𝑅2 (𝐴, 𝐵2) Z · · · Z 𝑅𝑛 (𝐴, 𝐵𝑛) |, there is a lower bound of

Ω

(∏
𝑖

mf (𝐼𝑖 , 𝐴)
/

min

𝑖
mf (𝐼𝑖 , 𝐴)

)
.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:19

...

Timeline

Estimating clipping thresholds

Updating clipping
thresholds

Clipping

ClipDP

Adding Noise

Binary
Mechanism

Input
Clipping thresholds

Fig. 5. Implementation of our algorithm

Note that GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
is exactly equal to these two expressions in these two cases. However,

[19, 20] show for other queries like 𝑛-line path counting queries with 𝑛 ≥ 3, a better error can be

achieved in the static setting. How to achieve those errors in the dynamic setting is still an open

problem.

6 EXTENSIONS
Self-joins. For a query with self-joins, we can treat the multiple occurrences of a relation in the

query as copies of the same relation and then invoke our algorithm. Accordingly, every incoming

tuple will be treated as an insertion to each of the copies. Note that this has an impact on privacy,

since two neighboring instances now have a distance of ℓ , where ℓ is the maximum number of

occurrences of any relation in the query. Therefore, we need to run our mechanism with a privacy

budget of 𝜀/ℓ . The error will then also grow by a factor of ℓ accordingly.

Example 6.1. Consider counting the number of triangles in a directed graph, which can be written

as a self-join:

𝑄▽ =
��Edge(𝐴, 𝐵) Z Edge(𝐵,𝐶) Z Edge(𝐶,𝐴)

��. (18)

We first rewrite the query into the standard triangle query in (1) by instituting three distinct

relations 𝑅1, 𝑅2, and 𝑅3, all of which are copies of Edge. For each incoming tuple 𝑒 , we will insert 𝑒

into each of 𝑅1, 𝑅2, 𝑅3. We have ℓ = 3 for this query. □

Predicates. As shown in prior work [32, 36], the presence of predicates does not increase the

sensitivity of the query. Therefore, we can compute GS𝑄 of the query as before, while ignoring

the predicates. In addition, it is clear that the predicates do not affect the monotonicity and

supermodularity of the query. The only change is that, in line 3 of BM (Algorithm 2) when we

evaluate the true delta query Δ𝑄 [𝑡1,𝑡2] (I), we need to apply the predicates.

7 IMPLEMENTATION
Our algorithm is versatile and can be implemented on top of any SQL query engine, with architecture

illustrated in Figure 5. The algorithm consists of two main components. The first component is

to dynamically estimate the clipping thresholds

{
𝜏 (𝑅𝑖 , x)

}
. During this phase, |B𝑄 | instances of

SVT are executed concurrently where each instance is designated to detect the time step to double

the value for a unique (𝑖, x) ∈ B𝑄 . Subsequent to each doubling, the SVT is re-initialized with a

diminished privacy budget.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:20 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

The second part of the algorithm is designed to execute ClipDP utilizing the dynamically es-

timated clipping thresholds

{
𝜏 (𝑅𝑖 , x)

}
to answer the query at each time step. In this phase, we

initially clip the instance I to Ī and compute GS𝑄 using these thresholds

{
𝜏 (𝑅𝑖 , x)

}
. Subsequently,

both Ī and GS𝑄 are inputted into the binary mechanism. Within the binary mechanism, at each

time 𝑡 , Δ𝑄 [𝑡,𝑡] (Ī) is formulated as a multi-way join counting query. Assuming the tuple 𝑒 (𝑡) is from
the relation 𝑅𝑖 , then,

Δ𝑄 [𝑡,𝑡] (Ī) =
���𝑒 (𝑡) Z (

Z𝑗≠𝑖 𝐼
(𝑡−1)
𝑗

) ���.
In our implementation, we frame the above query as a SQL query. It is worth mentioning that

several techniques, as cited [7, 11, 54], can evaluate the above query in more efficient way. Following

this, we can conveniently obtain Δ𝑄 [𝑡1,𝑡2] (Ī) using these instances of Δ𝑄 [𝑡,𝑡] (Ī). Furthermore, as

argued in [10], we only need to maintain at most log(𝑡) number of Δ𝑄 [𝑡1,𝑡2] (Ī) at each time 𝑡 .

Importantly, every time there is an update in

{
𝜏 (𝑅𝑖 , x)

}
, a restart is required for this process.

Optimization. For conceptual simplicity, after doubling a 𝜏 (𝑅𝑖 , x) at time 𝑡 , we restart both the

SVT associated with 𝜏 (𝑅𝑖 , x) and the ClipDP mechanism from the beginning of the stream. However,

in the actual implementation, this can be avoided by utilizing the information gathered in preceding

steps. First, the new instance of SVT needs to track the number of tuples that ought to be clipped

at the current time, with the updated clipping threshold. Instead of rewinding the entire instance, a

more efficient strategy is to ascertain whether the tuples, previously clipped with the old threshold,

will be maintained under the new threshold. Second, during the re-instantiation of the binary

tree, we can compress the entire time frame [1, 𝑡] into a single time step, given that there is no

requirement to answer queries prior to time 𝑡 .

Computational Complexity and Space Usage. By maintaining all freq(𝐼 (𝑡)
𝑖

, 𝑎) > 0 for (𝑖, x) ∈ B
and 𝑎 ∈ dom(x), which requires at most linear space cost, we only require constant running time

to execute SVT’s and do the clipping at each time step. Furthermore, as corroborated in the proof

of Theorem 5.5, for any time 𝑡 ∈ Z+, we only need to store at most 𝑂̃ (1) clipped tuples, implying

a logarithmic running time for restarting an SVT. Given that there are at most 𝑂 (log(𝑡)) restarts
of SVT before reaching time 𝑡 , the amortized cost of these restarts becomes 𝑜 (1). In the binary

mechanism, aside from computing Δ𝑄 [𝑡,𝑡] (Ī), only a constant running time and log(𝑡) memory are

used at any given time 𝑡 . Every re-building process requires the computation of the query update,

influenced by some previously clipped tuples. Since each tuple is inserted into the database only

once, the amortized cost for any time 𝑡 aligns with Δ𝑄 [𝑡,𝑡] (𝐼), equivalent to the non-private setting.
Above all, in addition to computing Δ𝑄 [𝑡,𝑡] (Ī), which is needed even for non-private continual

observation, our system incurs a constant amortized computational overhead at each time step

with linear space usage.

8 EXPERIMENTS
In this section, we compared our mechanism in Section 5 with the following three baselines on

both graph pattern counting queries and general multi-way join counting queries in the dynamic

setting.

Composition: We employed advanced composition [26] to allocate the privacy budget 𝜀′, where 𝜀 =√︁
2𝑇 ln(1/𝛿)𝜀′+𝑇𝜀′ (𝑒𝜀′−1) to each I(𝑡) , on which we use the residual sensitivity (RS) mechanism [19,

20], the state-of-the-art algorithm for static multi-way join counting queries under DP.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:21

Dataset

Simulated-temporal networks. Real-temporal networks.

RoadnetUS DuWiki CaWiki Dblp Flickr StackOverflow
Number of edges 4.08 × 10

7
1.08 × 10

7
1.14 × 10

7
9.37 × 10

6
4.27 × 10

6
9.22 × 10

6

Maximum degree 16 167 442 122 76 158

Table 4. Network datasets used in the experiments.

TPC-H Queries

Graph Pattern Counting Queries

Fig. 6. The query structures.

Binary mechanism. This is the mechanism described in Section 4, which requires the frequency

constraints

{
m̂f (𝑅𝑖 , x)

}
. In our experiments, all datasets have a temporal domain ranging between

2 million and 50 million with a maximum frequency of up to 2
10
, so we set each m̂f (𝑅𝑖 , x) to 2

15
.

Clipping mechanism. This is the clipping mechanism discussed in Section 5.1 but with fixed

clipping thresholds

{
𝜏 (𝑅𝑖 , x)

}
. As there is no method prior to this work on how to determine the

clipping threshold, we randomly selected a value from {2, 4, 8, . . . , 215} and set all 𝜏 (𝑅𝑖 , x) to that

value.

8.1 Setup
Query. For graph pattern counting queries, we used five queries: length-2 path counting query

𝑄2− , length-3 path counting query 𝑄3− , triangle counting query 𝑄▽, 3-star counting query 𝑄3∗,
and 4-star counting query 𝑄4∗. Note that for all graph pattern counting queries, we use predicates

to avoid duplicate-counting. For example, we equip 𝑄▽ defined in (18) with A < B and A < B. For
multi-way join counting queries, we used two queries from the TPC-H benchmark, 𝑄7 and 𝑄9,

omitting the projection and group-by clauses. In addition, to avoid exceedingly small join results,

we excluded the predicates for𝑄9. For𝑄7, we maintain the predicate on shipdate within a four-year

time range. Furthermore, we also utilized the primary key information in the TPC-H schemas by

setting m̂f (C,CK), m̂f (S, SK), and m̂f (O,OK) to be 1.

Dataset. For graph pattern counting queries, we used 6 real world networks datasets categorized

into two classes based on the presence of timestamps on each edge, referred to as real-temporal
networks and simulated-temporal networks. For simulated-temporal networks, edges were allocated

a random order. We used three datasets. RoadnetUS corresponds to the road network of the

USA and was used in the 9th DIMACS Implementation Challenge [37]. CaWiki and DuWiki
characterize the hyperlink networks between Wikipedia articles written in the Catalan and Dutch

languages respectively [37]. For real-temporal network, we selected three datasets, retaining their

intrinsic temporal sequence to organize the edges. Dblp stands for the collaboration graph of

authors contributing to the DBLP computer science bibliography [40]. Flickr is the social network
of Flickr users [43]. StackOverflow is the interaction network of users from the Stack Exchange

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:22 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Dataset

Simulated-temporal data Real-temporal data

RoadnetUS DuWiki CaWiki Dblp Flickr StackOverflow
RE(%) RT(s) RE(%) RT(s) RE(%) RT(s) RE(%) RT(s) RE(%) RT(s) RE(%) RT(s)

𝑄2−

Ours 0.0065 6.79 0.172 2.55 0.254 2.98 0.119 3.11 0.34 1.17 0.19 1.91

BM 3.08 8.54 2.09 3.84 0.882 2.42 3.13 3.22 15.4 1.41 15.1 2.78

CM 0.107 7.03 3.54 3.47 14.8 3.49 1.95 3.34 2.21 1.38 2.89 3.17

RS 4.25 × 10
4

42.2 9.32 × 10
3

14.4 4.84 × 10
3

12.3 1.19 × 10
4

13.3 3.79 × 10
4

9.38 1.2 × 10
4

13.5

𝑄3−

Ours 0.145 17.3 3.7 6.82 7.6 5.55 3.61 11.2 29.7 6.6 3.74 12.2

BM 6.06 × 10
4

14.8 6.03 × 10
3

10.9 1.06 × 10
3

5.39 9.95 × 10
3

11.7 1.6 × 10
5

6.8 1.03 × 10
4

10.8

CM 212 18.7 54.5 10.7 52.4 5.74 69.5 12.3 1.37 × 10
3

6.91 63.2 10.9

RS 9.42 × 10
9

160 1.49 × 10
8

109 2.73 × 10
7

186 1.63 × 10
8

82.4 1.81 × 10
9

38.2 1.75 × 10
8

80.2

𝑄▽

Ours 1.37 12.4 4.41 6.92 7.63 11.4 1.14 9.01 30.1 6.78 0.318 12.2

BM 272 13.1 12.2 10.3 4.6 9.51 5.04 12.5 375 6.35 1.21 11

CM 10.7 14.3 11.3 13.7 23.9 7.46 3.71 13.3 32 7.17 5.18 12.2

RS 1.37 × 10
12

114 6.37 × 10
9

113 3.19 × 10
9

200 3.14 × 10
9

78.4 9.03 × 10
10

42.2 8.57 × 10
8

76

𝑄3∗

Ours 0.00302 8.23 0.377 2.07 0.554 1.15 0.263 1.69 2.16 1.75 0.337 1.9

BM 2.61 × 10
3

9.19 1.21 × 10
4

1.54 210 1.31 1.45 × 10
3

1.82 5.43 × 10
4

2.38 1.38 × 10
3

2.22

CM 11.6 8.21 33.1 1.51 34.3 1.22 33 1.95 149 2.01 34.8 1.94

RS 3.63 × 10
8

72.3 2.34 × 10
7

34.3 4.85 × 10
6

33 3.4 × 10
7

30.9 3.64 × 10
8

20.6 3.34 × 10
7

30.3

𝑄4∗

Ours 0.0262 12 1.89 3.02 2.83 2.1 1.15 2.45 12.6 2.57 1.36 3

BM 4.12 × 10
7

12.3 1.4 × 10
6

2.25 1.32 × 10
5

2.05 3.55 × 10
6

2.74 2.11 × 10
8

2.36 2.16 × 10
6

2.93

CM 2.46 × 10
4

9.77 1.07 × 10
3

2.28 104 1.62 2.56 × 10
3

2.58 9.43 × 10
4

2.79 2.31 × 10
3

2.82

RS 1.03 × 10
14

253 3.56 × 10
11

133 2.03 × 10
10

133 7.31 × 10
11

122 9.25 × 10
12

83.1 3.92 × 10
11

119

Table 5. Comparison among our mechanism, residual sensitivity with the advanced composition (RS), binary
mechanism (BM), and clipping mechanism (CM) on graph pattern counting queries (𝜀 = 4). RE and RT denote
relative error and running time and we report median of RE over all selected timestamps.

website, Stack Overflow [38]. All the aforementioned networks are undirected. Among them,

StackOverflow was collected from SNAP [39] while the remaining were from KONECT [37].

To avoid too much error, we have deleted the top 5% nodes with the highest degrees. Detailed

information regarding these datasets can be found in Table 4. For TPC-H data, we used the dataset

of scale 10, which encompasses about 75 million tuples. Given the absence of timestamps on these

tuples, we also arranged them with a random order with tuples in come before.

Experimental parameters. All experiments were conducted on a Linux server equipped with

a 24-core 48-thread 2.2GHz Intel Xeon CPU and 256GB of memory. We used the the absolute

difference between the actual result and the DP result as the error metric. Each experiment was

repeated 20 times,
2
with error being recorded every 5 × 10

5
time steps. For each selected time

step, we excluded the 20% largest and 20% smallest errors and reported the average error for the

remaining runs. We set the privacy budget at 𝜀 = 1, 4, 16, with the default value being 4. RS has an

input as 𝛿 , which is set to 10
−10

. Additionally, the failure probability 𝛽 = 0.1 and 𝜃 = 1. Furthermore,

since RS requires knowledge of the length of the time domain in advance, for the sake of fairness,

we employed the finite domain version of the binary mechanism. This version was also used to

construct both our mechanism and the clipping mechanism.

8.2 Graph Pattern CountingQueries
Utility and efficiency. The errors and running times of all mechanisms pertaining to graph pattern

counting queries are shown in Table 5. For each selected timestamp, we collected the relative error

and report their median. The results indicate a clear superiority of our mechanism in terms of the

utility: our mechanism consistently exhibits high utility, with a median relative error of under 10%

in all experiments except three queries over Flickr dataset, where the median of relative error

is at most 30%. That is because Flickr dataset is sparser thus has a smaller graph pattern count,

amplifying the relative error. In a comparative perspective, RS loses utility across all experiments,

2
For the clipping mechanism, the number of repetitions was increased to 100 since it has more randomness.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:23

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timestamp

107

109

1011

1013

1015

1017

Er
ro

r L
ev

el

BM
CM
RS

Query result
Ours

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timestamp

106

108

1010

1012

1014

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timestamp

107

109

1011

1013

(a) 𝑄3− on CaWiki.

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timestamp

108

1011

1014

1017

1020

1023

Er
ro

r L
ev

el

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timestamp

108

1011

1014

1017

1020

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timestamp

107

1010

1013

1016

1019

(b) 𝑄4∗ on DuWiki.

Fig. 7. Error levels vs time of various mechanisms with 𝜀 = 1, 4, 16

. The actual query result is also piloted to help see whether the mechanisms have utility.

aligning with our analysis that its error bears a polynomial dependency on the time domain size 𝑇 .

BM and CM always have much higher error level than our mechanism: our improvement in error

over BM and CM can be as large as 10
6
and 10

10
respectively. One exception happens for the 𝑄▽

over CaWiki dataset, where the ratio between GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
and GS𝑄

({
m̂f (𝑅𝑖 , x)

})
is only a

large constant in most time steps. Importantly, as query complexity increase, their performance gap

from our mechanism also increases, confirming our theoretical analysis. Additionally, in most cases,

especially when queries are complex or datasets are sparse, CM outperforms BM due to it removes

the error dependency on prior frequency constraints and can utilizes a smaller clipping thresholds

to reduce the noise. However, for simple query like 𝑄2− over dense datasets, the clipping could

lead to a significant bias. That also demonstrate the importance to estimate the actual maximum

frequency adaptvely to balance the bias and noise. In terms of the running time, BM, CM, and

our mechanism have similar running times, all of which are much smaller than RS, matching our

analysis that BM, CM, and our mechanism have a similar running time as non-private mechanism.

Error with Time. We also conducted experiments to evaluate how the error changes with the

time for various mechanisms with different 𝜀 = 1, 4, 16. Here, we plot the results for 𝑄3− on the

CaWiki dataset and𝑄4∗ on the DuWiki dataset in Figure 7. The results show that our mechanism,

consistently has a high utility except on the initial time steps, where the query result is very

small. Moreover, benefiting from the adaptive estimation of the actual maximum frequency, our

mechanism has the time-specific error. Contrarily, the errors of the other three mechanisms do

not have a strong correlation with the time. It matches our theoretical guarantee that we attain

the error proportional to GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
at each time while their errors depend on 𝑇 or some

predefined frequency constraints.

Comparison with binary mechanism under different frequency constraints. In the next set of exper-

iments, we compare our mechanism against the binary mechanism under different predefined fre-

quency constraints. We tested the query𝑄3∗ on dataset StackOverflowwith a frequency constraint

ranging from 2
10
to 2

15
. As mentioned in Section 8.1, 2

10
closely approximates the actual maximum

frequency of the dataset. The results are shown in Figure 8. The findings firstly demonstrate that the

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:24 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

Ours 210 211 212 213 214 215

Maximum Frequency

10 2

10 1

100

101

Re
la

tiv
e

Er
ro

r L
ev

el

Relative Error=1

Ours
BM

Ours 210 211 212 213 214 215

Maximum Frequency

10 2

10 1

100

101

Ours 210 211 212 213 214 215

Maximum Frequency

10 2

10 1

100

Fig. 8. Error levels of our mechanism and binary mechanism (BM) under different maximum frequency
ranging from 2

10 to 2
15 on 𝑄3∗ over StackOverflow with 𝜀 = 1, 4, 16.

.

Mechanism

Ours BM CM RS

RE(%) RT(s) RE(%) RT(s) RE(%) RT(s) RE(%) RT(s)

Result

𝑄7 21.2 3.19 1.18 × 10
5

2.92 192 2.27 1.68 × 10
17

392

𝑄9 18.1 1.32 1.43 × 10
5

3.19 142 1.49 1.98 × 10
17

848

Table 6. Comparison among our mechanism, residual sensitivity with the advanced composition (RS), binary
mechanism (BM), and clipping mechanism (CM) on TPC-H queries (𝜀 = 4). RE and RT denote relative error
and running time.

error of binary mechanism highly depends on the setting of frequency constraints. Moreover, our

mechanism consistently outperforms the binary mechanism, even when the frequency constraint

is nearly equivalent to the actual maximum frequency. That is because our mechanism achieves an

time-specific error, i.e., an error proportional to GS𝑄

({
mf (𝐼 (𝑡)

𝑖
, x)

})
at at each time 𝑡 . In contrast,

the binary mechanism maintains an error proportional to GS𝑄

({
mf (𝐼 (𝑇)

𝑖
, x)

})
across all time steps.

Although both mechanisms eventually reach a similar error level, our method performs better at

intermediate time steps. Given that we report the average error over all time steps, our mechanism

attains a significantly lower error. This outcome also reveals the advantage of adaptively estimating

maximum frequencies.

8.3 Multi-way Join CountingQueries
We also evaluated all mechanisms using two selected TPC-H queries, with the results presented in

Table 6. Similar to the graph pattern counting queries, our mechanism consistently outperforms

the others. However, compared with graph pattern counting queries, our improvement over BM

and CM is more modest. This is because as mentioned in Section 8.1, the primary key information

in the TPC-H schema will be used. Primary key constraints can be regarded as some strong prior

knowledge of frequency constraints thus BM and CM can benefit a lot. On the other hand, our

mechanism will not be affected since it automatically adapts to the actual maximum frequencies.

Above all, the errors of BM and CM will be reduced after considering primary key constraints but

our errors remain unchanged. As a result, our improvement over BM and CM decreases.

ACKNOWLEDGMENTS
This work has been supported by HKRGC under grant numbers 16205420, 16205422, and 16204223,

National Science Foundation under grant numbers 2128519 and 2044679, a grant from ONR, a

grant from the DARPA SIEVE program under a subcontract from SRI, a gift from Cisco, and a

Packard Fellowship. We would also like to thank the anonymous reviewers who have made valuable

suggestions on improving the presentation of the paper.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:25

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases. Vol. 8. Addison-Wesley Reading.

[2] Mahmoud Abo Khamis, Hung Q Ngo, and Dan Suciu. 2017. What do Shannon-type inequalities, submodular width, and

disjunctive datalog have to do with one another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems. 429–444.

[3] Myrto Arapinis, Diego Figueira, and Marco Gaboardi. 2016. Sensitivity of Counting Queries. In International Colloquium
on Automata, Languages, and Programming (ICALP).

[4] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2013. Differentially private data analysis of social

networks via restricted sensitivity. In Proceedings of the 4th conference on Innovations in Theoretical Computer Science.
87–96.

[5] Jean Bolot, Nadia Fawaz, Shanmugavelayutham Muthukrishnan, Aleksandar Nikolov, and Nina Taft. 2013. Private

decayed predicate sums on streams. In Proceedings of the 16th International Conference on Database Theory. 284–295.
[6] Kuntai Cai, Xiaokui Xiao, and Graham Cormode. 2023. Privlava: synthesizing relational data with foreign keys under

differential privacy. Proceedings of the ACM on Management of Data 1, 2 (2023), 1–25.
[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache

flink: Stream and batch processing in a single engine. The Bulletin of the Technical Committee on Data Engineering 38, 4

(2015).

[8] Adrian Rivera Cardoso and Ryan Rogers. 2022. Differentially private histograms under continual observation: Streaming

selection into the unknown. In International Conference on Artificial Intelligence and Statistics. PMLR, 2397–2419.

[9] T-H Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. 2012. Differentially private continual monitoring of heavy

hitters from distributed streams. In International Symposium on Privacy Enhancing Technologies Symposium. Springer,

140–159.

[10] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and Continual Release of Statistics. ACM Transactions on
Information and System Security (2011).

[11] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel Fisher, John C Platt, James F

Terwilliger, and John Wernsing. 2014. Trill: A high-performance incremental query processor for diverse analytics.

Proceedings of the VLDB Endowment 8, 4 (2014), 401–412.
[12] Shixi Chen and Shuigeng Zhou. 2013. Recursive mechanism: towards node differential privacy and unrestricted joins.

In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 653–664.
[13] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau. 2017. Pegasus: Data-adaptive differentially

private stream processing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 1375–1388.

[14] Rachel Cummings, Sara Krehbiel, Kevin A Lai, and Uthaipon Tantipongpipat. 2018. Differential privacy for growing

databases. Advances in Neural Information Processing Systems 31 (2018).
[15] Sergey Denisov, Brendan McMahan, Keith Rush, Adam Smith, and Abhradeep Thakurta. 2022. Improved differential

privacy for sgd via optimal private linear operators on adaptive streams. In NeurIPS.
[16] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2022. R2T: Instance-optimal Truncation

for Differentially Private Query Evaluation with Foreign Keys. In Proc. ACM SIGMOD International Conference on
Management of Data.

[17] Wei Dong, Qiyao Luo, and Ke Yi. 2023. Continual Observation under User-level Differential Privacy. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 2190–2207.

[18] Wei Dong, Dajun Sun, and Ke Yi. 2023. Better than Composition: How to Answer Multiple Relational Queries under

Differential Privacy. Proceedings of the ACM on Management of Data 1, 2 (2023), 1–26.
[19] Wei Dong and Ke Yi. 2021. Residual Sensitivity for Differentially Private Multi-Way Joins. In Proc. ACM SIGMOD

International Conference on Management of Data.
[20] Wei Dong and Ke Yi. 2022. A Nearly Instance-optimal Differentially Private Mechanism for Conjunctive Queries. In

Proc. ACM Symposium on Principles of Database Systems.
[21] Wei Dong and Ke Yi. 2023. Query Evaluation under Differential Privacy. ACM SIGMOD Record 52, 3 (2023), 6–17.

[22] Wei Dong and Ke Yi. 2023. Universal private estimators. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 195–206.

[23] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. 2010. Differential privacy under continual

observation. In Proceedings of the forty-second ACM symposium on Theory of computing. 715–724.
[24] Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. 2015. Pure differential privacy for rectangle queries

via private partitions. In International Conference on the Theory and Application of Cryptology and Information Security.
Springer, 735–751.

[25] Cynthia Dwork,Moni Naor, Omer Reingold, GuyNRothblum, and Salil Vadhan. 2009. On the complexity of differentially

private data release: efficient algorithms and hardness results. In Proceedings of the forty-first annual ACM symposium

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

128:26 Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi

on Theory of computing. 381–390.
[26] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of differential privacy. Foundations and Trends® in

Theoretical Computer Science 9, 3–4 (2014), 211–407.
[27] Juanru Fang, Wei Dong, and Ke Yi. 2022. Shifted Inverse: A General Mechanism for Monotonic Functions under User

Differential Privacy. (2022).

[28] Hendrik Fichtenberger, Monika Henzinger, and Wolfgang Ost. 2021. Differentially Private Algorithms for Graphs

Under Continual Observation. In 29th Annual European Symposium on Algorithms (ESA 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

[29] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. 2012. Size and treewidth bounds for conjunctive

queries. Journal of the ACM (JACM) 59, 3 (2012), 1–35.
[30] Monika Henzinger and Jalaj Upadhyay. 2022. Constant matters: Fine-grained Complexity of Differentially Private

Continual Observation Using Completely Bounded Norms. arXiv preprint arXiv:2202.11205 (2022).
[31] Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. 2022. Almost tight error bounds on differentially private

continual counting. arXiv preprint arXiv:2211.05006 (2022).
[32] Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differential privacy for SQL queries. Proceedings

of the VLDB Endowment 11, 5 (2018), 526–539.
[33] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu. 2021. Practical

and private (deep) learning without sampling or shuffling. In International Conference on Machine Learning. PMLR,

5213–5225.

[34] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. 2011. Private analysis of graph structure.

Proceedings of the VLDB Endowment 4, 11 (2011), 1146–1157.
[35] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2013. Analyzing graphs with

node differential privacy. In Theory of Cryptography Conference. Springer, 457–476.
[36] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala, Michael Hay, and Gerome

Miklau. 2019. PrivateSQL: a differentially private SQL query engine. Proceedings of the VLDB Endowment 12, 11 (2019),
1371–1384.

[37] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of the 22nd international conference on
world wide web. 1343–1350.

[38] Jure Leskovec and Andrej Krevl. 2014. SNAP: Stanford network analysis project.

[39] Jure Leskovec and Andrej Krevl. 2016. SNAP datasets: Stanford large network dataset collection (2014). URL http://snap.
stanford. edu/data (2016), 49.

[40] Michael Ley. 2002. The DBLP computer science bibliography: Evolution, research issues, perspectives. In International
symposium on string processing and information retrieval. Springer, 1–10.

[41] Chao Li, GeromeMiklau, Michael Hay, AndrewMcGregor, and Vibhor Rastogi. 2015. Thematrix mechanism: optimizing

linear counting queries under differential privacy. The VLDB journal 24, 6 (2015), 757–781.
[42] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In

Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. 19–30.
[43] Alan Mislove, Hema Swetha Koppula, Krishna P Gummadi, Peter Druschel, and Bobby Bhattacharjee. 2008. Growth of

the flickr social network. In Proceedings of the first workshop on Online social networks. 25–30.
[44] Arjun Narayan and Andreas Haeberlen. 2012. DJoin: Differentially private join queries over distributed databases. In

USENIX Symposium on Operating Systems Design and Implementation. 149–162.
[45] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity and sampling in private data analysis.

In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. 75–84.
[46] Catuscia Palamidessi and Marco Stronati. 2012. Differential Privacy for Relational Algebra: Improving the Sensitivity

Bounds via Constraint Systems. In QAPL.
[47] Victor Perrier, Hassan Jameel Asghar, and Dali Kaafar. 2019. Private continual release of real-valued data streams. In

26th Annual Network and Distributed System Security Symposium, NDSS 2016. Internet Society, 1–13.
[48] Davide Proserpio, Sharon Goldberg, and Frank McSherry. 2014. Calibrating Data to Sensitivity in Private Data Analysis.

Proceedings of the VLDB Endowment 7, 8 (2014).
[49] Yuan Qiu and Ke Yi. 2022. Differential Privacy on Dynamic Data. arXiv preprint arXiv:2209.01387 (2022).

[50] Shuang Song, Susan Little, Sanjay Mehta, Staal Vinterbo, and Kamalika Chaudhuri. 2018. Differentially private

continual release of graph statistics. arXiv preprint arXiv:1809.02575 (2018).
[51] Dajun Sun, Wei Dong, and Ke Yi. 2023. Confidence Intervals for Private Query Processing. Proceedings of the VLDB

Endowment 17, 3 (2023), 373–385.
[52] Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. 2020. Computing Local Sensitivities of Counting

Queries with Joins. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 479–494.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

Continual Observation of Joins under Differential Privacy 128:27

[53] Jalaj Upadhyay. 2019. Sublinear space private algorithms under the sliding window model. In International Conference
on Machine Learning. PMLR, 6363–6372.

[54] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation Without Joins. Proceedings of the VLDB
Endowment 16, 5 (2023), 1046–1058.

[55] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang Cheng, Zhou Li, Ninghui Li, and Somesh Jha.

2021. Continuous release of data streams under both centralized and local differential privacy. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security. 1237–1253.

[56] Bing Zhang, Vadym Doroshenko, Peter Kairouz, Thomas Steinke, Abhradeep Thakurta, Ziyin Ma, Himani Apte, and

Jodi Spacek. 2023. Differentially Private Stream Processing at Scale. arXiv preprint arXiv:2303.18086 (2023).
[57] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao. 2015. Private release of graph

statistics using ladder functions. In Proceedings of the 2015 ACM SIGMOD international conference on management of
data. 731–745.

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 128. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Differential Privacy
	3.3 DP Mechanisms in the Static Setting
	3.4 Binary Mechanism

	4 The Global Sensitivity of Joins
	4.1 The Static Setting
	4.2 The Dynamic Setting

	5 Dynamic Clipping Mechanism
	5.1 A Private Clipping Mechanism
	5.2 Adaptive Clipping Thresholds

	6 Extensions
	7 Implementation
	8 Experiments
	8.1 Setup
	8.2 Graph Pattern Counting Queries
	8.3 Multi-way Join Counting Queries

	Acknowledgments
	References

