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ABSTRACT
Answering relational queries under differential privacy has at-

tracted a lot of attention in recent years due to growing concerns

on personal privacy, and instance-optimal mechanisms have been

developed for a single query. However, most real-world data ana-

lytical tasks require multiple queries to be answered under a total

privacy budget. The standard solution to extend the single-query

mechanism to multiple queries is via privacy composition. How-

ever, we observe that this may yield an error bound that could

be a

√
𝑑-factor worse from the optimal, where 𝑑 is the number of

queries. In this paper, we present a different, more holistic approach

that closes this gap. In addition to theoretical optimality, our new

mechanism also significantly outperforms privacy composition in

practice, especially on more skewed data and large 𝑑 .

CCS CONCEPTS
• Information systems→ Database query processing; • Secu-
rity and privacy→ Database and storage security; • Theory
of computation→ Theory of database privacy and security.
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1 INTRODUCTION
Query answering under differential privacy (DP) has been stud-

ied extensively in the last 20 years. To date, most problems over

a flat table have been relatively well solved. A single (counting

or linear) query can be easily answered by the classical Laplace

mechanism or the Gaussian mechanism [17], so most efforts have

been devoted to the problem of answering a set of 𝑑 queries. There

are two general approaches to this multi-query problem. The first

is privacy composition, i.e., we divide the privacy budget to the 𝑑
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queries and answer each query with the single-query mechanism.

Using advanced composition [18], the utility suffers an �̃� (
√
𝑑)-

factor degradation
1
, which is the best we can if the queries are

arbitrary linear queries, unless 𝑑 is larger than the size of the data-

base [19]. The other approach is to exploit some special structures

of the queries. For instance, if all queries are ranges queries, then

the �̃� (
√
𝑑)-factor degradation can be reduced to �̃� (1) [15, 29, 41].

1.1 DP in Relational Databases
The situation becomes more complicated in a relational database

with multiple relations (tables), mostly due to two challenges.

Challenge 1: Unbounded global sensitivity. First, unlike a flat ta-
ble, a relational schema models complicated relationships among

different types of entities, not all of which are equally positioned

in terms of privacy protection. Consider the TPC-H schema. We

usually take Customer or Supplier (or both) as the private entities,
often called “users”, while Nation and Region are public. Further-

more, any tuple that has a foreign key (FK) reference (directly or

indirectly) to a user, such as a lineitem in an order placed by a

customer, is considered as data belonging to the user. This results

in what is known as user-level DP, as opposed to tuple-level DP used

over a flat table. The formal user-level DP definition in relational

databases is deferred to Section 3.1; intuitively, this creates a diffi-

culty to the Laplace/Gaussian mechanism, since two neighboring

instances that differ by one user (e.g., a customer or a supplier) may

differ by arbitrarily many tuples (e.g., lineitems), thus making the

global sensitivity of the query, GS𝑄 , unbounded.

When GS𝑄 is unbounded, a common approach is to consider

the local sensitivity [40], or more appropriately, the downward sen-
sitivity [10]. Informally (formal definition given in Section 3.3),

for a given query 𝑄 , the downward sensitivity of a user 𝑢, de-

noted DS𝑄 (𝑢), is the contribution to 𝑄 from all the data belonging

to 𝑢. The downward sensitivity of a database instance I, denoted
DS𝑄 (I), is the maximum DS𝑄 (𝑢) over all 𝑢 ∈ I. Then, one may

use the truncation mechanism [27]: For a truncation threshold 𝑟 ,

delete all users 𝑢 and their data where DS𝑄 (𝑢) > 𝑟 , and then apply

the Laplace/Gaussian mechanism with sensitivity 𝑟 . The optimal

value of 𝑟 is DS𝑄 (I), which results in an instance-optimal error of

𝑂 (DS𝑄 (I)). However, but this optimal truncation threshold cannot

be used directly as it is sensitive to I. Thus, the main challenge is to

find a near-optimal 𝑟 in a differentially private manner.

Challenge 2: Self-joins. When the query 𝑄 has no self-joins, the

truncation mechanism would work (after finding a good 𝑟 ). How-

ever, self-joins create another challenge, as they introduce correla-

tions among the users: Truncating one user’s data may change the

1
The �̃� notation suppresses the dependency on 𝜀 and polylogarithmic factors.
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downward sensitivities of other users, which results in the trunca-

tion mechanism violating privacy. This issue has been identified

in [10], who then propose a linear-program-based solution that

fixes the problem while achieving the optimal error �̃� (DS𝑄 (I)).
Furthermore, as explained in Section 3.2, the issue with self-joins is

more prominent under DP: many queries without explicit self-joins

actually induce implicit self-joins due to the privacy requirement.

In particular, self-joins are always introduced when the a join result

references more than one user, which is a common scenario in

relational databases.

1.2 From a Single Query to Multiple Queries
Answering a single query is not very useful in practice. Thus, as

with the flat table case, it is natural to consider the multi-query

problem in relational databases, which includes group-by queries

as an important special case (i.e., each group corresponds to one

query). Let Q = (𝑄1, . . . , 𝑄𝑑 ) be the 𝑑 queries we wish to answer

privately. We use the standard metric of root-mean-square error

(RMSE) to measure the utility:

∥Q̃(I) − Q(I)∥ =

√√√
𝑑∑︁

𝑘=1

(𝑄𝑘 (I) −𝑄𝑘 (I))2,

or equivalently, the ℓ2 distance between the privatized query an-

swers Q̃(I) and the true answers Q(I), both taken as 𝑑-dimensional

vectors. The notation ∥ · ∥ refers to the ℓ2 norm of a vector through-

out the paper.

In this paper, we will allow the queries to contain arbitrary

joins and selection predicates. As we do not assume any restricted

form of the joins and predicates, the only known solution is to use

privacy composition. By advanced composition, we can allocate a

privacy budget of �̃� (1/
√
𝑑) to each query and invoke the single-

query mechanism in [10]. This leads to an error of �̃� (
√
𝑑 ·DS𝑄𝑘

(I))
for 𝑄𝑘 , hence an RMSE of

�̃�
©­«
√
𝑑 ·

√√√
𝑑∑︁

𝑘=1

DS𝑄𝑘
(I)2ª®¬ . (1)

Challenge/opportunity 3: Better than composition. We make the

crucial observation that the error bound in (1) is not optimal. In

Section 4, we show that the lower bound for the multi-query prob-

lem is Ω̃
(√

𝑑 · DSQ (I)
)
, where DSQ (I), informally speaking, is the

largest contribution of any user in I to the 𝑑 query results measured

in ℓ2 norm. Note that we have the following relationship:

DSQ (I) ≤

√√√
𝑑∑︁

𝑘=1

DS𝑄𝑘
(I)2 ≤

√
𝑑 · DSQ (I).

Both inequalities are tight: The first inequality becomes an equality

if the user with the maximum contribution to Q happens to be

the maximum-contribution user to every 𝑄𝑘 ∈ Q, and the second

inequality becomes an equality if each user contributes to only one

query in Q. For typical database instances and queries (especially

a group-by query), the situation will be more towards the latter,

i.e., each user contributes to a small number of queries (groups), in

which case the error bound of (1) can be a

√
𝑑-factor away from

optimal. This creates a third challenge, or rather, an opportunity

for the multi-query problem, i.e., how to do better than privacy

composition.

1.3 Our Results
Our key insight is that answering all 𝑑 queries as a whole can

yield a much better result. We start by considering multiple self-

join-free queries. We observe that 𝑑 such queries are equivalent

to the sum (mean) estimation problem in 𝑑 dimensions, a problem

that has been extensively studied in the machine learning literature

[5, 21, 23]. Restated in our terminology, their algorithms achieve the

optimal error of �̃�

(√
𝑑 · DSQ (I)

)
, modulo polylogarithmic factors.

However, they are all restricted to instances I in which no user

has contribution more than GSQ for some predefined GSQ, and the

hidden logarithmic factors depend on GSQ. More precisely, the best

error obtained so far [21] is

𝑂

(
DSQ (I) ·

(√
𝑑 +

√︃
log(GSQ) log log(GSQ)

)
·
√︁
log(1/𝛿)/𝜀

)
,

(2)

where 𝜀, 𝛿 are the privacy parameters (see Section 3.3). Thus, they

do not satisfactorily solve challenge 1. Our first result in this paper

is the complete removal of the dependency on GSQ, i.e., we do

not impose any restrictions on the database instance I, effectively
allowingGSQ = ∞. Specifically, in Section 4 we design an algorithm
that achieves an error of

𝑂

(
DSQ (I) ·

(√︁
𝑑 log(1/𝛿) + log log(DSQ (I))

)
/𝜀

)
. (3)

Note that even assuming a finiteGSQ, the error bound of (3) is better
than (2) since DSQ (I) < GSQ by definition. The key to obtaining

this result is to find a near-optimal truncation threshold 𝑟 under an

unbounded GSQ, and then the standard truncation mechanism can

be applied.

Our main technical innovation is how to deal with self-joins.

Self-joins are difficult to handle, since they make the truncation

mechanism fail. To tackle self-joins, R2T [10] uses a series of linear

programs (LPs), which can be considered as the more general forms

of the LPs used in private graph analysis [25]. However, as we

explain in Section 5.1, these LPs do notwork formultiple queries due

to fundamental reasons. Thereafter, we take a different approach

to the multi-query problem, with the first version of the algorithm

running in exponential time, which is subsequently reduced to

polynomial using quadratically constrained quadratic programming

(QCQP). We show that this algorithm achieves an error of

𝑂

(√
𝑑 · DSQ (I) ·

√︁
log(𝑒𝜀/𝛿) ·

(
log log(DSQ (I)) + log(𝑒𝜀/𝛿)

)
/𝜀2

)
,

matching the lower bound up to polylogarithmic factors.

Finally, we built a system prototype that can accept a set of

SJA queries consisting of arbitrary joins, selection predicates, fol-

lowed by aggregation. It can also automatically rewrites a group-by

query into such a set of SJA queries and answer them with our

query-answering mechanism. Experimental results demonstrate

that our mechanism can significantly outperform privacy composi-

tion combined with the state-of-the-art single-query mechanism

[10], especially on more skewed data and large 𝑑 .



Lineitem(OK, SK, PtK)

Orders(OK, CK)Partsupp(PtK, SK)

Part(PtK) Supplier(SK, NK) Customer(CK, NK)

Nation(NK, RK)

Region(RK)

Figure 1: The TPC-H schema and its FK constraints. The un-
derlined attributes are the PKs. Not all attributes are shown.

2 RELATEDWORK
In the past several years, query answering under differential pri-

vacy [14] has attracted a lot of attention [3, 10, 11, 13, 22, 27, 30, 32,

35, 36, 40]. Early works did not consider FK constraints, or equiva-

lently, they adopt a DP model that only protects the tuples, which

is called tuple-DP. Starting from [27], people began to consider

user-DP modeled by FK constraints. Under user-DP, self-join-free

queries [27, 40] are actually equivalent to the sum (mean) estima-

tion problem [2, 12, 21]. Very recently, R2T [10] is proposed to deal

with queries with self-joins while achieving instance optimality.

There are also a number works studying graph pattern counting

queries under differential privacy [7, 9, 24, 26, 34, 44], which is an

important special case of SJA queries. For graph data, there are two

DP policies: edge-DP [7, 24, 34, 44] and node-DP [7, 9, 26]. They

correspond to tuple-DP and user-DP applied to the special schema

R = {Node(ID), Edge(src, dst)}, respectively.
All the aforementioned works answer a single query at a time.

The multi-query problem has been studied extensively on a flat

table under tuple-DP [4, 6, 15, 19, 20, 29, 31, 33, 37–39, 41–43, 45].

For a set of 𝑑 arbitrary linear queries, advanced composition or

the 𝑑-dimensional Gaussian mechanism achieves �̃� (
√
𝑑) error for

each query, which is the best we can achieve for 𝑑 < 𝑛, where 𝑛 is

the size of the table. For 𝑑 > 𝑛, the optimal error of each query is

�̃� (
√
𝑛) [19]. For a set of queries with special structures, the error

can be further reduced [15, 31, 41]. Furthermore, [6, 29, 33] design

mechanisms that are optimal for any given query set.

3 PRELIMINARIES
3.1 Database with FK Constraints
We first review the DP definition in databases with FKs [27]. Let

R be the database schema. When foreign-key constraints exist, R
can be formalized as a directed acyclic graph, where each node

corresponds to a relation 𝑅 ∈ R and a directed edge from 𝑅′ to 𝑅

indicates an FK reference from an attribute of 𝑅′ to the PK of 𝑅.

One relation is designated as the primary private relations 𝑅𝑃 (this

is without loss of generality; see example below), while a relation

having a direct or indirect FK referencing 𝑅𝑃 is called a secondary
private relation; relations having no FK references to 𝑅𝑃 are public.

Example 3.1. Consider the TPC-H schema in Figure 1 : Suppose

we want to protect the privacy of both the customers and the sup-

pliers. Then we can add a virtual relation User(ID), which includes

all the PKs in Customer and Supplier, while adding FK constraints

from the PKs of Customer, Supplier to ID. Then, User becomes the

only primary private relation, while Customer, Supplier, Lineitem,
Order, Partsupp are secondary private relations, and Part, Nation,
Region are public. □

Let I be a database instance over R. For any 𝑅 ∈ R, let I(𝑅) be the
relation instance of 𝑅 in I. The reference relationships over tuples
are defined naturally as follows: For 𝑡 ∈ I(𝑅) and 𝑡 ′ ∈ I(𝑅′), we
say 𝑡 ′ references 𝑡 if (1) 𝑅′ references 𝑅 and the FK of 𝑡 ′ is same as

the PK of 𝑡 ; or (2) there exists another 𝑡 ′′ such that 𝑡 ′ references
𝑡 ′′ and 𝑡 ′′ references 𝑡 . Let 𝑁 = |I(𝑅𝑃 ) | be the number of private

users. For 𝑖 ∈ [𝑁 ], let 𝑡𝑖 (I) be the 𝑖th user in I(𝑅𝑃 ). We write I′ ⊆ I
if I′ (𝑅𝑃 ) ⊆ I(𝑅𝑃 ), and for each tuple 𝑡 in a secondary relation,

it is included in I′ iff all tuples in I(𝑅𝑃 ) that are referenced by 𝑡

are included in I′ (𝑅𝑃 ). This way, it generalizes the notion of an

“induced subgraph” and we can call I′ an induced sub-instance of

I. Note that an induced sub-instance I′ is completely specified by

I′ (𝑅𝑃 ). Besides, let [𝑛] = {1, 2, . . . , 𝑛}.

3.2 SJA Queries
We now define the class of queries considered. We start with a

multi-way (natural) join:

𝐽 := 𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛), (4)

where 𝑅1, . . . , 𝑅𝑛 are relation names in R and each x𝑖 is a set of

arity(𝑅𝑖 ) variables. Let x := x1 ∪ · · · ∪ x𝑛 . When self-joins are

present, there can be repeats among 𝑅1, . . . , 𝑅𝑛 , i.e., 𝑅𝑖 = 𝑅 𝑗 (then

we must have x𝑖 ≠ x𝑗 ). The join is required to be complete [27], i.e.,
if any 𝑅𝑖 in 𝐽 references another 𝑅′, then 𝑅′ must also be included

in 𝐽 , with its PK given a variable that is the same as the variable

given to the corresponding FK of 𝑅𝑖 .

Let𝑀 = |𝐽 (I) | be the join size, let for 𝑗 ∈ [𝑀], 𝑞 𝑗 (I) denotes the
𝑗th join result. We say 𝑞 𝑗 (I) references 𝑡𝑖 (I) iff 𝑞 𝑗 (I) Z 𝑡𝑖 (I) ≠ ∅.
To better describe the referencing relationships between tuples and

join results, we introduce the following sets of indices 𝐶𝑖 (I) and
𝐷 𝑗 (I) for each 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀]:

𝐶𝑖 (I) := { 𝑗 : 𝑞 𝑗 (I) references 𝑡𝑖 (I)}, (5)

𝐷 𝑗 (I) := {𝑖 : 𝑞 𝑗 (I) references 𝑡𝑖 (I)}. (6)

A JA or SJA query 𝑄 aggregates over the join results 𝐽 (I). They
can both be captured by introducing a function𝜓 : dom(x) → N
and defining the query result on I as

𝑄 (I) :=
∑︁

𝑗∈[𝑀 ]
𝜓 (𝑞 𝑗 (I)) . (7)

Note that if there is a selection predicate, we can simply set𝜓 (𝑞) =
0 for any 𝑞 that does not satisfy the predicate. We also use the

shorthand𝜓 𝑗 (I) := 𝜓 (𝑞 𝑗 (I)).

Example 3.2. Continuing with Example 3.1, suppose we ask the

following query:

SELECT count(*) FROM Lineitem WHERE Lineitem.QTY > 10



Although this query does not have any explicit joins, we must make

it complete, resulting in the following join:

𝐽 = Orders(OK, CK) Z Lineitem(OK, SK, PtK, QTY) Z Customer(CK, NK)
Z User(CK) Z PartSupp(PtK, SK) Z Supplier(SK, NK) Z User(SK)

Note how it introduces a self-join on User. Generally speaking,

self-joins will be introduced as long as a join result references more

than one private user. In fact, the join with the two copies of User
has no effect on the join results; their purpose is to just mark CK
and SK as variables representing the private users. To finish the

query, we define 𝜓 (𝑞) = 1 for each lineitem 𝑞 in the join result

whose QTY is larger than 10, otherwise 0. Then 𝐶𝑖 (I) consists of all
the lineitems belonging to the 𝑖-th user (a customer or a supplier),

and 𝐷 𝑗 (I) consists of all the users that the 𝑗-th lineitem references

(exactly one customer and one supplier in this case). □

Example 3.3. Many graph pattern matching queries under node-

DP [7, 9, 26] can be written as SJA queries on the schema R =

{Node(ID), Edge(src, dst)}, where src, dst are both FKs referenc-

ing ID. For example, the triangle counting query uses the join

Edge(A, B) Z Edge(B, C) Z Edge(C, A) Z Node(A) Z Node(B) Z Node(C)
with 𝜓 (𝑞) = 1 for all 𝑞 ∈ 𝐽 (I). Note that the 3 copies of Node are

not really needed, but they are included (virtually) to signify that

A, B, C all represent private users. For this query, 𝐶𝑖 (I) includes all
the triangles incident to the 𝑖-th node, and 𝐷 𝑗 (I) is the 3 nodes

forming the 𝑗-th triangle.

In this paper, we consider answering𝑑 such queriesQ = (𝑄1, . . . , 𝑄𝑑 ).
We subscript them by 𝑘 , and generalize the notation above as

𝑁𝑘 , 𝑀𝑘 , 𝐽𝑘 (I), 𝑞𝑘,𝑗 (I),𝜓𝑘,𝑗 (I), etc. An important special case is group-

by queries. Continuing with Example 3.2, suppose we add a GROUP
BY OrderDate clause. Then 𝑑 = |dom(OrderDate) |; 𝑁𝑘 , 𝑀𝑘 , 𝐽𝑘 (I),
𝑞𝑘,𝑗 (I) are the same for all 𝑘 , while𝜓𝑘,𝑗 (I) has a different predicate
OrderDate =𝑥 , where𝑥 ranges over all the dates in dom(OrderDate).
Nevertheless, all developments below will assume the general case

where the 𝑑 queries can be completely different.

3.3 Differential Privacy
Definition 3.4 (Differential privacy). For 𝜀, 𝛿 > 0, an algorithm

M : I → Y is (𝜀, 𝛿)-differentially private if for any neighboring

instances I ∼ I′ ∈ I and any subset of outputs 𝑌 ⊆ Y,
Pr[M(I) ∈ 𝑌 ] ≤ 𝑒𝜀 · Pr[M(I′) ∈ 𝑌 ] + 𝛿.

The privacy parameter 𝜀 is usually a constant from 0.1 to 10,

while 𝛿 ≪ 1/𝑁 . To apply the DP definition to a concrete prob-

lem, we need to define the neighboring relationship. We adopt the

user-DP policy in [27] for relational database, which defines two in-

stances I and I′ as neighbors if I′ can be obtained from I by deleting
some 𝑡𝑃 ∈ I(𝑅𝑃 ) and all tuples referencing 𝑡𝑃 .

Lemma 3.5 (Laplace Mechanism [14]). Given a single query
𝑄 : I → R, let GS𝑄 := maxI∼I′ |𝑄 (I) −𝑄 (I′) |. The mechanism

M(I) = 𝑄 (I) +
GS𝑄

𝜀
· 𝑌,

where 𝑌 ∼ Lap(1), preserves (𝜀, 0)-DP.

For a vectored-valued query, the Gaussian mechanism is more

commonly used:

Lemma 3.6 (GaussianMechanism [8, 14]). Given a𝑑-dimensional
query Q : I → R𝑑 , let GSQ := maxI∼I′ ∥Q(I) − Q(I′)∥. Then the
mechanism

M(I) = Q(I) + 𝜎 · Y,

where Y ∼ N (0, I𝑑×𝑑 ), preserves
(
GS

2

Q
2𝜎2
+ GSQ

𝜎

√︁
2 log(1/𝛿), 𝛿

)
-DP

for any 𝛿 > 0.

Thus, given 𝜀, 𝛿 , one can set

GS
2

Q
2𝜎2
+ GSQ

𝜎

√︁
2 log(1/𝛿) = 𝜀 and solve

for 𝜎 , and we denote the solution as 𝜎 (𝜀, 𝛿). For 𝜀 = 𝑂 (1), 𝜎 (𝜀, 𝛿) =
𝑂

(√︁
log(1/𝛿)/𝜀 · GSQ

)
, so the Gaussian mechanism achieves an ℓ2

error of �̃�

(√
𝑑 · GSQ

)
.

Both the Laplace and the Gaussian mechanism require a small

GS. If it is large or unbounded, one may consider the local sensitivity
LSQ (I) = maxI′ :I′∼I ∥Q(I) − Q(I′)∥, and try to obtain a DP upper

bound of LSQ (I) before applying the mechanism. Karwa et al. [25]

show how this can be done for the Laplace mechanism. Here we

obtain a similar result for the Gaussian mechanism:

Lemma 3.7 (Second-order Gaussian Mechanism). Given a 𝑑-
dimensional query Q : I → R𝑑 , suppose there is an (𝜀1, 𝛿1)-DP
mechanism that outputs an L̂SQ (I) ≥ LSQ (I) with probability at
least 1 − 𝛿2, then the mechanism

M(I) = Q(I) + L̂SQ (I) · 𝜎 (𝜀2, 𝛿3) · Y,

where Y ∼ N (0, I𝑑×𝑑 ), preserves (𝜀1 + 𝜀2, 𝛿1 + 𝑒𝜀1𝛿2 + 𝑒𝜀1𝛿3)-DP.

Proof. Similar to the proof of Lemma 4.4 in [25]. □

However, in a relational database, LSQ (I) is also unbounded,

since one can construct an I′ by adding to I a user 𝑡𝑃 with arbitrarily

many tuples all referencing 𝑡𝑃 . Thus, Dong et al. [10] propose to

consider the downward sensitivity:

DSQ (I) = max

I′⊆I,I′∼I
∥Q(I′) − Q(I)∥ .

Note by adding the restriction I′ ⊆ I, DSQ (I) corresponds to the

maximum contribution of any user in I, which is always finite.

Specifically, for each user 𝑡𝑖 (I) ∈ I(𝑅𝑃 ), let

𝑆𝑘,𝑖 (I) =
∑︁

𝑗∈𝐶𝑘,𝑖 (I)
𝜓𝑘,𝑗 (I) (8)

be the contribution of 𝑡𝑖 (I) to 𝑄𝑘 . The contributions of 𝑡𝑖 (I) to all
queries are thus a 𝑑-dimensional vector S𝑖 (I) = (𝑆1,𝑖 (I), . . . , 𝑆𝑑,𝑖 (I)).
Then we have DSQ (I) = max𝑖∈[𝑁 ] ∥S𝑖 (I)∥.

3.4 Sparse Vector Technique
The Sparse Vector Technique (SVT) [16] has as input a (possibly

infinite) sequence of 1-dimensional queries, 𝑓1 (I), 𝑓2 (I), . . . , where
each has global sensitivity 1, and a threshold 𝑇 . It targets to find

the first query whose answer is above 𝑇 . SVT has been shown to

satisfy 𝜀-DP with the following utility guarantee.

Lemma 3.8 ([12, 16]). If there exists a 𝑘 such that 𝑓𝑘 (𝐷) ≥ 𝑇 +
6

𝜀 log(2/𝛽), then with probability at least 1−𝛽 , SVT returns an ℓ ≤ 𝑘

such that 𝑓ℓ (𝐷) ≥ 𝑇 − 6

𝜀 log(2𝑘/𝛽).



4 MULTIPLE SELF-JOIN-FREE QUERIES
We start with the simpler case of𝑑 self-join-free queries.We observe

that it is equivalent to the sum estimation problem in 𝑑 dimensions:

Given 𝑁 vectors in 𝑑 dimensions x1, . . . , x𝑁 , we wish to estimate∑
𝑖∈[𝑁 ] x𝑖 under DP where neighboring instances differ by one

vector. For the forward direction, we just set x𝑖 := S𝑖 (I). Since
there is no self-join, each join result only references one user, then

adding/removing one user in I is the same as adding/removing

vector. For the backward direction, we simply construct a single

table with 𝑑 columns storing these vectors, and the 𝑘-th query asks

for the sum on the 𝑘-th column.

This equivalence has two immediate consequences. First, the

lower bound on the sum estimation problem is also a lower bound

for the multi-query problem, which of course also holds for the

more difficult case of self-joins:

Theorem 4.1 ([21, 23]). For the multi-query problem, no DP mech-

anism can achieve an error smaller than Ω̃
(√

𝑑 · DSQ (I)
)
for all I.

Secondly, any sum estimation mechanism can also be used for

self-join-free queries. However, all existing mechanisms assume

that ∥S𝑖 (I)∥ ≤ GSQ for a predefined GSQ. Under this assumption,

the best result is [21]
2

𝑂

(
DSQ (I) ·

(√
𝑑 +

√︃
log(GSQ) log log(GSQ)

)
·
√︁
log(1/𝛿)/𝜀

)
.

Below, we show how to remove this assumption, i.e., we allow

GSQ = ∞. Meanwhile, we also improve the error bound to

𝑂

(
DSQ (I) ·

(√︁
𝑑 log(1/𝛿) + log log(DSQ (I))

)
/𝜀

)
.

Our idea is to extend the 1-dimensional mechanism in [12] to

𝑑 dimensions. Given a truncation threshold 𝑟 ≥ 0, the truncated

query result Q(I, 𝑟 ) is defined as

Q(I, 𝑟 ) :=
∑︁

𝑖∈[𝑁 ]

(
min

(
1,

𝑟

∥S𝑖 (I)∥

)
· S𝑖 (I)

)
.

It is easy to see that Q(I, 𝑟 ) has the global sensitivity 𝑟 , so the

Gaussian mechanism can be applied. Note that by using 𝑟 = DSQ (I),
no data is truncated and the Gaussian mechanism achieves the

optimal error �̃�

(√
𝑑 · DSQ (I)

)
. However, since DSQ (I) depends on

I, using it directly will breach privacy. Then the idea is to find

a privatized 𝑟 that is as close to DSQ (I) = max𝑖∈[𝑁 ] ∥S𝑖 (I)∥ as
possible.

For any 𝑟 ≥ 0, define

Count(I, 𝑟 ) = |{𝑖 : ∥S𝑖 (I)∥ ≤ 𝑟 }| .

Then consider the sequence of queries Count(I, 𝑟 ) − 𝑁 for 𝑟 =

1, 2, 4, . . . . It is clear that each such query has global sensitivity

1. We use SVT with privacy budget 𝜀/10 to find the first 𝑟 such

that Count(I, 𝑟 ) − 𝑁 > − 60

𝜀 log
4

𝛽
, where 𝛽 will be failure probabil-

ity. After finding such an 𝑟 , we invoke the Gaussian mechanism

with global sensitivity 𝑟 and privacy budget 9𝜀/10.3 The detailed
algorithm is shown in Algorithm 1.

2
[21] states the result under zCDP [8]; here we translate their result to (𝜀, 𝛿 )-DP.

3
The 𝜀 is split into 𝜀/10 and 9𝜀/10 since the error is dominated by the noise instead of

bias and we want to use more privacy budget when adding the noise.

Algorithm 1:Multiple self-join-free queries.

Input: I, 𝜀 , 𝛽
1 𝑖 ← SVT(− 60

𝜀
log

4

𝛽
, 𝜀
10
,Count(I, 20 ) − 𝑁,Count(I, 21 ) − 𝑁, . . . ) ;

2 𝑟 ← 2
𝑖−1

;

3 Q̃(I) = Q(I, 𝑟 ) + 𝑟 · 𝜎 ( 9𝜀
10
, 𝛿 ) · Y, Y ∼ N (0, I𝑑×𝑑 ) ;

4 return Q̃(I) ;

Theorem 4.2. Algorithm 1 satisfies (𝜀, 𝛿)-DP, and with probability
at least 1 − 𝛽 ,

∥Q̃(I) −Q(I)∥ = 𝑂

(
DSQ (I)

𝜀
·
(
log

log(DSQ)
𝛽

+
√︄
𝑑 log

1

𝛿
log

1

𝛽

))
.

Proof. The privacy guarantee follows directly from basic com-

position. For the utility, by Lemma 3.8, with probability at least

1 − 𝛽
2
, we have (1) Count(I, 𝑟 ) ≥ 𝑁 − 𝑂

(
1

𝜀 · log
log(DSQ )

𝛽

)
; and

(2) 𝑟 ≤ DSQ (I). The first result implies the introduced bias is

𝑂

(
DSQ (I)

𝜀 · log log(DSQ )
𝛽

)
. By combining the second result and the

tail bound of Gaussian distribution, with probability at least 1 − 𝛽
2
,

the added noise is 𝑂

(
DSQ (I)

𝜀 ·
√︁
𝑑 log(1/𝛿) log(1/𝛽)

)
. □

5 MULTIPLE QUERIES WITH SELF-JOINS
5.1 Why Self-joins are Hard
When self-joins are present, or more fundamentally, when a join

result references more than one user, a number of difficulties arise.

First, since the contributions of the users overlap, the problem is

no longer equivalent to sum estimation. Second, as pointed out in

[10], the truncation mechanism fails: The query on all users 𝑖 with

𝑆𝑖 (I) ≤ 𝑟 still has unbounded global sensitivity. To address this issue,

[10] replaces this “hard” truncation with a “soft” truncation [26]

for the case of a single query. The idea is that each join result may

contribute a part of its full𝜓 𝑗 (I), so that the total contribution from

any user is bounded by 𝑟 . This can be formulated as an LP, where

the variable 𝑧 𝑗 denotes the partial contribution from the 𝑗-th join

result:

max 𝑄 (I, 𝑟 ) =
∑︁

𝑗∈[𝑀 ]
𝑧 𝑗

s.t.

∑︁
𝑗∈𝐶𝑖 (I)

𝑧 𝑗 ≤ 𝑟, 𝑖 ∈ [𝑁 ],

0 ≤ 𝑧 𝑗 ≤ 𝜓 𝑗 (I), 𝑗 ∈ [𝑀] .

The truncated query answer, denoted𝑄 (I, 𝑟 ), is set to be the optimal

solution of this LP, which can be shown to have global sensitivity

𝑟 , so the Laplace mechanism can be applied. Then, [10] further

proposes a mechanism to privately select an 𝑟 to achieve the optimal

error �̃� (DS𝑄 (I)).
This LP can be naturally extended to multiple queries: 𝑧 𝑗 and

𝜓 𝑗 (I) both become 𝑑-dimensional vectors, the first constraint im-

poses a bound 𝑟 on the ℓ2 norm of

∑
𝑧 𝑗 , and the second constraint

becomes an element-wise inequality. Meanwhile, Q(I, 𝑟 ) = ∑
𝑧 𝑗

also becomes a vector, and we may try to maximize its norm. This

turns the LP in a quadratic program (QP), which is still efficiently



solvable. But the critical issue is that Q(I, 𝑟 ) has high local sensitiv-

ity, as illustrated in the following example.

lineitems on day 2supplier customer lineitems on day 1

Figure 2: An example showing Q(I, 𝑟 ) has large sensitivity.

Example 5.1. Consider the query in Example 3.2 with GROUP BY
OrderDate. Suppose there are only two different dates on OrderDate,
so we have just 𝑑 = 2 queries. Consider an instance I that has 𝑁 /2
suppliers 𝑠1, 𝑠2, · · · 𝑠𝑁 /2 and 𝑁 /2 customers 𝑐1, 𝑐2, · · · 𝑐𝑁 /2. Each
lineitem is purchased by one customer and supplied by a supplier,

and the detailed construction is shown in Figure 2, where solid lines

denote the lineitems on day 1 and dashed lines for day 2. Next, we

construct I′ by deleting 𝑠1 (and the associated lineitem) and con-

struct I′′ by further deleting 𝑐𝑁 /2. Note that we have I ∼ I′ ∼ I′′.
Suppose we set 𝑟 = 1. We see that ∥Q(I, 1)∥ is maximized by

keeping all lineitems on day 1, yielding Q(I, 1) = (𝑁 /2, 0), while
∥Q(I′′, 1)∥ is maximized by keeping all lineitems on day 2, yielding

Q(I′′, 1) = (0, 𝑁 /2−1). We see that although ∥Q(I, 1)∥− ∥Q(I′′, 1)∥
is small, ∥Q(I, 1) − Q(I′′, 1)∥ is large, which means that one of

∥Q(I, 1) − Q(I′, 1)∥ and ∥Q(I′, 1) − Q(I′′, 1)∥ must be large. Fun-

damentally, the reason is that although the LP (or QP) has low

sensitivity in its optimal value ∥Q(I, 𝑟 )∥, it does not necessarily im-

ply a low sensitivity on the optimal vector solution Q(I, 𝑟 ), except
in one dimension. However, the Gaussian mechanism needs a low

sensitivity on Q(I, 𝑟 ), not ∥Q(I, 𝑟 )∥. □

5.2 An Exponential-time Algorithm
To address the issue above, we take a different approach to defining

Q(I, 𝑟 ) so that it has bounded sensitivity. First, define

𝐸 (I, 𝑟 ) := max

I′′⊆I,DSQ (I′′ )≤𝑟
|I′′ (𝑅𝑃 ) |,

i.e., the maximum number of users in any induced sub-instance of

I such that no user’s contribution is more than 𝑟 in ℓ2 norm. Note

that for self-join-free queries, 𝐸 (I, 𝑟 ) = Count(I, 𝑟 ). When there are

self-joins, we have 𝐸 (I, 𝑟 ) ≥ Count(I, 𝑟 ), since removing one user

may also reduce the contributions of other users. Exactly due to

this reason, Count(I, 𝑟 ) has unbounded sensitivity for self-joins,

which is why our self-join-free algorithm no longer works. On the

other hand, we will show that 𝐸 (I, 𝑟 ) has sensitivity 1, as desired.

However, computing 𝐸 (I, 𝑟 ) can take exponential time: Even for the

simple query 𝐽 = Edge(A, B) Z Node(A) Z Node(B) with 𝜓 (𝑞) = 1

for all 𝑞 ∈ 𝐽 (I) (i.e., counting the number of edges in a graph

under node-DP), 𝐸 (I, 𝑟 ) is exactly the size of the maximum induced

subgraph with degree constraint 𝑟 , which is a classical NP-hard

problem. We will leave the computational issue to Section 5.3, while

focusing on privacy for now.

Next, define

𝐹 (I, 𝑟 ) := 𝐸 (I, 𝑟 ) − |I(𝑅𝑃 ) |,

i.e., −𝐹 (I, 𝑟 ) is the minimum number of users that need to be re-

moved so that the contribution from any user is at most 𝑟 . The

following lemma is obvious:

Lemma 5.2. For any 𝑟 and any I, 𝐹 (I, 𝑟 ) ≤ 0. If 𝑟 ≥ DSQ (I), then
𝐹 (I, 𝑟 ) = 0.

More importantly, we show that 𝐹 (I, 𝑟 ) has sensitivity 1:

Lemma 5.3. For any 𝑟 and any I ∼ I′, I′ ⊆ I, we have

𝐹 (I′, 𝑟 ) − 1 ≤ 𝐹 (I, 𝑟 ) ≤ 𝐹 (I′, 𝑟 ).

Proof. Let 𝑁 ′ = |I′ (𝑅𝑃 ) | and I(𝑅𝑃 ) = I′ (𝑅𝑃 ) ∪ 𝑡𝑁 (I). On one

hand, it is trivial to see for any 𝑟 ≥ 0, 𝐸 (I, 𝑟 ) ≥ 𝐸 (I′, 𝑟 ) since any
I′′ ⊆ I′ also has I′′ ⊆ I.

On the other hand, given any 𝑟 ≥ 0, let

I∗ = argmax

I′′⊆I,DSQ (I′′ )≤𝑟
|I′′ |.

Then, we can construct a I∗′ from I∗ by deleting all tuples ref-

erencing 𝑡𝑁 (I). Then, I∗′ ⊆ I′, DSQ (I∗′) ≤ DSQ (I∗) ≤ 𝑟 and

|I∗′ (𝑅𝑃 ) | = |I∗ (𝑅𝑃 ) |−1. And this further means, 𝐸 (I′, 𝑟 ) ≥ 𝐸 (I, 𝑟 )−1.
Finally, combining 𝑁 = 𝑁 ′ + 1, the lemma follows. □

Because 𝐹 (I, 𝑟 ) has sensitivity 1, we can feed 𝐹 (I, 1), 𝐹 (I, 2), 𝐹 (I, 4), . . .
into SVTwith threshold−𝑂 (log(1/𝛽)/𝜀). Using a similar argument

as for our self-join-free algorithm, we can show that this will return

an 𝑟 that is close to DSQ (I).
It turns out that 𝐸 (I, 𝑟 ) is not only useful for finding the trun-

cation threshold 𝑟 , it also yields a new definition of the truncated

query answerQ(I, 𝑟 ) with bounded sensitivity. For any 𝑟 ≥ 0, define

Q(I, 𝑟 ) := Q(I∗ (𝑟 )), where I∗ (𝑟 ) = argmax

I′′⊆I,DSQ (I′′ )≤𝑟

��I′′ (𝑅𝑃 )�� . (9)

Note that I∗ (𝑟 ) may not be unique. In this case, we use an arbitrary

tie-breaker (e.g., the I′′ with the lexicographically smallest user IDs)

to fix an I∗ (𝑟 ).

Example 5.4. Following the Example 5.1 and assuming 𝑁 = 6𝑐

for some 𝑐 ∈ N, for I, when 𝑟 = 1, we have 𝐸 (I, 1) = 2𝑁 /3, I∗ (1)
is obtained by deleting 𝑠3∗𝑖−1’s and 𝑐3∗𝑖 ’s for all 𝑖 ∈ [𝑁 /6], and
Q(I, 1) = (𝑁 /6, 𝑁 /6). When 𝑟 ≥ 2, 𝐸 (I, 𝑟 ) = 𝑁 , I∗ (𝑟 ) = I, and
Q(I, 𝑟 ) = (𝑁 /2, 𝑁 /2 − 1). Meanwhile, for I′′, when 𝑟 = 1, we have

𝐸 (I′′, 1) = 2𝑁 /3 − 1, I∗
′′ (1) is obtained by deleting 𝑐3∗𝑖−1’s for

all 𝑖 ∈ [𝑁 /6] and 𝑠3∗𝑗+1’s for all 𝑗 ∈ [𝑁 /6 − 1], and Q(I′′, 1) =
(𝑁 /6 − 1, 𝑁 /6). When 𝑟 ≥ 2, 𝐸 (I′′, 𝑟 ) = 𝑁 − 2, I∗

′′ (𝑟 ) = I′′, and
Q(I′′, 𝑟 ) = (𝑁 /2 − 2, 𝑁 /2 − 1). □

We bound the local sensitivity of Q(I, 𝑟 ) as follows.

Lemma 5.5. Given 𝑟 ≥ 0, for any I ∼ I′,

Q(I, 𝑟 ) − Q(I′, 𝑟 )

 ≤ (−2𝐹 (I, 𝑟 ) + 2) · 𝑟 .
Proof. Here, we first consider the case I(𝑅𝑃 ) = I′ (𝑅𝑃 )∪{𝑡𝑁 (I)}.
For convenience, let

I∗ = argmax

I′′⊆I,DSQ (I′′ )≤𝑟
∥I′′ (𝑅𝑃 )∥,

I∗
′
= argmax

I′′⊆I′,DSQ (I′′ )≤𝑟
∥I′′ (𝑅𝑃 )∥.

And define

I∗∩ = I∗ ∩ I∗
′
.



Algorithm 2: Exponential-time mechanism for multiple

queries with self-joins.

Input: 𝜀, 𝛿 , 𝛽
1 𝑖 ← SVT

(
− 30

𝜀 log(6/𝛽), 𝜀
5
, 𝐹 (I, 20), 𝐹 (I, 21), . . .

)
;

2 𝑟 ← 2
𝑖−1

;

3 𝑇 ← −2𝐹 (I, 𝑟 ) + 2;
4 𝑇 ← 𝑇 + Lap( 5𝜀 ) +

5

𝜀 log(𝑒
3𝜀/5/𝛿);

5 Q̃(I) ← Q(I, 𝑟 ) +𝑇 · 𝜎
(
2𝜀
5
, 𝛿

2𝑒3𝜀/5

)
· 𝑟 · Y,Y ∼ N(0, I𝑑×𝑑 );

6 return Q̃(I);

First, by definition,{
|I(𝑅𝑃 ) \ I′ (𝑅𝑃 ) | ≤ 1

|I′ (𝑅𝑃 ) \ I∗
′ (𝑅𝑃 ) | ≤ −𝐹 (I′, 𝑟 )

⇒ |I(𝑅𝑃 )\I∗
′
(𝑅𝑃 ) | ≤ −𝐹 (I′, 𝑟 )+1.

Further recall I∗ ⊆ I, we have

|I∗ (𝑅𝑃 ) \ I∗
′
(𝑅𝑃 ) | ≤ −𝐹 (I′, 𝑟 ) + 1,

which means

|I∗ (𝑅𝑃 ) \ I∗∩ (𝑅𝑃 ) | ≤ −𝐹 (I′, 𝑟 ) + 1.
Recall DSQ (I∗) ≤ 𝑟 ,

∥Q(I∗) − Q(I∗∩)∥ ≤
(
−𝐹 (I′, 𝑟 ) + 1

)
· 𝑟 . (10)

Symmetrically, we have

∥Q(I∗
′
) − Q(I∗∩)∥ ≤ −𝐹 (I, 𝑟 ) · 𝑟 . (11)

Combining Lemma 5.3, (10), (11), the claim follows.

Similarly, for the other case, where I′ (𝑅𝑃 ) = I(𝑅𝑃 ) ∪ {𝑡𝑁+1 (I′)},
we have,

∥Q(I∗) − Q(I∗∩)∥ ≤ −𝐹 (I′, 𝑟 ) · 𝑟,

∥Q(I∗
′
) − Q(I∗∩)∥ ≤ (−𝐹 (I, 𝑟 ) + 1) · 𝑟 .

With a similar argument, the claim also follows. □

Note that Lemma 5.5 does not imply a small sensitivity for all

𝑟 . In particular, if 𝑟 is very small, −𝐹 (I, 𝑟 ) can be as large as 𝑁 ,

resulting in the same issue as in Example 5.1. However, the crucial

difference here is that we will only use an 𝑟 returned by the SVT,

which has −𝐹 (I, 𝑟 ) = �̃� (1) with high probability. We can further

add a Laplace noise to it so that it becomes a high-probability DP

upper bound on the local sensitivity, and then apply the second-

order Gaussian mechanism. The detailed algorithm is shown in

Algorithm 2.

Theorem 5.6. For any 𝜀, 𝛿 , 𝛽 > 0, and any I, Algorithm 2 satisfies
(𝜀, 𝛿)-DP and returns a Q̃(I) such that with probability at least 1 − 𝛽 ,

∥Q̃(I) − Q(I)∥

=𝑂

(√︁
𝑑 log(1/𝛽) log(𝑒𝜀/𝛿)

𝜀2
· DS(I) ·

(
log

log(DS(I))
𝛽

+ log(𝑒𝜀/𝛿)
))

.

Proof. Privacy: By Lemma 5.3, each 𝐹 (I, ·) has the sensitivity 1

thus line 1 and line 4 consume
𝜀
5
and

2𝜀
5
privacy budget respectively.

By composition theory,𝑇 preserves
3𝜀
5
-DP and by the tail bound of

Laplace distribution, with probability at least 1 − 𝛿

2𝑒𝜀/5
, 𝑇 ≥ 𝑇 . By

Lemma 3.7, 𝑄 (I) preserves (𝜀, 𝛿)-DP.
Below we prove the utility bound. First, by Lemma 3.8, with

probability at least 1 − 𝛽
3
,

−𝐹 (I, 𝑟 ) = 𝑂

(
1

𝜀
log

log(DS(I))
𝛽

)
, (12)

and

𝑟 ≤ 2 · DS(I) . (13)

Second, by (12) and the definitions of DS(I) and Q(I, 𝑟 ),

∥Q(I) − Q(I, 𝑟 )∥ = 𝑂

(
DS(I)
𝜀

log

log(DS(I))
𝛽

)
. (14)

Third, by (12) and the tail bound of Laplace distribution, with

probability at least 1 − 𝛽
3
,

𝑇 = 𝑂

(
1

𝜀
log

log(DS(I))
𝛽

+ 1

𝜀
log(𝑒𝜀/𝛿)

)
. (15)

Then, combine (13), (15) and the tail bound of Gaussian distribution,

we have with probability at least 1 − 𝛽
3
,


Q̃(I) − Q(I∗)




=𝑂

(√︁
𝑑 log(1/𝛽) log(𝑒𝜀/𝛿)

𝜀2
· DS(I) ·

(
log

log(DS)
𝛽

+ log(𝑒𝜀/𝛿)
))

.

(16)

Finally, the theorem follows by combining (14) and (16). □

5.3 A Polynomial-time Algorithm
In this section, we show how to reduce the running time of Al-

gorithm 2 to polynomial without affecting its utility bound. The

computational bottleneck is 𝐸 (I, 𝑟 ). We borrow a popular technique

from approximation algorithms: formulate 𝐸 (I, 𝑟 ) as an integer pro-

gram, and solve its relaxed version.

Observe that any I′′ ⊆ I is specified by the users in I′′ (𝑅𝑃 ). We

introduce a variable 𝑦𝑖 ∈ {0, 1} to indicate whether the 𝑖-th user is

included in I′′ (𝑅𝑃 ). The objective is thus to maximize

∑
𝑖 𝑦𝑖 . To link

the 𝑦𝑖 ’s with the join results, we introduce a variable 𝑧𝑘,𝑗 ∈ {0, 1}
to indicate whether the join result 𝑞𝑘,𝑗 (I) ∈ 𝐽𝑘 (I′′), for 𝑘 ∈ [𝑑], 𝑗 ∈
[𝑀𝑘 (I)]. Recall 𝑞𝑘,𝑗 (I) ∈ 𝐽𝑘 (I′′) if and only if for any 𝑖 ∈ 𝐷𝑘,𝑗 (I),
𝑡𝑖 (I) ∈ I′′ (𝑅𝑃 ). To capture this requirement, we add the following

constraint:

𝑧𝑘,𝑗 ≥
∑︁

𝑖∈𝐷𝑘,𝑗 (I)
𝑦𝑖 − |𝐷𝑘,𝑗 (I) | + 1, 𝑘 ∈ [𝑑], 𝑗 ∈ [𝑀𝑘 ] .

Note that the RHS is equal to 1 if 𝑦𝑖 = 1 for all 𝑖 ∈ 𝐷𝑘,𝑗 (I) and 0

otherwise.

Next, we need to express the constraint DSQ (I′′) ≤ 𝑟 . Recall

DSQ (I′′) = max𝑖 ∥S𝑖 (I′′)∥, where S𝑖 (I′′) = (𝑆1,𝑖 (I′′), . . . , 𝑆𝑑,𝑖 (I′′)).
Plugging (8) into the constraint DSQ (I′′) ≤ 𝑟 turns it into

∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈𝐶𝑘,𝑖 (I)

(
𝜓𝑘,𝑗 (I) · 𝑧𝑘,𝑗

)ª®¬
2

≤ 𝑟2, 𝑖 ∈ [𝑁 ] .



Therefore, 𝐸 (I, 𝑟 ) is the optimal solution of the following integer

program:

max

∑︁
𝑖∈[𝑁 ]

𝑦𝑖 ,

s.t. 𝑧𝑘,𝑗 ≥
∑︁

𝑖∈𝐷𝑘,𝑗 (I)
𝑦𝑖 − |𝐷𝑘,𝑗 (I) | + 1, 𝑘 ∈ [𝑑], 𝑗 ∈ [𝑀𝑘 ]

∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈𝐶𝑘,𝑖 (I)

(
𝜓𝑘,𝑗 (I) · 𝑧𝑘,𝑗

)ª®¬
2

≤ 𝑟2, 𝑖 ∈ [𝑁 ],

𝑦𝑖 ∈ {0, 1} 𝑖 ∈ [𝑁 ],
𝑧𝑘,𝑗 ∈ {0, 1} 𝑘 ∈ [𝑑], 𝑗 ∈ [𝑀𝑘 ] .

By relaxing the integral constraint to 𝑦𝑖 ∈ [0, 1], 𝑧𝑘,𝑗 ∈ [0, 1],
this program turns into a QCQP. Note that only convex QCQPs

can be solved efficiently, which is indeed the case for our QCQP,

by observing that the quadratic constraint is positive semi-definite.

Let {𝑦∗
𝑖
}𝑖 , {𝑧∗𝑘,𝑗 }𝑘,𝑗 be the optimal fractional solution of this

QCQP, and let 𝐸 (I, 𝑟 ) = ∑
𝑖 𝑦
∗
𝑖
. In approximation algorithms, one

would then try to round {𝑦∗
𝑖
}𝑖 , {𝑧∗𝑘,𝑗 }𝑘,𝑗 into integers, and show

that the rounded solution is not too far away from 𝐸 (I, 𝑟 ). However,
for the private query answering problem, there is no need to do

the rounding as we will not return the join results anyway. Instead,

we only need to return the privatized aggregated query answer.

On the other hand, we must show that 𝐸 (I, 𝑟 ) preserves the three
important sensitivity properties of 𝐸 (I, 𝑟 ), namely, Lemma 5.2–5.5.

Letting 𝐹 (I, 𝑟 ) = 𝐸 (I, 𝑟 ) − |I(𝑅𝑃 ) |. The first property is trivial:

Lemma 5.7. For any 𝑟 and any I, 𝐹 (I, 𝑟 ) ≤ 0. If 𝑟 ≥ DSQ (I), then
𝐹 (I, 𝑟 ) = 0.

Now we prove that 𝐹 (I, 𝑟 ) also has sensitivity 1.

Lemma 5.8. For any 𝑟 and any I ∼ I′, I′ ⊆ I, we have

𝐹 (I′, 𝑟 ) − 1 ≤ 𝐹 (I, 𝑟 ) ≤ 𝐹 (I′, 𝑟 ).

Proof. Let I(𝑅𝑃 ) = I′ (𝑅𝑃 ) ∪ 𝑡𝑁 (I). Assume that the join results

referencing 𝑡𝑁 (I) are put at the end of 𝐽 (I), i.e., for every 𝑘 ∈ [𝑑],
𝐶𝑘,𝑖 (I) = {𝑀𝑘 − |𝐶𝑘,𝑖 (I) | + 1, . . . , 𝑀𝑘 − 1, 𝑀𝑘 }.

Let {𝑦∗
𝑖
}𝑖 , {𝑧∗𝑘,𝑗 }𝑘,𝑗 and {𝑦

∗′
𝑖
}𝑖 , {𝑧∗

′

𝑘,𝑗
}𝑘,𝑗 be the optimal fractional

solutions of the QCQP on I and I′, respectively. On one hand, from

{𝑦∗′
𝑖
}𝑖 , {𝑧∗

′

𝑘,𝑗
}𝑘,𝑗 , we can construct a valid solution of the QCQP for

I by setting 𝑦∗
′

𝑁
= 0, 𝑧∗

′

𝑘.𝑗
= 0 for any 𝑘 ∈ [𝑑], 𝑗 ∈ 𝐶𝑘,𝑁 (I). Thus, the

optimal QCQP solution on I can only be higher.

On the other hand, by removing 𝑦∗
𝑁
, 𝑧∗

𝑘,𝑗
for any 𝑘 ∈ [𝑘],

𝑗 ∈ 𝐶𝑘,𝑁 (I) for all 𝑘 ∈ [𝑘], from {𝑦∗𝑖 }𝑖 , {𝑧
∗
𝑘,𝑗
}𝑘,𝑗 , we can obtain

a valid solution of the QCQP on I′. On this solution, we have∑
𝑖∈[𝑁−1] ] 𝑦

∗
𝑖

= 𝐸 (I, 𝑟 ) − 𝑦∗
𝑁
≥ 𝐸 (I, 𝑟 ) − 1, which implies that

𝐸 (I′, 𝑟 ) ≥ 𝐸 (I, 𝑟 ) − 1.
Finally, combining with 𝑁 = 𝑁 ′ + 1, the lemma follows. □

Lastly, we showhow the optimal fractional solution {𝑦∗
𝑖
}𝑖 , {𝑧∗𝑘,𝑗 }𝑘,𝑗

also leads to a Q̂(I, 𝑟 ) with bounded local sensitivity as in Lemma

5.5. First, it is easy to see that there must exist an optimal solution

in which the constraint on each 𝑧∗
𝑘,𝑗

is tight, i.e.,

𝑧∗
𝑘,𝑗

= max
©­«0,

∑︁
𝑖∈𝐷𝑘,𝑗 (I)

𝑦∗𝑖 − |𝐷𝑘,𝑗 (I) | + 1
ª®¬ . (17)

If not, we could lower 𝑧∗
𝑘,𝑗

to make it tight without violating the

quadratic constraint or changing the objective. If there are still

multiple optimal fractional solutions, we pick one using an arbitrary

tie-breaker. Then, we define Q̂(I, 𝑟 ) as the query answers using the

optimal fractional solution, i.e.,

Q̂(I, 𝑟 ) = Q(I∗) =
(
𝑄1 (I∗), 𝑄2 (I∗), . . . , 𝑄𝑑 (I∗)

)
,

where 𝑄𝑘 (I∗) =
∑︁

𝑗∈[𝑀𝑘 ]

(
𝑧∗
𝑘,𝑗
·𝜓𝑘,𝑗 (I)

)
, 𝑘 ∈ [𝑑] . (18)

Example 5.9. Following the Example 5.4, when 𝑟 = 1, for both I
and I′, we have all 𝑧𝑘,𝑗 =

√
2/2, and all𝑦𝑖 =

√
2/4+1/2, thus 𝐸 (I, 1) =√

2𝑁 /4+𝑁 /2,𝑄 (I, 1) = (
√
2𝑁 /4,

√
2𝑁 /4−

√
2/2),𝐸 (I′′, 1) =

√
2𝑁 /4+

𝑁 /2, and 𝑄 (I′′, 1) = (
√
2𝑁 /4 −

√
2,
√
2𝑁 /4 −

√
2/2). When 𝑟 ≥

2, for both I and I′, we have all 𝑧𝑘,𝑗 = 1, and all 𝑦𝑖 = 1, thus

𝐸 (I, 𝑟 ) = 𝑁 , 𝑄 (I, 1) = (𝑁 /2, 𝑁 /2 − 1), 𝐸 (I′′, 1) = 𝑁 − 2, and

𝑄 (I′′, 1) = (𝑁 /2 − 2, 𝑁 /2 − 1).
□

We now bound the local sensitivity of Q̂(I, 𝑟 ):

Lemma 5.10. Given any 𝑟 ≥ 0, for any I ∼ I′,


Q̂(I, 𝑟 ) − Q̂(I′, 𝑟 )


 ≤ (
−2𝐹 (I, 𝑟 ) + 2

)
· 𝑟 .

Proof. We consider the case I(𝑅𝑃 ) = I′ (𝑅𝑃 ) ∪ {𝑡𝑁 (I)} and the

other case can been shown similarly as the proof of Lemma 5.5.

And similarly as the proof of Lemma 5.8, we assume the join results

corresponding the 𝑡𝑁 (I) are put at the end.
For I, we have {𝑦∗

𝑖
}𝑖 , {𝑧∗𝑘,𝑗 }𝑘,𝑗 , and Q(I∗) constructed as 𝐸 (I, 𝑟 ),

(17), and (18). For I′, we have {𝑦∗′
𝑖
}𝑖 , {𝑧∗

′

𝑘,𝑗
}𝑘,𝑗 , and Q(I∗′ ). To unify

the size of {𝑦∗
𝑖
}𝑖 and {𝑦∗

′
𝑖
}𝑖 , we append one zero at the end of {𝑦∗

′
𝑖
}𝑖 .

And we process similarly for {𝑧∗′
𝑘,𝑗
}𝑘,𝑗 .

By definition of 𝐹 (I, 𝑟 ) and {𝑦∗
𝑖
}𝑖 , we have

𝑁 −
∑︁

𝑖∈[𝑁 ]
𝑦∗𝑖 = −𝐹 (I, 𝑟 ). (19)

And similarly, we have

𝑁 −
∑︁

𝑖∈[𝑁 ]
𝑦∗
′

𝑖 = −𝐹 (I′, 𝑟 ) + 1 ≤ −𝐹 (I, 𝑟 ) + 2, (20)

where the inequality is by Lemma 5.8.

By this setting, we have


Q(I∗) − Q(I∗′ )



=

√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

(
𝑧∗
′

𝑘,𝑗
− 𝑧∗

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I)

ª®¬
2

≤

√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

(
𝑧∗
′

𝑘,𝑗
− 𝑧∗

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I) · I

(
𝑧∗
𝑘,𝑗

< 𝑧∗
′

𝑘,𝑗

)ª®¬
2



+

√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

(
𝑧∗
𝑘,𝑗
− 𝑧∗′

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I) · I

(
𝑧∗
𝑘,𝑗

> 𝑧∗
′

𝑘,𝑗

)ª®¬
2

. (21)

For any 𝑘 ∈ [𝑑], 𝑗 ∈ [𝑀𝑘 ] such that 𝑧∗
𝑘,𝑗

< 𝑧∗
′

𝑘,𝑗
, we have

𝑧∗
′

𝑘,𝑗
− 𝑧∗

𝑘,𝑗
≤𝑧∗

′

𝑘,𝑗
− 𝑧∗

𝑘,𝑗
· 𝑧∗

′

𝑘,𝑗

=

(
1 − 𝑧∗

𝑘,𝑗

)
· 𝑧∗

′

𝑘,𝑗

≤
∑︁

𝑖∈𝐷𝑘,𝑗 (I)

(
1 − 𝑦∗𝑖

)
· 𝑧∗

′

𝑘,𝑗
. (22)

The first line is by 𝑧∗
′

𝑘,𝑗
≤ 1. The last line is by (17).

Then, we have√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

(
𝑧∗
′

𝑘,𝑗
− 𝑧∗

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I) · I

(
𝑧∗
𝑘,𝑗

< 𝑧∗
′

𝑘,𝑗

)ª®¬
2

≤

√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

∑︁
𝑖∈𝐷𝑘,𝑗 (I)

(
1 − 𝑦∗

𝑖

)
· 𝑧∗′

𝑘,𝑗
·𝜓𝑘,𝑗 (I) · I

(
𝑧∗
𝑘,𝑗

< 𝑧∗
′

𝑘,𝑗

)ª®¬
2

≤

√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

∑︁
𝑖∈𝐷𝑘,𝑗 (I)

(
1 − 𝑦∗

𝑖

)
· 𝑧∗′

𝑘,𝑗
·𝜓𝑘,𝑗 (I)

ª®¬
2

≤
∑︁

𝑖∈[𝑁 ]

©­­«
(
1 − 𝑦∗𝑖

)
·

√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈𝐶𝑘,𝑖 (I)
𝑧∗
′

𝑘,𝑗
·𝜓𝑘,𝑗 (I)

ª®¬
2ª®®¬

≤
∑︁

𝑖∈[𝑁 ]

(
1 − 𝑦∗𝑖

)
· 𝑟

≤ − 𝐹 (I, 𝑟 ) · 𝑟 (23)

The second line is by (22). The fourth line is by the triangle inequal-

ity under ℓ2 distance metric. The last line is by (19).

Similarly, with (20), we can show,√√√√√ ∑︁
𝑘∈[𝑑 ]

©­«
∑︁

𝑗∈[𝑀𝑘 ]

(
𝑧∗
𝑘,𝑗
− 𝑧∗′

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I) · I

(
𝑧∗
𝑘,𝑗

> 𝑧∗
′

𝑘,𝑗

)ª®¬
2

≤
(
−𝐹 (I, 𝑟 ) + 2

)
· 𝑟 (24)

Finally, combining (21), (23), and (24), the lemma follows. □

Our polynomial-time algorithm is thus the same as Algorithm

2, except that 𝐹 (I, 𝑟 ) and Q(I, 𝑟 ) are replaced by 𝐹 (I, 𝑟 ) and Q̂(I, 𝑟 ),
respectively. Below we show that this replacement does not affect

its privacy or utility:

Theorem 5.11. For any 𝜀, 𝛿, 𝛽 > 0 and any I, the polynomial-time
version of Algorithm 2 preserves (𝜀, 𝛿)-DP, and returns a Q̃(I) such
that with probability at least 1 − 𝛽 ,


Q̃(I) − Q(I)



=𝑂

(√︁
𝑑 log(1/𝛽) log(𝑒𝜀/𝛿)

𝜀2
· DS(I) ·

(
log

log(DS)
𝛽

+ log(𝑒𝜀/𝛿)
))

.

Proof. The privacy analysis remains the same as in the proof

of Theorem 5.6, since 𝐹 (I, 𝑟 ) and Q̂(I, 𝑟 ) have the same sensitivity

properties as 𝐹 (I, 𝑟 ) and Q(I, 𝑟 ). Below we analyze the utility.

First, by Lemma 3.8 and 5.2, with probability at least 1 − 𝛽
3
,

−𝐹 (I, 𝑟 ) = 𝑂

(
1

𝜀
log

log(DS(I))
𝛽

)
, (25)

and 𝑟 ≤ 2 · DS(I).
By the difference betweenExpPrivMultiSJA and PolyPrivMultiSJA,

we only need to bound the bias


Q(I) − Q̂(I, 𝑟 )


 = 𝑂

(
DS(I)
𝜀

log

log(DS(I))
𝛽

)
. (26)

Let {𝑦∗
𝑖
}𝑖 = Sol

(
𝐸 (I, 𝑟 )

)
. And we construct {𝑧∗

𝑘,𝑗
}𝑘,𝑗 and Q(I∗)

as (17) and (18). By (25),

𝑁 −
∑︁
𝑖

𝑦∗𝑖 = 𝑂

(
1

𝜀
log

log(DS(I))
𝛽

)
. (27)

Then, we increment {𝑦∗
𝑖
}𝑖 to one vector, i.e. all elements equal

to 1, and update the corresponding {𝑧∗
𝑘,𝑗
}𝑘,𝑗 , Q(I∗) iteratively. For

convenience, we use the subscript to denote the iteration and let

{𝑦∗
𝑖
}𝑖 , {𝑧∗𝑘,𝑗 }𝑘,𝑗 and,Q(I

∗) be the ones for iteration 0, i.e, {𝑦∗(0)
𝑖
}𝑖 =

{𝑦∗
𝑖
}𝑖 , {𝑧∗(0)𝑘,𝑗

}𝑘,𝑗 = {𝑧∗𝑘,𝑗 }𝑘,𝑗 , and

Q(I∗(0) ) = Q(I∗) . (28)

At iteration 𝑖 ∈ [𝑁 ], we increment 𝑦
∗(𝑖 )
𝑖

from 𝑦∗
𝑖
to 1. Then, we

set {𝑧∗(𝑖 )
𝑘,𝑗
}𝑘,𝑗 and Q(I∗(𝑖 ) ) as (17) and (18). With setting, we have

∥Q(I∗(𝑖 ) ) − Q(I∗(𝑖−1) )∥

=

√√√√√ 𝑑∑︁
𝑘=1

©­«
𝑀𝑘∑︁
𝑗=1

(
𝑧
∗(𝑖 )
𝑘,𝑗
− 𝑧∗(𝑖−1)

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I)

ª®¬
2

=

√√√√√ 𝑑∑︁
𝑘=1

©­«
∑︁

𝑗∈𝐶𝑘,𝑖 (I)

(
𝑧
∗(𝑖 )
𝑘,𝑗
− 𝑧∗(𝑖−1)

𝑘,𝑗

)
·𝜓𝑘,𝑗 (I)

ª®¬
2

≤

√√√√√ 𝑑∑︁
𝑘=1

©­«
∑︁

𝑗∈𝐶𝑘,𝑖 (I)

(
1 − 𝑦∗

𝑖

)
·𝜓𝑘,𝑗 (I)

ª®¬
2

=
(
1 − 𝑦∗𝑖

)
·

√√√√√ 𝑑∑︁
𝑘=1

©­«
∑︁

𝑗∈𝐶𝑘,𝑖 (I)
𝜓𝑘,𝑗 (I)

ª®¬
2

≤
(
1 − 𝑦∗𝑖

)
· DSQ (I). (29)

The third line is because, at 𝑖th iteration, for any 𝑘 ∈ [𝑑], 𝑧∗(𝑖 )
𝑘,𝑗

will

not be updated if 𝑗 ∉ 𝐶𝑘,𝑖 (I). The fourth line is by (17). The last line

is by the definition of DSQ (I).
After all iterations, we have all 𝑦

∗(𝑁 )
𝑖

= 1 thus

Q(I∗(𝑁 ) ) = Q(I) . (30)



Summing up (29) for all 𝑖 and combining (28) and (30), we get

(26). Finally, with a similar process as the proof of Theorem 5.6, the

claim follows. □

6 SYSTEM IMPLEMENTATION
Our algorithm can be implemented on top of any SQL engine and

a QCQP solver. For our system prototype, we use PostgreSQL and

MOSEK.

The first step is to extract {𝐶𝑘,𝑖 }𝑘,𝑖 , {𝐷𝑘,𝑗 }𝑘,𝑗 from the join re-

sults. Note that the original query does not output this information,

so the first step is to rewrite the query so that it also includes the

PKs of the private entities, as illustrated in the following example.

Example 6.1. Consider Q5 of TPC-H benchmark:

SELECT nation_name, SUM(price ∗ (1 − discount))
FROM Supplier, Lineitem, Orders, Customer, Nation

WHERE ... GROUP BY nation_name

We rewrite it as

SELECT nation_name, Supplier.SK, Customer.CK,

price ∗ (1 − discount)
FROM Supplier, Lineitem, Orders, Customer, Nation

WHERE ...

From the results of the rewritten query, we then construct a

series of QCQPs and feed them into the SVT. Note that these QCQPs

only differ in the value of 𝑟 . The SVT returns an 𝑟 , 𝐹 (I, 𝑟 ), and the

corresponding optimal fractional solution, fromwhich we construct

Q̂(I, 𝑟 ). Finally, we add Gaussian noise to Q̂(I, 𝑟 ).

Algorithm 3: SVT with jump start

Input: 𝑇 , 𝜀, 𝑘 , and a sequence of sensitivity-1 queries

𝑓1 (I), 𝑓2 (I), . . .
1 𝑇 ← 𝑇 + Lap(2/𝜀);
2 𝑓 ′ = ∞;
3 for ℓ ← 𝑘, 𝑘 − 1, . . . , 1 do
4 𝑣ℓ ← Lap(4/𝜀);
5 if 𝑓 ′ + 𝑣ℓ < 𝑇 then
6 𝑓ℓ (I) ← 𝑓 ′;
7 else
8 Compute 𝑓ℓ (I);
9 𝑓 ′ ← 𝑓ℓ (I);

10 end
11 end
12 for ℓ ← 1, 2, . . . do
13 if ℓ > 𝑘 then
14 𝑣ℓ ← Lap(4/𝜀);
15 Compute 𝑓ℓ (I);
16 end
17 if 𝑓ℓ (I) + 𝑣ℓ ≥ 𝑇 then
18 return ℓ ;

19 end
20 end

Optimizations. We observe that the computational bottleneck is

to solve the series of QCQPs. To make them more efficient, we use

the following two techniques. First, for each QCQP, we rewrite it

into a conic programming, which is then solved by MOSEK with a

homogeneous primal-dual algorithm. It turns out that solving the

QCQP this way is much more efficient in practice.

The second technique reduces the number of QCQPs we have to

solve. We observe that as we increase 𝑟 , the optimal solutions of the

QCQPs, hence the 𝐹 (I, 𝑟 )’s, are monotonically increasing. Recall

that SVT returns the first 𝑟 = 2
ℓ
such that 𝐹 (I, 2ℓ ) + 𝑣ℓ ≥ 𝑇 , where

𝑣ℓ is a Laplace noise. Since the first few 𝐹 (I, 2ℓ )’s are unlikely to

go above the threshold, our idea is to give a “jump start” to the

SVT by skipping those QCQPs. Let 2
𝑘
be the smallest power of 2

no less than DS(I). By our analysis in the proof of Theorem 5.6,

the SVT is likely to stop around 𝑟 = 2
𝑘
. Our idea is then to first

generate 𝑣ℓ for all ℓ = 1, . . . , 𝑘 in advance, but only compute an

𝐹 (I, 2ℓ ) if it has a chance to be above 𝑇 after adding 𝑣ℓ . By going

backward from 2
𝑘
to 1 and exploiting the monotonicity of 𝐹 (I, 2ℓ ),

this can eliminate many of them from having to be computed. The

detailed algorithm is shown in Algorithm 3. Note that Algorithm 3

is nothing but a more efficient execution of the original SVT, so its

privacy and utility guarantees remain the same. Furthermore, this

technique can be applied to any SVT instantiation with a sequence

of monotonic queries 𝑓1 (I), 𝑓2 (I), . . . , as long as there is a good

guess 𝑘 on the likely stopping position (note that 𝑘 can depend on

private information), so we present Algorithm 3 in a more generic

form.

7 EXPERIMENTS
In this section, we report our experimental results comparing our

algorithm (denoted PMSJA) with state-of-the-art algorithms for

answering SJA queries with group-by over both benchmark and

real-world datasets. For self-join-free queries, we compare with

OptMean [21]; for queries with (implicit) self-joins, we compare

with R2T [10] combined with advanced composition [18].

7.1 Setup
Datasets. We use two types of datasets: TPC-H and Stack Over-

flow network dataset. The TPC-H schema has been discussed before

and is shown in Figure 1.We use datasets with scale 0.125, 0.25, . . . , 8.

The default scale is 2, where there are about 15 million tuples.

The Stack Overflow network dataset is from SNAP [28] and

records users’ interactions on the Stack Overflow website. Here,

each node represents one user and the interactions are stored as

edges with a timestamp. We use two graphs, corresponding to

answer-to-question (a2q) and comment-to-answer (c2a), respec-
tively. They contain 2,464,606 nodes, 17,823,525 edges, and 1,646,338

nodes, 25,405,374 edges, respectively. We have deleted the top 10%

nodes with the highest degrees, as protecting their privacy would in-

troduce toomuch error. The number of edges of stackoverflow − a2q
and stackoverflow − c2a are then reduced to 1,468,092 and 1,425,352.

Queries. We use 8 queries over TPC-H schema. The first two

are self-join-free queries while the others are self-join queries. The

query structures are shown in Figure 3. Some of the queries are

taken directly from TPC-H benchmark while others are designed
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Figure 3: The structure of queries.

to test the algorithms under various settings, in particular different

combinations of primary private relations and counting queries

are used. Furthermore, for the same TPC-H query, we may use

different group-by attributes. That is also to test algorithm under

more settings: Different group-by attributes lead to different group

sizes 𝑑 and different data distributions in groups. Another reason

is that TPC-H queries have too many or too few groups , i.e., for

TPC-H query𝑄7, if adding predicates, there are only 8 groups while

removing the predicates will lead to thousands of groups. Therefore,

we removed the predicates and used a subset of group-by attributes

to get a good 𝑑 . More precisely, both Q1, Q2 correspond to TPC-

H query 𝑄10 where Customer is assigned as the primary private

relation but use different group-by attributes. Q3 corresponds to

TPC-H query 𝑄5. Q4 and Q5 correspond to TPC-H query 𝑄7 but

with different group-by attributes. All these three queries have

Customer and Supplier as the primary private relations. Finally,

Q6,Q7, andQ8 provide more primary private relation combinations:

{PartSupp,Customer} and {PartSupp,Orders}.
For the group-by attributes, we use date attribute or/and nation

attribute. There are three cases. In the first case, we use the nation

attribute and it has 25 groups. In the second case, we use the date,

where we select 100 dates with each one corresponding to one

group. We also conduct experiments with various grouping, which

will be discussed later. Furthermore, we also use their combinations

to make the group: we group the query results by nation and month.

To avoid the heavy computations brought by the large group size,

we only select two months and the group size here is 50. The group

size for each query is shown in the head of Table 1.

In another dimension, Q2, Q6, Q7 are counting queries while the

others do the sum aggregation over extendedprice and discount
attributes in Lineitem relation. The numbers shown are in thou-

sands.

For graph pattern counting queries, we use edge counting query

Q1− , length-2 path counting queryQ2− , and length-3 path counting
query Q3− . We take the groups on the time attribute on the first

edge. Here, we have 10 groups and each group has several dates.

Each group in Q1− , Q2− , and Q3− has 40, 80, 220 dates respectively.

Experimental parameters. We conduct all experiments on a Linux

server with a 24-core 48-thread 2.2GHz Intel Xeon CPU and 256GB

memory. Each program is allowed to use at most 24 threads. We use

ℓ2 metric in the report of query result and the error and we call one

mechanism has utility and high utility if the relative error is below

50% and 30% respectively. Each experiment is repeated 20 times

and we remove 4 largest errors and 4 smallest errors and report the

average error for the rest 12 runs. For the privacy budgets, we use

𝜀 = 2, 4, 8 and the default value is set to 4. Compared with the work

of answering single query [10, 11, 13, 22, 40], we use larger 𝜀. That

is because answering multiple queries is much more complex and

we need larger 𝜀 to guarantee the utility [1]. We set 𝛿 to 1e-7 and

the failure probability 𝛽 to 0.1. Both OptMean and R2T require an

GSQ as the input parameter. For TPC-H queries, we set GSQ to 1e6.

For graph pattern counting queries, we set a degree upper bound

of 𝐷 = 1, 000, 000 and set GSQ as the maximum number of graph

patterns containing any node, i.e., GSQ1− = 𝐷 , GSQ2− = 𝐷2
, and

GSQ3− = 𝐷3
.

7.2 Experimental Results
Compare with state-of-the-art algorithms. We conduct the exper-

iments on the TPC-H dataset and graph data to compare PMSJA

with OptMean and R2T and the results are shown in Table 1 and

Table 2 where we report both error level (relative error) and running

time. For self-join-free cases, OptMean already has very high utility

while PMSJA further reduces this error by more than 50%. This

matches our theoretical analyses: PMSJA improves OptMean by a

log factor and both of them match the lower bound up to log fac-

tors. For efficiency, PMSJA uses a bit more time than OptMean but

they are nearly at the same level. That is because, for self-join-free

queries, they have very similar processes: extracting the relation-

ship between users and join results first and then finding some

threshold to do the clipping with sub-linear time.

Then, we talk about the results of 12 self-join queries and make

a comparison between PMSJA with R2T. For the utility, PMSJA

has high utility (relative error below 30%) in all 12 queries except

the two Q3− , in which PMSJA still has the utility (relative error

below 50%). Meanwhile, R2T only has utility in two Q1− queries,

where the group size is small, i.e., 𝑑 = 10. More precisely, for TPC-

H queries, the error level of R2T is 3.91× ∼ 8.1× of PMSJA and a

larger 𝑑 is more likely to lead to a larger gap. For the graph pattern

counting queries where 𝑑 = 10, that ratio is reduced to 1.91× ∼
2.53×. That confirms our theoretical analysis that PMSJA has

√
𝑑



Query type Self-join-free queries Self-join queries

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Group size 𝑑 100 25 25 50 100 25 50 100

Query result

ℓ2 norm 1,820,000 2,400,000 3,480,000 1,830,000 1,820,000 59,000 43,800 1,820,000

Time(s) 1.33 4.58 3.85 2.62 1.66 2.12 2.21 3.56

PMSJA

Error(%) 0.504 0.0644 24.6 18.5 20.0 12.4 21.9 10.2

Time(s) 12.5 75.4 562 4683.8 3056.8 36.3 35.8 68.5

R2T/OptMean

Error(%) 1.2 0.138 99.6 83.7 87.6 56.1 85.7 82.5

Time(s) 6 65.2 20.7 30.1 24.1 12.0 15.3 26.1

Table 1: Comparison between PMSJA and state-of-the-art algorithms (OptMean [21] for self-join-free queries and R2T [10] for
self-join queries) on TPC-H queries with group-by operator. We use data scale equal to 2, 𝜀 = 4 and report the relative error.

Dataset stackoverflow − a2q stackoverflow − c2a

Query

Q1− Q2− Q3− Q1− Q2− Q3−
Error(%) Time(s) Error(%) Time(s) Error(%) Time(s) Error(%) Time(s) Error(%) Time(s) Error(%) Time(s)

Query Result 48,000 0.735 41,400 1.3 49,500 1.78 34,900 0.61 50,100 1.11 106,000 1.57

PMSJA 5.56 27.3 23 41.4 35.5 81.3 11.7 16 24.8 60.8 36.7 1,943

R2T 13.9 10.7 58.5 10.6 81 12.8 22.3 8.67 60.6 11 77.5 19.5

Table 2: Comparison between PMSJA and R2T [10] on graph pattern counting queries with 𝑑 = 10 on different networks. We
use 𝜀 = 4 and report relative error.
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Figure 4: Running times and error levels of PMSJA and R2T for Q3 with different 𝑑 and 𝜀.

improvement over R2T and matches the lower bound up to log

factors. For efficiency, as mentioned before, PMSJA solves several

convex QCQP’s and needs much more running time than R2T,

which only solves a number of LPs. However, as the experiments

show, in more than half of the cases (8/12), the running time of

PMSJA is not much larger than R2T (less than 8×), although it can

be much longer in the worst case.

Number of queries. To further examine the effects of the change

of number of queries 𝑑 , we use Q3 but more/fewer dates so we can

have different𝑑’s. More precisely, we run it with𝑑 = 12, 25, 50, . . . , 400

on the TPC-H dataset with scale 2 and 𝜀 is set to 2, 4, 8. We plot

both error levels and running times in Figure 4, where we also plot

the ℓ2 norm of the query result and its running time. For the error

level, first, it is not surprising to see, PMSJA always has an error

lower than R2T. As 𝑑 increases, the error of PMSJA decreases at the

same rate as that of the query result: both of them increase with

√
𝑑 .

Meanwhile, for R2T, its error level increases linearly with 𝑑 before

it catches up with the query result (see the figure with 𝜀 = 8). One

interesting finding is, when 𝑅2𝑇 ’s catches up with the query result,

it increases at the same rate as the query result and will not surpass

that (see the figures with 𝜀 = 2 and 𝜀 = 4). That is because R2T will

always return a noised value between 0 and the real query result

thus its error is at most the query result. However, this does not

really have any benefit since we have already lost all utility when

the error level reaches the query result.



106

107

Er
ro

r L
ev

el

PMSJA R2T Query result

106

107

106

107

0.125 0.25 0.5 1 2 4 8
Scale

101

103

Ru
nn

in
g 

Ti
m

e(
s)

= 2

0.125 0.25 0.5 1 2 4 8
Scale

101

103

= 4

0.125 0.25 0.5 1 2 4 8
Scale

101

103

= 8

(a) Q3

104

105

Er
ro

r L
ev

el

104

105

104

105

0.125 0.25 0.5 1 2 4 8
Scale

100

101

102

Ru
nn

in
g 

Ti
m

e(
s)

= 2

0.125 0.25 0.5 1 2 4 8
Scale

100

101

102

= 4

0.125 0.25 0.5 1 2 4 8
Scale

100

101

102

= 8

(b) Q7

Figure 5: Running times and error levels of PMSJA and R2T with different queries, data scales and 𝜀.

On the other hand, we see the running time of real query sub-

linearly increases with 𝑑 . By contrast, R2T and PMSJA have linear

and sup-linear speeds respectively. That is because R2T runs each

query independently and for every single query, increasing 𝑑 will

only affect the assigned 𝜀, which just brings a minor effect on the

running time thus the running time has a linear dependency on

𝑑 . Meanwhile, for PMSJA, increasing 𝑑 will complicate the convex

QCQP’s it solves thus leading to a super-linear effect on the running

time.

Scalability. Lastly, we conduct the experiments to see the ef-

fects of data scale changes. We use TPC-H datasets with scale

0.125, 0.2, . . . , 8 and run Q3 and Q7 with 𝜀 = 2, 4, 8. The results are

shown in Figure 5a and 5b.

First, the error level of DPSJA barely changes with the data scale.

That is because theoretically, it only depends on DSQ (I), which
does not change much by the scale of TPC-H data. On the other

hand, the error level of 𝑅2𝑇 first increases with query result but

will then stay at some level. That is because its error guarantee

also depends on DSQ (I) and as mentioned before, its error is also

bounded by the query result.

For efficiency, both query and R2T have running time that in-

creases linearly with the data scale while the running time of PMSJA

has a super-linear dependency on the data scale.
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