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ABSTRACT
A general-purpose query engine that supports a large class of SQLs

under differential privacy is the holy grail in privacy-preserving

query release. The join operator presents a major difficulty towards

realizing this goal, since a single tuple may affect a large number

of query results, and the problem worsens as more relations are

involved in the join. The traditional approach of global sensitivity

fails to work as it assumes pessimistically that every pair of tuples

from two different relations may join. To address the issue, instance-

dependent sensitivity measures have been proposed, but so far none

has met the following three desiderata for it to be truly practical: (1)

the released answer should have low noise levels (i.e., high utility);

(2) it can be computed efficiently; and (3) the method can be easily

integrated into an existing relational database. This paper presents

the first differentially private mechanism for multi-way joins that

satisfies all three desiderata while supporting any number of private

relations, moving us one step closer to a full-featured query engine

for private relational data.

CCS CONCEPTS
• Information systems→ Database query processing; • Secu-
rity and privacy → Database and storage security; • Theory
of computation → Theory of database privacy and security.
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1 INTRODUCTION
Suppose a data analyst is interested in the total number of items

sold this year where the customer and supplier are from the same

nation in a given region, s/he would issue the following query

(assuming the TPC-H schema):

SELECT count(*)
FROM Region, Nation, Customer, Orders, Supplier, Lineitem

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

WHERE Orders.Orderdate > 2020-01-01
AND Region.Name = '[REGION]'
AND Region.RK = Nation.RK AND Lineitem.SK = Supplier.SK
AND Nation.NK = Customer.NK AND Customer.CK = Orders.CK
AND Orders.OK = Lineitem.OK AND Nation.NK = Supplier.NK

Such queries involving multi-way joins are very common in

today’s data analytical tasks, and are a central problem in databases

that have been extensively studied in the literature. Sophisticated

query processing algorithms and systems have been and are con-

tinually being developed and optimized throughout the years.

However, many datasets contain private information, and pri-

vacy concerns have become the main hurdle to making use of

today’s big data for knowledge discovery and decision making. In

this example, while it might be safe to reveal Region and Nation,
the other four relations contain private relationship information

between various entities, such as which customer has placed a par-

ticular order, which items are contained in an order, which suppliers

provide a certain item, so their privacy must be protected.

This paper studies the problem of how to release a multi-way join

counting query under differential privacy (DP) [9], which provides

a formal privacy guarantee to individual tuples in the database.

While deferring the details to Section 3, a dominating approach is

the following sensitivity framework.

(1) Compute the query answer on the given database instance.

(2) Compute some notions of sensitivity of the query, which

measure the difference between the query answers on two

database instances that differ by one tuple (a.k.a. neighboring
database instances).

(3) Release a noise-masked query answer, where the noise is

drawn from some zero-mean distribution, calibrated appro-

priately according to the sensitivity.

Step (1) and (3) are both well understood in the literature, so the

key challenge is step (2). There are three desiderata when designing

a sensitivity measure, by order of decreasing importance:

(1) Utility: The sensitivity should be as small as possible, as

the noise level is proportional. Adding noise with a magni-

tude greater than the actual query answer would completely

destroy its utility.

(2) Efficiency: The sensitivity should be computed efficiently.

(3) Integration: It can be easily integrated into any existing

relational database system.

Below, we review previous measures of sensitivity for multi-way

joins along the three desiderata, before presenting our proposal.

1.1 Previous Work
Global sensitivity. The global sensitivity is defined as the maxi-

mumdifference between the query answers on any two neighboring
database instances. Note that global sensitivity is a property of the
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query only, and does not depend on the actual instance. Equiva-

lently speaking, global sensitivity considers the worst-case instance,

and measures the amount of change in the query answer when a

tuple is changed in that worst-case instance. This works well for

queries without joins, where the global sensitivity is just 1. How-

ever, the global sensitivity becomes unbounded when (unrestricted)

joins are present.

Local and smooth sensitivity. When the global sensitivity is high

or unbounded, it is tempting to use the sensitivity of the query on

the particular given instance, which is usually much lower, except

on contrived instances. This is referred to as the local sensitiv-
ity. However, as pointed out by Nissim et al. [21], using the local

sensitivity to calibrate noise is not differentially private. This is

because the local sensitivity can be very different on two neigh-

boring databases, so the noise level may reveal information about

an individual tuple. Essentially, the problem is that local sensitiv-

ity, when considered as a query, has high global sensitivity. To get

around the problem, the idea is to use a smooth (i.e., having low

global sensitivity) upper bound of the local sensitivity. Clearly, the

smaller this upper bound is, the better utility we would obtain, and

the tightest smooth upper bound is termed the smooth sensitivity
[21]. Please see Section 3 for more precise definitions.

Although smooth sensitivity has met desideratum (1), (2) and (3)

are less clear. In fact, it is shown that for certain problems, comput-

ing or even approximating the smooth sensitivity is NP-hard [21].

While the computational hardness of smooth sensitivity of multi-

way joins is still open, we have recently found an 𝑁𝑂 (log𝑁 )
-time

1

algorithm (see Appendix A), which is actually an indication that

it may not be NP-hard. Nevertheless, a polynomial-time algorithm

still remains elusive, and even if there is one, it probably will be

very complicated, thus making desideratum (3) hard to achieve.

Elastic sensitivity. Due to the lack of an efficient algorithm for

computing the smooth sensitivity for multi-way joins, Johnson et

al. [13] proposed elastic sensitivity, which is also a smooth upper

bound of local sensitivity, but not as tight as smooth sensitivity.

Elastic sensitivity achieves both (2) and (3): it can be computed in

linear time, and can be implemented easily using a constant number

of SQL queries, plus a user-defined function (UDF) that combines

the answers of these queries using a certain formula. However, it

does not really achieve (1). Theoretically, the gap between elastic

sensitivity and smooth sensitivity can be as large as 𝑂
(
𝑁𝑛−1

)
for

an 𝑛-way join on a database containing 𝑁 tuples. In practice, it

often yields noise levels that are orders-of-magnitude higher than

the actual query answer, as demonstrated in the experiments of

[13], as well as our own experiments.

1.2 Our Proposal: Residual Sensitivity
This paper proposes residual sensitivity for multi-way join count-

ing queries without self-joins. It is also a smooth upper bound of

local sensitivity, thus can be used to calibrate noise to ensure dif-

ferential privacy. More importantly, we show that it meets all three

desiderata outlined earlier:

1
Throughout the paper, we use data complexity [1] when talking about running times,

i.e., the running time is measured as a function of the database size 𝑁 , while the query

size (i.e., number of relations and attributes in the query) is considered a constant.

(1) Utility: Theoretically, we prove that residual sensitivity is

always smaller than elastic sensitivity on any query and

any database instance. More importantly, we prove that

residual sensitivity is at most a constant-factor larger than

smooth sensitivity. Thus, it can also be considered as a

constant-factor approximation of smooth sensitivity, for

which no polynomial-time algorithms are known. Empiri-

cally, we demonstrate that residual sensitivity ismuch smaller

than elastic sensitivity on a collection of queries using both

benchmark and real-world datasets, while the gap can go

up to 7 orders of magnitude. When applied to noise calibra-

tion, this makes the noise-masked answers of many queries

usable under stricter privacy requirements, especially for

cyclic queries and/or over skewed data.

(2) Efficiency: In theory, we show that residual sensitivity can be

computed in polynomial time, where the exponent depends

only on the join structure, not the database. In practice, the

running time appears to be linear, and is only slower than

that for computing elastic sensitivity by a small constant

factor.

(3) Integration: Similar to elastic sensitivity, residual sensitivity

can also be computed by executing a constant number of

SQL queries, and then combining their answers using a UDF,

although the queries are slightly more complicated than

those for elastic sensitivity. We have built a system prototype

based on PostgreSQL that can automatically computes a

differentially private answer given any SQL query consisting

of joins, selections, projections, and group-by.

The paper is organized as follows. After reviewing other related

work in Section 2, we begin the technical development in Section 3.

Section 4.5 defines residual sensitivity and describes how it can be

computed. Section 5 gives its theoretical analysis while Section 6

presents the experimental results.

2 RELATEDWORK
Since its introduction [8, 9], DP has attracted a lot of interest in

academia, government agencies, and industry. As mentioned, if the

query doesn’t have joins, then the global sensitivity is 1, so the

query answer can be released by just adding 𝑂 (1) noise. Therefore,
most efforts along this direction have been devoted to studying how

to release many query answers (with different selection conditions)

under a given privacy budget [3, 6, 11, 24, 25, 28, 30], in a way better

than direct composition [10].

The problem becomes much more challenging when joins are

present, because a single tuple may now affect many join results.

A relatively easy approach is to add constraints so as to reduce

the global sensitivity. McSherry [19] solves the problem by only

restricting to one-to-one joins. Proserpio et al. [23] propose wPINQ

to extend the work of McSherry to support general equijoins: by

assigning weights to tuples and scaling down the weights, their al-

gorithm ensures each tuple can at most affect one on final counting

result. However, this only works well when one tuple affects a fixed

number of results. Palamidessi and Stronati [22] add constraints

on the attribute range. Arapinis et al. [2] and Narayan et al. [20]

consider functional dependencies and cardinality constraints. In



contrast, elastic sensitivity and residual sensitivity do not require

any constraints on the join structure or the database.

In the relational model, two DP policies have been proposed

and studied, depending on whether foreign key constraints are

considered when defining neighboring instances. Our DP policy,

which is the same as in [13, 16, 20, 22, 23], does not consider foreign

key constraints, and two database instances are neighboring if they

differ by one tuple in any relation. In the DP policy considering

foreign key constraints [17, 27], two database instances are neigh-

boring if one can be obtained from the other by deleting a tuple 𝑡

in the primary private relation and all tuples in the other relations

that can join with 𝑡 via foreign key constraints. The two DP poli-

cies are incomparable in terms of their privacy guarantee: On the

one hand, the DP policy considering foreign key constraints offers

stronger privacy guarantee for the primary private relation, but it

only supports one such relation. On the other hand, the DP policy

not considering foreign key constraints provides relationship-level

guarantees to any number of relations. Which DP policy to use

will depend on the level of privacy needed by the application. If

the relationships, such as friendships, seller-buyer relationships,

caller-callee relationships, are sensitive, then the former should be

adopted. If the entities (including all information about the entity

reachable via foreign key constraints) are to be protected, then the

latter is more appropriate.

There have also been a series of works on graph pattern counting

queries under DP [4, 5, 7, 14, 15, 26, 29]. Their work differs from ours

in two aspects: First, by storing all edges in a two-column relation,

a graph pattern query can be formulated as a multi-way self-join

on one relation of arity 2. But since we cannot handle self-joins

(yet), we cannot deal with such queries. Meanwhile, they cannot

handle multi-way joins, either, which may involve any number of

relations of arbitrary arity. Second, these methods have efficient

algorithms only for specific graph patterns, such as triangles, stars,

and cliques; otherwise, they will suffer from high computation cost.

On the other hand, elastic/residual sensitivity can be computed in

polynomial time on any join structure.

3 PRELIMINARIES
3.1 Multi-way Joins
Let R be a database schema that consists of a set of relation names.

We consider counting queries defined by multi-way (natural) joins

of the form

𝑞 := 𝑅1 (x1) Z · · · Z 𝑅𝑛 (x𝑛),

where 𝑅1, . . . , 𝑅𝑛 ∈ R, and x𝑖 are the attributes of 𝑅𝑖 . We call each

𝑅𝑖 (x𝑖 ) an atom. In this paper, we consider self-join-free queries,

namely, all the 𝑅𝑖 ’s are distinct.

Let I be a database instance. For a relation name 𝑅 ∈ R, let I(𝑅)
denote the instance of relation 𝑅. Given a multi-way join query 𝑞

defined as above, we use 𝐼𝑖 as a shorthand for I(𝑅𝑖 ). Let 𝑁 = |I|
be the input size, and denote the query results of 𝑞 on I as 𝑞(I). A
counting query returns the cardinality of the query results, denoted

|𝑞(I)|.
For an attribute 𝑥 , we use dom(𝑥) to denote the domain of 𝑥 .

For x = (𝑥1, . . . , 𝑥𝑘 ), let dom(x) = dom(𝑥1) × · · · × dom(𝑥𝑘 ). We

use [𝑛] to denote {1, . . . , 𝑛}, and [𝑖, 𝑗] = {𝑖, . . . , 𝑗}. Per convention,

define [𝑛] = ∅ if 𝑛 ≤ 0, and [𝑖, 𝑗] = ∅ if 𝑖 > 𝑗 . For any 𝐸 ⊆ [𝑛],
define 𝐸 = [𝑛] − 𝐸.

3.2 Differential Privacy
For two relation instances 𝐼 , 𝐼 ′, we use𝑑 (𝐼 , 𝐼 ′) to denote the distance
between 𝐼 and 𝐼 ′, which is the minimum number of steps to change

𝐼 into 𝐼 ′, where each step is insertion, deletion, or change of a

tuple. The distance between two database instances is thus𝑑 (I, I′) =∑
𝑖∈[𝑛] 𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ). We use 𝑃 ⊆ [𝑛] to denote the set of private relations

and let 𝑛𝑃 = |𝑃 |. Two instances can only differ in the private

relations, i.e., 𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 0 for every 𝑖 ∈ 𝑃 . If 𝑑 (I, I′) = 1, we call I, I′

neighboring instances.
We allow 𝑃 to be any subset of relations in the query 𝑞. There are

many scenarios wheremultiple relations are private. For example, in

social networks and knowledge graphs, edges have different types

such as “friendship”, ”coauthorship”, “is a member of”, “belongs

to”, and they modeled as different relations. In a more traditional

relational schema like the TPC-H, different relations store different

relationships between customers and orders, orders and suppliers,

parts and suppliers, etc.

Definition 3.1 (Differential privacy). For 𝜀, 𝛿 > 0, an algorithm

M is (𝜀, 𝛿)-differentially private if for any neighboring instances

I, I′ and any subset of outputs 𝑌 ,

Pr[M(I) ∈ 𝑌 ] ≤ 𝑒𝜀 · Pr[M(I′) ∈ 𝑌 ] + 𝛿.

Typically, 𝜀 is a constant ranging from 0.1 to 10, with smaller

values corresponding to stronger privacy guarantees. On the other

hand, 𝛿 should be much smaller than 1/𝑁 to ensure the privacy of

individual tuples; in particular, the case where 𝛿 = 0 is referred to

as pure differential privacy, which is more desirable if achieved.

The most common technique of achieving differential privacy

is to mask the query result by adding random noise drawn from

a certain zero-mean probability distribution. The noise level (i.e.,

the standard deviation of the distribution) should depend on the

difference between the query results on I and I′, which is captured

by the notion of sensitivity. The local sensitivity of 𝑞 at instance I is
how much |𝑞 | can change at most if one tuple in I is changed, i.e.,

𝐿𝑆𝑞 (I) = max

I′,𝑑 (I,I′)=1

��|𝑞(I) | − |𝑞(I′) |
�� . (1)

The global sensitivity of 𝑞 is

𝐺𝑆𝑞 = max

I
𝐿𝑆𝑞 (I) .

It is well known that adding noise proportional to the global

sensitivity ensures privacy, but unfortunately, the global sensitivity

of many queries can be very high as the max is taken over all

instances I. For an 𝑛-way join, the global sensitivity can be as high

as 𝑂 (𝑁𝑛−1), which is unbounded as 𝑁 is considered unbounded

and private
2
. On the other hand, the local sensitivity is often much

smaller in most real-world instances. However, as observed in [21],

local sensitivity cannot be used to scale the noise directly, since

𝐿𝑆𝑞 (I) and 𝐿𝑆𝑞 (I′) can differ a lot on two neighboring instances I
and I′. Very different amounts of noise would be added to 𝑞(I) and
𝑞(I′), which breaches privacy.

2
In some DP definitions, the instance size 𝑁 is consider public information. In this

case, the global sensitivity is bounded, but still very high.



3.3 Smooth Sensitivity
To address the issue, Nissim et al. [21] proposed smooth sensitivity.
Similar with local sensitivity, smooth sensitivity is also instance-

dependent and usually much smaller than global sensitivity. But

different from local sensitivity, it eliminates abrupt changes between

neighboring instances, hence the name “smooth sensitivity”.

The smooth sensitivity is based on the local sensitivity at distance
𝑘 , 𝐿𝑆

(𝑘)
𝑞 , which is defined as

𝐿𝑆
(𝑘)
𝑞 (I) = max

I′,𝑑 (I,I′) ≤𝑘
𝐿𝑆𝑞 (I′).

Note that 𝐿𝑆
(0)
𝑞 (I) = 𝐿𝑆𝑞 (I) and ∀𝑘 ≥ 0, 𝐿𝑆

(𝑘)
𝑞 (I) ≤ 𝐺𝑆𝑞 . In fact,

𝐿𝑆
(𝑘)
𝑞 can be equivalently defined as

𝐿𝑆
(𝑘)
𝑞 (I) = max

I′,𝑑 (I,I′)=𝑘
𝐿𝑆𝑞 (I′) (2)

if dummy tuples are allowed in database.

Definition 3.2. The 𝛽-smooth sensitivity of 𝑞 is

𝑆𝑆𝑞 (I) = max

𝑘≥0

𝑒−𝛽𝑘𝐿𝑆 (𝑘)𝑞 (I) . (3)

An important property of 𝐿𝑆
(𝑘)
𝑞 is that for any I, I′ such that

𝑑 (I, I′) = 1, and any 𝑘 ≥ 0, 𝐿𝑆
(𝑘)
𝑞 (I) ≤ 𝐿𝑆

(𝑘+1)
𝑞 (I′). This ensures

the “smoothness” of 𝑆𝑆𝑞 (·): 𝑆𝑆𝑞 (I) and 𝑆𝑆𝑞 (I′) differ by at most a

constant factor 𝑒𝛽 on any two neighboring instances I and I′.
Computing the smooth sensitivity by definition in general takes

exponential time. Indeed, it has been shown that it is NP-hard

to compute the smooth sensitivity for certain functions [21]. By

exploiting special properties of the problem at hand, the running

time can be reduced to polynomial; examples include the median,

minimum spanning tree, and triangle counting [21]. However, it is

still an open problem whether the smooth sensitivity of multi-way

joins can be computed in polynomial time. In Appendix A, we

describe an algorithm with running time 𝑁𝑂 (log𝑁 )
. Such a running

time is said to be quasi-polynomial, which is super-polynomial

but sub-exponential. This suggests that computing the smooth

sensitivity for multi-way joins may not be NP-hard, although a

polynomial-time algorithm still remains elusive.

3.4 Smooth Upper Bound on Local Sensitivity
Fortunately, we do not have to compute the smooth sensitivity

exactly. Nissim et al. [21] showed that any smooth upper bound

𝑆𝑆𝑞 (I) of local sensitivity can be used for privacy-preserving query

publishing, which is also the focus of this paper.

Definition 3.3 (Smooth upper bound on local sensitivity). For 𝛽 > 0,

a 𝛽-smooth upper bound on local sensitivity, or simply smooth upper
bound, is any function 𝑆𝑆𝑞 (·) such that

(1) ∀I, 𝑆𝑆 (I) ≥ 𝐿𝑆𝑞 (I); and
(2) ∀I, I′ such that 𝑑 (I, I′) = 1, 𝑆𝑆𝑞 (I) ≤ 𝑒𝛽 · 𝑆𝑆𝑞 (I′).

Note that setting 𝑆𝑆𝑞 (I) = 𝐺𝑆𝑞 for all I certainly meets the

two conditions, but it is a very loose upper bound. On the other

hand, it has been shown that the first condition can be replaced

by 𝑆𝑆𝑞 (I) ≥ 𝑆𝑆𝑞 (I), meaning that the smooth sensitivity 𝑆𝑆𝑞 (·) is
actually the smallest smooth upper bound 𝑆𝑆𝑞 (·) that one can take.

Therefore, the problem is how to compute, in polynomial time,

an 𝑆𝑆𝑞 (·) that is as close to 𝑆𝑆𝑞 (·) as possible. This paper gives
essentially the best possible answer to this problem: We show how

to compute an 𝑆𝑆𝑞 (I) in polynomial time that is at most a constant

factor larger than 𝑆𝑆𝑞 (I), for an arbitrary multi-way join 𝑞 over

any instance I.
Nissim et al. [21] proposed two methods for computing a smooth

upper bound (Claim 3.2 and 3.3 in [21]). They utilize𝐺𝑆𝑞 , the global

sensitivity, and 𝐿𝑆
(𝑘)
𝑞 , an upper bound on 𝐿𝑆

(𝑘)
𝑞 , respectively. We

observe that their two methods can actually be combined to make

use of both𝐺𝑆𝑞 and 𝐿𝑆
(𝑘)
𝑞 , leading to the following unified approach

to obtaining a smooth upper bound:

Theorem 3.4. Let

𝑆𝑆𝑞 (I) = max

𝑘≥0

(
𝑒−𝛽𝑘 min(𝐿𝑆 (𝑘)𝑞 (I),𝐺𝑆𝑞)

)
, (4)

where

(1) 𝐿𝑆
(𝑘)
𝑞 (I) ≤ 𝐿𝑆

(𝑘)
𝑞 (I) for any 𝑘 and I;

(2) 𝐿𝑆
(𝑘)
𝑞 (I) ≤ 𝐿𝑆

(𝑘+1)
𝑞 (I′) for any 𝑘 and any I, I′ such that

𝑑 (I, I′) = 1; and
(3) 𝐺𝑆𝑞 ≤ 𝐺𝑆𝑞 .

Then 𝑆𝑆𝑞 (·) is a 𝛽-smooth upper bound on local sensitivity.

Proof. We prove the two conditions required by a smooth upper

bound in Definition 3.3. Condition (1) is obvious, since 𝑆𝑆𝑞 (I) ≥
min(𝐿𝑆 (0)𝑞 (I),𝐺𝑆𝑞), while both 𝐿𝑆

(0)
𝑞 (I) and ˆ𝐺𝑆𝑞 are upper bounds

of 𝐿𝑆𝑞 (I).
For condition (2), consider any I, I′ with 𝑑 (I, I′) = 1. From the

requirement on 𝐿𝑆
(𝑘)
𝑞 , we have

min

(
𝐿𝑆

(𝑘)
𝑞 (I),𝐺𝑆𝑞

)
≤ min

(
𝐿𝑆

(𝑘+1)
𝑞 (I′),𝐺𝑆𝑞

)
.

Define

𝑘I = arg max

𝑘

(
𝑒−𝛽𝑘 min(𝐿𝑆 (𝑘)𝑞 (I),𝐺𝑆𝑞)

)
.

Then

𝑆𝑆𝑞 (I) = 𝑒−𝛽𝑘
I
min

(
𝐿𝑆

(𝑘 I)
𝑞 (I),𝐺𝑆𝑞

)
≤ 𝑒𝛽𝑒−𝛽 (𝑘

I+1)
min

(
𝐿𝑆

(𝑘 I+1)
𝑞 (I′),𝐺𝑆𝑞

)
≤ 𝑒𝛽 max

𝑘

(
𝑒−𝛽𝑘 min(𝐿𝑆 (𝑘)𝑞 (I′),𝐺𝑆𝑞

)
= 𝑒𝛽𝑆𝑆𝑞 (I′). □

Remark 1. Note that in the max𝑘≥0
of (4), it suffices to consider

𝑘 up to
ˆ𝑘 =

ln(𝐺𝑆𝑞 )
𝛽

: For any 𝑘 > ˆ𝑘 , we have

𝑒−𝛽𝑘 min

(
𝐿𝑆

(𝑘)
𝑞 (I),𝐺𝑆𝑞

)
≤ 𝑒−𝛽𝑘𝐺𝑆𝑞 < 1,

so it cannot possibly yield the maximum.

Remark 2. Condition (1) in Theorem 3.4 can be equivalently

changed to (1′) 𝐿𝑆𝑞 (I) ≤ 𝐿𝑆
(0)
𝑞 (I). To see why, note that (1) ⇒ (1′)

trivially. For the other direction, we have (1′) + (2) ⇒ (1) by
a simple induction proof, where the key is to use 𝐿𝑆

(𝑘+1)
𝑞 (I) =

maxI′,𝑑 (I,I′)=1
𝐿𝑆

(𝑘)
𝑞 (I′). We keep the seemingly more restrictive

condition (2) in Theorem 3.4, because it actually gives us more



intuition on how to design an 𝐿𝑆
(𝑘)
𝑞 (I), as will be seen in our de-

velopment of residual sensitivity for multi-way joins.

Remark 3. If 𝐺𝑆𝑞 is unbounded, we set 𝐺𝑆𝑞 = ∞. In this case,

𝑆𝑆𝑞 (I) may be unbounded. However, for most natural problems

(including multi-way joins; see Lemma 4.12), one can show that

𝑒−𝛽𝑘𝐿𝑆
(𝑘)
𝑞 (I) is bounded for any 𝑘 , so 𝑆𝑆𝑞 (I) is still bounded.

3.5 Noise Calibration
After obtaining an 𝑆𝑆𝑞 (I), adding noise to the query answer to

achieve differential privacy is straightforward. In particular, Nissim

et al. [21] describe the following two mechanisms.

General Cauchy. The general Cauchy distribution has pdf ℎ(𝑧) ∝
1

1+|𝑧 |𝛾 . It has bounded variance for 𝛾 > 3. It is shown [21] that by

setting 𝛽 = 𝜀
2(𝛾+1) , adding noise

2(𝛾+1)𝑆𝑆𝑞 (I)
𝜀 𝜂 to |𝑞(I) | preserves

𝜀-differential privacy, where 𝜂 is drawn the general Cauchy distri-

bution. We use 𝛾 = 4, for which Var[𝜂] = 1, and the noise level (i.e.,

the standard deviation of the noise distribution) is thus
10

𝜀 𝑆𝑆𝑞 (I).

Laplace. The general Cauchy distribution has a heavy tail. Alter-

natively, one can use the Laplace distribution with pdf ℎ(𝑧) ∝ 𝑒−|𝑧 | ,
which has a better concentration. However, adding noise according

to the Laplace distribution only yields (𝜀, 𝛿)-differential privacy.
Specifically, one can set 𝛽 = 𝜀

2 ln(2/𝛿) and add noise
2𝑆𝑆𝑞 (I)

𝜀 𝜂, where

𝜂 is drawn from the Laplace distribution. Since Var[𝜂] = 2, the noise

level is
2

√
2

𝜀 𝑆𝑆𝑞 (I). Note that the noise level of using the Laplace

distribution may not be smaller than that of general Cauchy, be-

cause for the same 𝜀, the Laplace mechanism requires a smaller 𝛽 ,

which in turn leads to a larger 𝑆𝑆𝑞 (I).

Note that the computation of 𝑆𝑆𝑞 (I) and the subsequent noise

calibration step are both done internally; only the noise-masked

query result will be published in the end.

4 RESIDUAL SENSITIVITY
4.1 Residual Queries and Boundaries
Given a multi-way join 𝑞, its residual query on a subset 𝐸 ⊆ [𝑛]
of relations is 𝑞𝐸 :=Z𝑖∈𝐸 𝑅𝑖 (x𝑖 ). Its boundary, denoted 𝜕𝑞𝐸 , is the

set of attributes that belong to atoms both in and out of 𝐸, i.e.,

𝜕𝑞𝐸 = {𝑥 | 𝑥 ∈ x𝑖 ∩ x𝑗 , 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐸}. The following notion plays an

important role in our development.

Definition 4.1 (Maximum boundary and witness). For a residual
query 𝑞𝐸 on database instance I, its maximum multiplicity over the
boundary, or simply maximum boundary, is defined as

𝑇𝐸 (I) = max

𝑡 ∈dom(𝜕𝑞𝐸 )
|𝑞𝐸 (I) ⋉ 𝑡 |.

A witness tuple of the maximum multiplicity over the boundary, or
simply a witness, of 𝑞𝐸 is

𝑡𝐸 (I) = arg max

𝑡 ∈dom(𝜕𝑞𝐸 )
|𝑞𝐸 (I) ⋉ 𝑡 |. (5)

Per convention, when 𝐸 = ∅, 𝑞𝐸 is an empty query and 𝑞𝐸 (I) =
{⟨⟩}, where ⟨⟩ denotes the empty tuple, thus 𝑇∅ (I) = 1.

Example 4.2. Figure 1 illustrates these concepts using the query

𝑞 = 𝑅1 (𝐴, 𝐵,𝐶) Z 𝑅2 (𝐷, 𝐸, 𝐹 ) Z 𝑅3 (𝐴, 𝐷) Z 𝑅4 (𝐶, 𝐹 ) on a specific

database instance. The two residual queries shown are for 𝐸 =

{1, 3} and 𝐸 = {1, 2, 3}. For the first residual query, the boundary,
maximum boundary, and witness tuple are {𝐶, 𝐷}, 2, and (𝑐1, 𝑑1)
respectively. For the second one, those are {𝐶, 𝐹 }, 4, and (𝑐1, 𝑓1). □

Note that 𝑇𝐸 (I) can be computed by the following SQL query:

SELECT MAX(Boundary) FROM (6)

(SELECT COUNT(∗) AS Boundary FROM 𝑞𝐸 GROUP BY 𝜕𝑞𝐸 )

It is a special case of an AJAR query [12], and can be computed in

𝑂 (𝑁𝑤) time, where𝑤 is a particular notion of thewidth of the query.
The exact definition of𝑤 is a bit technical, but it is always a constant

depending only on 𝑞𝐸 and 𝜕𝑞𝐸 . Thus, 𝑇𝐸 (I) can be computed in

polynomial time. Furthermore, various optimizations are possible;

we discuss some of them in Section 6.2.

The following observations on the function 𝑇𝐸 (·) are immediate.

Recall that 𝐼𝑖 is a shorthand for I(𝑅𝑖 ).

Lemma 4.3. For two instances I, I′ and any 𝐸 ⊆ [𝑛], if 𝐼𝑖 = 𝐼 ′
𝑖
for

all 𝑖 ∈ 𝐸, then 𝑇𝐸 (I) = 𝑇𝐸 (I′).

Lemma 4.4. For I, I′, if 𝐼𝑖 ⊆ 𝐼 ′
𝑖
for all 𝑖 ∈ 𝐸, then 𝑇𝐸 (I) ≤ 𝑇𝐸 (I′).

Notation Meaning

I, I′ Database instances

𝐼1, . . . , 𝐼𝑛 Relation instances

𝑞𝐸 Residual query

𝜕𝑞𝐸 Boundary of 𝑞𝐸
𝑇𝐸 Maximum boundary of 𝑞𝐸
𝑡𝐸 Witness of 𝑞𝐸

I𝑘
The set of instances having distance 𝑘 to I

s Distance vector used to describe

the distance between two instances

S𝑘 The set of distance vectors such that

the total distance of all private relations is 𝑘

Is
The set of instance differing from I with s

𝑇𝐸,s (I) An upper bound of 𝑇𝐸 (I′) for any I′ ∈ Is

𝐺𝑆𝑞 The global sensitivity of 𝑞

𝐿𝑆𝑞 (I) The local sensitivity of instance I
𝐿𝑆

(𝑘)
𝑞 (I) The local sensitivity of at distance 𝑘 from I

𝐿𝑆𝑞,s (I) An upper bound of 𝐿𝑆𝑞 (I′) for any I′ ∈ Is

𝐿𝑆
(𝑘)
𝑞 (I) An upper bound of 𝐿𝑆

(𝑘)
𝑞 (I′) for any I′ ∈ I𝑘

𝑅𝑆𝑞 (I) Residual sensitivity of I

Table 1: Notation used in the paper.

4.2 Formulating 𝐿𝑆
(𝑘)
𝑞 with 𝑇𝐸

The residual sensitivity of a query is based on analyzing the sensi-

tivity of (the maximum boundary of) its residual queries. First, we

build a connection between 𝐿𝑆
(𝑘)
𝑞 (I) and 𝑇𝐸 (I), starting with the

simple case 𝐿𝑆
(0)
𝑞 (I) = 𝐿𝑆𝑞 (I):
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Figure 1: Residual query, boundary, maximum boundary, and witness.

Theorem 4.5. 𝐿𝑆𝑞 (I) = max𝑖∈𝑃 𝑇[𝑛]−{𝑖 } (I).

Proof. First, note that the definition of 𝐿𝑆𝑞 (I) in (1) can be

rewritten as

𝐿𝑆𝑞 (I) = max

𝑖∈𝑃
max

I′,𝑑 (I,I′)=1,𝑑 (𝐼𝑖 ,𝐼 ′𝑖 )=1

| |𝑞(I) | − |𝑞(I′) | |.

Consider any I′ with 𝑑 (I, I′) = 1, 𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 1. 𝐼 ′
𝑖
can be different

from 𝐼𝑖 in three ways: insertion, deletion, or change of a tuple

𝑡 ′ ∈ dom(x𝑖 ). In the first case, 𝐼 ′
𝑖
= 𝐼𝑖 ∪ {𝑡 ′}, 𝑡 ′ ∉ 𝐼𝑖 , so

| |𝑞(I) | − |𝑞(I′) | | = |𝑞(I′) | − |𝑞(I) |
= | Z𝑗 ∈[𝑛], 𝑗≠𝑖 (𝐼 𝑗 ⋉ 𝑡 ′) |.

Similarly, for the second case, 𝐼 ′
𝑖
= 𝐼𝑖 − 𝑡 ′, 𝑡 ′ ∈ 𝐼𝑖 and

| |𝑞(I) | − |𝑞(I′) | | = | Z𝑗 ∈[𝑛], 𝑗≠𝑖 (𝐼 𝑗 ⋉ 𝑡 ′) |.

Thus, over all I′ that differs from I by the insertion or deletion of a

tuple in 𝐼𝑖 , we have

max

I′
| |𝑞(I) | − |𝑞(I′) | |

=max

{
max

𝑡 ′∈I
| Z𝑗 ∈[𝑛], 𝑗≠𝑖 (𝐼 𝑗 ⋉ 𝑡 ′) |,

max

𝑡 ′∈dom(x𝑖 ),𝑡 ′∉I
| Z𝑗 ∈[𝑛], 𝑗≠𝑖 (𝐼 𝑗 ⋉ 𝑡 ′) |

}
= max

𝑡 ∈dom(𝜕𝑞 [𝑛]−{𝑖})
| Z𝑗 ∈[𝑛], 𝑗≠𝑖 (𝐼 𝑗 ⋉ 𝑡) |

=𝑇[𝑛]−{𝑖 } (I).

For the third case where I′ is obtained from I by changing a tuple
in 𝐼𝑖 , consider I′′ = I ∩ I′. From previous work, we can derive

| |𝑞(I) | − |𝑞(I′) | | ≤ 𝑇[𝑛]−{𝑖 } (I′′) .

Note that I and I′′ differ only in 𝐼𝑖 , so 𝑇[𝑛]−{𝑖 } (I) = 𝑇[𝑛]−{𝑖 } (I′′)
by Lemma 4.3. Thus, over all I′ that differs from I by the changing

one tuple, we have

max

I′
| |𝑞(I) | − |𝑞(I′) | | ≤ 𝑇[𝑛]−{𝑖 } (I).

Summarizing the three cases, we have

max

I′,𝑑 (I,I′)=1,𝑑 (𝐼𝑖 ,𝐼 ′𝑖 )=1

| |𝑞(I) | − |𝑞(I′) | | = 𝑇[𝑛]−{𝑖 } (I),

and

𝐿𝑆𝑞 (I) = max

𝑖∈𝑃
max

I′,𝑑 (I,I′)=1,𝑑 (𝐼𝑖 ,𝐼 ′𝑖 )=1

| |𝑞(I) | − |𝑞(I′) | |

= max

𝑖∈𝑃
𝑇[𝑛]−{𝑖 } (I). □

Next, consider 𝐿𝑆
(𝑘)
𝑞 (I) for 𝑘 ≥ 1. Denote the set of instances

having distance 𝑘 to I as I𝑘 = {I′ : 𝑑 (I, I′) = 𝑘}. By plugging

Theorem 4.5 into (2), we have

𝐿𝑆
(𝑘)
𝑞 (I) = max

I′∈I𝑘
max

𝑖∈𝑃
𝑇[𝑛]−{𝑖 } (I′). (7)

However, this formula does not yield a polynomial-time algorithm

for computing 𝐿𝑆
(𝑘)
𝑞 (I), as there are 𝑂 (𝑁𝑘 ) instances in I𝑘

. In-

stead, we show how to efficiently compute an upper bound 𝐿𝑆
(𝑘)
𝑞 (I),

which is needed in Theorem 3.4.

4.3 Sensitivity of 𝑇𝐸
Our upper bound 𝐿𝑆

(𝑘)
𝑞 (I) is based on analyzing the sensitivity of

𝑇𝐸 (I). The function 𝑇𝐸 (I) takes relation instances 𝐼𝑖 , 𝑖 ∈ 𝐸 as input

and outputs a count, and its sensitivity is the maximum amount

of change in 𝑇𝐸 (I) when I changes. Below, We first bound the

sensitivity of𝑇𝐸 (I) when only one tuple is changed. Then, we move

onto the case where several tuples can change, but all the changes

are in the same relation. Finally, we consider arbitrary changes.

Lemma 4.6. Given any 𝐸 ⊆ [𝑛], 𝑖 ∈ 𝐸, and two instances I, I′ such
that𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 1, 𝐼 𝑗 = 𝐼 ′

𝑗
for all 𝑗 ∈ 𝐸−{𝑖}, we have |𝑇𝐸 (I)−𝑇𝐸 (I′) | ≤

𝑇𝐸−{𝑖 } (I).

Proof. Similar to the proof of Theorem 4.5, there are also three

cases: 𝐼 ′
𝑖
is obtained from 𝐼𝑖 by the insertion, deletion or change of

one tuple 𝑡 ′ ∈ dom(x𝑖 ).



For the first case, we have𝑇𝐸 (I′) ≥ 𝑇𝐸 (I) by Lemma 4.4. Suppose

the extra tuple in 𝐼 ′
𝑖
is 𝑡 ′.

Let 𝑡𝐸 (I′) be a witness of 𝑇𝐸 (I′) as defined in (5), and let

𝑇𝐸 (I) = |𝑞𝐸 (I) ⋉ 𝑡𝐸 (I′) |.

By definition, 𝑇𝐸 (I) ≥ 𝑇𝐸 (I), so

|𝑇𝐸 (I) −𝑇𝐸 (I′) | = 𝑇𝐸 (I′) −𝑇𝐸 (I) ≤ 𝑇𝐸 (I′) −𝑇𝐸 (I) .

Now we bound 𝑇𝐸 (I′) −𝑇𝐸 (I):

𝑇𝐸 (I′) −𝑇𝐸 (I)
=|𝑞𝐸 (I′) ⋉ 𝑡𝐸 (I′) | − |𝑞𝐸 (I) ⋉ 𝑡𝐸 (I′) |
=| (Z𝑗 ∈𝐸−{𝑖 } 𝐼 𝑗 ) Z 𝑡 ′ ⋉ 𝑡𝐸 (I′) |
=| (Z𝑗 ∈𝐸−{𝑖 } 𝐼 𝑗 ) ⋉ (𝑡 ′ Z 𝑡𝐸 (I′) |. (8)

Note that Z𝑗 ∈𝐸−{𝑖 } 𝐼 𝑗 is just 𝑞𝐸−{𝑖 } and 𝑡 ′ Z 𝑡𝐸 (I′) does not

have any attribute interior to 𝑞𝐸−{𝑖 } . So (8) is at most 𝑇𝐸−{𝑖 } (I) by
definition.

The case where I’ has one less tuple than I is symmetric. Finally,

the third case can be handled using a similar argument as in the

proof of Theorem4.5. □

Lemma 4.7. Given any 𝐸 ⊆ [𝑛], 𝑖 ∈ 𝐸 and two instances I, I′ such
that𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 𝑘 , 𝐼 𝑗 = 𝐼 ′

𝑗
for all 𝑗 ∈ 𝐸−{𝑖}, we have |𝑇𝐸 (I)−𝑇𝐸 (I′) | ≤

𝑘 ·𝑇𝐸−{𝑖 } (I).

Proof. For the given I, I′, there is a sequence of instances I0, I1, . . . , I𝑘 ,
such that I0 = I, I𝑘 = I′, while any two neighboring instances differ

by one tuple in 𝐼𝑖 .

Based on Lemma 4.3 and Lemma 4.6, for every ℓ ∈ [𝑘],

|𝑇𝐸 (Iℓ−1) −𝑇𝐸 (Iℓ ) | ≤ 𝑇𝐸−{𝑖 } (Iℓ−1) = 𝑇𝐸−{𝑖 } (I0) = 𝑇𝐸−{𝑖 } (I). (9)

Summing (9) over all ℓ proves the lemma. □

Now, we consider the general case.

Lemma 4.8. Given any 𝐸 ⊆ [𝑛] and two instances I, I′, we have

|𝑇𝐸 (I) −𝑇𝐸 (I′) | ≤
∑

𝐸′⊆𝐸,𝐸′≠∅

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)
.

Proof. For any I, I′, there is a sequence of instances I0, I1, . . . , I𝑛

such that I0 = I, I𝑛 = I′, while Iℓ−1
and Iℓ differ only in 𝐼ℓ , for

ℓ ∈ [𝑛]. More precisely, 𝐼 ℓ
𝑖
= 𝐼 ′

𝑖
if 𝑖 ≤ ℓ , and 𝐼 ℓ

𝑖
= 𝐼𝑖 if 𝑖 ≥ ℓ + 1.

We will prove by induction that, for every ℓ = 0, 1, . . . , 𝑛,

|𝑇𝐸 (Iℓ ) −𝑇𝐸 (I0) | ≤
∑

𝐸′⊆𝐸∩[ℓ ],𝐸′≠∅

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)
, (10)

for any 𝐸 ⊆ [𝑛].
For the base case ℓ = 0, both sides of (10) are 0. For the inductive

step, assume (10) holds on ℓ − 1 for any 𝐸. We will prove that it also

holds on ℓ for any 𝐸. For any given 𝐸, we divide the set {𝐸 ′ : 𝐸 ′ ⊆
𝐸 ∩ [ℓ], 𝐸 ′ ≠ ∅} into two subsets E1 = {𝐸 ′ : 𝐸 ′ ⊆ 𝐸 ∩ [ℓ], ℓ ∈ 𝐸 ′}
and E2 = {𝐸 ′ : 𝐸 ′ ⊆ 𝐸 ∩ [ℓ − 1], 𝐸 ′ ≠ ∅}, namely, E1 consists of 𝐸 ′

that includes ℓ while E2 consists of those that do not. Consider the

following two cases:

The easy case is when ℓ ∉ 𝐸. In this case, E1 is empty, and by

Lemma 4.3, 𝑇𝐸 (Iℓ ) = 𝑇𝐸 (Iℓ−1). Therefore,

|𝑇𝐸 (Iℓ ) −𝑇𝐸 (I0) |
=|𝑇𝐸 (Iℓ−1) −𝑇𝐸 (I0) |

≤
∑

𝐸′∈E2

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)

(induction hypothesis)

=
∑

𝐸′∈E1∪E2

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)
,

as desired.

The harder case is when ℓ ∈ 𝐸. By Lemma 4.7, we have

|𝑇𝐸 (Iℓ ) −𝑇𝐸 (Iℓ−1) | ≤ 𝑑 (𝐼ℓ , 𝐼 ′ℓ )𝑇𝐸−{ℓ } (I
ℓ−1) . (11)

Define

∏
𝑖∈𝐸′ 𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 1 if 𝐸 ′ = ∅. From the induction hypothesis,

we have

𝑇𝐸 (Iℓ−1) ≤
∑

𝐸′⊆𝐸∩[ℓ−1]

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 )
ª®¬ . (12)

Recall that the induction hypothesis holds for any 𝐸. In particular,

we use 𝐸 − {ℓ} in place of 𝐸 in (12), and plug it into (11):

|𝑇𝐸 (Iℓ ) −𝑇𝐸 (Iℓ−1) |

≤𝑑 (𝐼ℓ , 𝐼 ′ℓ )
∑

𝐸′⊆(𝐸−{ℓ })∩[ℓ−1]

(
𝑇𝐸−{ℓ }−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)

=
∑

𝐸′⊆𝐸∩[ℓ−1]

©­«𝑇𝐸−(𝐸′∪{ℓ }) (I)
∏

𝑖∈𝐸′∪{ℓ }
𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )

ª®¬
=

∑
𝐸′⊆𝐸∩[ℓ ],ℓ∈𝐸′

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)

=
∑

𝐸′∈E1

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)
. (13)

Now we can finish the inductive step:

|𝑇𝐸 (Iℓ ) −𝑇𝐸 (I0) |
≤|𝑇𝐸 (Iℓ ) −𝑇𝐸 (Iℓ−1) | + |𝑇𝐸 (Iℓ−1) −𝑇𝐸 (I0) |

≤
∑

𝐸′∈E1

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)

(by (13))

+
∑

𝐸′∈E2

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑑 (𝐼𝑖 , 𝐼 ′𝑖 )
)
(induction hypothesis)

=
∑

𝐸′∈E1∪E2

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑑 (𝐼 𝑗 , 𝐼 ′𝑗 )
ª®¬ . □

4.4 𝐿𝑆
(𝑘)
𝑞 : An Upper Bound of 𝐿𝑆 (𝑘)

𝑞

In order to use Lemma 4.8 to bound 𝐿𝑆
(𝑘)
𝑞 , we need to rewrite (7)

at a finer granularity. First, for any two instances I, I′, their distance
vector is s = (𝑑 (𝐼1, 𝐼 ′

1
), . . . , 𝑑 (𝐼𝑛, 𝐼 ′𝑛)). For any s = (𝑠1, . . . , 𝑠𝑛) ∈ N𝑛 ,



let Is = {I′ : 𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 𝑠𝑖 , 𝑖 ∈ [𝑛]}. Let S𝑘 be the set of distance

vectors such that the total distance of all private relations is 𝑘 , i.e.,

S𝑘 =

{
s :

∑
𝑖∈𝑃

𝑠𝑖 = 𝑘 and 𝑠 𝑗 = 0, 𝑗 ∈ 𝑃

}
.

Note that |S𝑘 | = 𝑂 ((𝑛𝑃 + 𝑘)𝑛𝑃 ) and I𝑘 = ∪s∈S𝑘Is
. Let

𝐿𝑆𝑞,s (I) = max

I′∈Is
max

𝑖∈𝑃
𝑇[𝑛]−{𝑖 } (I′).

Then (7) can be rewritten as

𝐿𝑆
(𝑘)
𝑞 (I) = max

s∈S𝑘
𝐿𝑆𝑞,s (I) .

Therefore, any upper bound of 𝐿𝑆𝑞,s (I) yields an upper bound

of 𝐿𝑆
(𝑘)
𝑞 (I). Suppose 𝑇𝐸,s (I) is an upper bound of maxI′∈Is 𝑇𝐸 (I′).

Then, we set our upper bound of 𝐿𝑆𝑞,s (I) as

𝐿𝑆𝑞,s (I) = max

𝑖∈𝑃
𝑇[𝑛]−{𝑖 },s (I), (14)

and set the upper bound on 𝐿𝑆
(𝑘)
𝑞 (I) as

𝐿𝑆
(𝑘)
𝑞 (I) = max

s∈S𝑘
𝐿𝑆𝑞,s (I). (15)

We compute 𝑇𝐸,s (I) based on Lemma 4.8. For any I′ ∈ Is
, we

have (recall that

∏
𝑖∈𝐸′ 𝑠𝑖 is defined to be 1 if 𝐸 ′ = ∅)

𝑇𝐸 (I′) ≤ 𝑇𝐸 (I) + |𝑇𝐸 (I′) −𝑇𝐸 (I) | ≤
∑
𝐸′⊆𝐸

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑠𝑖

)
.

Thus,

𝑇𝐸,s (I) =
∑

𝐸′⊆𝐸∩𝑃

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑠𝑖

)
(16)

=
∑
𝐸′⊆𝐸

(
𝑇𝐸−𝐸′ (I)

∏
𝑖∈𝐸′

𝑠𝑖

)
(17)

is a valid upper bound of maxI′∈Is 𝑇𝐸 (I′). Note that (16) and (17)

are equal since 𝑠𝑖 = 0 for any 𝑖 ∈ 𝑃 .

Example 4.9. Following the Example 4.2, we have 𝑇{1,3} (I) = 2,

𝑇{1,2,3} (I) = 4 and 𝑇{1,3,4} (I) = 3. Assume 𝑅2 and 𝑅4 are private.

That is 𝑃 = {2, 4} and 𝑛𝑃 = 2. For a given 𝑘 ,

S𝑘 = {(0, 0, 0, 𝑘), (0, 1, 0, 𝑘 − 1), . . . , (0, 𝑘, 0, 0)}
and |S𝑘 | = 𝑘 + 1. For (0, 𝑘 ′, 0, 𝑘 − 𝑘 ′) ∈ S𝑘 , we have

𝑇{1,2,3},(0,𝑘′,0,𝑘−𝑘′) = 𝑇{1,2,3} +𝑇{1,3} · 𝑘 ′ = 2𝑘 ′ + 4

𝑇{1,3,4},(0,𝑘′,0,𝑘−𝑘′) = 𝑇{1,3,4} +𝑇{1,3} · (𝑘 − 𝑘 ′) = 2𝑘 − 2𝑘 ′ + 3

and

𝐿𝑆
(𝑘) (I) = max

s∈S𝑘
max(2𝑘 ′ + 4, 2𝑘 − 2𝑘 ′ + 3) = 2𝑘 + 4.

Unlike 𝐿𝑆
(𝑘)
𝑞 , 𝐿𝑆

(𝑘)
𝑞 can be computed in polynomial time. This

is because the former requires us to consider a super-polynomially

large space |I𝑘 | = 𝑂 (𝑁𝑘 ), while the latter reduces the search space

to |S𝑘 | = 𝑂 ((𝑛𝑃 + 𝑘)𝑛𝑃 ) by equation (15). Recall that 𝑛𝑃 is the

number of private relations, which is considered a constant. Each

𝐿𝑆𝑞,s (I) depends on 𝑛𝑃 number of 𝑇𝐸,s (I)’s (equation (14)), while

each 𝑇𝐸,s (I) depends on 𝑂 (2𝑛𝑃 ) number of 𝑇𝐸−𝐸′ (I)’s (equation

(16)). Finally, recall that each 𝑇𝐸−𝐸′ (I) can be computed in polyno-

mial time.

In addition to computational efficiency, 𝐿𝑆
(𝑘)
𝑞 (·) also satisfies

condition (2) in Theorem 3.4. To prove this, we need the following

technical lemma:

Lemma 4.10. Given any 𝐸 ⊆ [𝑛], any 𝑖 ∈ [𝑛], two instances I, I′
such that 𝑑 (I, I′) = 1, 𝑑 (𝐼𝑖 , 𝐼 ′𝑖 ) = 1, and any two distance vectors
s = (𝑠1, . . . , 𝑠𝑛) and s′ = (𝑠 ′

1
, . . . , 𝑠 ′𝑛) such that

s′ = (𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖 + 1, 𝑠𝑖+1, . . . , 𝑠𝑛),

we have

∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ ≤

∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 ′𝑗
ª®¬ .

Proof. If 𝑖 ∉ 𝐸, then for any 𝐸 ′ ⊆ 𝐸, 𝑗 ∈ 𝐸 − 𝐸 ′, we have

𝐼 𝑗 = 𝐼 ′
𝑗
. Thus 𝑇𝐸−𝐸′ (I) = 𝑇𝐸−𝐸′ (I′) by Lemma 4.3. Meanwhile,

𝑠 𝑗 = 𝑠 ′
𝑗
for all 𝑗 ∈ 𝐸 ′. Therefore,

∑
𝐸′⊆𝐸

(
𝑇𝐸−𝐸′ (I)∏𝑗 ∈𝐸′ 𝑠 𝑗

)
=∑

𝐸′⊆𝐸
(
𝑇𝐸−𝐸′ (I′)∏𝑗 ∈𝐸′ 𝑠 ′

𝑗

)
in this case.

If 𝑖 ∈ 𝐸, we divide the set {𝐸 ′ ⊆ 𝐸} into two subsets E1 = {𝐸 ′ :

𝐸 ′ ⊆ 𝐸, 𝑖 ∈ 𝐸 ′} and E2 = {𝐸 ′ : 𝐸 ′ ⊆ 𝐸, 𝑖 ∉ 𝐸 ′}. Note that there
is one-to-one correspondence between the subsets in E1 and the

subsets in E2, i.e., for any 𝐸 ′ ∈ E2, 𝐸
′ ∪ {𝑖} ∈ E1, and vice versa.

For any 𝐸 ′ ∈ E1, we have 𝑖 ∉ 𝐸 − 𝐸 ′, so 𝑇𝐸−𝐸′ (I) = 𝑇𝐸−𝐸′ (I′) by
Lemma 4.3. Thus,

∑
𝐸′∈E1

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ =

∑
𝐸′∈E1

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ . (18)

For any 𝐸 ′ ∈ E2, we have 𝑖 ∈ 𝐸 − 𝐸 ′. By Lemma 4.6, we have

𝑇𝐸−𝐸′ (I) ≤ 𝑇𝐸−𝐸′ (I′) +𝑇𝐸−𝐸′−{𝑖 } (I′). Therefore,

∑
𝐸′∈E2

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

≤
∑

𝐸′∈E2

©­«(𝑇𝐸−𝐸′ (I′) +𝑇𝐸−𝐸′−{𝑖 } (I′))
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

=
∑

𝐸′∈E2

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ +

∑
𝐸′∈E2

©­«𝑇𝐸−(𝐸′∪{𝑖 }) (I′)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

=
∑

𝐸′∈E2

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ +

∑
𝐸′∈E1

©­«𝑇𝐸−𝐸′ (I′)
∏

𝑗 ∈𝐸′−{𝑖 }
𝑠 𝑗

ª®¬ . (19)

Note that the last step makes use of the one-to-one correspondence

between E1 and E2.



Finally, based on (18) and (19), we have∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

≤
∑

𝐸′∈E1

©­«𝑇𝐸−𝐸′ (I′) (
∏
𝑗 ∈𝐸′

𝑠 𝑗 +
∏

𝑗 ∈𝐸′−{𝑖 }
𝑠 𝑗 )

ª®¬ +
∑

𝐸′∈E2

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

=
∑

𝐸′∈E1

©­«𝑇𝐸−𝐸′ (I′) (𝑠𝑖 + 1)
∏

𝑗 ∈𝐸′−{𝑖 }
𝑠 𝑗

ª®¬ +
∑

𝐸′∈E2

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

=
∑

𝐸′∈E1

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 ′𝑗
ª®¬ +

∑
𝐸′∈E2

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 ′𝑗
ª®¬

=
∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠 ′𝑗
ª®¬ ,

□

With Lemma 4.10, we can show the smoothness property of

𝐿𝑆
(𝑘) (·).

Lemma 4.11. For any I, I′ such that 𝑑 (I, I′) = 1, 𝐿𝑆 (𝑘)𝑞 (I) ≤
𝐿𝑆

(𝑘+1)
𝑞 (I′) for any 𝑘 ≥ 0.

Proof. By definition (15), we have

𝐿𝑆
(𝑘+1)
𝑞 (I) = max

s∈S𝑘+1

𝐿𝑆𝑞,s (I) .

So it suffices to find one sI
′ ∈ S𝑘+1

such that

𝐿𝑆
(𝑘)
𝑞 (I) ≤ 𝐿𝑆𝑞,sI′ (I

′) .

Assume I, I′ differ by one tuple in 𝑅𝑖 , 𝑖 ∈ 𝑃 . Let

sI = (𝑠I
1
, . . . , 𝑠I𝑛) = arg max

s∈S𝑘
𝐿𝑆𝑞,s (I).

Below we show that sI
′
= (𝑠I

1
, . . . 𝑠I

𝑖−1
, 𝑠I
𝑖
+ 1, 𝑠I

𝑖+1
, . . . , 𝑠I𝑛) ∈ S𝑘+1

meets the requirement.

From (14) and (15), we have

𝐿𝑆
(𝑘)
𝑞 (I) = 𝐿𝑆𝑞,sI (I) = max

𝑗 ∈𝑃
𝑇[𝑛]−{ 𝑗 },sI (I),

𝐿𝑆
(𝑘+1)
𝑞 (I′) ≥ 𝐿𝑆𝑞,sI′ (I

′) = max

𝑗 ∈𝑃
𝑇[𝑛]−{ 𝑗 },sI′ (I

′).

Thus, it is sufficient to show that 𝑇[𝑛]−{ 𝑗 },sI (I) ≤ 𝑇[𝑛]−{ 𝑗 },sI′ (I′)
for any 𝑗 ∈ 𝑃 . In fact, we prove a stronger result that for any

𝐸 ⊆ [𝑛],𝑇𝐸,sI (I) ≤ 𝑇𝐸,sI′ (I′).
We expand 𝑇𝐸,sI (I) and 𝑇𝐸,sI′ (I′) with (17):

𝑇𝐸,sI (I) =
∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑠I𝑗
ª®¬ ,

𝑇𝐸,sI′ (I
′) =

∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠I
′
𝑗

ª®¬ .

Based on Lemma 4.10, we have for any 𝐸 ⊆ [𝑛],∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I)
∏
𝑗 ∈𝐸′

𝑠I𝑗
ª®¬ ≤

∑
𝐸′⊆𝐸

©­«𝑇𝐸−𝐸′ (I′)
∏
𝑗 ∈𝐸′

𝑠I
′
𝑗

ª®¬ ,
so 𝑇𝐸,sI (I) ≤ 𝑇𝐸,sI′ (I′), as claimed. □

4.5 Residual Sensitivity
Based on the development so far, we can define and compute the

residual sensitivity of amulti-way join query𝑞 on instance I, denoted
𝑅𝑆𝑞 (I), straightforwardly. We simply invoke Theorem 3.4 with the

𝐿𝑆
(𝑘)
𝑞 (I) as described in the previous section. More precisely, we

take the following two simple steps to compute 𝑅𝑆𝑞 (I):
(1) Compute 𝑇𝐸 (I) for every 𝐸 ⊆ 𝑃, 𝐸 ≠ ∅.
(2) Compute

𝑅𝑆𝑞 (I) =max

𝑘≥0

(
𝑒−𝛽𝑘 min(𝐺𝑆𝑞, 𝐿𝑆

(𝑘)
𝑞 (I))

)
=max

𝑘≥0

(
𝑒−𝛽𝑘 min(𝐺𝑆𝑞,max

s∈S𝑘
max

𝑖∈𝑃
𝑇[𝑛]−{𝑖 },s (I))

)
, (20)

where 𝑇[𝑛]−{𝑖 },s (I) is calculated as in (16).

In order to compute (20), we first need to argue that we only have

to consider a finite number of 𝑘’s. This is not obvious as 𝐺𝑆𝑞 = ∞
in our case.

Lemma 4.12. The max𝑘 in (20) achieves maximum on some 𝑘 ≤
ˆ𝑘 =

𝑛𝑃−1

1−𝑒−𝛽 .

Proof. We first rewrite (20) as

𝑅𝑆𝑞 (I) = max

𝑖∈𝑃
max

0≤𝑘
max

s∈S𝑘

(
𝑒−𝛽𝑘 min(𝐺𝑆𝑞,𝑇[𝑛]−{𝑖 },s (I))

)
.

First, for fixed 𝑖, 𝑘 , maxs∈S𝑘
(
𝑒−𝛽𝑘 min(𝐺𝑆𝑞,𝑇[𝑛]−{𝑖 },s (I))

)
only

depends on s ∈ S𝑘 with 𝑠𝑖 = 0, since 𝑠𝑖 does not affect the value of

𝑇[𝑛]−{𝑖 },s (I). Now, consider any 𝑘 ≥ 𝑛𝑃−1

1−𝑒−𝛽 . We will show that for

any s ∈ S𝑘 with 𝑠𝑖 = 0, there is an s′ ∈ S𝑘−1
such that

𝑒−𝛽𝑘𝑇[𝑛]−{𝑖 },s (I) ≤ 𝑒−𝛽 (𝑘−1)𝑇[𝑛]−{𝑖 },s′ (I), (21)

which means that such a 𝑘 cannot yield the maximum.

Since 𝑘 ≥ 𝑛𝑃−1

1−𝑒−𝛽 , s ∈ S𝑘 , 𝑠𝑖 = 0, there must exist one 𝑗 ′ ∈ [𝑛]
such that 𝑠 𝑗 ′ ≥ 1

1−𝑒−𝛽 . Then, we define s
′
as

𝑠 ′𝑗 =

{
𝑠 𝑗 − 1, 𝑗 = 𝑗 ′;

𝑠 𝑗 , 𝑗 ≠ 𝑗 ′.

By (16), we have

𝑇[𝑛]−{𝑖 },s (I) =
∑

𝐸′⊆𝑃−{𝑖 }

©­«𝑇[𝑛]−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ .

We will show that

𝑒−𝛽𝑘𝑇[𝑛]−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗 ≤ 𝑒−𝛽 (𝑘−1)𝑇[𝑛]−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 ′𝑗 (22)

for any 𝐸 ′ ⊆ 𝑃 − {𝑖}, thereby proving (21).

Note that (22) can be simplified to∏
𝑗 ∈𝐸′

𝑠 𝑗 ≤ 𝑒𝛽
∏
𝑗 ∈𝐸′

𝑠 ′𝑗 . (23)



If 𝑗 ′ ∉ 𝐸 ′, (23) trivially holds since 𝑠 𝑗 = 𝑠 ′
𝑗
for all 𝑗 ∈ 𝐸 ′ and 𝑒𝛽 ≥ 1.

For the case 𝑗 ′ ∈ 𝐸 ′, (23) simplifies to

𝑠 𝑗 ′ ≤ 𝑒𝛽 (𝑠 𝑗 ′ − 1),

which is equivalent to 𝑠 𝑗 ′ ≥ 1

1−𝑒−𝛽 . □

Example 4.13. Following Example 4.9, set 𝛽 = 0.1,𝐺𝑆𝑞 = ∞.

Since
ˆ𝑘 =

𝑛𝑃−1

1−𝑒−𝛽 < 11, we calculate 𝐿𝑆
(𝑘)
𝑞 (I) = 2𝑘+4 for 0 ≤ 𝑘 ≤ 10.

Finally, we compute

𝑅𝑆𝑞 (I) = max

0≤𝑘≤10

(
𝑒−0.1𝑘𝐿𝑆

(𝑘)
𝑞 (I)

)
≈ 8.987,

where the maximum is attained at 𝑘 = 8.

As mentioned in Section 4.1, step (1) takes polynomial time. Step

(2) takes time 𝑂 ( ˆ𝑘 · ˆ𝑘𝑛𝑃 · 𝑛𝑃 ) = 𝑂 (1). Thus, we conclude:

Theorem 4.14. Given any multi-way join query 𝑞, a set of private
relations 𝑃 , and an instance I, its residual sensitivity 𝑅𝑆𝑞 (I) can be
computed in time polynomial in 𝑁 = |I|.

4.6 Extensions
Selections and projections. So far we have only considered joins

while ignored selection conditions. There are two types of selec-

tion conditions: (1) Selection conditions on individual relations,

such as Orders.Orderdate > 2020-01-01 in the example query

in Section 1, can be applied in a preprocessing stage. (2) For se-

lection conditions involving attributes in different relations, e.g.,

Lineitem.Shipdate > Orders.Orderdate + 10 days, we can
ignore them when computing the residual sensitivity. It will still be

a valid smooth upper bound of local sensitivity, since the presence

of these selection conditions can only make the local sensitivity

smaller. However, we can no longer guarantee that it is a constant-

factor approximation of smooth sensitivity. The same holds for

projection, since it does not increase sensitivity, either.

Group-by. A query with group-by returns a vectored output. It

is known [21] that one can add noise to each component of the

vector according to a smooth upper bound on local sensitivity of

the ℓ1-norm of the vector. Thus, for a query with a group-by clause,

we first compute its residential sensitivity ignoring the group-by

clause, and then add noise calibrated with the residential sensitivity

to each group’s count. A similar idea has been used in [13, 17].

5 ANALYTICAL COMPARISONS
In this section, we give analytical comparisons between residual

sensitivity and previous notions of sensitivity for multi-way joins.

An empirical comparison will be conducted in Section 6.

5.1 Compare with Smooth Sensitivity
Recall that the smooth sensitivity 𝑆𝑆𝑞 (I) is the optimum, in the

sense that it is the smallest smooth upper bound of local sensitivity.

However, it takes super-polynomial time to compute 𝑆𝑆𝑞 (I). In
this section, we show that the residual sensitivity 𝑅𝑆𝑞 (I), which
is polynomial-time computable, is at most a constant factor larger

than 𝑆𝑆𝑞 (I), for any multi-way join 𝑞 on any instance I.

Recall that 𝑆𝑆𝑞 (I) is defined in terms of 𝐿𝑆
(𝑘)
𝑞 (see equation (3)),

while 𝑅𝑆𝑞 (I) depends on𝑇𝐸 (I), the maximum boundary of residual

queries. We first build a connection between the two.

Lemma 5.1. For any 𝐸 ⊆ 𝑃, 𝐸 ≠ ∅, 𝐿𝑆 (𝑛𝑃−1)
𝑞 (I) ≥ 𝑇𝐸 (I).

Proof. We will construct an I′ from I such that 𝑑 (I, I′) ≤ 𝑛𝑃 − 1

and 𝐿𝑆𝑞 (I′) ≥ 𝑇𝐸 (I). Let 𝑡𝐸 (I) be a witness of 𝑞𝐸 (I). Then, 𝑇𝐸 (I)
can be written as

𝑇𝐸 (I) = | Z𝑖∈𝐸 (𝐼𝑖 ⋉ 𝑡𝐸 (I)) |.

Recall that the attributes of 𝑡𝐸 (I) are 𝜕𝑞𝐸 . Note that at least one

relation in 𝐸 must have an attribute in 𝜕𝑞𝐸 (otherwise 𝑞 would be

disconnected). We may thus assume without loss of generality that

𝑃 = [𝑛𝑃 ], 𝐸 = [|𝐸 |].
We construct I′ as follows. First, fix a tuple 𝑡 ′ ∈ dom(∪𝑖∈𝐸x𝑖 )

such that 𝜋𝜕𝑞𝐸 𝑡
′ = 𝑡𝐸 (I), namely, 𝑡 ′ is consistent with 𝑡𝐸 (I) on all

its attributes. For other attributes, their values in 𝑡 ′ can be arbitrary.

Then, for each 𝑖 ∈ [2, |𝐸 |], we add the tuple 𝜋x𝑖 𝑡
′
to 𝐼𝑖 , unless it

already exists in 𝐼𝑖 . It is clear that we add at most |𝐸 | − 1 ≤ 𝑛𝑃 − 1

tuples to I, so 𝑑 (I, I′) ≤ 𝑛𝑃 − 1, and 𝐿𝑆
(𝑛𝑃−1)
𝑞 (I) ≥ 𝐿𝑆𝑞 (I′).

Thus, it suffices to show 𝐿𝑆𝑞 (I′) ≥ 𝑇𝐸 (I). In doing so, we show

that by flipping the tuple 𝑡1 = 𝜋x1
𝑡 ′ in 𝐼 ′

1
, |𝑞(I′) | will change by

at least 𝑇𝐸 (I). Suppose 𝑡1 ∉ 𝐼 ′
1
. Then by adding 𝑡1 to 𝐼 ′

1
, all query

results involving 𝑡1 will be added to 𝑞(I′). The number of such

tuples is

| (Z𝑖∈[2,𝑛] 𝐼 ′𝑖 ) Z 𝑡1 |
≥|(Z𝑖∈𝐸 𝐼𝑖 ) Z (Z𝑖∈𝐸 𝜋x𝑖 𝑡

′) |
=| (Z𝑖∈𝐸 𝐼𝑖 ) Z 𝑡 ′ |
=| (Z𝑖∈𝐸 𝐼𝑖 ) ⋉ 𝑡𝐸 (I) | = 𝑇𝐸 (I),

where the first inequality is due to the fact that every 𝐼 ′
𝑖
, 𝑖 ∈ 𝐸 − {1}

has at least one tuple inconsistent with 𝑡 ′. For the case 𝑡1 ∈ 𝐼 ′
1
, we

remove 𝑡1 from 𝐼 ′
1
, and |𝑞(I′) | will decrease by the same amount. □

Next, we compare 𝐿𝑆
(𝑘)
𝑞 (I) with 𝐿𝑆

(𝑛𝑃−1)
𝑞 (I).

Lemma 5.2. 𝐿𝑆
(𝑘)
𝑞 (I) ≤ (2𝑘)𝑛𝑃−1𝐿𝑆

(𝑛𝑃−1)
𝑞 (I).3

Proof. From (14), (15), (16), we have

𝐿𝑆
(𝑘)
𝑞 (I) = max

s∈S𝑘
max

𝑖∈𝑃

∑
𝐸′⊆𝑃−{𝑖 }

©­«𝑇[𝑛]−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ . (24)

Since 𝐸 ′ ∪ {𝑖} ⊆ 𝑃, 𝐸 ′ ∪ {𝑖} ≠ ∅, we can apply Lemma 5.1:

𝑇[𝑛]−𝐸′−{𝑖 } (I) ≤ 𝐿𝑆
(𝑛𝑃−1)
𝑞 (I). (25)

For any s = (𝑠1, . . . , 𝑠𝑛) ∈ S𝑘 , 𝑗 ∈ 𝑃 , we have 𝑠 𝑗 ≤ 𝑘 . Thus,∏
𝑗 ∈𝐸′

𝑠 𝑗 ≤ 𝑘 |𝐸′ | ≤ 𝑘𝑛𝑃−1 . (26)

3
Define 0

0 = 1.



Plugging (25), (26) into (24), we have

𝐿𝑆
(𝑘)
𝑞 (I) = max

s∈S𝑘
max

𝑖∈𝑃

∑
𝐸′⊆𝑃−{𝑖 }

©­«𝑇[𝑛]−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

≤ max

s∈S𝑘
max

𝑖∈𝑃

∑
𝐸′⊆𝑃−{𝑖 }

(
𝐿𝑆

(𝑛𝑃−1)
𝑞 (I) · 𝑘𝑛𝑃−1

)
= (2𝑘)𝑛𝑃−1𝐿𝑆

(𝑛𝑃−1)
𝑞 (I) . □

Remark. When 𝑛𝑃 = 1, Lemma 5.2 suggests that 𝐿𝑆
(𝑘)
𝑞 (I) ≤

𝐿𝑆
(0)
𝑞 (I) = 𝐿𝑆𝑞 (I). Meanwhile, because 𝐿𝑆

(𝑘)
𝑞 (I) ≥ 𝐿𝑆

(𝑘)
𝑞 (I) ≥

𝐿𝑆𝑞 (I) by definition, it must be the case that 𝐿𝑆
(𝑘)
𝑞 (I) = 𝐿𝑆

(𝑘)
𝑞 (I) =

𝐿𝑆𝑞 (I). In fact, the second equality also follows from Theorem 4.5,

which states that 𝐿𝑆𝑞 (I) = 𝑇[𝑛]−{𝑖 } (I), when 𝑃 has only one relation

𝑖 . Since 𝑇[𝑛]−{𝑖 } (I) does not depend on 𝐼𝑖 , 𝐿𝑆𝑞 (I′) is the same for

all I′ that differs from I only in 𝐼𝑖 , no matter how many tuples are

different. Furthermore, when 𝑃 has only one relation 𝑖 , our upper

bound 𝐿𝑆
(𝑘)
𝑞 (I) = 𝑇[𝑛]−{𝑖 } (I) is the same as 𝐿𝑆𝑞 (I), therefore has

no approximation error.

Finally, we are ready to relate 𝑅𝑆𝑞 (I) with 𝑆𝑆𝑞 (I):

Theorem 5.3. For any multi-way join query 𝑞 on any instance I

with 𝑛𝑃 private relations, 𝑅𝑆𝑞 (I) ≤
(

2(𝑛𝑃−1)
𝛽𝑒1−𝛽

)𝑛𝑃−1

· 𝑆𝑆𝑞 (I).

Proof. Recall the definition of 𝑆𝑆𝑞 (I) and 𝑅𝑆𝑞 (I) in (3) and (4):

𝑆𝑆𝑞 (I) = max

𝑘≥0

𝑒−𝛽𝑘𝐿𝑆 (𝑘)𝑞 (I),

𝑅𝑆𝑞 (I) = max

0≤𝑘≤ ˆ𝑘

(
𝑒−𝛽𝑘 min(𝐿𝑆 (𝑘)𝑞 (I),𝐺𝑆𝑞)

)
.

Let

𝑘𝑅𝑆 = arg max

0≤𝑘≤ ˆ𝑘

(
𝑒−𝛽𝑘 min(𝐿𝑆 (𝑘)𝑞 (I),𝐺𝑆𝑞)

)
.

Define the function

𝑔(𝑘) = 𝑒−𝛽𝑘 (2𝑘)𝑛𝑃−1𝐿𝑆
(𝑛𝑃−1)
𝑞 (I) .

Setting its derivative to 0, we see that 𝑔(𝑘) maximizes at 𝑘max =
𝑛𝑃−1

𝛽
(even allowing 𝑘 to take fractional values), so

𝑔(𝑘) ≤ 𝑔

(
𝑛𝑃 − 1

𝛽

)
, (27)

for all 𝑘 . Therefore,

𝑅𝑆𝑞 (I) ≤ 𝑒−𝛽𝑘𝑅𝑆𝐿𝑆
(𝑘𝑅𝑆 )
𝑞 (I)

≤ 𝑒−𝛽𝑘𝑅𝑆 (2𝑘𝑅𝑆 )𝑛𝑃−1 (I)𝐿𝑆 (𝑛𝑃−1)
𝑞 (I)

≤ 𝑒−(𝑛𝑃−1)
(

2(𝑛𝑃 − 1)
𝛽

)𝑛𝑃−1

𝐿𝑆
(𝑛𝑃−1)
𝑞 (I)

≤
(

2(𝑛𝑃 − 1)
𝛽𝑒1−𝛽

)𝑛𝑃−1

max

𝑘≥0

𝑒−𝛽𝑘𝐿𝑆 (𝑘)𝑞 (I)

=

(
2(𝑛𝑃 − 1)
𝛽𝑒1−𝛽

)𝑛𝑃−1

𝑆𝑆𝑞 (I),

where the second inequality is by Lemma 5.2, and the third inequal-

ity is due to (27). □

Remark. When 𝑛𝑃 = 1, Theorem 5.3 suggests that 𝑅𝑆𝑞 (I) =

𝑆𝑆𝑞 (I). Indeed, as discussed in the remark following Lemma 5.2,

𝐿𝑆
(𝑘)
𝑞 (I) = 𝐿𝑆𝑞 (I) for all 𝑘 when 𝑛𝑃 = 1, thus 𝑆𝑆𝑞 (I) = 𝐿𝑆𝑞 (I).

Meanwhile, if there is only one private relation𝑅𝑖 ,𝐿𝑆𝑞 (I) = 𝐿𝑆𝑞 (𝐼𝑖 ; I−
𝐼𝑖 ) does not actually depend on the private data 𝐼𝑖 , so it can be es-

sentially considered as the global sensitivity of 𝑞 over the public

relation instances I− 𝐼𝑖 . Therefore, all the sensitivity measures,𝐺𝑆𝑞 ,

𝐿𝑆𝑞 , 𝐿𝑆
(𝑘)
𝑞 , 𝑆𝑆𝑞 , 𝑅𝑆𝑞 collapse into one in this case.

5.2 Compare with Elastic Sensitivity
In this section, we compare residual sensitivity 𝑅𝑆𝑞 (I) with elastic

sensitivity 𝐸𝑆𝑞 (I), both of which are smooth upper bounds of local

sensitivity, hence can be used directly for perturbing sensitive query

results. Both can be computed in polynomial time; elastic sensitivity

can be even computed in linear time𝑂 (𝑁 ). However, in this section

we show that𝑅𝑆𝑞 (I) ≤ 𝐸𝑆𝑞 (I) for anymulti-way join𝑞 and instance

I, while there are cases where 𝐸𝑆𝑞 (I) is much larger than 𝑅𝑆𝑞 (I).
Elastic sensitivity [13] is defined in a similar form as smooth

sensitivity and residual sensitivity:

𝐸𝑆𝑞 (I) = max

0≤𝑘≤𝑁

(
𝑒−𝛽𝑘𝐿𝑆

(𝑘)
𝑞 (I)

)
,

where 𝐿𝑆
(𝑘)
𝑞 (I) is also an upper bound of 𝐿𝑆

(𝑘)
𝑞 (I). Thus, to show

𝑅𝑆𝑞 (I) ≤ 𝐸𝑆𝑞 (I), it suffices to show that ∀𝑘, 𝐿𝑆 (𝑘)𝑞 (I) ≤ 𝐿𝑆
(𝑘)
𝑞 (I).

Acyclic queries. We first describe how 𝐿𝑆
(𝑘)
𝑞 (I) is computed for

an acyclic query 𝑞. In an acyclic query, its relations can be organized

as a join tree T , such that for each attribute 𝐴, all relations contain-

ing 𝐴 are connected in T . For convenience, we do not distinguish

relation and node in join tree below. By specifying a relation 𝑅𝑖 as

the root, T can be made into a rooted tree, and we use T 𝑖
to denote

the join tree rooted by 𝑅𝑖 . For 𝑅 𝑗 , 𝑗 ≠ 𝑖 , let 𝑅𝑝 ( 𝑗,𝑖) be its parent in
T 𝑖

. For 𝑗 ∈ [𝑛], x ⊆ x𝑗 , let𝑚𝑓 (x, 𝐼 𝑗 ) be the maximum frequency in

𝐼 𝑗 on attributes x, i.e.,𝑚𝑓 (x, 𝐼 𝑗 ) = max𝑡 ∈dom(x) |𝐼 𝑗 ⋉ 𝑡 |.
Given an acyclic query 𝑞 and its join tree T , elastic sensitivity

computes 𝐿𝑆
(𝑘)
𝑞 (I) as

𝐿𝑆
(𝑘)
𝑞 (I) =max

𝑖∈𝑃
©­«

∏
𝑗 ∈𝑃−{𝑖 }

(𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 ) + 𝑘)

·
∏

𝑗 ∈[𝑛]−𝑃
𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 )

ª®¬ . (28)

Lemma 5.4. For any acyclic query 𝑞, 𝑅𝑆𝑞 (I) ≤ 𝐸𝑆𝑞 (I).

Proof. We first define some terminology. Recall the definition of

the residual query 𝑞𝐸 =Z𝑗 ∈𝐸 𝑅 𝑗 (x𝑗 ). Its boundary is 𝜕𝑞𝐸 , consists

of variables shared by relations both in and out of 𝐸. Given a rooted

join tree T 𝑖 , 𝑖 ∈ [𝑛], the residual join tree T 𝑖
𝐸
, 𝑖 ∉ 𝐸, consists of

the relations 𝑅 𝑗 , 𝑗 ∈ 𝐸 and the edges between them in T 𝑖
. T 𝑖

𝐸
may

contain several connected components. We use C𝑖
𝐸
to denote the

set of connected components of T 𝑖
𝐸
. For each connected component

𝐶 ∈ C𝑖
𝐸
, let its root inT 𝑖

𝐸
be𝑅𝑟 (𝐶) . We call these roots𝑅𝑟 (𝐶) ,𝐶 ∈ C𝑖

𝐸

the roots of T 𝑖
𝐸
. The top boundary of T 𝑖

𝐸
, denoted by 𝜕T 𝑖

𝐸
, is a set



of variables shared by the roots of T 𝑖
𝐸
with their parents. It is easy

to see that 𝜕T 𝑖
𝐸

⊆ 𝜕𝑞𝐸 since the parent of any root is not in 𝐸.

Since 𝐿𝑆
(𝑘)
𝑞 (I) is defined in terms of maximal frequency while

𝐿𝑆
(𝑘)
𝑞 (I) depends on maximal boundary, we first build a connection

between the two. For any rooted join tree T 𝑖 , 𝑖 ∈ [𝑛], and any

𝐸 ⊆ [𝑛], 𝑖 ∉ 𝐸, we have∏
𝑗 ∈𝐸

𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 )

≥ max

𝑡 ∈dom(𝜕T𝑖
𝐸
)
| (Z𝑗 ∈𝐸 𝐼 𝑗 ) ⋉ 𝑡 |

≥ max

𝑡 ∈dom(𝜕𝑞𝐸 )
| (Z𝑗 ∈𝐸 𝐼 𝑗 ) ⋉ 𝑡 | = 𝑇𝐸 (I) .

The second inequality follows from 𝜕T 𝑖
𝐸

⊆ 𝜕𝑞𝐸 , while the first

inequality holds because

max

𝑡 ∈dom(𝜕T𝑖
𝐸
)
| (Z𝑗 ∈𝐸 𝐼 𝑗 ) ⋉ 𝑡 |

≤
∏

𝐶∈C𝑖
𝐸

max

𝑡 ∈dom(x𝑟 (𝐶 )∩x𝑝 (𝑟 (𝐶 ),𝑖 ) )
| (Z𝑗 ∈𝐶 𝐼 𝑗 ) ⋉ 𝑡 |

=
∏

𝐶∈C𝑖
𝐸

max

𝑡 ∈dom(x𝑟 (𝐶 )∩x𝑝 (𝑟 (𝐶 ),𝑖 ) )
| (Z𝑗 ∈𝐶−{𝑟 (𝐶) } 𝐼 𝑗 ) Z (𝐼𝑟 (𝐶) ⋉ 𝑡) |

≤
∏
𝑗 ∈𝐸

𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 ). (29)

The derivation of (29) is similar to Lemma 1 in [13].

Therefore, we have∏
𝑗 ∈𝐸

𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 ) ≥ 𝑇𝐸 (I). (30)

We can now compare 𝐿𝑆
(𝑘)
𝑞 (I) and 𝐿𝑆 (𝑘)𝑞 (I). Recall (24) and (28).

To prove the lemma, it is sufficient to show that, for any 𝑖 and

s ∈ S𝑘 ,∏
𝑗 ∈𝑃−{𝑖 }

(
𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 ) + 𝑘

) ∏
𝑗 ∈[𝑛]−𝑃

𝑚𝑓

(
x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗

)
≥

∑
𝐸′⊆𝑃−{𝑖 }

©­«𝑇[𝑛]−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬ . (31)

Expand the LHS of (31):

LHS of (31) =
∑

𝐸′⊆𝑃−{𝑖 }

©­«𝑘 |𝐸′ |
∏

𝑗 ∈[𝑛]−𝐸′−{𝑖 }
𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 )

ª®¬ .
By (30), we have

𝑇[𝑛]−𝐸′−{𝑖 } (I) ≤
∏

𝑗 ∈[𝑛]−𝐸′−{𝑖 }
𝑚𝑓 (x𝑗 ∩ x𝑝 ( 𝑗,𝑖) , 𝐼 𝑗 ).

Meanwhile, it is clear that

∏
𝑗 ∈𝐸′ 𝑠 𝑗 ≤ 𝑘 |𝐸′ |

, (31) is thus proved. □

Cyclic queries. To compute the elastic sensitivity for a cyclic

query 𝑞, Johnson et al. [13] simply remove some join conditions

to form an acyclic query 𝑞′, and set 𝐸𝑆𝑞 (I) = 𝐸𝑆𝑞′ (I). On the other

hand, we have 𝑅𝑆𝑞 (I) ≤ 𝑅𝑆𝑞′ (I), since the residual sensitivity is

defined in terms of maximal boundary of residual queries, which

cannot decrease after removing some join conditions. Thus,

𝑅𝑆𝑞 (I) ≤ 𝑅𝑆𝑞′ (I) ≤ 𝐸𝑆𝑞′ (I) = 𝐸𝑆𝑞 (I).

So we conclude:

Theorem 5.5. For any multi-way join query 𝑞 and any instance I,
𝑅𝑆𝑞 (I) ≤ 𝐸𝑆𝑞 (I).

The gap. We have proved that 𝑅𝑆𝑞 (I) ≤ 𝐸𝑆𝑞 (I) for all multi-way

join queries and instances. Below, we show that on certain queries

and instances, the former is𝑂 (1) while the latter isΘ(𝑁𝑛−1), which
is as large as the global sensitivity.

...

Figure 2: An 𝑛-cycle join.

Consider an 𝑛-cycle join

𝑞 = 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z · · · Z 𝑅𝑛 (𝑥𝑛, 𝑥1),
shown in Figure 2, where each edge represents a tuple. More pre-

cisely, the instance I is constructed as follows. Each relation instance
𝐼𝑖 has

𝑁
𝑛 tuples. The tuples in each 𝐼𝑖 have distinct values on 𝑥𝑖 ,

while sharing the same value on 𝑥𝑖+1 (define 𝑥𝑛+1 = 𝑥1). Note that

𝑚𝑓 (𝑥𝑖 , 𝐼𝑖 ) = 𝑁
𝑛 . No matter which join condition is removed, the

elastic sensitivity is always

𝐸𝑆𝑞 (I) = max

0≤𝑘
𝑒−𝛽𝑘𝐿𝑆

(𝑘)
𝑞 (I) ≥ 𝐿𝑆

(0)
𝑞 (I) =

(
𝑁

𝑛

)𝑛−1

.

For residual sensitivity, observe that for any 𝐸 ⊆ [𝑛],𝑇𝐸 (I) = 1. So

𝑅𝑆𝑞 (I) ≤ max

0≤𝑘≤ 𝑛−1

1−𝑒−𝛽

𝑒−𝛽𝑘𝐿𝑆
(𝑘)
𝑞 (I) ≤ 𝐿𝑆

( 𝑛−1

1−𝑒−𝛽
)

𝑞 (I)

= max

s∈S
𝑛−1

1−𝑒−𝛽

max

𝑖∈[𝑛]

∑
𝐸′⊆[𝑛]−{𝑖 }

©­«𝑇𝑛−𝐸′−{𝑖 } (I)
∏
𝑗 ∈𝐸′

𝑠 𝑗
ª®¬

≤ max

s∈S
𝑛−1

1−𝑒−𝛽

max

𝑖∈[𝑛]

∑
𝐸′⊆[𝑛]−{𝑖 }

∏
𝑗 ∈𝐸′

𝑠 𝑗

≤ max

s∈S
𝑛−1

1−𝑒−𝛽

max

𝑖∈[𝑛]

∏
𝑗 ∈[𝑛]−{𝑖 }

(𝑠 𝑗 + 1) ≤
(
𝑛 − 1

1 − 𝑒−𝛽
+ 1

)𝑛−1

,

which is a constant.

5.3 Single Private Relation
When there is only one private relation, i.e., 𝑛𝑃 = 1, all sensi-

tivity measures collapse into one (see the remark at the end of

Section 5.1). This means that the local sensitivity is already smooth,

so we can simply use the local sensitivity to add noise following the



Cauchy/Laplace mechanism of [21]. This remains the best method

if the released query answer needs to be unbiased.

Alternatively, the truncation mechanism [17, 27] has been shown

to work well empirically, by trading some bias for lower variance

(noise). The recent work of Tao et al. [27] presents the best solution

in this category: They first compute the sensitivities of all tuples

in the (only) private relation, then remove tuples with sensitivity

above a certain threshold 𝜏 , and add noise calibrated to 𝜏 . They

also show how to find a good 𝜏 in a differentially private manner.

Thus, our method is the same as the first step in [27] in the case of

a single private relation without foreign key constraints. After that,

we may also use the truncation mechanism, which would result in

the same result as in [27].

6 EXPERIMENTS
Our analytical results show that residual sensitivity is always no

larger than elastic sensitivity, while there are queries and instances

where the gap can be as large as 𝑂
(
𝑁𝑛−1

)
. In this section, we

conduct an experimental study on the actual gap on a collection of

multi-way joins over both benchmark and real-world datasets. We

also investigate its implications to the noise levels, as well as the

computational overheads.

We have also tested wPINQ [23], the earliest work on multi-way

join queries under the same DP policy as ours. Our results confirm

those reported in [13], that wPINQ has worse utility than elastic

sensitivity.

6.1 Setup
Datasets. We use two datasets in our experiments: TPC-H and

the Facebook ego-network dataset. The TPC-H schema has many

foreign key constraints. As our DP policy does not consider for-

eign key constraints, when a tuple is deleted in one relation, say

Customer, we might obtain a neighboring instance that violates

the foreign key constraint from Orders to Customer. To resolve

this inconsistency, the correct way to interpret our DP policy is

the following. We conceptually create the following relations by

projecting the original relations to the join attributes. This results

in the following 8 projected relations: Region(RK), Nation(RK, NK),
Customer(NK, CK), Orders(CK, OK), Supplier(NK, SK), Part(PK),
PartSupp(SK, PK), Lineitem(SK, PK, OK). We abbreviate these rela-

tions as R, N, C, O, S, P, PS, L, respectively. All relations except R and
P capture relationships, e.g., Orders(CK, OK) stores which custom

placed which order. We treat C, O, S, PS, L as private relations. There
are no foreign key constraints between these private relations, so

our DP policy will be well defined. Note that the same interpre-

tation is used in the prior work [13]. We generated datasets with

scale factors ranging from 0.01 to 10; the one with scale factor 1

contains about 7.5 million tuples.

The Facebook ego-network dataset is from SNAP [18], which

contains 4, 039 nodes and 176, 467 directed edges. The nodes are

organized as 193 “social circles”. We merged these social circles

into 5 “mega-circles”, and created five relations 𝑅𝑖 (𝑥,𝑦), 𝑖 = 1, . . . , 5,

where each 𝑅𝑖 (𝑥,𝑦) contains all edges (𝑥,𝑦) that originate in the

𝑖-thmega-circle. In addition, we create a relation𝑅6 (𝑥,𝑦, 𝑧) that con-
sists of all triangles formed by edges in 𝑅1 or 𝑅2, i.e., 𝑅6 (𝑥,𝑦, 𝑧) :=

(𝑅1 (𝑥,𝑦) Z 𝑅1 (𝑦, 𝑧) Z 𝑅1 (𝑧, 𝑥)) ∪ (𝑅2 (𝑥,𝑦) Z 𝑅2 (𝑦, 𝑧) Z 𝑅2 (𝑧, 𝑥)).

The 6 relations have 40968, 55125, 28231, 22486, 19179, 6080904 tu-

ples, respectively, and they are all regarded as private relations.

This data set models the scenario where different types of relations

exist among the entities, such as friendship, co-workers, co-authors,

family members, etc.

Queries. For TPC-H data, we used Q7, Q9, and Q5 from the

benchmark, but removed projections, predicates, and group-by

conditions, and their join structures are shown as𝑞1, 𝑞2, 𝑞3 in Figure

3. For the Facebook ego-network dataset, we used 5 queries, shown

as 𝑞4, . . . , 𝑞8 in Figure 3. Note that all joins on the TPC-H data are

foreign-key joins (i.e., many-to-one), while those on the Facebook

data are many-to-many joins.

6.2 Implementation
Both residual sensitivity and elastic sensitivity can be computed eas-

ily by SQL. Elastic sensitivity is computed by a UDF, after collecting

the maximum frequencies of each relation by SQL [13]. Similarly,

for residual sensitivity, each𝑇𝐸 (I) can be computed using query (6).

Then 𝑅𝑆𝑞 (I) can be computed by formula (20) using a UDF. Thus,

residual sensitivity enjoys the same benefit of elastic sensitivity that

it can be easily integrated into any database system without any

modification to the kernel. To automate this process, we have built

a system prototype on top of PostgreSQL.
4
In our experiments, we

used PostgreSQL 11.5. For wPINQ, we follow the similar settings

as [13]. All experiments are conducted on a machine equipped with

a 2.7 GHz Intel Core i7 and 16GB of memory.

However, we notice that PostgreSQL is not able to find the op-

timal query plan for executing query (6). Thus, we wrote another

query rewriter that uses the following rules to rewrite a query in

the form of (6). Our current query rewriter has only implemented a

subset of these rules (this should be the job of the query optimizer

of the database!), so one may still need some manual rewriting for

the best performance.

Disconnected queries. If 𝑞𝐸 consists of a few connected compo-

nents, then 𝑞𝐸 is the Cartesian product of the join results of each

connected component. In this case, 𝑇𝐸 is simply the product of the

maximum boundaries of these connected components. It is more

efficient to evaluate (6) for each connected component separately.

Example 6.1. Consider query 𝑞1 in Figure 3 with 𝐸 = {N, C, L, S}.
We have 𝑇𝐸 = 𝑇𝐸1

·𝑇𝐸2
where 𝐸1 = {N, C}, 𝐸2 = {L, S}. □

Exploiting dependencies. Suppose there is a functional depen-

dency 𝑋 → 𝑌 and 𝑋 ⊆ 𝜕𝑞𝐸 , then it is clear that we can add all

attributes in 𝑌 to the group-by attributes 𝜕𝑞𝐸 without affecting

the results of query (6). This step can be repeatedly applied. If all

attributes of 𝑞𝐸 can be added to 𝜕𝑞𝐸 , then the result of (6) must be

either 1 (when 𝑞𝐸 is non-empty) or 0 (when 𝑞𝐸 is empty), provided

there are no duplicated tuples in a relation.

Example 6.2. Consider query 𝑞3 in Figure 3 with 𝐸 = {R, N, S, C},
and 𝜕𝑞𝐸 = {SK, CK}. We have SK → NK (SK is the primary key of S)
so we can add NK to 𝜕𝑞𝐸 . Also, NK → RK (NK is the primary key of

N), so we can also add RK to 𝜕𝑞𝐸 . Now all attributes of 𝑞𝐸 have been

added to 𝜕𝑞𝐸 and we only need to check whether 𝑞𝐸 is empty.

4
Code is available at https://github.com/hkustDB/ResidualSensitivity.

https://github.com/hkustDB/ResidualSensitivity
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Figure 3: The join structure of queries. Figure 4: The rewriting of query of𝑇𝐸 for 𝑞3

with 𝐸 = {R, N, C, S, L}.

Dataset TPC-H Facebook

Query 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8

Query result 6,001,215 6,001,215 239,917 1,666,978,389 19,927 285,754 6,348,654 21,613

wPINQ output 8,680 9,770 385 54.2 131.4 44.1 23.8 183.6

Min Value 694 694 49 77,100,000 203 2,790 86,800 50

Residual Sensitivity (𝑅𝑆) Max Value 51,900 52,000 51,800 301,000,000 1,410 54,500 2,050,000 51,300

Running Time(s) 27.6 53.6 48.6 2.96 1.68 4.71 18.1 20.1

Min Value 1,740 2,140 175,000,000 25,500,000,000 219,000 110,000,000 55,000,000,000 561

Elastic Sensitivity (𝐸𝑆) Max Value 4,950,000 1,870,000 263,000,000 25,500,000,000 219,000 110,000,000 55,000,000,000 2,440,000

Running Time(s) 7.55 9.02 6.73 0.300 0.611 0.628 5.725 8.78

Min 2.51× 3.08× 5,069× 84.8× 156× 2,010× 26,900× 11.2×
𝐸𝑆/𝑅𝑆 Max 273× 67× 3,580,000× 330× 1,080× 39,300× 634,000× 178×

Avg 94.4× 27.8× 1,750,000× 286× 875× 27,300× 503,000× 80.6×
Running time: 𝑅𝑆/𝐸𝑆 3.65× 5.94× 7.23× 9.86× 2.75× 7.50× 3.17× 2.29×

Table 2: Comparison among wPINQ, residual sensitivity and elastic sensitivity.

Aggregation push-down. When evaluating (6), PostgreSQL would

first compute the join and then the aggregation, which is inefficient.

We can push down the aggregation as far as possible to reduce the

execution cost. Joglekar et al. [12] present a general framework for

pushing down aggregations, which in turn defines the width𝑤 as

mentioned in Section 4.1.

Example 6.3. Consider query𝑞3 in Figure 3with𝐸 = {R, N, C, S, L},
we can first add attributes NK, RK to 𝜕𝑞𝐸 by exploiting dependencies.

Then, we rewrite (6) by pushing down both COUNT and MAX. The
query plans before and after this rewrite are shown in Figure 4.

The optimized query plan has 𝑤 = 1 and it can be evaluated in

linear time. In practice, this reduces PostgreSQL’s execution time

by roughly 100 times in our experiments. □

Incremental computation. Finally, observe that the subquery in

(6):

SELECT COUNT(∗) AS Boundary FROM 𝑞𝐸 GROUP BY 𝜕𝑞𝐸 (32)

can be computed incrementally for 𝐸’s that differ by one relation.

Thus, we can order the computation of𝑇𝐸 ’s in away so that previous

results can be re-used.

Example 6.4. Consider query 𝑞6 in Figure 3, where we need

to compute 𝑇𝐸1
, 𝑇𝐸2

, 𝑇𝐸3
for 𝐸1 = {𝑅1}, 𝐸2 = {𝑅1, 𝑅2}, 𝐸3 =

{𝑅1, 𝑅2, 𝑅3}, among others. First, the result of executing (32) on

𝑞𝐸1
is just 𝑅1 itself, with an additional column Boundary whose

values are all 1. Then we execute (32) on 𝑞𝐸2
:

SELECT A, C COUNT(∗) AS Boundary FROM 𝑅1, 𝑅2

WHERE 𝑅1 .B = 𝑅2 .B GROUP BY A, C (33)

Next, we can run

SELECT A, D SUM((33).Boundary) AS Boundary FROM (33), 𝑅2

WHERE (33).C = 𝑅2 .C GROUP BY A, D

to obtain the result of (32) on 𝑞𝐸3
. □

6.3 Experimental Results
Compare with wPINQ. We test wPINQ on all queries and find it

losses the utility in all cases: as shown in Table 2, wPINQ outputs a

result much less than 1% of the real query result. That is because, as

shown in Section 2, the wPINQ ensures any tuple can at most effect

one counting query result by scaling down the tuples’ weights.

Such operations can lead to the output result much smaller than

the real one and that becomes more problem with the number of

relations increase. The wPINQ performs well in the case where

most tuples affect no more than one query result or the case where
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Figure 5: Running times and noise levels of residual sensitivity and elastic sensitivity with different noise mechanisms for
different queries and data scales. 𝑅/𝐸 represents the noise level calculated from residual sensitivity or elastic sensitivity, re-
spectively, while 𝐶𝑎𝑢/𝐿𝑎𝑝 denotes the respective noise mechanism.
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Figure 6: The noise level of residual sensitivity and elastic sensitivity for various values of 𝜀.

tuples in the same relation have the same degree(counting triangles

incident on vertices with fixed degrees). However, in our experi-

ments, tuples join with any number of tuples. Besides, it has been

shown that wPINQ performs much worse than elastic sensitivity

for non-histogram counting queries [13].

Compare with elastic sensitivity. Since elastic sensitivity (𝐸𝑆)

and residual sensitivity (𝑅𝑆) can be used in exactly the same man-

ner to calibrate noise, where the noise level is proportional to the

sensitivity value, we can compare their sensitivity values directly,

given the same smoothing parameter 𝛽 . We tried 7 different values

𝛽 = 0.01,0.02,0.04,0.08,0.16,0.32,0.64, and computed 𝐸𝑆 and 𝑅𝑆 for

each of the queries in Figure 3. For TPC-H queries, we used the

dataset with scale factor 1. In Table 2, we report the maximum,

minimum, and the average value of the sensitivities over the 𝛽’s,

as well as their ratios. Note that both sensitivities decrease as 𝛽

increases, but the ratio 𝐸𝑆/𝑅𝑆 is not necessarily monotone.

First, the experimental results confirm our theoretical analysis:

𝑅𝑆 is always no more than 𝐸𝑆 , while the gap can be very large for

certain queries. More importantly, the results reveal two funda-

mental reasons why 𝑅𝑆 offers a much tighter upper bound on the

smooth sensitivity than 𝐸𝑆 . The first one is the data skewness. 𝐸𝑆

is calculated based on multiplying the maximum frequencies in the

relations. In doing so, it makes the simple but very pessimistic as-

sumption that these most frequent attribute values can join, thereby

shooting up the sensitivity tremendously. If data is skewed, there

are very few heavy hitters, and the chance that they can join is low.

On the other hand,𝑅𝑆 computes the actual join of the residual query,

so the presence of the heavy hitters will not affect the sensitivity,



unless they can actually join. We see from Table 2 that the ratio

𝐸𝑆/𝑅𝑆 is generally larger on the Facebook dataset, which is real

network data with high skewness. On the other hand, TPC-H data

is more uniform. The second situation where 𝑅𝑆 is much smaller

than 𝐸𝑆 is on cyclic queries (𝑞3, 𝑞5, 𝑞6, 𝑞7). This is because the ap-

proach towards cyclicity taken by 𝐸𝑆 , which just removes some

join conditions, is too simplistic. Removing these join conditions

dramatically enlarges the sensitivity, because these join conditions

put restrictions on how join results can be formed. On the other

hand, 𝑅𝑆 is defined in a unified manner over acyclic and cyclic

queries.

In Table 2, we also report the running times of these queries,

which include executing the query itself plus the time spent in

computing the sensitivity. The time to add noise to the query answer

is negligible. We repeated each query 10 times and the average

running time is reported. We see that 𝑅𝑆 indeed requires more time

to evaluate, but considering the huge improvement in the accuracy

of the released query answers (which will be more prominently

compared next), the extra time is well spent.

Scalability. To examine the effects as data scale changes, we

used TPC-H datasets with scale factors ranging from 0.01 to 10.

To get a more intuitive sense, we calculated the noise level from

the computed sensitivity with both the Cauchy mechanism and

Laplace mechanism as described in Section 3.5. We fix the privacy

parameter 𝜀 = 0.8. For the Laplace mechanism, we set 𝛿 = 10
−7, 2 ×

10
−8, 10

−8, 2 × 10
−9, 10

−9, 2 × 10
−10, 10

−10
for TPC-H dataset with

different scale and set 𝛿 = 10
−9/10

−7
for Facebook dataset with 𝑅6

involved/uninvolved.

The noise levels for different data scales are plotted in the top

row of Figure 5, in which we also plot the actual query answer.

Note that a noise level higher than the query answer means that

the noise-masked result would be basically useless. We see from

the results that the noise level from 𝑅𝑆 is always below the query

answer, while this is not the case for 𝐸𝑆 . In particular, for 𝑞3, which

is a cyclic query, the noise level of 𝐸𝑆 is always (much) higher than

the query answer.

Another observation is that the noise level does not increase

much with the data scale. Intuitively, this is because sensitivity

measures the impact of an individual tuple, which in some sense is

a “local” measure. The implication is that the released query answer

is more accurate, relatively speaking, on larger datasets, which is a

nice property. We also observe that the noise level from the Laplace

mechanism increases more than that from Cauchy. This is because

we set smaller 𝛿 for larger dataset in the Laplace mechanism, which

can further bring impact on 𝛽 , while 𝛽 is independent of data size

for Cauchy.

The running times are plotted in the second row of Figure 5.

There is not much surprise there, but it is nice to see that the

growth rate of the time for computing the 𝑅𝑆 is more or less the

same as that computing the query itself. This means that the cost

of evaluating query (6) (after appropriate rewriting) is in the same

ballpark as that of executing the query itself, while 𝑅𝑆 needs to

evaluate a constant number of such queries.

Privacy parameter 𝜀. Lastly, we conducted experiments to see

how the privacy parameter 𝜀 affects various mechanisms. Recall

that a smaller 𝜀 means higher privacy protection, but also increases

the noise level. In fact, it does so via two channels: (1) A smaller 𝜀

increases the coefficient of the noise distribution; and (2) a smaller

𝜀 leads to a smaller 𝛽 , hence a higher sensitivity. We tried various

values of 𝜀 from 0.1 to 12 and tested the 8 queries. The results are

plotted in Figure 6. In the figures, we also plot the query answer

and 10% of that: A noise level below the query answer is considered

to have utility while having high utility if it is below 10% of the

query answer.

The first message the figures convey is nothing but a reconfir-

mation of the results in Table 2: The gap between the sensitivities

directly translates to that between the noise levels. On cyclic queries

and/or data with high skewness (𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7), 𝐸𝑆 does not have

utility even with 𝜀 is as large as 12, which is usually considered too

high. For easy queries (𝑞1, 𝑞2, 𝑞8), 𝑅𝑆 is able to obtain utility or high

utility at a much smaller 𝜀.

The more interesting observation is the comparison between

the two noise mechanisms. We see that, when combined with 𝑅𝑆 ,

the two mechanisms have a crossover on every query: the Cauchy

mechanism seems to work better for smaller 𝜀, while the Laplace

mechanism favors larger 𝜀. This is precisely due to the two channels

through which 𝜀 affects the noise level. The coefficients of both

noise distributions are inversely proportional to 𝜀, so the noise levels

both decrease as 𝜀 increases. Meanwhile, 𝜀 also affects 𝛽 through

the second channel, but its impact on 𝛽 is larger for the Laplace

mechanism. A larger 𝛽 reduces 𝑅𝑆 , although this relationship is a

complicated one. Anyhow, because the Laplace mechanism is more

sensitive to the change in 𝜀, we see steeper curves in its noise levels

as we vary 𝜀. On the other hand, this phenomenon is not obvious for

𝐸𝑆 . This is because 𝐸𝑆 is not very sensitive to 𝛽 on many queries (as

can be seen from Table 2), which reduces the effects of the second

channel. In fact, being sensitive to 𝛽 is a necessary property of any

good upper bound on the smooth sensitivity, which itself is highly

sensitive to 𝛽 . In the extreme case, if an upper bound is completely

insensitive to 𝛽 , it just boils down to the global sensitivity.

7 FUTUREWORK
We mention three interesting directions for further investigation.

The first is how to support self-joins. The second is how to release

many join queries in a way better than direct composition. There

is a lot of work in this direction for queries without joins, but the

problem is wide open for joins. Finally, the complex DP policy with
foreign key constraints [17, 27] can provide privacy protection at

the entity level, but the existing methods only support one private

entity relation. How to extend to multiple private entity relations

remains a challenging problem.
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A A QUASI-POLYNOMIAL TIME ALGORITHM
FOR COMPUTING SMOOTH SENSITIVITY

In this section, we describe an 𝑁𝑂 (log𝑁 )
-time algorithm for com-

puting 𝑆𝑆𝑞 (I).
Recall the definition of 𝑆𝑆𝑞 (I):

𝑆𝑆𝑞 (I) = max

𝑘≥0

𝑒−𝛽𝑘𝐿𝑆 (𝑘)𝑞 (I).

First, we show that it is sufficient to consider 𝑘 = 0, 1, . . . ,
2(𝑛−1)

𝛽
ln𝑁 . It is trivial to see, 𝐿𝑆 (𝑘) (I) ≤ (𝑁 + 𝑘)𝑛−1

. When

𝑘 ≥ 2(𝑛−1)
𝛽

ln𝑁 , we have 𝑒−𝛽𝑘𝐿𝑆 (𝑘)𝑞 (I) ≤ 𝑒−𝛽𝑘 (𝑁 + 𝑘)𝑛−1 ≤ 1,

so it has no effects on the max.

Then, for each 𝑘 , we need to compute

𝐿𝑆
(𝑘)
𝑞 (I) = max

I′∈I𝑘
𝐿𝑆𝑞 (I′),

where I𝑘 = {𝐼 ′ : 𝑑 (I, I′) = 𝑘}. The domains of the attributes can

be infinite, thus I𝑘
is also infinite. To resolve this issue, we show

that we do not need to consider the entire domains of the attributes,

while some finite sub-domains are sufficient for computing 𝐿𝑆
(𝑘)
𝑞 .

For a given instance I and any attribute 𝑥 , the active domain of 𝑥

is dom𝑎𝑐𝑡 (𝑥) = ∪𝑖∈[𝑛]𝜋𝑥 𝐼𝑖 . For x = (𝑥1, . . . , 𝑥𝑘 ), let dom𝑎𝑐𝑡 (x) =
dom𝑎𝑐𝑡 (𝑥1) × · · · × dom𝑎𝑐𝑡 (𝑥𝑘 ). Tao et al. [27] show that when

computing 𝐿𝑆𝑞 (I), only neighboring instances I, I′ that differ by
a tuple 𝑡 ∈ dom𝑎𝑐𝑡 (x𝑖 ), 𝑖 ∈ 𝑃 need to be considered. However,

when computing 𝐿𝑆
(𝑘)
𝑞 , we cannot only consider I′ that differ from

I by 𝑘 tuples in dom(x𝑖 ), 𝑖 ∈ 𝑃 . The reason is that, these 𝑘 tuples

may correlate with each other through values not in the active

domains. To solve this issue, we add 𝑘 values to dom𝑎𝑐𝑡 (𝑥) to form
the 𝑘-extended active domain for each attribute 𝑥 :

ˆdom
𝑘

𝑎𝑐𝑡 (𝑥) = dom𝑎𝑐𝑡 (𝑥) ∪ {𝑎1, . . . , 𝑎𝑘 },
where 𝑎1, . . . , 𝑎𝑘 are 𝑘 different values in dom(𝑥) − dom𝑎𝑐𝑡 (𝑥).
Similarly, let dom𝑎𝑐𝑡 (x) = dom𝑎𝑐𝑡 (𝑥1) × · · · × dom𝑎𝑐𝑡 (𝑥𝑘 ) for x =

(𝑥1, . . . , 𝑥𝑘 ). We claim that when computing 𝐿𝑆
(𝑘)
𝑞 , it is sufficient

to consider

I𝑘 = {I′ : I, I′ differ by 𝑘 tuples in
ˆdom

𝑘

𝑎𝑐𝑡 (x𝑖 )}.
Indeed, suppose I′ has tuples have value 𝑎′ on attribute 𝑥 and

𝑎′ ∉ ˆdom
𝑘

𝑎𝑐𝑡 (𝑥). Because I′ has at most 𝑘 tuples not in I, there must

be an extra 𝑎𝑖 in ˆdom
𝑘

𝑎𝑐𝑡 (𝑥) that is not used. Then we can remap 𝑎′

to 𝑎𝑖 , which does not induce any structural change in I′. Note that
the size of |I𝑘 | is at most 𝑂 ((𝑁 + 𝑘)𝑚𝑘 ), where𝑚 is the number

of attributes. This is 𝑁𝑂 (ln𝑁 )
in terms of data complexity.



Then, we can calculate the 𝑆𝑆𝑞 (I) as follows. For each 𝑘 =

0, 1, . . . ,
2(𝑛−1)

𝛽
ln𝑁 , we compute 𝐿𝑆

(𝑘)
𝑞 (I). To compute 𝐿𝑆

(𝑘)
𝑞 (I),

we enumerate all I′ ∈ I𝑘
, and use Theorem 4.5 to calculate

𝐿𝑆𝑞 (I′) = max𝑖∈𝑃 𝑇[𝑛]−{𝑖 } (I′), hence 𝐿𝑆
(𝑘)
𝑞 (I). Finally, we obtain

𝑆𝑆𝑞 (I) by taking the maximum of 𝑒𝛽𝑘𝐿𝑆
(𝑘)
𝑞 (I) over all 𝑘 . The run-

ning time is still 𝑁𝑂 (ln𝑁 )
.
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