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Abstract

Order-based element labeling for tree-structured XML
data is an important technique in XML processing. It lies at
the core of many fundamental XML operations such as con-
tainment join and twig matching. While labeling for static
XML documents is well understood, less is known about
how to maintain accurate labeling for dynamic XML docu-
ments, when elements and subtrees are inserted and deleted.
Most existing approaches do not work well for arbitrary up-
date patterns; they either produce unacceptably long la-
bels or incur enormous relabeling costs. We present two novel
I/O-efficient data structures, W-BOX and B-BOX, that effi-
ciently maintain labeling for large, dynamic XML documents.
We show analytically and experimentally that both, de-
spite consuming minimal amounts of storage, gracefully han-
dle arbitrary update patterns without sacrificing lookup ef-
ficiency. The two structures together provide a nice tradeoff
between update and lookup costs: W-BOX has logarith-
mic amortized update cost and constant worst-case lookup
cost, while B-BOX has constant amortized update cost and
logarithmic worst-case lookup cost. We further propose tech-
niques to eliminate the lookup cost for read-heavy work-
loads.

1. Introduction

XML has become a widely popular standard for represent-
ing and exchanging data over the Internet. Conceptually, an
XML document consists of an ordered hierarchy of properly
nested tagged elements. Elements can be labeled according
to the structure of the document in ways that facilitate query
processing. Many labeling schemes have been proposed in the
literature (see Section 2 for a survey). Among the most pop-
ular and effective of them is an order-based labeling scheme
that assigns a pair of numeric labels to each element based on
the document order of its start and end tags. Figure 1 shows
an example XML document with elements labeled using this
scheme. This labeling scheme lies at the core of many fun-
damental XML operations such as containment join [21] and
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Figure 1. XML tree with order-based labels.

twig matching [5], because it supports efficient checking of
ancestor-descendant relationships among elements: An ele-
ment e1 is an ancestor of another element e2 if and only if the
interval formed by e1’s labels contains that of e2. There are
alternative order-based labeling schemes, such as those based
on pre- and post-order traversals of the XML tree, which work
in similar ways. Because of their vital role in query process-
ing, these order-based labels are often used as element identi-
fiers and in various indexes [13, 12].

An important issue with any order-based labeling scheme
is the ability to handle dynamic XML documents. When a
document is updated (e.g., when elements or subtrees of ele-
ments are inserted or deleted), how do we ensure that the or-
dering among labels remain consistent with the document or-
der? Ideally, we would want to keep all existing labels, but
in [7] a negative result establishes that any immutable label-
ing scheme requires Ω(N) bits per label, where N is the size
of the document. Such long labels not only incur high stor-
age overhead, but are also less useful in query processing be-
cause they are more expensive to process on than shorter la-
bels, especially when they cannot be accommodated by na-
tive machine words.

The alternative is to use a dynamic labeling scheme where
existing labels can change with document updates. Most sys-
tems take a rather naive approach, which basically leaves gaps
between adjacent labels in advance. Whenever this scheme
runs out of values to assign to new labels because a gap has
been filled by previously inserted labels, it relabels everything
to leave equally sized gaps between adjacent labels. Unfortu-
nately, this scheme is easily broken by an adversary that re-
peatedly inserts into the currently smallest gap. Even if we
start with a gap of length 2k , which requires k bits extra to
encode each label, it would only take the adversary k + 1 in-
sertions to trigger relabeling. This worst case is perhaps not
uncommon, since consecutive insertions into an XML docu-



ment usually happen in nearby locations. Obviously, more ro-
bust solutions are needed.

Our contribution is a collection of data structures and tech-
niques for maintaining order-based labeling for a dynamic
tree-structured XML document. We propose two I/O-efficient
data structures, W-BOX (Weight-balanced B-tree for Ordering
XML) and B-BOX (Back-linked B-tree for Ordering XML).
W-BOX reduces the relabeling cost by limiting each relabel-
ing operation to within a subrange; it uses a B-tree keyed
on labels and piggybacks relabeling on tree balancing oper-
ations. B-BOX, on the other hand, avoids storing—and there-
fore updating—any label explicitly; it uses a keyless B-tree
with back-links from children to parents, allowing labels to
be reconstructed quickly on demand. The two structures to-
gether provide a nice tradeoff between update and lookup
costs: W-BOX has logarithmic amortized update cost and
constant worst-case lookup cost, while B-BOX has constant
amortized update cost and logarithmic worst-case lookup
cost. Both structures take linear space and use O(log N) bits
per label. Both support efficient bulk loading and subtree in-
sert/delete operations. We experimentally evaluate their per-
formance and demonstrate their advantage over the naive ap-
proach.

In addition, we show how to adapt our data structures so
that they can also return the ordinal labels of an element (de-
fined formally in Section 3), which are the exact ordinal po-
sitions of its start and end tags within the document. Labels
shown in Figure 1 happen to be ordinal; there are no gaps be-
tween adjacent labels. Ordinal labels contain the minimum
number of bits per label, and are more efficient than non-
ordinal labels for certain queries. However, they are more ex-
pensive to maintain: Both lookup and update costs become
logarithmic for both W-BOX and B-BOX.

Finally, note that whenever a label changes value, all oc-
currences of the value in the database (e.g., in various in-
dexes) must be updated, resulting in potentially unbounded
update cost. This problem is inherent for any dynamic la-
beling scheme (including the naive approach) and can be
solved by a level of indirection. However, this solution intro-
duces an extra dereferencing cost which hurts query perfor-
mance. We propose a combination of caching and novel log-
ging techniques that can very effectively reduce this derefer-
encing cost.

2. Related Work

Many XML labeling schemes have been proposed in re-
cent years to support efficient processing of path expression
queries, which are the basic building blocks of XPath [19].
Path-based labeling schemes assign a code to each element,
and the label of an element is simply the concatenation of the
codes associated with the elements on its incoming path. With
these labels, ancestor/descendant and parent/child axis steps
can be processed by prefix matching. The main advantage of
such path-based labeling schemes is that they can handle dy-
namically changing XML documents easily: When a new el-
ement is added, its label can be generated without modifying

any of the existing labels. However, space overhead is a ma-
jor concern, especially when the XML tree is tall, since the
length of the label of an element is proportional to the length
of its incoming path, and the majority of the elements in an
XML tree are leaves with long incoming paths. Prefix match-
ing is also more costly with these long labels. Examples of
path-based labeling schemes include the two proposed by Co-
hen et al. [7] that do not use clues: Neither scheme handles tall
XML trees well because label length grows linearly with tree
height; furthermore, neither scheme maintains document or-
dering of siblings (only the insertion order of sibling can be
recovered). One novel approach [20], which also tries to en-
code an element’s incoming path, is to assign a prime number
to each element, and the label of an element is formed by mul-
tiplying together the prime numbers associated with the ele-
ments on its incoming path. Ancestor/descendant axis steps
then can be processed by checking if one label exactly di-
vides the other. However, this approach still suffers from the
same problem of long labels as other path-based schemes, as
the resulting products of primes can become quite big.

The other class of popular labeling schemes includes
the order-based interval and pre- and post-order label-
ing schemes, e.g., [21, 14, 11, 13, 12]. These schemes
assign a pair of numeric start and end labels to each ele-
ment, such that element e1 is element e2’s ancestor if and
only if the start label of e1 precedes that of e2, and the end la-
bel of e2 precedes that of e1. These schemes have several ad-
vantages over the path-based schemes. First, these schemes
maintain document order. Second, each label only re-
quires O(log N) bits, which is asymptotically minimum.
Third, comparing numeric labels can be faster than pre-
fix matching. Finally, fixed-size labels that fit in machine
words are efficient and easy to implement. However, mak-
ing such order-based labeling schemes dynamic remains a
challenging problem. In contrast to the path-based schemes,
repeated insertions will inevitably fill up the gaps between ad-
jacent labels, necessitating a relabeling of part or all of the
elements.

Hybrid labeling schemes that combine path- and order-
based approaches are also possible. For example, Dewey-
order encoding [18] labels each element by combining the lo-
cal (sibling) order of each element on its incoming path. OR-
DPATH [15, 16] makes Dewey-order encoding dynamic us-
ing a clever “careting-in” scheme to support insertions. How-
ever, as an immutable labeling scheme, ORDPATH cannot
escape the lower bound of Ω(N) bits per label established
in [7]. Even for shallow XML documents, certain insertion
sequences (such as the concentrated sequence we experiment
with in Section 7) can result in Ω(N)-bit labels.

The naive approach to order maintenance mentioned in
Section 1 is to relabel all elements to make equally spaced la-
bels when we run out of usable labels. This approach has been
suggested in many existing systems, e.g., [13, 12]. However,
this scheme is easily broken by an adversary that continuously
inserts into the smallest gap. This worst case may indeed arise
when, for example, a large number of elements (in an XML
fragment) are inserted into one location in the document. Us-



ing floating-point numbers instead of integers (e.g., [1]) does
not circumvent the problem: Although floating-point numbers
have a larger range of values, the number of distinct values is
still limited by the number of bits used in representation.

Maintaining all tags in the desired order under insertions
and deletions is an instance of the well-known problem of
maintaining ordered lists. The classic paper by Dietz [8] gives
an algorithm that relabels O(log N) tags per insertion, amor-
tized. With one extra level of indirection, the cost can be
brought down to O(1) [9]. The O(log N) cost can also be
made worst-case, although the techniques are rather compli-
cated and are primarily of theoretical interest. In [4], Ben-
der et al. give a simplified version of the algorithm from [9],
which is also easier to implement.

The database community has recently begun applying
the above results to maintaining order-based XML labeling.
Fisher et al. [10] use Bender’s algorithm, and also provide
a randomized algorithm which in practice performs slightly
better in their experiments, although there is no theoretical
analysis to guarantee its performance. Chen et al. [6] propose
L-tree, which is parameterized to allow performance tuning
and is also easier to implement than the algorithm from [9].
However, none of these structures are disk-based. In contrast,
our BOXes are designed to be I/O-efficient, and we also de-
velop techniques for avoiding the extra level of indirection
necessitated by dynamic labeling schemes.

3. Preliminaries

For the purpose of this paper, we assume that an XML doc-
ument can be modeled as a tree of elements. Each element e
has a pair of start and end tags. In a well-formed XML docu-
ment, e’s start tag always precedes all tags of e’s descendants,
while e’s end tag always succeeds all of them. An order-based
labeling scheme (or labeling for short) is a function that as-
signs each element e a pair of integers (l<(e), l>(e)), where
l<(e) is called the start label of e or the label of e’s start tag,
and l>(e) is called the end label of e or the label of e’s end
tag. A valid labeling is one that is consistent with the docu-
ment order; that is, if a tag t1 precedes another tag t2 in the
XML document, then the label of t1 is less than that of t2.
Note that our proposed structures also work for other defi-
nitions of order (e.g., one based on pre-order and post-order
traversals of the tree of elements), but for ease of presenta-
tion, we choose to use tag ordering within the document.

The use of order-based labeling in XML query process-
ing has been discussed extensively in literature, so we will
not elaborate it here; instead, we give an illustrative exam-
ple. To see if element e1 is a descendant of e2, we can sim-
ply check if l<(e2) < l<(e1) < l>(e2). It is usually much
cheaper to evaluate this condition than traversing the element
tree to check the ancestor-descendant relationship, which may
take many steps.

The ordinal labeling is one that assigns label i to the i-th
occurring tag in the document, for all i ≥ 0 (assuming the or-
dinal is 0-based). Since the ordinal labeling leaves no gaps
between consecutive labels, it makes the most efficient use of
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Figure 2. Immutable label ID file.

bits to encode labels. Furthermore, some queries are easier to
answer with the ordinal labeling. For example, to see if e1 is
e2’s last child, we can simply check if l>(e1) + 1 = l>(e2).
With a non-ordinal labeling, we would need to check if there
does not exist any label between l>(e2) and l>(e1), which is
more expensive to evaluate. However, as we will see, the ordi-
nal labeling is more difficult to maintain when the document
changes.

From immutable LIDs to dynamic labels Both W-
BOX and B-BOX utilize a level of indirection to associate
dynamic labels with immutable label IDs (or LID for short).
Again, as motivated in Section 1, this indirection allows la-
bels to be reassigned without disturbing references to them.
We use a simple heap file called the immutable label ID file
(or LIDF for short) to implement this indirection.

When a new XML element e is inserted into the docu-
ment, we allocate two new records in the LIDF: one for e’s
start label and the other for e’s end label. These are the (start
and end) LIDF records of e. Their record numbers (or phys-
ical disk locations) serve as e’s LIDs, which allow direct ac-
cess to the LIDF records. Once LIDs are assigned, they are
immutable, so they can be freely used in other XML indexes
or even as XML element IDs. There is no need to keep LIDs
in any order (although an obvious optimization is to allocate
start and end LIDF records next to each other, so that a sin-
gle I/O retrieves both records). When an element is deleted,
its LIDF records can be reclaimed and allocated to a new ele-
ment, allowing the LIDF to be stored compactly.

W-BOX and B-BOX both maintain two leaf entries for
each XML element e: one for e’s start label and the other for
e’s end label. We call them the (start and end) BOX records of
e. As illustrated in Figure 2, e’s LIDF records store pointers
to the blocks containing corresponding BOX records. Thus,
given a LID, we can retrieve the corresponding LIDF record
with one I/O, and then the block containing the correspond-
ing BOX record with another I/O. In Sections 4 and 5, we
will see how to obtain the actual label from the block contain-
ing the BOX record. In Section 6, we discuss how to avoid the
dereferencing cost.

Supported operations Here we briefly outline the opera-
tions on LIDF and W-BOX/B-BOX. The element/label oper-
ations include:

• lookup(lid ): Return value of the label identified by lid .

• insert-element-before(lid ): Insert a new element so
that it immediately precedes the element tag whose label is
identified by lid ; return the two LIDs assigned to the new
element’s start and end labels. If lid identifies an element



e’s start label, this operation effectively makes the new el-
ement the previous sibling of e. If lid identifies e’s end la-
bel, this operation effectively makes the new element the
last child of e. These two versions are sufficient for insert-
ing any atomic XML element.

This operation is implemented using a low-level op-
eration insert-before(lid new , lidold ), which in-
serts a new BOX record (identified by lidnew ) be-
fore an existing one (identified by lid old ) and
writes the block address of the new BOX record
to the corresponding LIDF record. We implement
insert-element-before(lid ) by first allocat-
ing two new LIDF records for the new element with LIDs
(lid 1, lid 2), and then calling insert-before(lid 2, lid )
and insert-before(lid 1, lid 2) in order. Thus, discus-
sion of insertions in the rest of this paper will focus on
insert-before.

• delete(lid ): Remove the label identified by lid . To re-
move an element e, we need to call delete with the LIDs
of both start and end labels of e. After the deletion, chil-
dren of e, if any, effectively become children of e’s par-
ent.

In addition to the element/label operations described above,
W-BOX and B-BOX also support bulk loading and subtree
insertion and deletion operations. Details of these operations
will be discussed in the next two sections.

Notations and metrics We use N to denote the total num-
ber of labels (including both start and end), which is twice the
number of elements. We assume N to be a power of 2 for sim-
plicity of presentation; our approach does not have this re-
striction. The minimum length of a label is thus log N bits.
We define B, the size of an I/O block, as the number of bits
per block divided by log N , i.e., the number of minimum-
sized labels that a block can hold. We also assume B to be a
power of 2 for simplicity of presentation.

We assume that a block pointer takes log N bits, which
should be more than enough because the number of blocks
we need address is far less than N . Assuming that the LIDF
is kept compact, we can also encode a LID using log N bits;
thus, the space taken by the LIDF is O(N/B).

We evaluate the performance of a labeling scheme using
three metrics: (1) length of a label in bits, (2) total space used
by all data structures, (3) number of block I/Os required for
each operation. The last two metrics are standard in the anal-
ysis of I/O-efficient data structures. The first metric is also
extremely important because shorter labels are faster to op-
erate on by queries. In particular, fixed-length integer labels
that fit in a machine word are easy to implement and have ef-
ficient hardware support.

4. W-BOX

The idea behind W-BOX is to store the labels using a bal-
anced search tree, and leverage the tree-balancing operations
to redistribute labels when they become too dense for a range.
B-tree is one of the simplest I/O-efficient balanced search

trees. Unfortunately, a regular B-tree results in too many rela-
beling operations. Thus, we use a weight-balanced B-tree [3]
as the basis for our W-BOX.

Background on weight-balanced B-tree In a normal
B-tree, each internal node must have between db/2e and b
children, where b is the maximum fan-out dictated by the
block size. In a weight-balanced B-tree, constraints are im-
posed on the weight of each node rather than its fan-out. The
weight of a node u, denoted w(u), is defined to be the num-
ber of leaf entries stored in the subtree rooted at u. Given a
branching parameter a and a leaf parameter k, we require
the following: (1) All leaves are at the same depth. (2) A
node at level i (assuming that leaves are at level 0) has weight
less than 2aik. (3) A node at level i (except for the root) has
weight greater than aik−2ai−1k. (4) The root has more than
one child. These properties are slightly different from those
in [3]; the changes are intended to make the weight-balanced
B-tree more efficient for our purpose.

Lemma 4.1 1 The number of children of a non-root internal
node in a weight-balanced B-tree is between b a

2 c and 2a +

3 + d 8
a−2e. 2

Let b be the maximum internal fan-out dictated by the
block size. By Lemma 4.1, for the weight constraints to be
consistent with the maximum fan-out requirement, we may
choose a to be the maximum value that satisfies 2a + 3 +
d 8

a−2e ≤ b, or equivalently a = b/2− 2 (assuming a ≥ 10).
Accordingly, the minimum fan-out is b a

2 c = b/4 − 1, which
is lower than the requirement imposed by a regular B-tree,
but is still Θ(b). We choose k such that 2k − 1 is the maxi-
mum number of leaf entries that can be stored in a block.

If a node u at level i violates its weight constraint be-
cause w(u) = 2aik, we split it into two nodes u1 and u2

with roughly equal weights. More precisely, u1 gets the left-
most m children of u, and u2 gets the rest of the children of
u, where m is the largest value for which w(u1) ≤ aik.

Next, we show that a node u will not be split again un-
til there are Ω(w(u)) new leaf entries inserted below u. This
low rate of splits is crucial for the W-BOX to achieve its low
amortized update cost. As we will see later, splitting u in the
worst case causes all leaves below u’s parent to be rewritten,
which involves O(w(u)) I/Os. The low rate of splits implies
that the amortized cost of splitting u will be only O(1); there-
fore, overall, the amortized update cost will still be bounded
by the height of the tree.

Lemma 4.2 After a split of node u on level i into two nodes
u1 and u2, more than aik − 2ai−1k insertions have to pass
through u1 (or u2) to make u1 (or u2) split again. After a new
root is created in a tree containing N records, at least (a −
1)N insertions have to be done before the root is split again.
2

1 Because of space constraint, we omit the proof for this lemma as well
as other proofs in this paper; they can be found in the full version of
this paper [17].
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Data structure W-BOX, as its name implies, is a
weight-balanced B-tree of W-BOX records with label val-
ues as search keys. A W-BOX leaf contains an ordered
list of W-BOX records, each of which stores the value
and the LID of a label. A non-leaf W-BOX node con-
tains a list of child pointers separated by search key (la-
bel) values; each child pointer is associated with a weight

field that stores the weight of the child. Figure 3 illus-
trate these two types of W-BOX nodes.

Conceptually, each node of the W-BOX is associated with
a range of permissible values for labels stored in the subtree
rooted at this node. Assuming M is the maximum integer that
can be used for all labels, the root of the W-BOX is associ-
ated with the full range [0, M ]. This range is then subdivided
into b subranges of equal length. Each child of the root is as-
signed one of these subranges. We ensure the ordering among
children is consistent with the ordering of their assigned sub-
ranges; however, it is acceptable to skip some subranges if the
number of children is less than b. This process is carried on re-
cursively down the tree. We require the range associated with
a leaf to have length of at least 2k−1. We maintain the invari-
ant that all labels stored below a node u are within the range
associated with u.

W-BOX inherits the space complexity of the weight-
balanced B-tree. Since each individual field in a W-BOX
node requires O(log N) bits, both the maximum fan-out (b)
and the minimum fan-out (b/4 − 1) are Θ(B). Therefore,
the W-BOX takes O(N/B) total space and has a height of
O(logB N). The number of bits required for a label is deter-
mined by the size of the full range [0, M ], which is bounded
roughly by bh, where h is the height of the W-BOX. There-
fore, the number of bits is roughly log bh = h log b =
O(logB N · log B) = O(log N). In fact, we show be-
low that log N + 1 + dlog(2 + 4/a) · loga(N/k) + log be
bits are enough for a label in the W-BOX. For example, if
we use 32-bit integers as labels, assuming a = k = 64,
then the W-BOX can support at least 2.58 millon la-
bels.

Lemma 4.3 The height of a weight-balanced B-tree with N
records is at most 1 + dloga

N
k e. 2

Theorem 4.4 A W-BOX takes O(N/B) space, and a W-BOX
label takes no more than log N + 1 + dlog(2 + 4/a) ·
loga(N/k) + log be bits, where log(2 + 4/a) < 1.3 assum-
ing a ≥ 10. 2

Lookup The lookup operation of W-BOX, which returns
the label of a given LID, is very straightforward. Following
the pointer in the LIDF record identified by the given LID,
we retrieve the W-BOX leaf u containing the W-BOX record
we need. We then scan u looking for the W-BOX record with
matching LID, and return the corresponding label value.

Theorem 4.5 Given a LIDF record, the cost of retrieving the
label from a W-BOX is one I/O. 2

Insert and delete To process insert-before(lid new ,
lidold ), we start with the W-BOX leaf u pointed to by the
LIDF record identified by lid old . We create a new W-BOX
record for lidnew right before the W-BOX record identified
by lidold , and we record the address of u in the new LIDF
record for lidnew . To reflect the effect of this new inser-
tion on node weights, we increment the weight fields for all
child pointers that directly or indirectly point to u. These child
pointers can be found by performing a regular B-tree lookup
for any label stored on u. If no weight constraint is violated,
then there must be some unused label value in the range as-
sociated with u, which allows us to assign a label to the new
record (possibly requiring some existing records in u to be re-
labeled).

However, if the weight constraint is violated at some
nodes, we must split them to enforce the constraint. We now
discuss the steps involved in splitting a node u. Let parent(u)
denote u’s parent. If u is the root, a new root is created as u’s
parent, and the height of the W-BOX grows by one. The new
root extends u’s range by a factor of b, and u’s range becomes
its first subrange.

• First, we check the two subranges within parent(u) adja-
cent to the subrange associated with u. If either one is cur-
rently unassigned, we create a new sibling of u called v
and assign it the unused range. We then relocate some en-
tries in u to v such that v’s weight is roughly one half of
the original weight of u. Those entries that remain in u re-
quire no further processing. However, the relocated entries
must be further processed. If the entries are leaf records,
we relabel them with values within v’s assigned range, and
update their corresponding LIDF records to point to v. If
these entries point to W-BOX subtrees, we subdivide v’s
range and assign them to these subtrees. This process pro-
ceeds recursively down the tree to the leaves, where the
records in each leaf are relabeled with values within the
leaf’s assigned range.

• In the worst case, both subranges adjacent to u’s are un-
available. Then, to make space for v, we reassign all chil-
dren of parent(u) with equally spaced subranges, and re-
label all records in the subtree rooted at parent(u). We
note here that by the properties of the W-BOX, parent(u)
is guaranteed to able to accommodate v as an additional
child (see the full version [17] for a detailed explanation).

Recall that the weight-balanced B-tree has the following
property: As long as we can split a node u using O(w(u))
I/Os, the amortized update cost of the weight-balanced B-
tree will be O(logB N). In the worst case described above,



relabeling the entire subtree rooted at parent(u) requires
O(w(parent(u))/b) = O(w(u) · b/b) = O(w(u)) I/Os, ex-
actly as needed to establish the O(logB N) bound.

We use the global rebuilding technique to handle dele-
tions. To process delete(lid ), we retrieve the W-BOX leaf
u pointed to by the LIDF record identified by lid , and sim-
ply mark its W-BOX record as “deleted.” We do not decre-
ment the weight fields of any nodes. When a future inser-
tion comes to a leaf, we first check if the leaf has any exist-
ing “deleted” W-BOX records. If so, one such record is re-
claimed to make room for the new label (we might also need
to relabel other labels in this leaf), again not changing any of
the weight fields (hence no splitting). If the leaf has no ex-
isting “deleted” W-BOX records, we handle the insertion in
the normal way as described previously. After we have col-
lected N/2 deletions, we rebuild the whole structure. As will
be shown, bulk loading the W-BOX takes O(N/B) I/Os, so
the amortized cost of a deletion is O(1).

Theorem 4.6 The amortized cost to insert and delete a label
in a W-BOX is O(logB N) and O(1), respectively. 2

Note here that had we used a regular B-tree instead of a
weight-balanced one, we would have been unable to provide
the same low amortized update bounds. In general, a regular
B-tree node u at level i can split every db/2ei+1 insertions.
On the other hand, there can be close to to bi+1 leaves below
u’s parent, yielding an amortized cost of 2i+1 I/Os per inser-
tion, which is exponential in i. In contrast, since a weight-
balanced B-tree imposes constraints on weights, the number
of leaves below a node cannot vary by more than a constant
factor, allowing us to bound the amortized relabeling cost to
a constant.

For any algorithm designed to maintain ordered lists that
has a logarithmic update cost, there is a well known tech-
nique [9] that can bring the update cost down to O(1), while
preserving the asymptotic storage and lookup cost. This tech-
nique can also be applied to W-BOX, though we do not rec-
ommend doing so for reasons we discuss in [17].

Bulk loading and subtree insert/delete Bulk loading
a W-BOX from an XML document is extremely efficient be-
cause it requires no sorting. Simply scanning the document in
order would produce all W-BOX records in exactly their in-
tended order. Thus, with a single scan of the document, we
can construct the LIDF and all W-BOX leaves in parallel. As
each W-BOX leaf becomes full, we insert it into the W-BOX.
When an internal node becomes full, instead of splitting it,
we simply allocate an initially empty new sibling to its right;
this strategy avoids the cost of relabeling by never relocat-
ing any entries. During the construction process, we always
keep the rightmost node of each level in memory, so that in-
sertions of leaves can be performed without additional I/Os.
At the end of this process, we are left with a W-BOX whose
only underflow nodes are those on the rightmost root-to-leaf
path. We repair these underflow nodes by borrowing from or
merging them with their left siblings. Overall, bulk loading
costs O(N/B).

To insert an entire subtree of XML data with N ′ tags, we
first locate the W-BOX leaf u containing the insertion point.
For i = 0, 1, 2, . . ., we check whether vi, the ancestor node of
u at height i, has enough empty space to accommodate N ′ la-
bels, i.e., aib−w(vi) > N ′. If so, we simply rebuild the sub-
tree rooted at vi to incorporate the new labels. The rebuilding
process keeps all existing leaf entries in their original blocks,
except those in u. This technique minimizes the cost of updat-
ing the LIDF for any W-BOX record that has relocated to a
different block. In the worst case, all existing W-BOX records
may have to relabeled, so the cost is O((N + N ′)/B).

Deleting an entire subtree of XML data is similar. All N ′

labels to be deleted are clustered together in one continuous
range. After deleting O(N ′/B) leaves and modifying up to
two leaves, we look for the lowest common ancestor of these
leaves with enough remaining weight to satisfy the weight
constraint. We then rebuild the subtree rooted at this common
ancestor, again trying to avoid relocating leaf entries. In the
worst case, however, all existing W-BOX records may have
to be relabeled, so the cost is O(N/B). This bound also cov-
ers the cost of deleting LIDF records of deleted labels from
the LIDF, which is of size O(N/B).

Ordinal labeling support In order to support ordinal la-
beling, each non-leaf node entry needs to keep track of the
total number of W-BOX records found within the subtree
rooted at this entry. The weight fields almost fulfill this pur-
pose, except that they also count records marked as “deleted”
since we use the global rebuilding technique to handle dele-
tions. Therefore, for a W-BOX with deletion support, we need
to augment each non-leaf node entry with a size field that
records the number of valid records found below the entry.
This additional field does not alter the asymptotic space com-
plexity of the W-BOX.

To retrieve an ordinal label given a lid , we first call
lookup(lid ) to find the regular label. We then perform a reg-
ular B-tree lookup using the regular label. We use a running
counter initialized to 0. For each non-leaf node visited in this
top-down traversal, we add to the counter all size fields lo-
cated to the left of the child pointer leading to lid . Finally,
in the leaf containing lid , we add to the counter the number
of W-BOX records located to the left of lid . The value of the
counter at the end of the traversal is the ordinal label. There-
fore, the cost of looking up an ordinal label is dominated by
that of the regular B-tree lookup, which is O(logB N). For
example, in Figure 3, the ordinal label for the non-ordinal la-
bel 28 is 20 + 0 + 2 = 22, assuming that the size fields in
this case happen to be equal to the weight fields.

To insert (or delete) a single W-BOX record, the size

fields of all non-leaf node entries that lead to the inserted (or
deleted) record need be incremented (or decremented) by 1.
In the case of split, appropriate size fields must be updated
too (details are straightforward and omitted). The I/O com-
plexity of insertion is unaffected, but the amortized cost of
deletion becomes O(logB N), dominated by the cost of up-
dating size fields. Bulk loading and subtree insert/delete op-
erations can be modified in a straightforward manner to main-
tain the size fields. The extra cost does not affect the com-



plexity of these operations.

Further optimization for start/end pairs The basic
W-BOX stores an element’s start and end labels in two dif-
ferent W-BOX records, possibly located on different leaves,
which require two separate I/Os to retrieve. However, requests
for both start and end labels of an element occur quite fre-
quently in query processing. We propose a variant of W-BOX,
called W-BOX-O, that is optimized for retrieving start/end la-
bels in pairs. The tree structure of W-BOX-O is identical to
that of the basic W-BOX. Their difference lies in the format
of leaf entries. In W-BOX-O, each start record maintains a
pointer to the block containing its corresponding end record,
and vice versa. Furthermore, the start record also keeps a lo-
cal copy of the value of the end label. Thus, both start and
end labels are obtained from the start record, without an ex-
tra I/O for the end record.

While W-BOX-O improves the lookup performance, we
have to pay the price of maintaining extra information in the
leaf entries. Maintenance is required in two cases. In the first
case, when a leaf splits, half of its entries move to a new block.
As a result, pointers storing these entries’ block addresses be-
come invalid and need to be updated (through the pointers
in the reverse direction). These updates require O(B) I/Os.
Since this leaf cannot split again until it receives at least Ω(B)
insertions, the amortized cost for updating these pointers is
O(1). In the second case, when a non-leaf node splits, a con-
tinuous range R of labels need to relabeled. The cost of re-
labeling is O(logB N) I/Os amortized, as discussed before.
What remains to be bound is the cost of updating the lo-
cal copies of end labels stored by those start records outside
R (start records inside R are updated as part of the relabel-
ing process). At the first glance, this cost can be huge—up
to the total number of labels in R. Fortunately, the hierarchi-
cal nature of XML plays into our hands. Consider the start
records that need to be updated, i.e., those start records out-
side R that are linked to the end records inside R: Elements
with these tags must form a segment of a path in the element
tree, because these elements all contain the left endpoint of
R. Hence, the number of such elements is bounded by D,
the depth of the XML tree. Therefore, regardless of the num-
ber of records in R, the overall amortized cost of insertion
into the W-BOX-O is O(D + logB N).

Theorem 4.7 The amortized cost of inserting a label into the
W-BOX-O is O(D + logB N), where D is the depth of the
XML document tree. The amortized cost of deleting an entry
is O(1). 2

5. B-BOX

The design of B-BOX is motivated by the observation that
updating labels is costly. Therefore, instead of physically stor-
ing the actual labels, we ensure that they can be reconstructed
efficiently from the data structure whenever needed. Thus, B-
BOX goes even further than W-BOX in trading read perfor-
mance for faster updates. With the techniques to be described
in Section 6 for enhancing read performance, we believe it is
reasonable to make this tradeoff.

lid lid lid lid lid lid lid lid lid

Back-link

B-BOX records

· · · · · ·

· · · · · ·

Root

· · · · · · · · · · · ·

x

· · · · · ·

Optional size fields: 4 4 5 5

171820Optional size fields:

Figure 4. An example B-BOX.

Data structure B-BOX, as its name implies, is similar in
structure to a regular B-tree constructed on the labels with
normal balancing properties. Unlike B-tree, however, B-BOX
do not keep any search key values in its nodes. A B-BOX leaf
contains an ordered list of B-BOX records, each storing the
LID for the label. A non-leaf B-BOX node contains an or-
dered list of child pointers. Every node except the root con-
tains a back-link that points to the parent node. Figure 4 il-
lustrates the structure of a B-BOX (ignore the optional size
fields for now).

The label of a B-BOX record can be constructed by the
path from the root to the leaf containing this record. Each B-
BOX node on this path contributes to one component of the
label. A non-leaf node contributes the (0-based) ordinal po-
sition of the child pointer that points to the next node on the
path. The leaf at the end of the path contributes the (0-based)
ordinal position of the B-BOX record. For example, in Fig-
ure 4, the label of the B-BOX record x is (1, 3, 2). We will
provide the details on how to obtain a label given its LID
when discussing the lookup operation.

The multi-component labels of B-BOX somewhat resem-
bles the Dewey-order encoding proposed in [18]. However,
the crucial difference is that our labels are defined using a bal-
anced B-BOX tree rather than the XML document tree, so our
labels have a bounded length that is independent of the docu-
ment structure.

B-BOX is a more compact structure than W-BOX. Each B-
BOX leaf fits up to B − 1 B-BOX records, and each non-leaf
B-BOX node has a maximum fan-out of B − 1. With stan-
dard B-tree analysis, it is easy to see that the B-BOX takes
O(N/B) total space and has a height of O(logB N). B-BOX
labels are also very compact. Because each component of a la-
bel takes at most log B bits and the number of components is
equal to the height of the tree, the total number of bits in a la-
bel is O(log N). In fact, we show below that a B-BOX label
never takes more than log N + 1 + b log N−1

log B−1 c bits.

Theorem 5.1 A B-BOX takes O(N/B) space, and each la-
bel takes no more than log N + 1 + b log N−1

log B−1 c bits. 2

Lookup The lookup operation, which returns the label for
a given LID, cannot be performed in a top-down fashion as
a regular B-tree, because there are no search key values in
B-BOX nodes to guide the search. Even if there were, we
would not know what key to search for—it is precisely what
we are looking for in the first place. Instead, lookup(lid )
proceeds bottom-up, starting from the leaf u containing the
B-BOX record in question, which is obtained by following



the pointer in the LIDF record. We scan u looking for the B-
BOX record containing lid ; the ordinal position of this record
within u gives us the last component of the label. Next, we
follow the back-link to the parent of u. We then scan the par-
ent looking for the entry that points to u; the ordinal posi-
tion of this entry within the parent gives us the second-to-last
component of the label. The process continues up the tree un-
til reaches the root, where the first component of the label is
determined.

Besides the extra I/O to obtain the pointer to the B-BOX
leaf, the number of I/Os is equal to the the height of the B-
BOX. Therefore we have the following theorem.

Theorem 5.2 Given a LID, the cost of retrieving the label
from a B-BOX is O(logB N). 2

One of the most frequent operations used in XML query
processing is the comparison of two labels. This operation
can be performed in a B-BOX with potentially much fewer
I/Os, especially if the two labels being compared are close
to each other in document order. To carry out the compari-
son, we traverse the tree bottom-up in parallel starting from
the two B-BOX records being compared. We stop as soon as
their lowest common ancestor node is reached. The ordering
of the labels is determined by the ordering of the two entries
that lead to the corresponding B-BOX records.

Insert and delete Both insert-before and delete

start with the B-BOX leaf pointed to by the LIDF record.
The rest is similar to dynamic management of a regular B-
tree, but with some additional bookkeeping involving LIDF
records and back-links.

When a new B-BOX record is inserted before an existing
record, we record the address of the leaf block in the corre-
sponding new LIDF record. If the leaf overflows as a result of
this insertion, we split the leaf into two: The first half of the
B-BOX records remain on the old leaf while the rest move to
a new leaf. For each B-BOX record relocated to the new leaf,
we use its LID to access the corresponding LIDF record and
update it to point to the new leaf. Finally, a pointer to the new
leaf is added to the parent node, immediately after the pointer
to the old leaf.

If the addition of this new pointer causes the parent u to
overflow, a split of non-leaf node occurs. A sibling of u is
created, and half of the entries relocate to this new sibling.
For each relocated entry, we need to update the node that it
points to, so its back-link points to u’s new sibling. Finally, a
pointer to the new sibling node is added to u’s parent. In the
worst case, the split can propagate all the way up to the root,
causing the tree to grow.

If the deletion of a B-BOX record causes a leaf u to un-
derflow, we first attempt to borrow a record from a sibling
of u. If this attempt succeeds, in addition to relocating the
borrowed B-BOX record, we must update the corresponding
LIDF record to reflect the new block address of the borrowed
record. If u’s siblings do not have spare records, we merge a
sibling into u by moving all records in the sibling to u. Again,
corresponding LIDF records to be updated to point to u. Fi-
nally, the pointer to the sibling is removed from u’s parent. An

underflow non-leaf node is handled in a way similar to an un-
derflow leaf, with the only difference being that we update
back-links for relocated pointers (analogous to but instead of
updating LIDF records for relocated B-BOX records).

In the worst case, split and merge could occur at every
level of the tree; at each level, the cost is dominated by that
of updating B/2 back-links or LIDF records. Therefore, the
worst-case update cost of B-BOX is O(B logB N). However,
this worst-case scenario is extremely rare. Most of the time,
an update affects only the leaf, without causing any reorga-
nization across blocks or updates of LIDF records or back-
links. In fact, the amortized update cost of B-BOX over a se-
quence of insertions can be shown to be O(1): At worst, ev-
ery B/2 insertions will fill up a leaf and force it to split at a
cost of O(B) I/Os; every (B/2)2 insertions will fill up a par-
ent of a leaf, causing additional O(B) I/Os, and so on. There-
fore, the amortized cost is O(1) + O(B)× ( 1

B/2 + 1
(B/2)2 +

1
(B/2)3 + · · ·) = O(1).

It is also possible to obtain O(1) amortized update cost
over a sequence of updates containing both insertions and
deletions, but we will need to relax the minimum fan-out re-
quirement to B/4, which does not alter the asymptotic space
complexity of the B-BOX. The standard B-tree minimum fan-
out of B/2 is susceptible to frequent splits and merges caused
by repeatedly inserting an entry into a full leaf and then delet-
ing the same entry. However, with a fan-out of B/4, both split
(of an overflow node with B entries) and merge (of an under-
flow node with B/4 − 1 entries and a node with B/4 en-
tries) result in nodes with size of about B/2. Each such node
then has to gain at least B/2 or lose at least B/4 entries be-
fore it will be split or merged again. While this smaller min-
imum fan-out requirement allows us to bound the amortized
update cost for both insertions and deletions, it will result in
a taller tree and longer labels (specifically, a label will take at
most log N + 1+ b 2(log N−1)

log B−2 c bits). Therefore, the standard
minimum fan-out requirement of B/2 is still recommended
for workloads consisting of mostly insertions.

Theorem 5.3 The worst-case cost of updating a B-BOX is
O(B logB N); the amortized update cost is O(1). 2

Bulk loading and subtree insert/delete Bulk loading a
B-BOX from an XML document is very similar to bulk load-
ing a W-BOX. Again, no sorting is required. With a single
scan of the document, we construct the LIDF and all B-BOX
leaves in parallel. As each B-BOX leaf becomes full, we in-
sert it into the B-BOX. When a non-leaf node becomes full,
instead of splitting it, we simply allocate an initially empty
new sibling to its right; this strategy avoids the cost of updat-
ing the back-links by never relocating any entries. Like bulk
loading a W-BOX, we always keep the rightmost node of each
level in memory to avoid additional I/Os. In the end we are left
with a B-BOX whose only underflow nodes are those on the
rightmost root-to-leaf path. We repair these underflow nodes
by borrowing from or merging them with their left siblings;
the number of additional I/Os is no more than O(B) per level



(for updating back-links or LIDF records). Overall, bulk load-
ing costs O(N/B).

To insert an entire subtree of XML data into an existing
B-BOX T , we first use bulk loading to construct a separate
B-BOX T ′ for the data to be inserted (but instead of creat-
ing a new LIDF, we append to the same one used by T ). Sup-
pose that T ′ has h′ levels. We “rip” T from the inserting point
as follows. First, we split the leaf node u of T containing the
insertion point right at that point, into u1 and u2. Then, we
split u’s parent node into two: One node contains all pointers
up to and including the pointer to u1, and the other node con-
tains the pointer to u2 and those following it. “Ripping” con-
tinues up T for a total of h′ levels including the leaf. The re-
sult is a gap in which we can fit T ′ perfectly, thereby produc-
ing a combined B-BOX with all root-to-leaf paths having the
same length. Finally, we repair underflow nodes (on the two
sides of the gap) and overflow node (where we insert the root
of T ′). Overall, the cost is O(N ′/B + B logB(N + N ′)),
where N ′ is total number of tags in the inserted XML sub-
tree.

Conceptually, deleting a subtree of XML data simply re-
verses the steps involved in inserting it. Note that all labels to
be deleted, say, N ′ of them, are clustered together in one con-
tinuous range. We “rip” the B-BOX starting from both end-
points of the range in parallel, until the two bottom-up pro-
cesses meet at the same node. As a result, we have isolated
the labels to be deleted into a number of subtrees in the B-
BOX. We can then remove these subtrees and repair any re-
maining underflow nodes. Overall, the cost of updating the
B-BOX is O(B logB N). On the other hand, the cost of delet-
ing corresponding LIDF records can be up to O(N ′), as each
deletion may result in a random I/O if these records are scat-
tered across the LIDF. However, if the elements to be deleted
were inserted at around the same time (either with bulk load-
ing or subtree insertion), their LIDF records would be clus-
tered and the cost of deleting them would be O(N ′/B).

Ordinal labeling support In order to support ordinal la-
beling, we augment each non-leaf node entry with a size

field that keeps track of the total number of the B-BOX
records found within the subtree rooted at this entry (Fig-
ure 4). This additional field does not alter the asymptotic
space complexity of the B-BOX.

Looking up an ordinal label is similar to looking up a regu-
lar label, but uses a running counter. This counter is initialized
with the number of B-BOX records located to the left of the
B-BOX record in question on the same leaf. For each non-leaf
node visited in the bottom-up traversal, we add to the counter
all size fields located to the left of the entry that leads to the
B-BOX record in question. The value of the counter at the
end of the traversal is the ordinal label. For example, the or-
dinal label of x in Figure 4 is 2+(4+4+5)+20 = 35. The
complexity of the lookup operation remains O(logB N).

To insert (or delete) a single B-BOX record, the size

fields of all non-leaf node entries that lead to the inserted (or
deleted) record need be incremented (or decremented) by 1.
Thus, every update must go all the way to the root. In the
case of split, merge, or borrowing from sibling, appropriate

size fields must be updated too (details are straightforward
and omitted). The worst-case update cost is unaffected, but
the amortized cost becomes O(logB N), dominated by the
cost of updating size fields.

Bulk loading and subtree insert/delete operations can be
modified in a straightforward manner to maintain the size

fields. The extra cost does not affect the complexity of these
operations.

6. Reducing the Cost of Indirection

As we have already pointed out in Section 1, the level of
indirection that bridges the gap between immutable LIDs and
dynamic labels introduces an extra dereferencing cost. Both
W-BOX and B-BOX further trade off lookup performance for
update performance. These additional costs come in the form
of random I/Os, which neutralize the benefit of using order-
based labeling in query processing, thereby making this ap-
proach unsuitable for a read-heavy workload. In this section,
we address this issue using a combination of caching and
logging techniques. We begin our discussion with the basic
caching approach, and then show how logging can be com-
bined to increase its effectiveness.

Basic caching approach Instead of using just LIDs to re-
fer to dynamic labels indirectly, we augment each reference
with the cached value of the label as well as a last-cached
timestamp indicating when the cached value was obtained.
The system also maintains a last-modified timestamp for
each XML document being labeled, which tracks the time of
the last modification made to the document that changed any
existing labels. We assume that the last-modified times-
tamp is kept in main memory most of the time.

Given an augmented reference, a lookup operation first
compares the last-cached timestamp stored in the refer-
ence with the last-modified timestamp associated with
the document. If last-modified precedes last-cached,
the cached label value in the reference is valid and is im-
mediately returned without incurring any additional I/O. If
last-modified is more recent than last-cached, the
lookup operation starts with the LID and performs the nor-
mal steps as described in Sections 4 and 5. Then, it replaces
the cached value with the label it obtained, and updates the
last-cached timestamp. Here, the lookup operation pays
the full cost of W-BOX or B-BOX lookup, but this cost, as
we have shown in previous sections, is bounded and reason-
ably small.

For workloads with few updates, this basic caching ap-
proach works predictably well. Its lookup performance is
practically as efficient as an immutable labeling scheme,
while avoiding the problems of an immutable labeling
scheme when updates do occur. On the other hand, a sin-
gle last-modified timestamp may be insufficient to
mitigate the effect of a steady update stream on read perfor-
mance; we discuss a more effective approach next.

Caching and logging approach Instead of a sin-
gle last-modified timestamp, we log the last k modifica-
tions to the document. Each log entry contains the timestamp



of the modification and a description of its effect on exist-
ing labels. For efficiency, the log should be kept in main
memory and maintained as FIFO queue: when a new en-
try is logged the oldest entry is dropped.

This approach works because, fortunately, for our data
structures, effects of modifications can be described suc-
cinctly and applied to an existing label without any additional
information. For example, consider an ordinal labeling: The
effect of inserting an element before an existing element with
start label 142857 is that all existing labels greater than or
equal to 142857 are incremented by 2. This effect can thus
be logged as a range update [142857,∞) : +2. The full de-
scription of logging techniques, which is more complicated
for non-ordinal labeling, is provided in the full version [17].

A lookup operation starts by comparing the last-cached
with the earliest modification timestamp logged. If
last-cached is earlier, the cached label is unusable
and the full cost of lookup must be paid. Otherwise, we “re-
play” the effects of all modifications with timestamps later
than last-cached on the cached label and return the re-
sult without additional I/Os. Finally, we replace the cached
label with this result and update last-cached.

A log with k entries gives roughly a k-fold boost in the ef-
fectiveness of caching because it takes k subsequent modifi-
cations instead of one to make cached labels unusable. On the
other hand, a larger k also increases memory requirements
and computational overhead.

7. Experiments

Our experiments evaluate the naive relabeling scheme (in-
troduced in Section 1), W-BOX, B-BOX, and their variants
on their I/O performance. We have implemented all algo-
rithms in C++. W-BOX, B-BOX, and their variants are imple-
mented using TPIE [2], a library that provides support for im-
plementing and evaluating I/O-efficient algorithms and data
structures. For all experiments, the block size is set to 8KB.
Performance is measured by the number of I/Os. We present
results obtained with main-memory caching turned off. Turn-
ing off caching exposes the full costs of I/O and makes the re-
sults easier to interpret. In practice, and as we have observed
in experiments with caching turned on, our structures perform
better with caching, especially because the root tends to be
cached at all times.

Our experiments compare the following dynamic labeling
schemes: W-BOX, W-BOX-O (the variant of W-BOX opti-
mized for reading start/end labels in pairs), B-BOX, B-BOX-
O (the variant of B-BOX with ordinal labeling support), and
naive-k (the naive relabeling scheme with k bits of extra stor-
age per label). All schemes use the LIDF described in Sec-
tion 3 to map immutable LIDs to dynamic labels. For BOXes,
LIDF records point to index leaves containing BOX records.
For naive-k, each LIDF record directly stores the label value
and the length of the gap between this and the previous la-
bel value. Our implementation of naive-k requires sorting the
LIDF for relabeling. We assume that there is enough mem-
ory devoted to naive relabeling such that sorting can be done

entirely in memory without extra I/O passes; this assumption
produces a lower bound on the cost of naive-k to compare
with our BOXes. We will see shortly that, even with this un-
fair advantage, naive-k is still inferior to our BOXes in most
experiments.

Concentrated insertion sequence We start with a two-
level XML document with 2, 000, 000 elements and bulk load
our data structures. Then, we insert a two-level XML subtree
with 500, 000 elements, one element at a time, into the base
document. Specifically, we insert the root element of the sub-
tree first, as a child of the root of the base document. Then,
we insert the first and the last children of the subtree root, fol-
lowed by the second and the second-to-last, then the third and
the third-to-last, and so on. In effect, each subsequent pair of
insertions are “squeezed” into the center of a growing list of
siblings. This insertion sequence behaves in a similar way as
the adversary described in connection with the naive labeling
scheme in Section 1, and it also creates the (near) worst case
for many other labeling schemes, such as ORDPATH [15]. We
have specifically designed this insertion sequence to stress-
test our dynamic labeling schemes.

Figure 5 shows the average cost of element insertion
(which involves inserting two labels) for various dynamic la-
beling scheme over the entire insertion sequence. Basic B-
BOX, with its compact structure and the advantage of not
having to materialize actual labels, has the best performance,
confirming the amortized O(1) bound predicted by our anal-
ysis. B-BOX-O, with support for ordinal labels, incurs some
additional I/Os (up to the height of the tree) in maintaining
the size fields, but still provides excellent performance. W-
BOX suffers a little more, because the worst-case insertion se-
quence triggers frequent relabeling which is unavoidable for
any labeling scheme that materializes labels. W-BOX-O, by
further trading update performance for lookup performance,
understandably has a higher update cost. On the other hand,
all naive schemes perform extremely poorly compared with
BOXes. Even with 256 extra bits, each insertion still costs
100 I/Os. Further increasing the number of extra bits gives di-
minishing returns, because the space and manipulation over-
head of long labels quickly become significant.

Figure 6 shows, for each I/O cost, the fraction of insertions
in the sequence that incurred higher than this cost. Note that
both axes have logarithmic scale. This figure provides infor-
mation about the distribution of individual costs. The results
in this figure largely confirm our analysis and reaffirms the
effectiveness of BOXes. The “steps” in the figure do provide
some interesting insights into the operational details of the
data structure. The drop in the B-BOX curve around 1, 000
I/Os, for example, represents the fraction of insertions that
cause splits of internal B-BOX nodes.

Scattered insertion sequence The next experiment is
designed to contrast with the concentrated one. We start with
the same document of 2, 000, 000 elements and insert another
500, 000. In this case, though, the inserts are spread evenly
throughout the document. As shown in Figure 7, the naive
policies, as expected, particularly shine in this test. These
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policies bank on no gap being overwhelmed with inserts; con-
sequently, almost all inserts are done in constant time, and no
relabeling is needed. The exception is naive-1, whose gap size
is too small to accommodate even a single element. Therefore,
relabeling is triggered constantly. The BOXes handle this case
just as well. While they are designed to handle arbitrary in-
sertion sequences gracefully, they too benefit from the evenly
spread inserts.

XMark insertion sequence The next experiment is of
the same flavor as the previous two, but now uses a docu-
ment generated from the XMark benchmark with 336, 242 el-
ements. We insert elements in a way to reflect how such a doc-
ument might build up over time: Elements are added in docu-
ment order of their start tags, one by one. As an example, for
the document in Figure 1, we would first insert site (both
its start and end tags), and then regions, africa, item, an-
other item, asia, etc., in order. Note that this sequence—
inserting all elements in document order—is not the same as
inserting all labels in document order (which would behave
like bulk loading), because end labels are inserted together
with corresponding start labels without knowing subtree sizes
in advance.

Our results represent the insertions taking place after the
first 200, 000. This was done to “prime” the structures with

XMark: Average I/Os Per Insert
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an initial size. The results, shown in Figures 8 and 9, as ex-
pected, fall somewhere between the non-taxing scatter test
and the adversarial concentrate test. No policies escape with-
out doing any splits or reorganizations. The BOXes outper-
form the naive policies. The naive versions, relative to each
other, perform the same way they did in the concentrate test.

Query performance At the end of each experiment, W-
BOX and B-BOX heights were usually 3, but sometimes 2. As
with B-trees, the number of elements must rise enormously to
force the BOXes to grow in height. It is easy to see that with
such low BOX heights, the logarithmic lookup costs for reg-
ular B-BOX and its ordinal version are, in practice, quite low
(3–4 counting the indirection through LIDF, without caching
the root). W-BOX, on the other hand, always looks up a label
in two I/Os (again counting the indirection through LIDF), re-
gardless of the tree height. If start and end labels are looked
up together, W-BOX-O can do so in two I/Os total, two fewer
than W-BOX. Finally, naive-k must also incur one I/O per la-
bel lookup because of the indirection through LIDF, which is
unavoidable for any dynamic labeling scheme.

Other findings The previous experiments all insert one el-
ement at a time into the document, but the concentrate test
in fact inserts a subtree of elements. In practice, this sub-
tree, if known in advance, should be inserted using the bulk
insert methods. The element-at-a-time test costs 5, 401, 885
and 2, 000, 448 total I/Os for W-BOX and B-BOX, respec-
tively. With bulk insert methods, costs dramatically decreased
to 11, 374 and 492, respectively.

It is an interesting exercise to determine which policies
are hurt by the limit of machine word size, typically 32 bits.
Our experiments use data sizes of 2, 000, 000 elements, or
4, 000, 000 labels overall. Labels for these keys can be differ-
entiated with only 12 bits, far below machine word size. On



the other hand, the naive-k scheme requires additional k bits
to maintain its gaps. In our experiments, the naive-32 scheme
and those with even larger gap sizes all have labels that ex-
ceed machine word size. Therefore, aside from the I/O costs
shown in the experiments, the naive policies also run slower
because of inefficiencies in processing such long labels.

8. Conclusion

We have presented W-BOX and B-BOX, two novel struc-
tures for maintaining order-based labeling of XML elements.
Most existing schemes fall prey to adversarial conditions that
result in long labels or frequent expensive relabeling. Our
structures temper the effects of any possible update pattern
by trading off the costs of update and lookup, while provid-
ing good bounds for both. By basing the BOX schemes on for-
mal, balanced tree structures, we are able to achieve provably
good performance. Our experiments show that the BOXes
indeed process updates, and especially adversarial updates,
more efficiently than a naive gap-maintaining scheme. Cur-
rently, we are working on further improving the effectiveness
of the caching and logging approach in Section 6, by using an
efficient data structure for storing the log.
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