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ABSTRACT
The existing solutions to privacy preserving publication can be
classified into the theoretical and heuristic categories. The for-
mer guarantees provably low information loss, whereas the latter
incurs gigantic loss in the worst case, but is shown empirically to
perform well on many real inputs. While numerous heuristic algo-
rithms have been developed to satisfy advanced privacy principles
such as l-diversity, t-closeness, etc., the theoretical category is cur-
rently limited to k-anonymity which is the earliest principle known
to have severe vulnerability to privacy attacks. Motivated by this,
we present the first theoretical study on l-diversity, a popular prin-
ciple that is widely adopted in the literature. First, we show that
optimal l-diverse generalization is NP-hard even when there are
only 3 distinct sensitive values in the microdata. Then, an (l · d)-
approximation algorithm is developed, where d is the dimension-
ality of the underlying dataset. This is the first known algorithm
with a non-trivial bound on information loss. Extensive experi-
ments with real datasets validate the effectiveness and efficiency of
proposed solution.

1. INTRODUCTION
Privacy preserving publication has become an active topic in

databases. An important problem is the prevention of linking at-
tacks [38,43]. To explain this threat, assume that a hospital releases
the patients’ details in Table 1, called the microdata, to medical re-
searchers. Disease is a sensitive attribute (SA) because a patient’s
disease is regarded as her/his privacy. Attribute Name is not part
of the table, but it will be used to facilitate tuple referencing. Con-
sider an adversary that knows (i) the age (< 30), gender (M) and
education level (bachelor) of Calvin, and (ii) Calvin has a record in
the microdata. Thus, s/he easily finds out that Tuple 3 is Calvin’s
record and hence, Calvin contracted pneumonia.

In the above attack, columns Age, Gender, and Education are
quasi-identifier (QI) attributes because they can be combined to re-
veal an individual’s identity. The cause of privacy leakage is that
an individual (e.g., Calvin) may have a unique set of QI values. A
common approach for fixing this problem is generalization, which
partitions the microdata into QI-groups, and then, converts the QI
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Tuple ID (Name) Age Gender Education Disease 
1 (Adam) < 30 M Master HIV 
2 (Bob) < 30 M Master HIV 

3 (Calvin) < 30 M Bachelor pneumonia 
4 (Danny)   [30, 50) M Bachelor bronchitis 

5 (Eva) [30, 50) F Bachelor pneumonia 
6 (Fiona) [30, 50) F Bachelor bronchitis 
7 (Ginny) [30, 50) F Bachelor bronchitis 
8 (Helen) [30, 50) F Bachelor pneumonia 

9 (Ivy) ≥ 50 F High Sch. dyspepsia 
10 (Jane) ≥ 50 F High Sch. pneumonia 

 
Table 1: The microdata

T-ID (Name) Age Gender Education Disease 
1 (Adam) < 30 M Master HIV 
2 (Bob) < 30 M Master HIV 

3 (Calvin) * M Bachelor pneumonia 
4 (Danny)  * M Bachelor bronchitis 

5 (Eva) [30, 50) F Bachelor pneumonia 
6 (Fiona) [30, 50) F Bachelor bronchitis 
7 (Ginny) [30, 50) F Bachelor bronchitis 
8 (Helen) [30, 50) F Bachelor pneumonia 

9 (Ivy) ≥ 50 F High Sch. dyspepsia 
10 (Jane) ≥ 50 F High Sch. pneumonia 

 

QI-group 1  

QI-group 2  

QI-group 3  

QI-group 4  

Table 2: 2-anonymous publication

values in each group to the same form, e.g., replaces distinct val-
ues on each QI attribute with stars. For example, Table 2 shows a
generalization of Table 1, based on a partition of four QI-groups.
Notice that, in the second QI-group, the ages of Tuples 3 and 4 have
been suppressed into stars, since their original values are different.

A generalized table can be released if it satisfies an anonymiza-
tion principle, which determines the quality of privacy protection.
The earliest principle is k-anonymity [38, 43], which requires each
QI-group to contain at least k tuples. As a result, each tuple car-
ries the same QI values as at least k − 1 other tuples. For instance,
Table 2 is 2-anonymous. Given this table, the adversary mentioned
earlier cannot tell whether Tuple 3 or 4 belongs to Calvin.

Machanavajjhala et al. [31] observe that k-anonymity suffers
from the homogeneity problem: a QI-group may have too many
tuples with the same SA (sensitive attribute) value. For example,
both tuples in the first QI-group of Table 2 have HIV. As a result,
an adversary having the QI particulars of Adam (or Bob) can as-
sert that Adam (Bob) has HIV, without having to identify the tuple
owned by Adam (Bob). Note that the problem cannot be eliminated
by increasing k, because k-anonymity places no constraint on the
SA values in each QI-group.

The above problem has led to the development of numerous SA-
aware principles, which set forth conditions to be fulfilled by the
SA values in each QI-group. Among the existing principles, l-



T-ID (Name) Age Gender Education Disease 
1 (Adam) * M * HIV 
2 (Bob) * M * HIV 

3 (Calvin) * M * pneumonia 
4 (Danny)  * M * bronchitis 

5 (Eva) [30, 50) F Bachelor pneumonia 
6 (Fiona) [30, 50) F Bachelor bronchitis 
7 (Ginny) [30, 50) F Bachelor bronchitis 
8 (Helen) [30, 50) F Bachelor pneumonia 

9 (Ivy) ≥ 50 F High Sch. dyspepsia 
10 (Jane) ≥ 50 F High Sch. pneumonia 

QI-group 2  

QI-group 3  

QI-group 1  

Table 3: 2-diverse publication

diversity [31] is the most widely deployed [16, 23, 31, 46, 47, 49],
due to its simplicity and good privacy guarantee. Specifically, this
principle demands1 that, in each QI-group, at most 1/l of its tuples
can have an identical SA value. Table 3 demonstrates a 2-diverse
generalization of Table 1. It can be easily verified that, in each QI-
group, the frequency of each SA value is at most 50%. Thus, even
if an adversary figures out the QI-group containing the record of an
individual, s/he can determine the real SA value of the individual
with no more than 50% confidence.

1.1 Theory Stops at k-anonymity
The goal of privacy preserving publication is to minimize the

information loss (e.g., the number of stars used in Tables 2 and
3) in enforcing the selected anonymization principle. The existing
solution can be divided into two categories: theoretical and heuris-
tic. The former develops algorithms with worst-case performance
bounds. The latter, on the other hand, designs algorithms that work
well on many real datasets, but may have very poor performance
(i.e., incur gigantic information loss) on “unfriendly" inputs.

We notice that, in terms of privacy protection, the theoretical
category significantly lags behind its heuristic counterpart. As re-
viewed in Section 2, many heuristic algorithms exist for various
SA-aware principles that ensure strong privacy preservation. How-
ever, as surveyed next, all the theoretical results concern with only
k-anonymity, and none of them deals with SA-aware principles.
In other words, currently all the theoretical algorithms suffer from
the homogeneity problem mentioned earlier, and thus, are weak in
privacy guarantees. Note that, this drawback also reduces the prac-
tical usefulness of their nice bounds of information loss, because a
publisher puts privacy at a higher priority than utility.

In the theoretical category, Meyerson and Williams [33] are the
first to establish the complexity of optimal k-anonymity, by show-
ing that it is NP-hard to compute a k-anonymous table that con-
tains the minimum number of stars (i.e., suppressed values). They
also provide a O(k log k)-approximation algorithm. Aggarwal et
al. [5] offer a stronger NP-hardness proof that requires a smaller
domain of the QI attributes. They also improve the approxima-
tion ratio to O(k). Park and Shim [35] enhance the ratio further to
O(log k). It should be noted that, the algorithms in [33, 35] have
running time exponential in k, while the running time of the algo-
rithm in [5] is a polynomial of k and n. Du et al. [13] consider
the case when the generalized table is produced not by replacing
QI values with stars, but by applying multi-dimensional general-
ization (see Section 2). They show that enforcing k-anonymity in
this setting is still NP-hard, and give an O(d) approximation algo-
rithm, where d is the number of QI attributes. Aggarwal et al. [4]
propose clustering-based generalization, prove the NP-hardness of

1Precisely speaking, l-diversity requires each QI-group to have at
least l well-represented values. There are different interpretations
of “well-represented" [31]. The version discussed here is widely
adopted in the literature [16, 45, 47].

k-anonymity (in [4], k is replaced by r), and provide constant ap-
proximation solutions.

1.2 Our Results
This paper presents the first theoretical study on l-diverse

anonymization. In particular, we consider that the microdata is
anonymized by suppressing QI values, and we aim at achieving
l-diversity with the minimum number of stars. At first glance,
a simple reduction from k-anonymity seems to establish the NP-
hardness of l-diversity. Specifically, given a table where no two tu-
ples have the same SA value, the optimal l-diversity generalization
is also the optimal “l-anonymity" generalization. Hence, if there
was an optimal l-diverse algorithm that runs in polynomial time,
the same algorithm can efficiently solve optimal k-anonymity as
well, which contradicts the NP-hardness of optimal k-anonymity.

The previous reduction requires that the number m of distinct
SA values is as large as the cardinality n of the microdata. There-
fore, a natural question is whether optimal l-diversity can be set-
tled in polynomial time if m � n, as is true in practice. In
fact, the answer is apparently “yes" for m = 2, in which case the
problem becomes bipartite matching (see Section 4), a well-known
polynomial-time solvable problem. The first major contribution of
our work is a proof showing that l-diversity is NP-hard as long as
m ≥ 3. Clearly, this result is much stronger than the hardness re-
sult from the earlier simple reduction. In fact, our result still holds
even if the alphabet (i.e., the domain union of all attributes) has a
size of only m + 1.

On the algorithm side, we propose a solution that ensures an ap-
proximation ratio of l ·d, where d is the the number of QI attributes
in the microdata. This is the first algorithm on l-diversity with a
non-trivial bound of information loss. Furthermore, our algorithm
is also highly efficient – it runs in close-to-linear time. Although the
l · d approximation ratio may trigger concerns about the usefulness
of our technique in practice, we note that the actual performance of
our algorithm is much better than the theoretical bounds. Specif-
ically, our algorithm executes in three phases, and depending on
the dataset characteristics, may finish in any phase. Termination in
the first one results in a d-approximate solution, while termination
at the second phase incurs at most l · d additional stars (with re-
spect to the d-approximation). In any case, an (l · d)-approximate
solution is guaranteed after the third phase. On the large set of
datasets tested in our experiments, our algorithm always terminates
before the third phase, thus achieving an approximation ratio of
d. In addition, our algorithm can be further improved, when we
combine it with a heuristic-based l-diversity solution. Empirical
evaluation shows that, such a hybrid method significantly outper-
forms the existing l-diversity algorithms, in terms of the number of
stars required in anonymization.

The rest of the paper is organized as follows. Section 2 surveys
the previous work relevant to ours. Section 3 formally defines the
problem. Section 4 establishes the hardness of the problem, while
Section 5 presents our approximation algorithm and proves its qual-
ity guarantees. Section 6 experimentally evaluates the effectiveness
and efficiency of the proposed technique. Finally, Section 7 con-
cludes the paper with directions for future work.

2. RELATED WORK
The existing theoretical results on privacy preserving publication

have been explained in Section 1.1. In the following, we focus on
other approaches based on four categories.

Anonymization methodologies Most of the existing work on mi-
crodata publication adopts generalization to anonymize data. There



T-ID (Name) Age Gender Education Disease 
1 (Adam) <50 M Bachelor or above  HIV 
2 (Bob) <50 M Bachelor or above HIV 

3 (Calvin) <50 M Bachelor or above pneumonia 
4 (Danny)  <50 M Bachelor or above bronchitis 

5 (Eva) <50 F Bachelor or above pneumonia 
6 (Fiona) <50 F Bachelor or above bronchitis 
7 (Ginny) <50 F Bachelor or above bronchitis 
8 (Helen) <50 F Bachelor or above pneumonia 

9 (Ivy) ≥ 50 F High Sch. or below dyspepsia 
10 (Jane) ≥ 50 F High Sch. or below pneumonia 

 

QI-group 2  

QI-group 3  

QI-group 1  

Table 4: Single-dimensional generalization

T-ID (Name) Age Gender Education Disease 
1 (Adam) <50 M Bachelor or above  HIV 
2 (Bob) <50 M Bachelor or above HIV 

3 (Calvin) <50 M Bachelor or above pneumonia 
4 (Danny)  <50 M Bachelor or above bronchitis 

5 (Eva) [30, 50) F Bachelor pneumonia 
6 (Fiona) [30, 50) F Bachelor bronchitis 
7 (Ginny) [30, 50) F Bachelor bronchitis 
8 (Helen) [30, 50) F Bachelor pneumonia 

9 (Ivy) ≥ 50 F High Sch. dyspepsia 
10 (Jane) ≥ 50 F High Sch. pneumonia 

 

QI-group 2  

QI-group 3  

QI-group 1  

Table 5: Multi-dimensional generalization

exist three variations of generalization, namely, suppression [1],
single-dimensional generalization [7, 15, 20, 46, 51], and multi-
dimensional generalization [16, 27, 28]. Suppression replaces dis-
tinct QI values in each QI-group with stars, as demonstrated in Sec-
tion 1. Single-dimensional generalization, on the other hand, di-
vides the domain of each QI attribute into disjoint sub-domains, and
maps each QI value in the microdata to the sub-domain that con-
tains the value, i.e, it “coarsens” the domains of the QI attributes.
For example, Table 4 illustrates a single-dimensional generaliza-
tion of Table 1 that satisfies 2-diversity. In particular, the domain
of Age (Education) is divided into two sub-domains, “<50” and
“≥50” (“High school or below” and “Bachelor or above”). Multi-
dimensional generalization is an extension of single-dimensional
generalization: it allows QI values to be mapped to overlapping
sub-domains. For instance, Table 5 shows a 2-diverse multi-
dimensional generalization of Table 1.

As multi-dimensional generalization imposes fewer constrains
on how the QI values should be transformed, it can retain more
information in the anonymized tables than suppression and single-
dimensional generalization. For example, it can be verified that
each QI value in Table 5 is equally or more accurate than the corre-
sponding value in Table 3 or 4. However, suppression and single-
dimensional generalization have a significant advantage over multi-
dimensional generalization: the anonymized data they produce that
can be directly used by off-the-shelf softwares (e.g., SAS [39],
SPSS [40], Stata [41]) designed for microdata analysis. Specifi-
cally, tables with suppressed values can be processed as microdata
with missing entries. On the other hand, any single-dimensional
generalization can be treated as a microdata table defined over at-
tributes with coarsened domains, i.e., all analysis on the data are
performed by regarding each sub-domain of a QI attribute as a unit
value.

In contrast, multi-dimensional generalization results in data that
cannot be handled by existing softwares, due to the complex
relationships among QI values represented by overlapping sub-
domains. To understand this, consider that a user wants to count
the number of individuals in Table 5 with ages in [30, 50). In that
case, the user has to take into account not only the tuples with an
Age value [30, 50), but also those with a value “<50”, which is
non-trivial since it is difficult to decide how those tuples may con-
tribute to the query result. In general, performing analysis (e.g.,

regression, classification) on overlapping sub-domains is highly
complicated, and hence, is not supported by off-the-shelf statisti-
cal softwares. This explains why existing anonymization systems,
like μ-Argus [18] and Datafly [42], adopt suppression and single-
dimensional generalization instead of multi-dimensional general-
ization.

In summary, suppression and single-dimensional generalization
are more preferable, if the data publisher aims to release data that
can be easily used by ordinary users; otherwise, multi-dimensional
generalization can be adopted. An interesting question is, how
does suppression compare with single-dimensional generalization?
To answer this question, in Section 6.2, we will experimentally
evaluate our suppression algorithms against the existing single-
dimensional generalization methods.

Besides generalization, there also exists other methodologies for
privacy preserving data publication. Kifer and Gehrke [23] pro-
pose marginal publication, which releases different projections of
the microdata onto various sets of attributes. Xiao and Tao [47]
advocate anatomy that publishes QI and SA values directly in sep-
arate tables. Aggarwal and Yu [3] design the condensation method,
which releases only selected statistics about each QI-group. Ras-
togi et al. [36] employ the perturbation approach.

Anonymization principles Privacy protection must take into ac-
count the knowledge of adversaries. A common assumption is that
an adversary has the precise QI values of all individuals in the mi-
crodata. Indeed, these values can be obtained, for example, by
knowing a person or consulting an external source such as a voter
registration list [43].

Under this assumption, both k-anonymity and l-diversity aim at
preventing the accurate inference of individuals’ SA values. Many
other principles share this objective. (α, k)-anonymity [46] com-
bines the previous two principles: each QI-group must have size k
and at most α percent of its tuples can have the same SA value.
m-invariance [49] is a stricter version of l-diversity, by dictat-
ing each group to have exactly m tuples with different SA values.
The personalized approach [48] allows each individual to specify
her/his own degree of privacy preservation. The above principles
deal with categorical SAs, whereas (k, e)-anonymity [52] and t-
closeness [29] support numerical ones. (k, e)-anonymity demands
that each QI-group should have size at least k, and the largest and
smallest SA values in a group must differ by at least e. t-closeness
requires that the SA-distribution in each QI-group should not devi-
ate from that of the whole microdata by more than t.

δ-presence [34] assumes the same background knowledge as the
earlier principles, but ensures a different type of privacy. It prevents
an adversary from knowing whether an individual has a record
in the microdata. (c, k)-safety [32] tackles stronger background
knowledge. In addition to individuals’ QI values, an adversary may
have several pieces of implicational knowledge: “if person o1 has
sensitive value v1, then another person o2 has sensitive value v2".
(c, k)-safety guarantees that, if an adversary has at most k pieces of
such knowledge, s/he will not be able to infer any individual’s SA
value with a confidence higher than c. Achieving a similar purpose,
the skyline privacy [10] guards against an extra type of knowledge.
Namely, an adversary may have already known the sensitive values
of some individuals before inspecting the published contents.

Generalization algorithms Numerous heuristic algorithms have
been developed to compute generalization with small information
loss. Although with no provably good worst-case quality or com-
plexity guarantees, these algorithms are general, since they can be
applied to many of the anonymization principles reviewed earlier,
and work with both numerical and categorical domains. Specifi-



cally, a genetic algorithm is developed in [20], and the branch-and-
bound paradigm is employed on a set-enumeration tree in [7, 30].
Top-down and bottom-up algorithms are presented in [15, 51], and
the method in [26] borrows ideas from frequent item set mining.
While all the above algorithms adopt single-dimensional general-
ization, there also exist several multi-dimensional generalization
methods. In [27], an algorithm is developed based on a partition-
ing approach reminiscent of kd-trees. This algorithm is further im-
proved in [28] to optimize anonymized data for given workloads.
In [16], space filling curves are leveraged to facilitate generaliza-
tion, and the work of [19] draws an analogy between spatial index-
ing and generalization. As shown in [45], the previous algorithms
may suffer from minimality attacks, which can be avoided by intro-
ducing some randomization.

Anonymity in other contexts The earlier discussion focuses on
data publication, whereas anonymity issues arise in many other en-
vironments. Some examples include anonymized surveying [6,14],
statistical databases [9], cryptographic computing [21], access con-
trol [8], and so on.

3. PROBLEM DEFINITIONS
Let T be the raw microdata table, which has d quasi-identifier

(QI) attributes A1, ..., Ad, and a sensitive attribute (SA) B. Here, d
is the dimensionality of T , and all attributes are categorical. Given
a tuple t ∈ T , we employ t[Ai] to denote its i-th (1 ≤ i ≤ d) QI
value, and t[B] its sensitive value. Use n to represent the cardinal-
ity of T , and m to represent the number of distinct sensitive values
in T . Without loss of generality we assume that all SA values are
from the integer domain [m] = {1, . . . , m}.

As in most pervious work on theoretical generalization algo-
rithms, we assume that T is anonymized with suppression, which
can be formally defined based on the concept of partition. Specifi-
cally, a partition P of T includes disjoint subsets of T whose union
equals T . We refer to each subset as a QI-group. P determines an
anonymization T ∗ of T , where all tuples in the same QI-group
carry the same QI values, as shown next.

DEFINITION 1 (GENERALIZATION). A partition P of T de-
fines a generalization T ∗ of T as follows. For each QI-group in P ,
if all the tuples in the group have the same value on Ai (i ∈ [1, d]),
then they keep this value in T ∗; otherwise, their Ai values are re-
placed with ‘*’. All tuples in T retain their SA values in T ∗.

For example, Table 2 (or 3) is a generalization of Table 1 de-
termined by a partition with 4 (3) QI-groups. As long as one QI
value of a tuple is changed to a star, we say that this tuple has been
suppressed.

DEFINITION 2 (l-DIVERSITY). Given an integer l, a set S of
tuples is l-eligible if at most |S|/l of the tuples have an identical
SA value. A generalization T ∗ is l-diverse if each QI-group is l-
eligible.

We are ready to define the problem of optimal l-diverse general-
ization.

PROBLEM 1 (STAR MINIMIZATION). Given a microdata ta-
ble T and an integer l, find an optimal l-diverse generalization of
T that has the smallest number of stars.

Note that there may be multiple optimal solutions with the same
number of stars. An important property of l-diversity is monotonic-
ity:

LEMMA 1 ( [31]). Let S1 and S2 be two disjoint sets of tu-
ples. If both of them are l-eligible, then so is S1 ∪ S2.

As an immediate corollary, Problem 1 has a solution if and only
if T itself is l-eligible, i.e., at most |T |/l tuples of T carry the same
sensitive value. In the following, we focus on only such microdata
tables. It follows that m ≥ l, where m is the number of distinct
sensitive values in T , as mentioned before.

A close companion of star minimization (Problem 1) is tuple
minimization:

PROBLEM 2 (TUPLE MINIMIZATION). Given a microdata
table T and an integer l, find an optimal l-diverse generalization
of T ∗ that suppresses the least number of tuples.

For instance, in Table 3, the amount of information loss is 8
(stars) in Problem 1, but 4 (tuples) in Problem 2. Tuple minimiza-
tion is different from star minimization because suppressing vari-
ous tuples may require different numbers of stars. The following
result builds a connection between the two problems.

LEMMA 2. A λ-approximate solution to Problem 2 is a λ · d-
approximate solution to Problem 1.

PROOF. Let T ∗
1 and T ∗

2 be optimal solutions to Problems 1 and
2, respectively, and let T ∗

3 be a λ-approximate solution to Prob-
lem 2. Use α1 and β1 to denote the number of stars and the num-
ber of tuples suppressed in T ∗

1 , respectively. Define α2, β2 and
α3, β3 in the same way for T ∗

2 and T ∗
3 , respectively. Since each

suppressed tuple introduces between 1 and d stars, it holds that
βi ≤ αi ≤ d ·βi for i = 1, 2, 3. Hence, α3 ≤ d ·β3 ≤ λ ·d ·β2 ≤
λ · d · β1 ≤ λ · d · α1.

In the following sections, we will show that star minimization is
NP-hard when m ≥ 3, and then, approach this problem through
tuple minimization.

4. HARDNESS OF STAR MINIMIZATION
As discussed in Section 1.2, there exists a straightforward re-

duction from l-diversity to k-anonymity. This reduction, however,
works only when the number m of distinct sensitive values in the
microdata table T equals the number of tuples in T . It is natural to
wonder, in the more realistic scenario m � |T |, is star minimiza-
tion (Problem 1) still NP-hard?

It is easy to observe a polynomial-time algorithm for m = 2. In
this case, since l ≤ m, the value of l must be 2 (l = 1 is useless
for anonymization). Let S1 (S2) be the set of tuples having the first
(second) SA value. Thus, |S1| = |S2| = |T |/2; otherwise, T is
not 2-eligible and Problem 1 has no solution. Then, there exists an
2-diverse optimal generalization where each QI-group has 2 tuples,
since any 2-diverse QI-group of T with more than 2 tuples can be
divided into smaller 2-diverse QI-groups, without increasing the
number of stars in generalization. Finding this generalization is an
instance of bipartite matching. Specifically, we create a bipartite
graph by treating S1 and S2 as sets of vertices. Draw an edge
between each pair (t1, t2) ∈ S1 × S2. The edge has a weight
equal to the number of stars needed to generalize t1 and t2 into the
same form. No edge exists between vertices from the same set. An
optimal 2-diverse generalization corresponds to a minimum perfect
matching between S1 and S2, which can be found in O(|T |3) time
[24].

The above observation has also another implication. In [46], the
authors prove that (α, k)-anonymity (explained in Section 2) is NP-
hard. They do so by showing that (0.5, k)-anonymity is NP-hard.



p1 = (1, a, δ), p2 = (1, b, γ), p3 = (2, c, α), 
p4 = (2, b, α), p5 = (3, b, γ), p6 = (4, d, β) 

(a) The contents of S

D A1 A2 A3 A4 A5 A6 B 
1 0 0 1 1 1 1 1 
2 2 2 0 0 2 2 2 
3 3 3 3 3 0 3 3 
4 4 4 4 4 4 0 4 
a 0 5 5 5 5 5 5 
b 6 0 6 0 0 6 6 
c 7 7 0 7 7 7 7 
d 7 7 7 7 7 0 7 
α 8 8 0 0 8 8 8 
β 8 8 8 8 8 0 8 
γ 8 0 8 8 0 8 8 
δ 0 8 8 8 8 8 8 

 

from domain D1  

from domain D2 

from domain D3 

(b) The constructed table T (m = 8)

Figure 1: Illustration of reduction

Recall that (0.5, k)-anonymity is essentially the combination of k-
anonymity and 2-diversity. Intuitively, the hardness of (0.5, k)-
anonymity stems from the difficulty of k-anonymity. Indeed, the
proof in [46] no longer holds, when k-anonymity is not required.

Next, first assuming l = 3, we establish the NP-hardness of star
minimization for any m ≥ l. Later, we will extend the analysis to
any l > 3. Our derivation is based on a reduction from a classical
NP-hard problem 3-dimensional matching (3DM) [22]. Specifi-
cally, let D1, D2, D3 be three dimensions with disjoint domains,
and these domains are equally large: |D1| = |D2| = |D3| = n.
The input is a set S of d ≥ n distinct 3D points p1, ..., pd in the
space D1 × D2 × D3. The goal of 3DM is to decide the exis-
tence of an S′ ⊆ S such that |S′| = n and no two points in S′

share the same coordinate on any dimension. For example, assume
D1 = {1, 2, 3, 4}, D2 = {a, b, c, d}, and D3 = {α, β, γ, δ}, and
a set S of 6 points in Figure 1a. Then, the result of 3DM is “yes":
a solution S′ can be {p1, p3, p5, p6}.

Let v1, ..., vn be the values in D1, vn+1, ..., v2n be the values
in D2, and v2n+1, ..., v3n be the values in D3. We construct a
microdata table T from S. Specifically, T has

• a sensitive attribute B;

• d QI attributes A1, A2, ..., Ad, where Ai (1 ≤ i ≤ d) corre-
sponds to the i-th point pi in S;

• 3n rows, where the j-th (1 ≤ j ≤ 3n) row corresponds to
vj .

The rows in T are constructed as follows. Let t be the j-th (1 ≤
j ≤ 3n) row of T . We first select a positive integer u according to
the value of j (details to be clarified shortly). Then, we set the SA
value of t to u, i.e., t[B] = u. After that, for each i ∈ [1, d], we
set t[Ai] to 0 if vj is a coordinate of point pi ∈ S, or u otherwise.
Because each pi has three coordinates, the following property of T
holds.

PROPERTY 1. For any i ∈ [1, d], there exist exactly 3 rows in
T that have value 0 on Ai.

The value of u is chosen in a way that ensures another two prop-
erties of T . First, T should contain m (m ≤ 3n) distinct SA
values, namely, 1, 2, ..., m. Second, for any i, j ∈ [1, 3n], if vi and
vj belong to different domains (e.g., vi ∈ D1 and vj ∈ D2), the
i-th and j-th rows in T should have different SA values.

Specifically, we set u = j for any j ∈ [1, m−2]. When j ∈
[m−1, 3n], we differentiate three cases according to the values of
m and n:

• If m−1 > 2n, we let u = m−1 if j ∈ [m−1, 3n−1], and
u = m if j = 3n.

• If 2n ≥ m−1 > n, then u = m−1 if j ∈ [m−1, 2n], and
u = m if j ∈ [2n+1, 3n].

• If n ≥ m−1, we set (i) u = m−2 if j ∈ [m−1, n], (ii) u =
m−1 if j ∈ [n+1, 2n], and (iii) u = m if j ∈ [2n+1, 3n].

Figure 1b demonstrates the T built from the S in Figure 1a, when
m = 8. For example, let t be the 7-th row (i.e., j = 7), which
corresponds to value c ∈ D2. Since j = 7, n = 4, and m = 8, we
have 2n ≥ m−1 > n and j ∈ [m−1, 2n]. Hence, u = m−1 = 7.
t[A3] equals 0, because c is the second coordinate of p3 ∈ S. t has
7 on other QI attributes because c is not the 2nd coordinate of any
other point in S.

Let T ∗ be any 3-diverse generalization of T . We say that a QI-
group Q in T ∗ is futile if all the QI values in Q are stars (i.e., Q
retains no QI information at all). Otherwise, Q is useful. T ∗ have
several properties.

PROPERTY 2. If a QI-group Q in T ∗ is useful, then all non-star
QI values in Q must be 0.

PROOF. Consider any i ∈ [1, d], such that Q has no star on Ai

after generalization. Then, before generalization, all tuples in Q
should have the same value on Ai. Let this value be x. By the way
T is constructed, if x �= 0, all tuples in Q should have an SA value
x, which contradicts the assumption that Q is 3-eligible. Therefore,
x = 0 holds.

PROPERTY 3. Any useful QI-group Q in T ∗ contains (i) exactly
three tuples, (ii) 3(d − 1) stars, and (iii) 3 zeros.

PROOF. Let h be the number of tuples in Q. Since Q is useful,
there exists i ∈ [1, d], such that all tuples in Q have value 0 on Ai

(see Property 2). By Property 1, there exist only three tuples in T
that have value 0 on Ai. Hence, h ≤ 3. On the other hand, because
Q is 3-eligible, h ≥ 3. Therefore, Q contains exactly three tuples.

Consider that, before generalization, Q contains three rows ta,
tb, and tc (a, b, c ∈ [1, 3n]) in T . Assume on the contrary that
there exists y ∈ [1, d], y �= i, such that Q has no star on Ay . Recall
that, the j-th (j ∈ [1, 3n]) row in T has value 0 on Ai (Ay), if
and only if vj is a coordinate of pi (py). Thus, each of va, vb, and
vc should appear in both pi and py. This indicates that pi = py,
leading to a contradiction. Therefore, Q should have 0 on exactly
one QI attribute. Since Q contains three tuples, the number of stars
(zeros) in Q should be 3d − 3 (3).

PROPERTY 4. T ∗ has at least 3n(d − 1) stars.

PROOF. Let us analyze the number of non-star QI values in T ∗.
Each non-star can come from only a useful QI-group. According
to Property 3, each such group contains 3 non-star QI values. As
T ∗ has 3n rows and each useful QI-group has 3 rows, there can be
at most n useful QI-groups. Therefore, the number of non-star QI
values is at most 3n, and the property follows.

LEMMA 3. The 3DM on S returns “yes", if and only if there is
a 3-diverse generalization of T with 3n(d− 1) stars.

PROOF. “Only-if direction": Without loss of generality, let S′ =
{p1, ..., pn} be the solution of the 3DM. Then, we create n useful
QI-groups Q1, ..., Qn, where Qi (1 ≤ i ≤ n) encloses the 3
tuples in T whose values on attribute Ai are 0. By the way T is
constructed, each of the 3 tuples corresponds to a coordinate of pi,
and has a distinct SA value. Hence, Qi is 3-eligible. Since the



points in S′ do not share any coordinate, Q1, ..., Qn are mutually
disjoint, and hence, their union covers the entire T (which has 3n
tuples in total). Generalizing each Qi (1 ≤ i ≤ n) introduces
3(d − 1) stars, leading to totally 3n(d − 1) stars. The resulting
generalization is 3-diverse.

“If direction": Let T ∗ be a 3-diverse generalization with 3n(d−
1) stars. According to Property 3, T ∗ has exactly n QI-groups, and
all of them are useful. Denote these groups as Q1, ..., Qn. Since
each group contributes 3(d− 1) stars, Qx (1 ≤ x ≤ n) has no star
on exactly one QI-attribute Ai (i ∈ [1, d]). Let us call Ai the useful
QI-attribute of Qx. Assume that, before generalization, Qx con-
tains three rows ta, tb, and tc (a, b, c ∈ [1, 3n]), where tj denotes
the j-th row in T . Since ta[Ai] = tb[Ai] = tc[Ai] = 0, according
to the way T is generated, va, vb, and vc should be the coordinates
of pi. We define pi as the point in S corresponding to Qx. Ob-
serve that, the useful QI attributes of any two QI-groups must be
different, otherwise there exist at least six tuples in T that have 0
on the same QI attribute, contradicting Property 1. Consequently,
each QI-group should correspond to a distinct point in S. Without
loss of generality, assume that pj is the point corresponding to Qj

(1 ≤ j ≤ n). Let S′ = {p1, ..., pn}. Since each row in T ap-
pears in exactly one QI-group, each coordinate in D1 ∪D2 ∪ D3

appears in exactly one point in S′. Therefore, S′ is a solution to the
3DM.

Property 4 and Lemma 3 imply that we can decide whether S
has a 3DM solution, by examining if an optimal 3-diverse general-
ization of T has 3n(d − 1) stars. Therefore, if we had an optimal
polynomial-time l-diversity algorithm that works on all microdata
tables with m ∈ [l, |T |], this algorithm would also solve 3DM in
polynomial time.

Extending the above analysis in a straightforward manner, we
can show that, for any l > 3, optimal l-diversity under the
constraint m ≥ l is also NP-hard, through a reduction from l-
dimensional matching [17]. Thus, we arrive at:

THEOREM 1. For any m ≥ l ≥ 3, optimal l-diverse general-
ization (Problem 1) is NP-hard.

We conclude this section by pointing out that our proof requires
only an alphabet (i.e., the union of the domains of all attributes in
the microdata) of size m+1. For example, in Figure 1, m = 8 and
T has 9 different values 0, 1, ..., 8.

5. TUPLE MINIMIZATION
This section tackles tuple minimization (Problem 2), and

presents an algorithm with an approximation ratio of l. By
Lemma 2, it leads to an (l · d)-approximation for star minimiza-
tion, resulting in the first l-diversity algorithm with a non-trivial
worst-case bound on information loss. Furthermore, this algorithm
leverages several novel heuristics that work fairly well in practice,
and usually produce a solution with a much better quality than the
upper bound.

5.1 Algorithm Overview
Since our goal is to minimize the number of tuples suppressed,

we can redefine the problem as the following. Suppose that the
microdata T is partitioned into s QI-groups Q1, . . . , Qs, where
tuples in the same QI-group have the same value on every QI at-
tribute. The problem is to remove the minimum number of tuples
from Q1, . . . , Qs, such that: (a) all QI-groups are l-eligible, and
(b) the set of all removed tuples is l-eligible. We denote the set of
removed tuples by R, and these tuples will correspond to the sup-
pressed tuples. We refer to R as the residue set. Since switching

tuples with the same QI and SA values will not change the quality
of the solution, in the following we will not distinguish such tuples.
In this manner, the QI-groups and R are effectively considered as
multisets.

Initially R is empty. Throughout the algorithm, tuples are only
moved to R but never taken back. We follow different rules to
pick tuples to remove in the three phases of the algorithm. In the
first phase, we will make sure that condition (a) above is satisfied.
If condition (b) is also met, the algorithm immediately terminates.
Otherwise in phase two, we try to do an “easy fix” of the problem
by removing some more tuples from the QI-groups without violat-
ing condition (a). If at any time during phase two condition (b) is
met, the algorithm ends, or else we proceed to phase three. In the
last phase, we do an “overhaul” in order to satisfy condition (b) by
removing tuples in large batches. Before giving the details for each
phase below, we point out that approximations are introduced in
succession: If the algorithm terminates during the first phase, then
the returned solution is guaranteed to be optimal; if the algorithm
ends in phase two, only an additive error of l−1 is introduced; only
in phase three may we encounter a multiplicative error of l.

Sections 5.2-5.4 describe the conceptual procedures of the three
phases respectively, and analyze their theoretical guarantees. We
defer the running time discussion to Section 5.5.

5.2 Phase One
For a QI-group Q and an SA value v, denote the number of tuples

in Q with SA value v by h(Q,v). We call the SA value with the
most tuples the pillar SA value, or simply the pillar. The number
of tuples in the pillar is called the pillar height of Q, denoted by
h(Q) = maxv h(Q, v). Note that there could be more than one
pillar in a QI-group. These terms are similarly defined on the set of
removed tuples R.

Algorithm The rule of phase one is simple: for each QI-group,
repeatedly remove one tuple from its pillar until the QI-group is l-
eligible. If there is more than one pillar, the choice can be arbitrary.
Note that although we break ties arbitrarily, the end result is unique,
the reason being the following. When there are more than one pillar
in the QI-group that is still not l-eligible, removing a tuple from
any of the pillars will not decrease the pillar height, and hence the
QI-group will not become l-eligible after the removal. Only after
all pillars have lost one tuple does the QI-group have a chance of
becoming l-eligible. In other words, no matter what order is taken,
we will eventually remove one tuple from each pillar.

At the end of phase one, we check if R is l-eligible, i.e.,

|R| ≥ l · h(R). (1)

If (1) holds, then the algorithm terminates; otherwise we proceed
to phase two.

Consider the example in Table 1 with l = 2. Initially we have 4
QI-groups: {1, 2}, {3}, {4}, {5, 6, 7, 8}, {9, 10}. After phase one,
the first three QI-groups are completely eliminated, and the other
two QI-groups remain unchanged. The set R of removed tuples
have the following (multi)set of SA values: {HIV, HIV, pneumonia,
bronchitis}. In this case R is already l-eligible and thus the whole
algorithm terminates. However, if we are not so lucky, we need to
go to phase two.

Analysis Let Q̇1, . . . , Q̇s be the QI-groups at the end of phase
one, and Ṙ the set of removed tuples. If (1) holds after phase one,
then (Q̇1, . . . , Q̇s, Ṙ) must be an optimal solution. In fact, we can
prove a stronger result.

LEMMA 4. For any 1 ≤ i ≤ s and any subset Q′
i of Qi that is

l-eligible, h(Q′
i, v) ≤ h(Q̇i, v) for all SA values v.



The proofs for the rest of the paper can be found in [50]. Based
on Lemma 4, we prove the following corollary.

COROLLARY 1. If the algorithm terminates after phase one,
then (Q̇1, . . . , Q̇s, Ṙ) is an optimal solution.

Let OPT be the number of tuples in R in the optimal solution.
The following lower bound on OPT is another easy corollary of
Lemma 4 that will be useful later on.

COROLLARY 2. OPT ≥ l · h(Ṙ).

5.3 Phase Two
In phase two, we try to increase |R| while keeping h(R) un-

changed by removing tuples from the QI-groups while maintaining
their l-eligibility. We continue the process until Inequality (1) is
satisfied, or no more tuples can be removed.

Before describing the phase two algorithm we need some more
terminology. We know that |Q| ≥ l · h(Q) for any QI-group Q at
the end of phase one. We say that Q is thin if |Q| = l·h(Q), and fat
if |Q| ≥ l · h(Q) + 1. If Q has one or more pillars that are also the
pillars of R, then Q is a conflicting QI-group; these pillars are the
conflicting pillars of Q. If Q is both thin and conflicting, it is said
to be dead; otherwise it is alive. Intuitively, a dead QI-group cannot
lose any more tuples without either increasing h(R) or violating its
own l-eligibility. An SA value v is alive if there exists at least one
alive QI-group Q such that h(Q,v) > 0.

Algorithm Phase two proceeds iteratively as follows. In each it-
eration, we pick an alive SA value v such that h(R, v) is mini-
mized, i.e., v is the least frequent alive SA value in R. When there
are multiple such SA values, we pick one arbitrarily. If there is
no alive SA value, then phase two cannot solve the problem and
we enter phase three. Otherwise, we go to the QI-group Q where
h(Q, v) > 0; again the choice is arbitrary if there is more than
one option. There are two cases: If Q is fat, then we simply re-
move a tuple from Q with SA value v, decrementing h(Q,v) while
incrementing h(R, v). If Q is thin, then by definition it must be
non-conflicting, so we remove a tuple from each of Q’s pillars.
Note that this may or may not increase h(R, v). This iteration now
ends. If at this time R becomes l-eligible, the whole algorithm
terminates; otherwise a new iteration starts.

Consider the following example with m = 5 SA values,
s = 3 QI-groups, l = 3, and Q1 = (3, 1, 1, 2, 3), Q2 =
(0, 2, 2, 4, 4), Q3 = (4, 4, 0, 0, 0) before phase one. (For nota-
tional simplicity we use the vector presentation for multisets. For
instance, (3,1,1,2,3) means there are three tuples with SA value
1, one tuple with SA value 2 and 3 respectively, two and three
tuples with SA values 4 and 5 respectively.) In phase one, Q1

and Q2 do not change, while all tuples of Q3 are removed. Thus
at the end of phase one the status is Q1 = (3, 1, 1, 2, 3), Q2 =
(0, 2, 2, 4, 4), R = (4, 4, 0, 0, 0). Now phase two starts. In the
first iteration, there are five alive SA values: 1, 2, 3, 4, and 5.
Suppose we pick v = 3. Note that both Q1 and Q2 can give
a 3 to R, and the choice can be arbitrary. Say we remove a
3 from Q1, changing the status to Q1 = (3, 1, 0, 2, 3), Q2 =
(0, 2, 2, 4, 4), R = (4, 4, 1, 0, 0). Now Q1 is dead, since it is
both thin and conflicting (the conflicting pillar is 1). In the sec-
ond iteration, still 3, 4, 5 are all alive SA values, but since 4
and 5 have the minimum h(R, v), we pick one of them arbitrar-
ily, say 4. Q2 now is the only alive QI-group: it is thin but non-
conflicting. So we remove a 4 and a 5 together, changing the status
to Q1 = (3, 1, 0, 2, 3), Q2 = (0, 2, 2, 3, 3), R = (4, 4, 1, 1, 1). In
the third iteration, 3, 4, 5 are all possible choices, and Q2 is fat.

Say we remove a 3, which results in Q1 = (3, 1, 0, 2, 3), Q2 =
(0, 2, 1, 3, 3), R = (4, 4, 2, 1, 1). At this point R has become l-
eligible, and the algorithm terminates.

Analysis Let Q̈1, . . . , Q̈s, R̈ be the status at the end of phase two.
We first prove that h(R) does not increase in this phase, that is:

LEMMA 5. h(R̈) = h(Ṙ).

In general, R̈ may not be l-eligible. However, if it is, then the
following guarantee holds.

LEMMA 6. If the algorithm terminates during phase two, then
|R̈| ≤ l · h(Ṙ) + l − 1.

By combining Corollary 2 and Lemma 6, we have the following
result.

COROLLARY 3. If the algorithm terminates during phase two,
then it returns a solution such that |R̈| ≤ OPT + l − 1.

It is clear that all QI-groups are dead after phase two (unless the
algorithm terminates). In this case, the following property holds,
which will be useful later on.

LEMMA 7. If Q1, . . . , Qs are all dead and R is not l-eligible,
then for any pillar p of R, there exists some Qi such that p is not a
conflicting pillar of Qi.

The following corollary follows from Lemma 7.

COROLLARY 4. If the algorithm does not terminate after phase
two, then R̈ has at least two pillars.

The result above implies that for the special case l = 2, the
algorithm always terminates during the first two phases.

THEOREM 2. For l = 2, our algorithm always solves the tuple
minimization problem during the first two phases with a solution
|R̈| ≤ OPT + 1.

5.4 Phase Three
In most cases the algorithm will stop in the first two phases.

However, on some “hard” inputs we will have to resort to phase
three. In the output from phase two, all QI-groups are thin and con-
flicting, and still |R| < l · h(R). The failure of phase two suggests
that in order to satisfy Inequality (1), we cannot just increase |R|.
We need to increase both |R| and h(R), but in a careful way such
that the amount of increase in |R| is more than l times the increase
in h(R), so that eventually the gap between |R| and l ·h(R) can be
closed.

Algorithm The third phase proceeds in rounds, each consisting of
two steps. In the first step, we pick a subset S of QI-groups, and re-
move one tuple from each of their pillars. This increases h(R) but
also (possibly) makes these QI-groups fat. Meanwhile, since cer-
tain pillars of R might have disappeared after this step, some other
QI-groups may switch from conflicting to non-conflicting. More
precisely, a greedy algorithm is used to decide S. Initially we set
P to be the set of pillars of R. For a QI-group Q, let C(Q) be
the set of conflicting pillars of Q. The greedy algorithm iteratively
does the following. As long as P is not empty, pick the QI-group
Q that minimizes |C(Q)∩P |, and then set P ← P ∩C(Q). Note
that here the problem is equivalent to SET COVER [11], i.e., we
are using C(Q) as the “sets” to cover all the pillars of R, and this
greedy algorithm is actually the same as the standard heuristic for
SET COVER.



In the second step, for each QI-group Q, if it has become alive
after step one, then we keep removing tuples from Q until it be-
comes dead again, using the following simple rules: If Q is fat,
remove a tuple from any SA value that is not a pillar of R. If Q is
thin, then check if it is conflicting. If yes, then we are done with
this QI-group; otherwise we remove a tuple from each of its pillars.
If at any time R becomes l-eligible, the whole algorithm termi-
nates. Note that if the algorithm does not terminate after a round,
all QI-groups have become dead again.

The following is an example showing how phase three works.
Suppose m = 5, s = 2, l = 4, and the status after phase two
is Q1 = (3, 1, 2, 3, 3), Q2 = (1, 3, 2, 3, 3), R = (4, 4, 4, 0, 0).
Note that Q1 and Q2 are both thin and conflicting: Q1 conflicts
on 1 while Q2 conflicts on 2. In step one of the first round, we
pick QI-groups whose C(Q) together cover the pillars {1, 2, 3}
of R. As C(Q1) = {2, 3, 4, 5} and C(Q2) = {1, 3, 4, 5}, the
greedy algorithm chooses both Q1 and Q2. Then we remove one
tuple from each of the pillars of Q1 and Q2, resulting in the follow-
ing configuration: Q1 = (2, 1, 2, 2, 2), Q2 = (1, 2, 2, 2, 2), R =
(5, 5, 4, 2, 2). In step two, we first remove tuples from Q1 until it
becomes dead. As Q1 is fat and SA values 3, 4, 5 are not a pil-
lar of R, we can remove any tuple of those SA values from Q1.
Suppose a 3 is removed, resulting in Q1 = (2, 1, 1, 2, 2), Q2 =
(1, 2, 2, 2, 2), R = (5, 5, 5, 2, 2). Similarly we remove a 4 from
Q2, leading to Q1 = (2, 1, 1, 2, 2), Q2 = (1, 2, 2, 1, 2), R =
(5, 5, 5, 3, 2). At this point, R is l-eligible and the algorithm ter-
minates. In this simple example, there is only one round, but in
general there could be multiple rounds.

Analysis We now analyze the approximation ratio guaranteed by
the algorithm. As it turns out, the key factor is to bound the increase
in h(R) throughout phase three.

LEMMA 8. In each round of phase three, h(R) increases by at
most l − 2.

LEMMA 9. There are at most h(R̈) rounds in phase three.

Based on Lemmas 8 and 9, we prove our main theorem as fol-
lows.

THEOREM 3. Our algorithm finds an l-approximate solution to
the tuple minimization problem.

5.5 Implementation
Our three-phase algorithm can be implemented efficiently using

inverted list structures. In this subsection, we present an implemen-
tation, which has a worst-case time complexity of O(s · n).

The basic data structure We maintain an array Ai for each QI-
group Qi throughout the algorithm, as well as an AR for the set of
removed tuples R. Suppose that Qi has ni tuples, for i = 1, . . . , s.
The array Ai has ni entries. The j-th entry, Ai[j], contains a
pointer to a list of SA values v such that h(Qi, v) = j. Note that
some entries of Ai may be empty. Along with each SA value v, we
keep a pointer to a list of tuples in Qi with this SA value, called
the SA set of v. For each Ai, we also maintain pi, the maximum
index j such thatAi[j] is nonempty. In other words,Ai[pi] always
points to the list of pillars of Qi. We similarly maintain the pillar
pointer pR for AR. The whole data structure uses linear space and
can also be easily initialized in O(n) time.

This data structure supports an update, i.e., moving a tuple from
some Qi to R in constant time. To move a tuple t, we first remove
it from its SA set, stored at some Ai[j]. If j = 1, we also delete
the SA set; otherwise, we move the SA set fromAi[j] toAi[j−1].

Next, we insert t to AR, and the procedure is symmetric. Finally,
we also update pi and pR. Note that although pi may decrease a
lot in a single update, the amortized cost of maintaining pi is O(1),
since pi only moves in one direction, and the total distance it travels
is at most ni.

Phase one Consider the QI-group Qi with ni tuples. In phase
one, we simply keep removing tuples from the pillar of Qi, i.e., the
first SA set in the list pointed by Ai[pi]. Since the update cost for
each removed tuple is O(1), and we can also easily check if Qi is
l-eligible after each update, the running time for this QI-group is
O(ni), implying a total running time of O(n) for phase one.

Phase two To efficiently implement our phase two algorithm, an-
other inverted list C, called the candidate list, is required. It is an
array of size n. At C[j] we store a list of entries of the form (i, v),
one for each alive SA value v in Qi if h(R, v) = j. That is, the list
at C[j] stores (the pointers to) all possible SA sets from which we
can remove tuples. C can be initialized in O(n) time. It can also be
maintained with O(1) cost after a tuple is inserted to R.

In each iteration of phase two, we pick a pair (i, v) from the list
stored at the first non-empty entry C[j]. Next we check if Qi is
fat. If it is we simply remove a tuple from Qi with SA value v;
otherwise we remove a tuple from each of Qi’s pillars. At the end
of the iteration, we check if Qi is dead. If so we remove all its
entries (i, v) from C. Since the cost to remove a tuple is O(1), and
there are at most n entries in C, the total cost of phase two is O(n).

Phase three The first step of each round in phase three is the stan-
dard greedy algorithm for SET COVER, which can be implemented
in O(s · l) time [11], since there are s sets and each set has cardi-
nality at most l. In the second step, by using the inverted list Ai, a
QI-group Qi can be handled in time O(l + r), where r is the num-
ber of tuples removed from Qi. To see this, note that every time we
apply the rule, we either remove tuples, whose cost can be charged
to the O(r) term, or declare that Qi is dead, whose cost is at most
O(l). Since we remove at most n tuples in total, the overall cost
of phase three is thus O(sl · h(Ṙ) + n) as there are at most h(Ṙ)

rounds by Lemma 9. Finally, since h(Ṙ) ≤ n/l, we conclude that
the total cost of phase three is O(s·l·n/l+n) = O(s·n). Note that
this is a very pessimistic bound, as the typically number of rounds
is much smaller than n/l in practice.

THEOREM 4. Our three-phase algorithm can be implemented
in O(s · n) time.

5.6 Discussions
The performance of our algorithm is sensitive to the diversity of

QI values in the microdata. If most tuples in the microdata have
distinct QI values, the first phase of our algorithm would start with
a large number of QI groups that contain less than l tuples; even-
tually, all tuples in these QI groups will be moved to the set R and
suppressed, leading to a significant number of stars in the gener-
alized data. Such degradation of data utility usually occurs when
the microdata contains QI attributes with large domains. For exam-
ple, a micordata table with Birth Date, Gender, and ZIP Code as
the QI attributes would contain a significant number of tuples that
have distinct QI values, since both Birth Date and ZIP Code have
sizable domains, and hence, any two tuples are likely to differ on
either attribute2.

Despite the above drawback, our algorithm can still be useful in
some scenarios, due to the following reasons. First, our algorithm

2Indeed, a recent study [43] has shown that 87% of the U.S. popu-
lation can be uniquely identified by their birth dates, genders, and
5-digit ZIP codes.



Age Gender Race Marital Status Birth Place Education Work Class Income Occupation
Size 79 2 9 6 56 17 9 50 50

Table 6: Attribute domain sizes

can be applied on datasets with small or median QI domains. Such
microdata exists, as many QI attributes in practice, such as Gender,
Race, Marital Status, Years of School Attendance, have domains
with cardinalities below 20.

Second, QI attributes with large domains often need to be coars-
ened (even before generalization is performed) to avoid disclosure
of excessively detailed personal information. For example, the
Standards for Privacy of Individually Identifiable Health Informa-
tion [12] (issued by the U.S. Department of Health and Human Ser-
vices) requires that, unless otherwise justified, any personal data to
be published should satisfy the following two conditions (in addi-
tion to numerous other requirements):

1. given any date directly related to an individual (e.g., birth
date, admission date, discharge date), only the year of the
date is released;

2. only the first three digits of any ZIP code are retained.

Therefore, given a dataset with QI attributes Birth Date and ZIP
Code, if the publisher is to release the data in a manner that con-
forms to the above standard, s/he should transform Birth Date to
Year of Birth, and remove all but the initial three digits of any ZIP
code. This considerably reduces the domain size of the attributes,
making our algorithm applicable on the dataset.

Third, our algorithm can be easily combined with any heuris-
tic suppression algorithm to improve its performance over datasets
with diverse QI values. Specifically, given a micordata table, we
can first employ our algorithm to obtain (i) a set of QI-groups that
contain no stars, and (ii) the residue set R. After that, we can ap-
ply any existing heuristic algorithm on R to divide it into smaller
QI-groups, thus reducing the number of values that need to be sup-
pressed. Apparently, such a hybrid approach always outperforms
our algorithm in star minimization, and hence, it also achieves an
approximation ratio of O(l · d).

Last but not least, given a microdata table, we may prepro-
cess it with any single-dimensional generalization method to re-
duce the cardinalities of the QI domains, and then apply our al-
gorithm on the modified dataset. The preprocessing step method
does not need to ensure l-diversity: even the k-anonymity algo-
rithms [7, 15, 20, 26, 44] can be applied. The amount of generaliza-
tion imposed in the preprocessing step has an effect on the quality
of the l-diverse table output by our algorithm. In particular, less
generalization leads to large domains of the QI attributes, which, in
turn, results in more stars in the l-diverse table. On the other hand,
when the QI attributes are coarsened to a higher degree during pre-
processing, each non-star QI value in the l-diverse tale corresponds
to a larger sub-domain of the QI attribute, i.e., the published QI
values are less accurate. To achieve a good tradeoff between the
number of stars and the accuracy of non-star QI values, we may
vary the amount of generalization in the preprocessing step, exam-
ine the output of our algorithm, and choose the setting that opti-
mizes the utility of the l-diverse table. A complete treatment of this
issue, however, is beyond the scope of this paper.

6. EXPERIMENTS
This section experimentally evaluates the proposed techniques.

Section 6.1 examines the performance of our algorithms in star
minimization, and Section 6.2 compares our algorithms with
single-dimensional generalization methods. All of our experiments
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Figure 2: Average number of stars vs. l

are performed on a computer with a 3 GHz Pentium IV CPU and 2
GB RAM.

6.1 Star Minimization
Algorithms evaluated The existing l-diversity techniques employ
either single- or multi-dimensional generalization. We examine the
state of the art [15,16,27] of these techniques, modify them as sup-
pression algorithms, and choose Hilbert [16], the one that achieves
the best performance in star minimization, as the baseline with
which our algorithms are compared. We denote the three phase
algorithm in Section 5.1 as TP. We have also implemented a hybrid
algorithm, TP+, which combines both Hilbert and TP. Specifically,
given a microdata T , TP+ first invokes TP to produce a partition of
T , and then applies Hilbert on the residue set R (produced by TP)
to reduce the number of stars in the l-diverse table. As discussed in
Section 5.6, such a hybrid algorithm also returns an O(l·d) solution
for the star minimization problem.

Datasets Following [16, 47], we experiment with two datasets,
SAL and OCC, obtained from the American Community Survey
[37]. Both SAL and OCC contain 600k tuples, each capturing the
information about a U.S. adult. Specifically, SAL has a sensitive at-
tribute Income, and 6 QI attributes Age, Gender, Race, Marital Sta-
tus, Birth Place, Education, Work Class. OCC contains the same
QI attributes as in SAL, but has a different sensitive attribute Occu-
pation. Table 6 illustrates the domain size of each attribute.

Based on SAL, we generate 7 sets of microdata, SAL-1, SAL-2,
..., SAL-7. Each table in SAL-d (1 ≤ d ≤ 7) is a projection of
SAL on Income and d QI attributes. As SAL has 7 quasi-identifers,
totally there are

(
7
d

)
microdata tables in SAL-d. Similarly, we also

construct 7 sets of microdata OCC-d (1 ≤ d ≤ 7) from OCC.

Quality of generalizations In the first set of experiments, we in-
vestigate the effect of l on the quality of the generalization pro-
duced by each technique. In particular, for any given l, we employ
each algorithm to generate l-diverse versions of the microdata in
SAL-4 (OCC-4). Then, the performance of an algorithm is gauged
by the average number of stars, in the l-diverse generalization it
generates for the

(
7
4

)
= 35 microdata tables in SAL-4 (OCC-4).

Figure 2 illustrates the average number of stars as a function of
l. All algorithms perform better when l decreases, since a smaller l
leads to a lower degree of privacy protection, which can be achieved
with less generalization. Both TP and TP+ consistently outperform
Hilbert. In addition, TP+ incurs a smaller number of stars than TP
in all cases.

Next, we examine the performance of each algorithm, fixing
l = 6 and varying the number d of QI attributes in the micro-
data. Figure 3 shows the average number of stars incurred by each
technique, for the tables in SAL-d and OCC-d (1 ≤ d ≤ 7). The
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average number of stars increases with d, which is consistent with
the analysis in [2] that, all generalization techniques suffer from
the curse of dimensionality. On SAL-d (OCC-d), TP outperforms
Hilbert when d ≤ 4 (d ≤ 6), but is inferior than Hilbert given a
larger d. This is due to the fact that, as d increases, the tuples in
the microdata tend to have more diverse QI values, which, as dis-
cussed in Section 5.6, renders TP less effective. TP+ overcomes
this drawback by incorporating Hilbert to refine the residue set R,
and hence, achieves better data utility than both TP and Hilbert.

Frequency of phase three execution Recall that TP consists of
three phases. For any positive integer l and any microdata T
with d QI attributes, if TP terminates during the first or second
phase, the number of stars in the returned generalization is at most
d · (OPT + l−1), where OPT is the minimum number of stars in
any l-diverse generalization of T . In contrast, if TP terminates after
phase three, the resulting generalization is an (l ·d)-approximation.
Furthermore, the first two phases of TP have O(n) time complex-
ity, while the third phase runs in O(s · n) time in the worst case,
where s is the maximum number of tuples in T with distinct QI
values. Therefore, TP performs much better in terms of both in-
formation loss and computation time, when it returns generalized
tables without invoking phase three.

A natural question is, how often does TP execute the third phase?
To answer this question, we apply TP on each microdata table in
SAL-d and OCC-d (1 ≤ d ≤ 7) to compute its l-diverse (2 ≤
l ≤ 10) generalization, and examine whether TP invokes the third
phase. It turns out that, on all 128 tables and for all 9 values of
l, TP terminates before the third phase. In other words, in all our
experiments, TP (and thus, TP+) returns O(d) solution to the star
minimization problem.

Computation overhead In the following experiments, we com-
pare the efficiency of each algorithm. First, for any l ∈ [2, 10], we
examine the average time required by each technique to generate
l-diverse versions of the microdata in SAL-d (OCC-d). Figure 4
illustrates the computation time as a function of l. The overhead
of Hilbert decreases with the increase of l, which is also observed
in [16]. In contrast, the computation cost of TP and TP+ increases
with l. To understand this, recall that TP works by first dividing the
tuples into QI-groups, and then iteratively moving tuples from each
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QI-group to the residue set R, until all QI-groups and R become l-
eligible. Given a larger l, TP has to remove more tuples from each
QI-group to achieve l-eligibility, resulting in higher computation
cost. In turn, this indicates that the residue set R becomes larger,
when l increases. Consequently, the running time of TP+ also in-
creases with l, because TP+ post-processes the output of TP by
invoking Hilbert on R, the cost of which increases with the size of
R.

Next, we fix l = 6, and investigate the average computation time
of each algorithm on the microdata in AGE-d (OCC-d), varying d
from 1 to 7. Figure 5 illustrates the results. The computation cost
of TP increases with d. This is because, when d is large, TP has to
employ more generalization on the microdata to achieve l-diversity
(see Figure 3). As a result, TP needs to move a larger number of
tuples from the QI-groups to the set R, leading to higher processing
overhead. Because TP+ incorporates TP, its computation time also
increases with d. The efficiency of Hilbert is insensitive to d, which
is consistent with the experimental results in [16].

Finally, we study the effect of dataset cardinality n on the com-
putation time of generalization. For each table T in SAL-4 and
OCC-4, we generate various sample sets of T , with sample size
varying from 100k to 600k. After that, we employ each algorithm
to compute a 6-diverse generalization of each sample set, and mea-
sure the average running time of the algorithm. Figure 6 plots the
computation overhead as a function of the dataset cardinality n.
The running time of each technique is less than 1.2 seconds even
for the largest datasets. The processing cost of TP increases lin-
early with n. This is expected, since (i) TP bypasses phase three
in all cases, and (ii) the first and second phases of TP have linear
time complexity. The computation time of Hilbert is almost linear,
which confirms the analysis in [16] that Hilbert runs in O(n log n)
time. Since both TP and Hilbert scale well with n, TP+ (as a com-
bination of TP and Hilbert) also achieves satisfactory scalability.

Summary In terms of data utility, TP+ significantly outperforms
not only TP but also Hilbert, the best existing algorithm that
can achieve l-diversity via suppression. In terms of computation
time, Hilbert is superior than TP and TP+. Nevertheless, as the
anonymization of microdata incurs only one-time cost, computa-
tional efficiency is not a major concern in data publishing. This



makes TP+ more preferable than Hilbert for suppression-based
anonymization.

6.2 Comparison with Single-Dimensional
Generalization

Having established TP+ as an excellent suppression-based algo-
rithm, in this section we will move on to compare TP+ with the
single- and multi-dimensional generalization methods. First, we
observe that multi-dimensional generalization always guarantees
higher data utility than suppression. Specifically, given any table
T ∗ generated by suppression, we may transform it into a multi-
dimensional generalization T ∗′, by replacing each star on a QI at-
tribute A with a sub-domain of A, such that the sub-domain con-
tains all A values appearing in the QI-group. As each sub-domain
captures more accurate information than a star, T ∗′ always incurs
less information loss than T ∗. For example, let us consider Table 3,
which contains four stars on Age and Education, respectively, and
all the stars appear in the first QI-group. We may replace each star
on Age with a sub-domain “<50”, as it covers the Age values of all
tuples in the QI-group (see Table 1). Similarly, each star on Educa-
tion can be replaced with a sub-domain “Bachelor or above”. This
results in the multi-dimensional generalization in Table 5, which
apparently contains more accurate information than Table 2.

As discussed in Section 2, however, multi-dimensional general-
ization produces anonymized data that is unusable by off-the-shelf
statistical package, whereas suppression does not suffer from this
drawback. Consequently, even though multi-dimensional general-
ization outperforms suppression in terms of data utility, it cannot
be chosen over suppression in the scenarios where software sup-
port for anonymized data is a concern. Yet, in such scenarios,
suppression is not the only applicable anonymization method, as
single-dimensional generalization can also generate data that can
be directly fed into commercial statistical software. This leads to an
interesting question: how does TP+ compare to the existing single-
dimensional generalization methods in terms of data utility?

To answer the above question, we implement TDS3, the state-
of-the-art single-dimensional generalization algorithm proposed in
[15], and compare it against TP+ on the quality of generalization.
Following [16, 23], we measure the quality of a generalized table
T ∗, by the similarity between the multi-dimensional distribution
induced by T ∗ and the distribution induced by the microdata T .
To explain this, observe that each tuple in T can be regarded as a
point in a (d+1)-dimensional space Ω, where the i-th (1 ≤ i ≤ d)
dimension corresponds to the i-th QI attribute in T , and the (d+1)-
th dimensional corresponds to the sensitive attribute. As such, T
can be captured by a probabilistic density function (pdf) f defined
on Ω, such that, for any point p ∈ Ω, f(p) equals the fraction of
tuples in T represented by p.

Similarly, any generalization T ∗ of T defines a pdf f∗ on Ω.
In particular, if a tuple t∗ ∈ T ∗ has a star on an attribute A, we
treat t∗[A] as a random variable uniformly distributed in the domain
of A; on the other hand, if t∗[A] is a sub-domain of A, we treat
t∗[A] as uniformly distributed in the sub-domain. As in [16,23], we
gauge the similarity between f and f∗ by their KL-divergence [25],
defined as

KL(f, f∗) =
∑

p∈Ω

f(p) · ln f(p)

f∗(p)
. (2)

A smaller KL(f, f∗) indicates a higher degree of similarity be-
tween f and f∗.

3TDS was initially designed for k-anonymity. We modify it into an
l-diversity algorithm to facilitate the comparison with TP+.
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In the first set of experiments, we apply TP+ and TDS on the
microdata in SAL-4 and OCC-4, varying l from 2 to 10. Figure 7
plots the average KL-divergence incurred by each algorithm as a
function of l. TP+ significantly outperforms TDS in all cases. The
KL-divergence entailed by TP+ increases with l, which is consis-
tent with the results in Figure 2 that, a larger l leads to more stars
in the generalized table.

Next, we fix l = 6, and measure the average KL-divergence
incurred by TP+ and TDS in anonymizing the microdata in SAL-
d (OCC-d). Figure 8 illustrates the average KL-divergence as a
function of d. Again, the information loss caused by TP+ is con-
sistently smaller than TDS. The performance of both algorithms
degrades with the increase of d, since, as mentioned in Section 6.1,
all generalization methods inevitably suffer from the curse of di-
mensionality.

In summary, TP+ achieves significantly higher data utility than
TDS. This makes TP+ a favorable choice for data publishers who
aim to release generalized tables that can be easily analyzed us-
ing existing statistical software. Multi-dimensional generalization
methods, on the other hand, should be adopted when the users are
equipped with their own tools for analyzing complex anonymized
data.

7. CONCLUSIONS
The existing work on l-diversity focuses on the development

of heuristic solutions. In this paper, we present the first theoret-
ical study on the complexity and approximation algorithms of l-
diversity. First, we prove that computing the optimal l-diverse gen-
eralization is NP-hard, for any l ≥ 3. After that, we develop an
O(l ·d)-approximation algorithm for the problem, where d denotes
the number of QI attributes in the microdata. The effectiveness and
efficiency of the proposed technique are verified through extensive
experiments.

There exist several promising directions for future work. First,
we plan to improve our three phase algorithm, to achieve a bet-
ter approximation ratio for the star minimization problem. Second,
we have only considered categorical domains in this paper, in the
future we will try to extend our algorithm to support numerical do-
mains. Finally, it is interesting to investigate the hardness and ap-



proximation algorithms for other privacy principles.
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