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ABSTRACT
Large flash disks, or solid state drives (SSDs), have become an at-
tractive alternative to magnetic hard disks, due to their high ran-
dom read performance, low energy consumption and other features.
However, writes, especially small random writes, on flash disks
are inherently much slower than reads because of the erase-before-
write mechanism.

To address this asymmetry of read-write speeds in tree indexing
on the flash disk, we propose FD-tree, a tree index designed with
the logarithmic method and fractional cascading techniques. With
the logarithmic method, an FD-tree consists of the head tree – a
small B+-tree on the top, and a few levels of sorted runs of increas-
ing sizes at the bottom. This design is write-optimized for the flash
disk; in particular, an index search will potentially go through more
levels or visit more nodes, but random writes are limited to a small
area – the head tree, and are subsequently transformed into sequen-
tial ones through merging into the lower runs. With the fractional
cascading technique, we store pointers, called fences, in lower level
runs to speed up the search. Given an FD-tree of n entries, we an-
alytically show that it performs an update in O(logB n) sequential
I/Os and completes a search in O(logB n) random I/Os, where B
is the flash page size. We evaluate FD-tree in comparison with rep-
resentative B+-tree variants under a variety of workloads on three
commodity flash SSDs. Our results show that FD-tree has a similar
search performance to the standard B+-tree, and a similar update
performance to the write-optimized B+-tree variant. As a result,
FD-tree dominates the other B+-tree index variants on the overall
performance on flash disks as well as on magnetic disks.

1. INTRODUCTION
Solid State Drives (SSDs), or flash disks, have emerged as a vi-

able alternative to the magnetic disk for non-volatile storage. The
advantages of flash SSDs include high random read performance,
low power consumption and excellent shock resistance. With the
capacity doubles every year [16], flash SSDs have been considered
device to replace magnetic disks for enterprise database servers [12,
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Figure 1: Bandwidths with 2KB or 512KB pages Random Read,
Random Write, Sequential Read, and Sequential Write.

17, 18, 26]. Since tree indexes are a primary access method in
databases, we study how to adapt them to the flash disk exploiting
the hardware features for efficiency.

The flash SSD is a type of electrically-erasable programmable
read-only memory (EEPROM). Unlike magnetic disks where seek
and rotational delays are the dominant cost in reading or writing a
page, the flash SSD has no mechanic movement overhead. As a
result, random reads of a flash SSD are up to two orders of magni-
tude faster than a magnetic disk, as shown in Figure 1. However,
due to the erase-before-write mechanism of the flash memory, each
write operation may require erasing a large block, called an erase
block. This mechanism makes random writes one to two orders of
magnitude slower than random reads. As shown in Figure 1, ran-
dom writes are 163.3X, 62.7X and 5.6X slower than random reads
on Samsung SSD, Mtron SSD and Intel SSD, respectively. Addi-
tionally, previous results [6] showed that random write bandwidths
further reduced 3.5-10X on fragmented flash SSDs, while the ran-
dom read bandwidths were affected little.

Given the asymmetry in the read and write speeds of the flash
SSD, B+-tree, the most popular tree index structure for the hard
disk will benefit from the fast random read speed in search perfor-
mance, but will suffer from the poor random write speed in update
performance. In comparison, write-optimized indexes [24, 14, 15,
10], originally designed for disks, will mitigate the weakness of
updates on flash SSDs. However, all these indexes are suboptimal
on search performance. Recently, there has been initial work, in
particular BFTL [28], on optimizing the B+-tree for flash memory
in embedded systems. Unfortunately, BFTL improves the update
performance at the expense of deteriorated search performance.

To optimize the update performance while preserving the search
efficiency, we propose FD-tree [19], a tree index that is aware of the
hardware features of the flash SSD. Specifically, we adopt the log-
arithmic method [3] and the fractional cascading [5] technique to
FD-tree for efficient update and search performance, respectively.

We design FD-tree to be a logarithmic data structure to reduce
the amortized update cost. It consists of a small B+-tree, called the
head tree, on top of a few levels of sorted runs of increasing sizes.
We determine the size ratio between adjacent sorted runs consid-



ering the read and write speeds of the flash disk in addition to the
workload composition. In an FD-tree, updates are only applied to
the head tree, and then merged to the lower level sorted runs in
batches. As a result, most random writes are transformed into se-
quential ones through the merge. Since the sequential accesses on
flash SSDs exhibit much higher bandwidths than the random ones,
as shown in Figure 1, the update performance of FD-tree is im-
proved significantly. Our idea of adopting the logarithmic method
is similar to LSM-tree [24]. The difference is that an FD-tree con-
sists of sorted runs instead of tree components, which allows us to
improve the search performance using fractional cascading. More-
over, we propose a deamortized scheme to reduce the worst case
cost of insertions on FD-tree while preserving the average cost.

Fractional cascading is a general technique to speed up binary
searches in a sequence of data structures [5]. We adapt this tech-
nique to FD-tree to speed up the search efficiency. Specifically, we
store fences, or pointers to pages in a lower level of sorted run, into
the immediate higher level. With these fences, a search on an FD-
tree is first performed on the small tree, and next on the sorted runs
level by level with the fences guiding the position to start in the
sorted run of the next level.

We analytically estimate the search and update costs of FD-tree.
Our cost estimation considers the asymmetry of read and write
speeds of the flash SSD, as well as the different patterns of se-
quential and random accesses. Subsequently, we analytically com-
pare the costs of FD-tree with the representative B+-tree variants
including the standard B+-tree [8], the LSM-tree [24], and BFTL
[28]. Given n index entries, the search cost of FD-tree is close
to that of B+-tree, and matches the optimal search cost O(logBn)
I/Os, where B is the page size. In the meanwhile, FD-tree supports
an update in O(logBn) sequential page writes, as efficiently as the
LSM-tree. In short, FD-tree captures the best of both worlds. Addi-
tionally, considering the significant differences in the performance
of various flash SSDs, we develop a cost model to determine the
optimal settings on the sizes of the sorted runs in the FD-tree for
individual flash SSDs, given the characteristics of the workload.

We empirically evaluate the FD-tree in comparison with the three
B+-tree variants. Our result on all three commodity SSDs shows
that the FD-tree captures the best of both search and insertion per-
formance among all competitors. In particular, it is 5.7-27.9X, 1.4-
1.6X and 3.7-5.5X faster than B+-tree, LSM-tree and BFTL, re-
spectively, under various mixed workloads on an Mtron SSD, and
it is 1.7-3.6X, 1.4-1.8X, and 1.9-3.4X faster than B+-tree, LSM-
tree and BFTL, respectively, on an Intel SSD. Additionally, on the
hard disk, FD-tree achieves a similar search performance to B+-tree
under read-intensive workloads and outperforms all others under
update-intensive workloads.

The paper is organized as follows. In Section 2, we review the
I/O optimization techniques for the hard disk and the flash disk.
We present the design of FD-tree and its cost analysis in Section 3
and 4, respectively. In Section 5, we experimentally evaluate the
efficiency of FD-tree. Finally, we conclude in Section 6.

2. PRELIMINARY AND RELATED WORK
This section reviews the related work on the techniques optimiz-

ing the random writes on the flash SSD and on the hard disk. For
more details on flash SSDs, we refer the readers to Appendix A.

2.1 Optimizing random writes on SSDs
Flash-specific file systems [27, 20] have been proposed based on

the log file system [25]. With a mapping between logical and phys-
ical page identifiers dynamically maintained, every updated page is
sequentially appended and its mapping table entry is correspond-

ingly updated. However, both random and sequential read perfor-
mance of log file systems significantly suffers from the overhead of
looking up and maintaining the mapping table [22]. Moreover, the
log file system is likely to quickly consume pages, which in turn
requires frequent garbage collection to reclaim obsolete pages [9].

Database researchers attempt to address the random write issues
by designing specific data structures and algorithms. Lee et al. [17]
proposed the In-Page Logging (IPL) to improve the update perfor-
mance in a DBMS. Different from the log file system, IPL appends
the update logs into a special page that is placed in the same erase
block as the updated data page in order to improve the search effi-
ciency of log-structure method. However, it is hard to make flash
SSDs support the fine granularity write, e.g. a few bytes, on an
erased page. The performance of key components in DBMS was
evaluated on the flash SSDs [18]. Tsirogiannis et al. [26] demon-
strated the column-based layout within a page can leverage fast
random reads of flash SSDs to speed up different query operators.
Chen exploited flash devices for logging based on the observation
that flash devices are suitable for small sequential writes [7].

2.2 Write Optimized Tree Indexing
Due to the poor random write performance of flash SSDs, write

optimized tree indexes [28, 23] have been proposed to improve the
update performance. BFTL [28] was proposed to balance the infe-
rior random write performance and fast random read performance
for flash memory based sensor nodes and embedded systems. It al-
lows the index entries in one logical B-tree node to span over multi-
ple physical pages, and maintains an in-memory table to map each
B-tree node to multiple physical pages. Newly inserted entries are
packed and then written together to some new blocks. The table en-
tries of corresponding B-tree nodes are updated, thus reducing the
number of random writes. However, BFTL entails a high search
cost since it accesses multiple disk pages to search a single tree
node. Furthermore, even though the in-memory mapping table is
compact, the memory consumption is still high. FlashDB [23] was
proposed to implement a self-tuning scheme between standard B+-
tree and BFTL, depending on the workloads and the types of flash
devices. Since our proposed index mostly outperforms both B+-
tree and BFTL under various workloads on different flash SSDs,
we do not compare our index with this self-tuning index in this pa-
per. More recently, LA-tree [1] was proposed for flash memory
devices by adding adaptive buffers between tree nodes. LA-tree
focuses on raw, small-capacity and byte addressable flash memory
devices, such as sensor nodes, whereas our work is targeted for off-
the-shelf large flash SSDs, which provide only a block-based ac-
cess interface. Different target devices of these two indexes result
in their differences in design.

On the hard disk, many disk-based indexes optimized for write
operations have also been proposed. Graefe proposed a write-optimized
B-tree [10] by applying the idea of the log file system [25] to the
B-tree index. Y-tree [15] supports high volume insertions for data
warehouses following the idea of buffer tree [2]. The logarith-
mic structures have been widely applied to optimize the write per-
formance. O’Neil et al. proposed LSM-tree [24] and its variant
LHAM [21] for multi-version databases. Jagadish et al. [14] used
a similar idea to design a stepped tree index and the hash index
for data warehouses. Our FD-tree follows the idea of logarithmic
method. The major difference is that we propose a novel method
based on the fractional cascading technique to improve the search
performance on the logarithmic structure.

3. FD-TREE
In this section, we present the design of FD-tree. Our goal is
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to minimize the number of small random writes and to limit these
random writes within a small area, while maintaining a high search
efficiency. For simplicity, we assume all index keys in an FD-tree
are unique. The notations used throughout this paper are summa-
rized in Table 1.

Table 1: Parameters used in this paper
Parameters Description

B page size (bytes)
Li ith level of FD-tree
|Li| capacity of Li (the number of entries)
l number of levels in FD-tree
k logarithmic size ratio between adjacent levels
n number of records in the indexed relation
f number of entries in a page

3.1 Design principles for indexing on SSDs
In our design for an index on flash SSDs, we consider the fol-

lowing three principles.

• P1 . Transforming random writes into sequential ones. We
should take advantage of sequential writes, and avoid the ran-
dom writes by designing sophisticated data structures.

• P2 . Limiting random writes within a small region. Previous
studies [4, 6] reported that random writes on flash SSDs with
a small area (512KB-8MB) have a comparable performance
to sequential writes.

• P3 . Supporting multi-page I/O optimization. Accessing
multiple pages in an I/O operation is more efficient than ac-
cessing each page separately.

3.2 Overview of FD-Tree
An FD-tree consists of multiple levels denoted as L0 ∼ Ll−1.

The top level, L0, is a small B+-tree called the head tree. The node
size of the head tree is the page size B of the flash SSD. Each of
the other levels, Li(1 ≤ i < l), is a sorted run stored in contiguous
pages. Figure 2(a) illustrates the structure of an FD-tree. The FD-
tree has three levels, the head tree and two sorted runs. The head
tree is a two-level B+-tree. With the fractional cascading technique,
the leaf nodes of the head tree contain pointers to the sorted run L1.
Each non-leaf level in FD-tree contains pointers to the sorted run
of the immediate lower level.

Each level of FD-tree has a capacity in terms of entries, denoted
as |Li|. Following the logarithmic method, we set the levels with
a stepped capacity, i.e., |Li+1| = k · |Li| (0 ≤ i ≤ l − 2), where
k is the logarithmic size ratio between adjacent levels. Therefore,
|Li| = ki · |L0|. The updates are initially performed on the head
tree, and then are gradually migrated to the sorted runs at the lower
levels in batches when the capacity of a level is exceeded. Follow-
ing the design principle P2 , the maximum size of the head tree
is set to the size of the locality area, within which random writes
have similar performance as sequential ones. The size of locality

area measured on nowaday devices is typically between 128KB and
8MB [4, 6].

We categorize the entries in FD-tree into two kinds, index entry
and fence. In each level of FD-tree, the index entries and fences are
organized in the ascending order of their keys.

• Index Entry. An index entry contains three fields: an index
key, key, and a record ID, rid, for the indexed data record,
and type indicating its role in the logarithmic deletion of FD-
tree. Depending on the type, we further categorize index
entries into two kinds, filter entries and normal entries.

– Filter Entry (type = Filter). A filter entry is a mark of
deletion. The filter entry is inserted into FD-tree upon a
deletion to indicate that its corresponding record and in-
dex entry have been nominally deleted. It has the same
key and record ID as that deleted index entry. We call
that deleted index entry as a phantom entry, as it has
been logically deleted but has not been physically re-
moved from the index.

– Normal Entry (type = Normal). All index entries
other than filter entries are called normal entries.

• Fence. A fence is an entry with three fields: a key value,
key, a type, and a pid, the id of the page in the immediate
lower level that a search will go next. Essentially, a fence is a
pointer, whose key is selected from a index entry in FD-tree.

INVARIANT 1. The first entry of each page is a fence.

INVARIANT 2. The key range between a fence and its
next fence at the same level is contained in the key range
of the page pointed by the fence.

Depending on whether the key value of the fence in Li is
selected from Li or Li+1, we categorize fences in Li into
two kinds, internal fences and external fences.

– External fence (type = External). The key value
of an external fence in Li is selected from Li+1. We
create a fence for each page of Li+1. For page P in
Li+1, we select the key of the first entry in P to be the
key of the fence, and set the pid field of the fence to be
the id of P , in order to satisfy Invariant 2.

– Internal fence (type = Internal). The key value of
an internal fence in Li is selected from Li. If the first
entry of any page P is not a external fence, we add an
internal fence to the first slot of this page in order to
satisfy Invariant 1. The key value of the internal fence
is set to be the key of the first index entry e in page P .
The pid field of the internal fence is set to the id of the
page in the next level whose key range covers the key
of e. For example, in Figure 2(a), entry 88 in page g is
an internal fence that points to page n, the same as the
external fence 71 in page f.



According to the definition of the external fence, the number of
external fences in Li is the number of pages in Li+1, i.e. |Li+1|/f ,
where f is the number of entries in a page. The number of internal
fences in Li is at most |Li|/f , because each page contains at most
one internal fence. The maximum total number of fences in Li,
(|Li|+ |Li+1|)/f , should be smaller than the number of entries in
Li, obtaining k < f − 1.

3.3 Operations on FD-Tree
FD-tree supports five common query operations: search, inser-

tion, merge, deletion and update. For the algorithm pseudocode,
please see Appendix B.

Search. An index search on the FD-tree requires searching each
level from top down. A query can be either a point search with an
equality predicate, or a range search with a range predicate.

To perform a point search on a search key K, we first perform a
lookup on the head tree, the same as that on the standard B+-tree.
Next, we perform a search on the each level following the pid of
the fence. Within a page P in Li, a binary search is performed to
find the greatest key equal to or less than K. Suppose the entry ei

contains this key. We then scan the sorted run from right to left un-
til we find a fence ej . Since all entries with a key between ei.key
and ej .key in the next level Li+1 appear in the page ej .pid (In-
variant 2), we then follow the pointer ej .pid to this page to search
for entries in the next level. This way, the tree is traversed top to
bottom, following the pid of desired fences.

Since a filter entry is inserted into the FD-tree upon a deletion
and makes the old entry become a phantom entry, a search may get
a result set containing both the filter entry and its corresponding
phantom entry. If so, we need to remove filter entries and phantom
entries of the same key and pointer value pair from the result set in
a search.

According to Invariant 1, a search can at least find the fence in
the first slot of any page when scanning the page backward. Thus,
a search only fetches one page each level, if there are no dupli-
cates. This is the reason why we introduce internal fences. If data is
skewed, the index entries between two consecutive external entries,
Fj and Fj+1, may span multiple pages. A scan starting between Fj

and Fj+1 need to go over multiple pages to get the previous exter-
nal fence Fj . With the internal fences, the scan is stopped by the
internal fences at the first slot of each page.

Figure 2(b) illustrates the search paths of key 81 (in solid line)
and key 91 (in dotted line) on the example FD-tree in Figure 2(a).
At each level, it searches a page until it encounters a fence and
follows the fence to search the page in the next level of sorted run.
In the search in L1 for 91, the internal fence 88 in page g prevents
the scan from fetching page f to find the external fence 71.

The range search is similar to that for the point search except
that it may fetch multiple pages in each level. Given the fences
satisfying the predicate in the current level Li, we are aware of the
number of pages that will be scanned in the next level Li+1 before
fetching those pages. Moreover, those pages are stored contigu-
ously. These properties provide an opportunity to fetch the exact
number of matched pages in the next level in a I/O operation by
using multi-page I/O optimization (P3 ).

Insertion. A new entry is initially inserted into the head tree
L0 first. If the number of entries in the head tree L0 exceeds its
capacity |L0|, a merge operation is performed on L0 and L1 to
migrate all entries in L0 to L1. As a result, the random writes are
limited within the head tree following design principle P2 .

Merge. The merge process is performed on two adjacent levels
when the smaller one of the two exceeds its capacity. The merge

operation sequentially scans the two inputs, and combines them
into one sorted run in contiguous pages. A newly generated level
Li consists of all index entries from Li−1, all index entries and
external fences from Li. We keep all external fences in Li because
the level (Li+1) pointed by these external fences does not change.
The new internal fences of Li are constructed during the merge
when necessary. At the same time, the new levels Lj(0 ≤ j <
i) are rebuilt with the external fences constructed from the newly
generated Li. That is, given two adjacent levels, Li−1 and Li, the
merge process generates i + 1 new sorted runs to update all levels
from L0 to Li. If the new Li exceeds its capacity, Li and Li+1

are merged. This process continues until the larger one of the two
newly generated levels does not exceed the capacity.

The merge operation involves only sequential reads and writes,
thus we successfully transform the random writes of insertion into
sequential reads and writes, following the design principle P1 . We
further optimize the I/O performance by applying the multi-page
I/O optimization, following our design principle P3 . Since the
pages in each level of FD-tree are stored contiguously on the flash
disk, we fetch multiple pages in a single I/O request. Similarly, as
the newly generated sorted runs are sequentially written, we write
multiple pages in a single request. The suitable number of pages in
an I/O request is set to be the access unit size when the transfer rate
of the sequential access pattern reaches the maximum.

Deletion. A deletion on the FD-tree is handled in a way simi-
lar to an insertion: it is first performed on the head tree, and then
migrated to the lower levels as the merge process occurs. This loga-
rithmic deletion scheme reduces the amortized cost. Note, the lazy
deletion method widely used in hard disk based indexes, which
marks an entry invalid, is inefficient on the flash SSD, because a
marking operation is a small random write.

The first step is to perform the deletion on the head tree L0, be-
cause random writes on the head tree are limited within a local-
ity area, and are very efficient. Next, we perform deletion in the
other levels by inserting a special entry called a filter entry. The
entry to be deleted then becomes a phantom entry, and is left un-
touched. Specifically, we first perform a search on the FD-tree us-
ing the predicate of the deletion. This search identifies the index
entry to be deleted. New entries (filter entries) with the same key
and pointer value as these entries are inserted into the FD-tree. The
actual deletion is performed in the merge operation when a filter
entry encounters its corresponding phantom entry.

During the merge, physical deletions are performed in batches.
When a filter entry encounters its corresponding phantom entry,
both entries are discarded, and will not appear in the merge result.
Thus, a deletion is physically completed. Note, due to the process-
ing on filter entries and their phantom entries, a newly generated
sorted run may be smaller than the old one.

The space overhead of filter and phantom entries is low. Since
the lowest level Ll−1 does not contain any filter and phantom entry,
these entries at worst occupy all levels except of the lowest one,
whose total size is only around 1/k space of the whole index. Since
k is typically large, filer and phantom entries have low impact on
performance.
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Figure 3: An example of the logarithmic deletion process

Figure 3 illustrates an example of the deletion process. We mark
the filter entries with a solid underline. In Figure 3(a), we delete



Table 2: The I/O cost comparison of four tree indexes
Index Name Search Cost Insertion Cost

Random Read Random Read Sequential Read Random Write Sequential Write

FD-tree O(logk n) O( k
f−k logk n) O( k

f−k logk n)

B+-tree O(logf n) O(logf n) O(1)

LSM-tree O(logk n · logf n) O( k
f logk n) O( k

f logk n)

BFTL O(c logf n) O(c logf n) O(1/c)

the index entries 37 in L0, 45 in L2 and 16 in L2. Since entry 37 is
in the head tree L0, it is deleted from L0 directly. The filter entries
45 and 16 are inserted into the head tree. As other insertions and
deletions performing, the head tree is gradually becoming larger.
When it is full and a merge is performed on L0 and L1 as shown
in Figure 3(b), the filter entry 45 encounters its phantom entry, and
both entries are discarded. When more entries are inserted into the
index and a merge between L1 and L2 occurs, as shown in Figure
3(c), the filter entry 16 and its corresponding phantom entry are
discarded.

Update. An update operation is implemented as a deletion on
the old value followed by an insertion.

3.4 Deamortized Operations on FD-Tree
While the logarithmic method reduces the amortized cost of in-

sertions on FD-tree, the worst case cost is still high. In the worst
case, all sorted runs exceed their capacities after a single insertion
and the whole FD-tree has to be entirely rewritten. This process
may result in an unacceptable response time. Thus, we propose a
simple and effective scheme to address this problem. We take the
deamortization for insertions as an example, since deletions and
updates are handled in a similar way.

Figure 4 demonstrates the basic idea of deamortized insertions
on FD-tree, which is to overlap the execution of insertions and the
merge operation. Specifically, given Nmerge entries to be merged,
we divide these Nmerge entries into |L0| partitions, and progres-
sively combine entries in a partition after executing an insertion.
As a result, the expensive cost of the merge operation is amortized
to |L0| insertion operations. Thus, the worst elapsed time of inser-
tions is reduced by around a factor of |L0|, with the average cost
unchanged.

Insertion

Merge Time

Worst Elapsed Time of Insertion

Insertion

Merge
Time

Worst Elapsed Time of Insertion

Elapsed Time of Insertion

Insertion without amortization

Amortized insertion

Nmerge

|T0|

Nmerge

|T0|

Figure 4: Insertion w/ and w/o deamortization
In order to overlap the execution of insertions and merge, we

maintain two head trees. Once a head tree L0 is full, new entries
are inserted into the other one, i.e. the temporary head tree L′0,
while the merge is performed on L0. The merge process is simi-
lar to that we described in Section 3.3, except that external fences
from the lower levels are inserted into L′0 one by one, rather than
bulk-loading. Once the merge is complete, L′0 has already been
filled, and all external fences have been inserted into L′0. With
deamortization, when a merge completes, we swap L0 and L′0 for
subsequent insertions and merges.

With deamortization, index search requests can proceed even
when a merge is on-going. Since the original FD-tree (L0 ∼ Ll−1)
contains all original entries inserted before the merge operation,

and the temporary head tree L′0 stores all newly inserted entries, we
can perform lookups on both of the original FD-tree (L0 ∼ Ll−1),
and the temporary head tree L′0. The size of temporary head tree
(T ′0) is so small that it is very likely to fit into memory, and the
performance overhead of deamortized searches is insignificant.

4. COST ANALYSIS AND COST MODEL
Cost Analysis. We present the major results in Table 2, and leave

the details on deriving the results in Appendix C.1 and C.2.

THEOREM 1. Given an FD-tree with l levels, the amortized
cost of insertion is minimized when all size ratios between adja-
cent levels are equal.

Theorem 1 justifies our setting on the equal size ratios in our FD-
tree design. The proof is omitted here, and the reader is referred to
Appendix C.2. Given an index of n entries, our analysis shows
that the search cost of the FD-tree matches the optimal search cost
O(logBn) I/Os, where B is the page size. In the meanwhile, FD-
tree supports an update in O(logBn) sequential page writes.

We compare the I/O cost of FD-tree with other B+-tree variants
including the standard B+-tree [8], LSM-tree [24] and BFTL [28].
Table 2 shows their costs on the search and insertion. FD-tree has
a complexity comparable to B+-tree on search and similar to LSM-
tree on insertion. As a result, FD-tree captures the best of both
worlds. Compared to B+-tree, BFTL increases search cost by c
times while reducing insertion cost by c times (c ≥ 1, a tuning
parameter in BFTL [28]) to balance the asymmetry of read and
write speeds.

Cost Model for Parameter Setting. We present an analytical
model to determine the optimal k value for the overall performance.
We focus on the following three aspects in our cost model. More
details on our cost model can be found in Appendix C.3.

Firstly, the complexity results in Table 2 need to be refined for
an accurate estimation.

Secondly, the search cost analysis does not take the buffer pool
into consideration. To set the k value accurately, we develop a cost
model with the buffer pool considered, in particular, its effect on
different levels of the tree.

Finally, our cost model is able to estimate the execution time
for a given workload. Deletion and update operations are imple-
mented using search and insertions. For example, a deletion is im-
plemented by a search followed by an insertion. Thus, a workload
can be treated as a mix of searches and insertions.

We enumerate the candidate k values, calculate the estimated
time cost for each value, and determine the suitable k value that
minimizes the estimated time cost of the given workload.

5. EXPERIMENTAL RESULTS
In this section, we empirically evaluate the cost model, and the

efficiency of FD-tree in comparison with representative indexes.

5.1 Experimental Setup
We ran our experiments on a workstation powered by Intel 2.4GHz

quad-core CPU on Windows XP with 2GB main memory, a 160GB
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Figure 5: Comparison between measured and estimated performance of FD-tree on Mtron SSD
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7200rpm SATA magnetic hard disk and three SSDs. We selected
three commodity SSDs: Samsung 32GB, Mtron MSD-SATA3035
64GB, and an Intel X25-M 80GB. The detailed features of the three
SSDs are summarized in Table 3 in Appendix D. Since some ex-
perimental results on Samsung SSD have been reported in previous
work [19], we focus on the results on Mtron and Intel SSDs due to
the space limitation.

We now briefly describe the implementation and the workload
used in the experiment. More details can be found in Appendix D.
We have implemented FD-tree in comparison with other fine tuned
indexes, including B+-tree [8], LSM-tree [24] and BFTL [28]. We
have implemented a storage manager with standard OS file sys-
tem facilities, with an LRU buffer manager for caching recently
accessed disk pages.

We have used our synthetic data sets and workload for a better
control on their characteristics. The index entry contains a 4-byte
unique key, 30 bits for rid or pid and 2 bits for type. Thus, the
number of entries in a page, f , is around 250, given a 2KB page
size. The key values are uniformly distributed within the range
[0, 230 − 1]. We have also evaluated the performance for skewed
distributions, and the experimental result is similar to that of the
uniform data because all the indexes we evaluated are balanced.

The workloads include search only or update only, as well as
the mixed ones with different operations. In particular, we have
used search-, insertion-, and deletion-intensive workloads, namely
W-Search, W-Insert and W-Delete, respectively.

We have evaluated the tree indexing with different characteris-
tics. By default, the index contains one billion entries, whose total
size is around 8GB. The size of buffer pool is set to 16MB, which
is approximately 0.2% of the 8GB index size. Before running each
experiment, we performed sufficient search queries to warm up the
buffer pool. All indexes are tuned according to the buffer size, and
only the best results are reported.

5.2 Model Evaluation
We evaluate the accuracy of our cost model by comparing the es-

timated and measured performance with various parameters. The
estimated and measured performance for Mtron SSD is shown in
Figures 5. The results for the Intel SSD are omitted, since we ob-
served a similar trend in the comparison between measurement and
estimation. In various settings on parameters, index sizes and work-
loads, our estimations are close to the measurements (mostly within
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a 10% difference).
We first analyze the impact of parameters on FD-Tree includ-

ing f , k, and l. Our measurements are shown in the solid lines of
Figure 5. Figure 5(a) shows the search and the insertion perfor-
mance of an 8GB FD-Tree when f varies from 128 to 4096. The
index page size varies from 1KB to 32KB. As the f value increases,
the search performance significantly degrades, while the insertion
performance slightly improves. We choose the page size of 2KB
(f = 256), following the observation of the previous study [11].

Figure 5(b) plots the search and insertion performance varying
the value of k. The search time decreases with the increased k
value. The sharp increase in the search performance is due to the
high increase of the FD-tree. On the other hand, the insertion per-
formance degrades as the k increases. Specifically, when k is small,
the insertion time increases slightly. Once k is close to f , the inser-
tion performance degrades sharply.

We further study the performance of FD-trees with different num-
bers of levels, as the index size increases. To satisfy the constraint
of k < f − 1, an 8GB FD-tree contains at least three levels in the
experiment. As shown in Figure 5(b), the performance of FD-tree
with five or more levels is dominated by the low search efficiency.
Therefore, we only plot the results of FD-trees with three and four
levels. The search on FD-tree with three level always outperforms
that with four levels, because it accesses fewer pages. In compar-
ison, an FD-tree with fewer levels has a worse performance on in-
sertion than on taller FD-tree. The average insertion performance
of the 4-level FD-tree is 1.5–10X higher than the 3-level FD-tree
when the size is varied from 128MB to 8GB.

Figure 5(e) illustrates the overall performance of FD-trees un-
der a 50% search 50% insertion workload with various index sizes.
When the FD-tree is small, k remains small. The 3-level FD-Tree
exhibits good performance for both search and insertion. As the in-
dex size increases, the value of k increases as well. Once the value
of k is close to f , the insertion performance degrades sharply and
dominates the overall performance. In such cases, a 4-level FD-
tree with a smaller k value exhibits a more balanced performance
between search and insertion. Figure 5(f) plots the elapsed time of
an 8GB FD-tree with various search/insertion ratios. A 3-level FD-
tree outperforms a 4-level FD-tree, when 90% of the workload are
searches.
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Figure 8: Search performance comparison varying index size
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Figure 9: Insertion performance comparison varying index size
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Figure 10: Overall performance comparison varying index size

5.3 Insertion and deletion performance
Since insertions and deletions of FD-tree are based on logarith-

mic methods, we study their performance trends in long-running
experiments. We insert (or delete) 50 million entries into an 8GB
FD-tree. The total number of inserted (deleted) entries is sufficient
to make the lowest two levels be merged for three times. The av-
erage elapsed time of each 100 thousand operations is shown in
Figure 6.

The average elapsed time of insertions varies significantly, from
0.01 to 5 milliseconds, due to the sizes of levels where merge opera-
tions occur. The three spikes in the figure indicate the three merges
between the lowest two levels. Between every two spikes, the aver-
age elapsed time fluctuates. As the levels gradually become larger
along with insertions, the average insertion time increases. Once
all insertions migrate to the lowest level, the elapsed time reduces
to a small value.

The average elapsed time of deletions is greater than those of
insertions, because a search is invoked before inserting the filter
entries. The elapsed time remains relatively steady except the three
spikes. We also find that the three spikes of deletions appear slightly
later than that of insertions. The reason is that some filter entries
encounter their corresponding phantom entries and are absorbed
before migrating to the lowest level.

5.4 Performance of deamortization
Figure 7(a) demonstrates the accumulated elapsed time of over

one million queries consisting of 50% searches and 50% insertions,
with and without deamortized execution. We separately show the
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Figure 11: Search performance comparison varying selectivity

 0

 1

 2

 3

 4

 5

 6

 7

 8

OSearch OInsert ODeleteOUpdateWSearchWInsert WDelete

E
la

ps
ed

 T
im

e 
(m

s)

Workloads

FD-tree
B+-tree

LSM-tree
BFTL

(a) On Mtron SSD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

OSearchOInsert ODeleteOUpdateWSearchWInsertWDelete

E
la

ps
ed

 T
im

e 
(m

s)

Workloads

FD-tree
B+-tree

LSM-tree
BFTL

(b) On Intel SSD

Figure 12: Performance comparison on flash SSDs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

OSearch OInsert ODelete OUpdate WSearch WInsert WDelete

E
la

ps
ed

 T
im

e 
(m

s)

Workloads

FD-tree
B+-tree

LSM-tree
BFTL

Figure 13: Performance comparison on hard disk

accumulated time for searches and insertions, as well as the accu-
mulated total time for both of operations. In the query execution
without deamortization, we observe a sharp increase in both of the
accumulated overall time and insertion time (also implied by the
spikes in Figure 6). The high elapsed time (around 10 seconds)
of a particular insertion operation is caused by a merge operation.
With the deamortization, the accumulated time increases smoothly
when a merge starts, because the high merge cost is amortized to
thousands of insertions afterwards. Nevertheless, the search time
is slightly increased by the deamortization before the merge com-
pletes. The reason is that FD-tree maintains two head trees to over-
lap the executions of insertions and the merge operation, which
results in extra searches on the temporary head tree.

The average and worst execution times with and without deamor-
tization are illustrated in Figure 7(b). Deamortization significantly
reduces the worst elapsed time (by 80–2500X) while introducing a
slight overhead on the average elapsed time (less than 5%). Since
deamortized deletion is implemented with a deamortized search
and a deamortized insertion, the performance is similar to the over-
all performance of the 50% search 50% insertion workload.

5.5 Performance comparison on flash SSDs
Figures 8 shows the performance comparison for the search-only

workload. On the Mtron SSD, BFTL is the slowest, because it
requires fetching multiple pages randomly in accessing a tree node.
B+-tree and FD-tree are the best, and they perform quite similarly
regardless of the index size. FD-tree has a performance similar to
B+-tree on small indexes. When the index size exceeds 2GB, FD-
tree is slightly slower than B+-tree, since FD-tree is taller than B+-
tree. LSM-tree is slower than both B+-tree and FD-tree, because a



single search on LSM-tree requires searching on multiple B+-trees.
On the Intel SSD, the search performance comparison is similar to
that on Mtron SSD, except that BFTL outperforms LSM-tree.

Figure 9 shows the insertion performance of the four indexes.
LSM-tree and FD-tree are over an order of magnitude faster than
the other two indexes due to their logarithmic structures with multi-
page I/O optimization. Specifically, when the index size is 8GB,
FD-tree is around 35X and 280X faster than BFTL and B+-tree on
the Mtron SSD, respectively. FD-tree is 10-50% slower than LSM-
tree due to its fence structure.

The overall performance of the four indexes is shown in Figure
10. On the Mtron SSD, the gap of overall performance among the
four indexes is very large. B+-tree is the slowest because its over-
all performance is dominated by the poor insertion performance.
BFTL reduces the insertion cost by degrading search performance,
and achieves a balanced performance between search and inser-
tion. It has a better overall performance than B+-tree but is still
much worse than FD-tree and LSM-tree. FD-tree outperforms all
other three indexes for all index sizes. Specifically, when the index
size is 8GB, the speedup of FD-tree is around 24.2X, 5.8X, and
1.8X over B+-tree, BFTL and LSM-tree, respectively. As for the
overall performance comparison on Intel SSD, the speedup of FD-
tree over other competitors is not as significant as on Mtron SSD.
Specifically, when the index size is 8GB, the speedup of FD-tree
over B+-tree and BFTL is 3.3X, and the speedup of FD-tree over
LSM-tree is 1.6X.

Figure 11 shows the performance comparison for the range search
varying the number of entries in the search range. The elapsed time
of all four indexes gradually increases when the matching entries
occupy more than one page. With the knowledge about the number
of pages to be retrieved in the next level and the structure of sorted
run, FD-tree exploits the multi-page I/O technique. On a B-tree
and BFTL, sibling nodes may not be placed on consecutive physi-
cal pages, and lose the opportunity of multi-page I/O optimization.
Therefore, search on FD-tree is 6–10X and 6–9X faster than B+-
tree and BFTL for large search ranges, respectively.

Figure 12(a) shows the elapsed time for different workloads on
Mtron SSD. The workloads include W-Search, W-Insert and W-
Delete, and four workloads with only searches, insertions, dele-
tions and updates, (denoted by O-Search, O-Insert, O-Delete, and
O-Update, respectively). We performed 10 million queries for each
workload. The deletions and updates on FD-tree are 20.6-22.9X,
1.6-1.7X, 2.6-2.9X faster than those on B+-tree, LSM-tree and BFTL,
respectively. For W-Search on Mtron SSD, the speedups of FD-tree
over B+-tree, LSM-tree and BFTL are 5.7X, 1.6X, 3.7X, respec-
tively. For W-Insert and W-Delete, FD-tree is over 20.5-27.9X,
1.4X, 4.6-5.5X faster than B+-tree, LSM-tree and BFTL. The re-
sults on Intel SSD are shown in Figure 12(b). Due to the higher
speed on random write of Intel SSD, the performance of both B+-
tree and BFTL are improved significantly. In specific, B+-tree out-
performs LSM-tree on the search-intensive workload. While FD-
tree has a smaller speedup on Intel SSD than on Mtron SSD, it
exhibits the best performance for the mixed workloads.

5.6 Performance comparison on hard disk
We also study the performance of FD-tree on hard disk (Figure

13). We performed 1,000,000 queries for each workload. FD-tree
and LSM-tree have a superior insertion performance by adopting
the logarithmic method, but their overall performance is signif-
icantly limited by the search efficiency due to the poor random
read speed on hard disk. As a result, FD-tree has a similar per-
formance to the competitors under search- and deletion-intensive
workloads, and have a 1.1-2.6X speedup over other competitors

under insertion-intensive workloads.

6. CONCLUSIONS
Due to the asymmetric speeds of reads and writes of the flash

disk, data structures and algorithms originally designed for the hard
disk require a careful adaptation or even redesign to suit the flash
disk. In this paper, we propose a flash disk aware tree index, FD-
tree. We design our tree index with the logarithmic and the frac-
tional cascading techniques to improve its overall performance. Our
tree index takes the advantage of hardware features of the flash
disk by utilizing efficient random reads and sequential accesses,
and eliminating the slow random writes. Both of our analytical and
empirical results show that FD-tree captures the best of both search
and insertion performance among existing tree indexes, and out-
performs these indexes for both search- and update-intensive work-
loads.
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APPENDIX
A. PRELIMINARY ON FLASH SSD

This section introduces the preliminary on flash SSDs for refer-
ence. The flash memory has been the main-stream storage in mo-
bile devices and embedded systems due to its superior characteris-
tics. Recently, many manufactures pack flash memory into Solid
State Disks (SSDs) with the same interface as the magnetic disks.
As the capacity increases, SSDs have become attractive for per-
sonal computers and high-end servers, because of its extremely low
access latency and power consumption. The most common type of
flash memory in SSDs is NAND flash. In the paper, we use flash
SSDs to denote NAND-flash based SSDs.

Flash memory is a non-volatile storage media with unique char-
acteristics. Both reads and writes of NAND flash memory are at the
granularity of flash pages. A typical size of flash page is between
512B to 2KB. Due to the physical characteristics of flash memory,
writes are only able to change bits from 1 to 0. Thus, an erase
operation that sets all bits to 1 must be performed before rewrit-
ing. However, the unit of erase operations is block, which typically
contains 16-64 pages. Moreover, the latency of erase operations is
far higher than reads or writes. As a result, this erase-before-write
mechanism causes inferior write, especially random write perfor-
mance of flash memory. In addition, each flash block can only be
erased by a finite number of times before wearing out. Once a flash
block wears out, it cannot be reused any more.

Flash memory used in flash SSDs can be categorized into two
types. High-end flash disks use Single Level Cell (SLC) flash mem-
ory that stores one bit of data per cell. The alternative is Multi Level
Cell (MLC) flash memory that uses four voltage levels and can thus
store two bits of data per cell. While MLC flash has twice the den-
sity of SLC, it has an inferior read/write performance and fewer
erase cycles before wearing out.

Flash SSDs are built on an array of flash memory chips. A logi-
cal page might span on multiple flash memory chips, and thus cre-
ate the potential for leveraging parallelism within drives. Those
drives provide a disk-like bus interface on top of the flash mem-
ory chips. To emulate a traditional hard disk interface that has no
erase operation, flash SSDs employ a firmware layer, called the
flash translation layer (FTL), to implement an out-place update
strategy by maintaining a mapping table between the logical and
physical pages. As writes in flash memory cannot be performed in
place, each write of a logic page is actually performed on a differ-
ent physical page. On a write request of a page, a block with the
size of mapping granularity is rewritten to another place, and the
corresponding entry in the mapping table is updated to reflect the
new physical address. The mapping table is maintained in persis-
tent flash memory and rebuilt in a volatile RAM buffer at startup
time. Besides the address mapping, the FTL takes the responsibili-
ties of garbage collection and wear leveling. The garbage collector
copies the valid pages into a free area and erases the old area for
future use. Wear-leveling is a technique that prolongs the life time
of the flash disk by evenly distributing the writes across the entire
flash disk. In addition, Flash SSDs are usually equipped with an
on-drive RAM cache for improving the performance of writes with
high locality.

B. ALGORITHM PSEUDOCODE
The algorithm pseudocode of search, insertion, merge, deletion

is given in Algorithms 1, 2, 3 and 4, respectively.

Algorithm 1 Search(K)
Parameter: K: the search key

1: F = NULL, R = ∅; //F : the filter entry, R: the result set
2: Search L0;
3: Let pid be the id of the page containing the entry whose key value is

the greatest among those equal to or smaller than K in L0;
4: for each level Li in FD-tree do
5: Perform a binary search on the page whose id is pid;
6: let e be the largest entry that is equal or smaller than K;
7: while e.type 6= External and e.type 6= Internal do
8: if e.type = Filter then
9: F = e;

10: else
11: if F.key 6= e.key or F.rid 6= e.rid then
12: return e;
13: Let e be the previous entry in Li;
14: pid = e.pid; /*the next-to-go page in Li+1*/
15: return R

Algorithm 2 Insert(e)
Parameter: e, the entry to be inserted into the FD-tree.

1: Insert e into L0 ;
2: if L0 reaches its level capacity then
3: Merge(L0, L1); //See Algorithm 3

Algorithm 3 Merge(Li−1, Li)
Parameter: Li−1,Li: the levels to be merged

1: Let ei−1 and ei be the first entry in Li−1 and Li, respectively;
2: while ei−1 6= null and ei 6= null do
3: while ei−1.type = Fence do
4: Let ei−1 be the next entry of Li−1;
5: while ei.type = Internal Fence do
6: Let ei be the next entry of Li;
7: if ei.type = Normal and ei−1.type = Filter and ei.key =

ei−1.key and ei.rid = ei−1.rid then
8: Let ei−1 and ei be the next entry of Li−1 and Li, respectively;
9: if ei−1.key ≤ ei.key then

10: entryToInsert = ei−1;
11: Let ei−1 be the next entry of Li−1;
12: else
13: entryToInsert = ei;
14: Let ei be the next entry of Li;
15: if entryToInsert.type = Fence then
16: lastFence = entryToInsert;
17: if the current page in L′i is empty then
18: if entryToInsert.type 6= Fence then
19: internalFence.key = entryToInsert.key;
20: internalFence.rid = lastFence.rid;
21: Write internalFence to L′i;
22: Write entryToInsert to L′i;
23: externalFence.key = entryToInsert.key;
24: externalFence.rid = ID of current page in L′i;
25: Write externalFence to Li−1; //This may invokes writes ex-

ternal fences to the higher levels;
26: else
27: Write entryToInsert to L′i;
28: if L′i reaches its level capacity then
29: Merge(L′i, Li+1);
30: Replace Li by L′i;

Algorithm 4 Delete(q)
Parameter: q, the predicate of the deletion query.

1: Perform q on the head tree;
2: Search q on FD-tree, let the result entry be e;
3: e.type = Filter;
4: Insert(e); //See Algorithm 2



C. COST ANALYSIS AND COST MODEL
This section presents the details on the cost analysis and cost

model of FD-tree.

C.1 Search Time Analysis
The cost of a lookup consists of two parts: the search cost on

head tree, and the search cost on lower sorted runs. For the first
part, dlogf |L0|e pages are retrieved, similar to a lookup on B+-
tree. For the second part, the lookup operation is performed by
retrieving a page at each level and finding a fence within this page.
At a certain level, the I/O cost to find the fence is one, because each
page has at least one matching fence (the first entry in the page).
With the number of levels in the index l = dlogk n/|L0|e+ 1, we
have the estimated time of a search:

tsearch =
B · (dlogf |L0|e+ dlogk n/|L0|e)

Wrrnd(B)
(1)

Since dlogf |L0|e+ dlogk n/|L0|e = O(logk n), we show that
FD-tree serves a lookup in O(logk n) random reads.

C.2 Insertion Time Analysis
Each insertion on FD-tree causes O(1) random write on the head

tree, which is small and of a high locality. However, some inser-
tions may invoke expensive merge operations. In this subsection,
we will show that an insertion on FD-tree amortizedly requires
O( k

f−k
logf n) sequential reads and writes. Moreover, we firstly

relax our assumption that the size ratios between adjacent levels
must all be equal for an optimal insertion performance, i.e., we de-
fine ki = |Ti|/|Ti−1| (1 ≤ i < l), and later prove that FD-tree has
a minimal amortized merge cost when k1 = k2 = · · · = kl−1 in
Theorem 1.

The time cost of an insertion consists both of insertion cost on
the head tree and the merge cost on lower sorted runs, i.e. tinsert =
theadtree + tmerge. Following the design principle P2 , those ran-
dom writes on the head tree have a similar performance with se-
quential ones. Thus, we use the bandwidth of sequential write to
calculate the time cost of random writes on the head tree, i.e. we
have theadtree = 1

Wwseq
. Next, we will show the amortized merge

cost per insertion tmerge by deriving the total merge time during n
continuous insertions.

Firstly, we focus on the merges between two levels Li−1 and Li

(1 ≤ i < l). LetMi denote the set of merges occurred between the
two levels when performing n insertions, and mi being the number
of merges inMi. Since the sizes of level Li−1 and Li are changed
as the merges in Mi occur, we use |Lj

i−1| and |Lj
i | to denote the

current number of entries in the level Li−1 and Li immediately
after the completion of the jth merge between them. According
to the insertion and merge algorithms we described in Section 3.3,
FD-tree has the following two properties.

Property 1. When the j-th merge inMi is completed, the upper
level, Li−1, contains only external fences. Thus, we have

|Lj
i−1| = |Lj

i |/f (2)

Property 2. Since all n inserted entries will go through level
Li−1 and will be moved into level Li, we have

n =

mi∑
j=1

(|Li−1| − |Lj
i−1|) = mi · |Li−1| −

mi∑
j=1

|Lj
i−1| (3)

By substituting Eq. (2) and Eq. (3), we derive the number of
entries to be written and read, N i

write and N i
read respectively, for

all mi merges in Mi.

N i
write =

mi∑
j=1

(|Lj
i |+ |Lj

i−1|) =

mi∑
j=1

(1 + f) · |Lj
i−1|

= (1 + f)(mi · |Li−1| − n) (4)

N i
read =

mi∑
j=1

(|Lj−1
i |+ |Li−1|) = N i

write +

mi∑
j=1

(|Lj−1
i−1 | − |Lj

i−1|)

= N i
write − n/(f − 1) (5)

Given the maximum number of external fences |Li|/f , and in-
terval fences |Li−1/f | on level Li−1, we have the upper bound for
mi (1 ≤ i < l)

mi <
n

|Li−1| − |Li−1|/f − |Li|/f
=

f

f − ki − 1
· n

|Li−1|
The upper bound of the amortized merge cost per insertion oper-

ation is given in Eq. (7).

tmerge =
1

n
·

l−1∑
i=1

(
R ·N i

write

Wwseq
+

R ·N i
read

Wrseq
)

<
Wwseq + Wrseq

Wwseq ·Wrseq
·B ·

l−1∑
i=1

(
mi · |Li−1|

n
− 1) (6)

<
Wwseq + Wrseq

Wwseq ·Wrseq
·B ·

l−1∑
i=1

(
f

f − ki − 1
− 1) (7)

THEOREM 1. Given an FD-tree with l levels, the amortized cost
of insertion is minimized when k1 = k2 = · · · = kl−1.

PROOF. Since tinsert = theadtree + tmerge and theadtree is
a constant here, we will prove that the amortized merge cost is
minimized when k1 = k2 = · · · = kl−1. We firstly rewrite
Eq. (7) in form of tmerge < Φ · ∑l−1

i=1(
f

f−ki−1
− 1), where

Φ = B · Wwseq+Wrseq

Wwseq ·Wrseq
.

By the design of FD-tree, we have

l−1∏
i=1

ki =
n

|L0| (8)

Next, we apply the Geometric Mean inequality three times:

Φ ·
l−1∑
i=1

(
f

f − ki
− 1) = Φ ·

l−1∑
i=1

ki

f − ki

≥ Φ · (l − 1) · l−1

√√√√
l−1∏
i=1

ki

f − ki

≥ Φ · (l − 1) · l−1

√
n

|L0| ·
l − 1∑l−1

i=1 (f − ki)

≥ Φ · (l − 1) · l−1

√
n

|L0| ·
1

f − l−1
√∏l−1

i=1 ki

= Φ · (l − 1) · l−1

√
n

|L0| ·
1

f − l−1
√

n
|L0|

All the three equalities hold if and only if all ki are equal, proving
the theorem.

In the rest of the paper, we assume k1 = k2 = · · · = kl−1,
and thus use k to represent ki for simplicity. Then, Eq. (7) can be



rewritten into Eq. (9), which clearly shows that the amrotized time
cost of an insertion on FD-tree is the time of performing O( k

f−k
logk n)

sequential reads and O( k
f−k

logk n) sequential writes.

tmerge <
k + 1

f − k − 1
· Wwseq + Wrseq

Wwseq ·Wrseq
·B · dlogk n/|L0|e (9)

C.3 Cost Model for Parameter Setting
We analytically develop a cost model to determine the optimal k

value in order to achieve the optimal overall performance given the
characteristics of both workload and flash SSDs.

The search cost analysis (Eq. (1)) does not take the buffer pool
into consideration, which is widely employed and plays a key role
in real systems. To estimate the optimal configuration, we develop
a cost model with the buffer pool considered. Based on the access
path on tree indexes, it is commonly held that the nodes at a higher
level have a larger possibility that they reside in the buffer pool.
Since the head tree is so small that it is very likely to fit into mem-
ory, we omit the cost of a lookup on the head tree. We model that
the top logk(M/|L0|) levels could reside in a buffer pool of size
M . By extending Eq. (1), the estimated search cost with the buffer
pool considered, tsearch, is given in Eq. (10).

tsearch =
B · (dlogk n/|L0|e − logk M/|L0|)

Wrrnd(B)
(10)

While the amortized insertion cost is bounded by Eq. (9), that
equation is an over-estimation. Instead of using an analytical model,
we use an estimation model that simulates the amortization. Algo-
rithm 5 simulates the procedure that sufficient entries are inserted
into an FD-tree to make the lowest two levels merge. In order to cal-
culate the amortized insertion time, we count the number of entries
that have been read and written, as well as the number of insertions.

Let |Li|, |L′i| denote the capacity, and the current cardinality of
level i, respectively. In the outer loop of Algorithm 5 (Lines 3-6),
we count the number of insertions occurred between two consec-
utive merges. After the first merge operation, L0 contains |L′0|
entries. Thus, |L0| − |L′0| insertions are performed before the next
merge operation occurs. The number of insertions are accumulated
into a variable numInsert (Line 4). The merge operations are
simulated in the inner loop (Lines 7-12). In each iteration of the
inner loop, two adjacent levels are merged. This process continues
from the top to the bottom levels until a level does not exceed its
capacity. The numbers of entries read and written are maintained
in variables numRead and numWrite, respectively. The current
cardinality of Li+1 advances by the number of non-fence entries in
Li (Line 9). The cardinality of Li is then set to L′i+1/f (Line 10),
which can be derived from Eq. (2). Finally, we include the time for
sequential reads an writes, and return the average cost (Line 13).

Algorithm 5 Insertion Cost Estimation
1: i = 0;
2: numInsert = numRead = numWrite = 0;
3: while i < l − 1 do
4: numInsert = numInsert + (|L0| − |L′0|);
5: |L′0| = |L0|;
6: i = 0;
7: while |L′i| ≥ |Li| do
8: numRead = numRead + (|L′i|+ |L′i+1|);
9: |L′i+1| = |L′i+1|+ (|Li| − |L′i|);

10: |L′i| = |L′i+1|/f ;
11: numWrite = numWrite + (|L′i|+ |L′i+1|);
12: i = i + 1;
13: return numRead·E/Wrseq+numWrite·E/Wwseq

numInsert
;

The computation cost of Algorithm 5 is O( n
k·|L0| ). This cost is

low, e.g., the computation on an 8GB FD-tree completes in 50ns on
our experimental platform.

By now, we have both of the estimated search time cost tsearch

and insertion time cost tinsert. Next, we develop a model to esti-
mate the query time under a certain workload. Suppose the ratios of
search, deletion, insertion, and update operations in the workload
are psearch, pdeletion, pinsert and pupdate, respectively. Deletion
and update operations are implemented using search and insertions.
In particular, the deletion is implemented by a search followed by
an insertion. The update is performed as a deletion and an insertion.
Thus, we can perform an update by a search and two insertions. We
define ps as the normalized percentage of search operations in the
workload, as given in Eq. (11). We further define the normalized
percentage of insertion to be pi = 1− ps.

ps =
psearch + pdeletion + pupdate

psearch + pinsert + 2pdeletion + 3pupdate
(11)

Given a workload of the search and the insertion rates being ps

and pi, respectively, the total execution time Ttot of the workload is
given in the equation Ttot = ps · tsearch +pi · tinsert. We can enu-
merate the k values, calculate Ttot for each value, and determine
the suitable k value that minimizes Ttot.

D. DETAILED EXPERIMENTAL SETUP
We present the detailed experimental setup to help understanding

the experiment. We select three commodity SSDs by three major
SSD manufacturers: Samsung MCBOE32G8APR-0XA00 32GB,
Mtron MSD-SATA3035 64GB, and Intel X25-M 80GB. Some fea-
tures of the three SSDs are summarized in Table 3. The basic I/O
cost metrics for Mtron and Intel SSDs are shown in Figure 1.

Implementation details. All implementation is written in C lan-
guage, and is compiled with MSVC 8.0 with full optimizations on.

We have implemented a storage manager that uses standard OS
file system facilities. The components of index are stored in large
files in the file system, which are treated as linear arrays of disk-
resident pages. We adopt the fixed-size page format in our storage
manager. Each page has a page header containing multiple fields
such as the number of entries in the page. The rest of the page
is for the entries and is organized as the slotted page layout for
fixed-length records. We set the size of index node(page) to be
consistent with the physical page size of the disk, e.g. B = 2K
bytes. We understand that the consecutive pages in a large file may
not be placed entirely consecutively on the physical device, but it
was shown that the negative impact was insignificant [13].

An LRU buffer manager is implemented for caching pages re-
cently read and written. A written page in the buffer pool is firstly
marked as a dirty page, and will later be written to disk when it
is evicted by the replacement policy. To avoid the interference be-
tween the virtual memory of the operating system and our buffer
manager, we disabled the buffering functionality of the operating
system using Windows APIs.

In the implementation of FD-tree, the type and pid fields of en-
tries are packed into one integer: 30 bits for pid and 2 bits for
type. The size of the head tree is fixed to 512KB. The merge oper-
ation on FD-tree can skip the buffer layer and directly read or write
pages from or to the storage layer in order to exploit the multi-page
I/O optimization and prevent hot pages from being evicted from the
buffer pool. The access unit size of sequential I/Os is set to 512KB.

The B+-tree implementation follows the previous study [8]. If a
node is full, an insertion causes a split on the node. If a node is less
than half full, we combine it with its sibling node.



Table 3: Specifications of flash SSDs
Samsung SSD Mtron SSD Intel SSD

Model MCBOE32G8APR MSD-SATA3035 X25-M
Mapping Table Block-Level Block-Level Page-Level

in FTL Mapping Mapping Mapping
Capacity 32GB 64GB 80GB
Memory MLC SLC MLC
Interface ATA SATA SATA

LSM-tree is implemented as a forest consisting of multiple B+-
tree components. Similar to FD-tree, the tree components are de-
signed to be of stepped sizes. We set the size ratio between two tree
components to be the same as the k value, and perform the same
tuning as that on FD-tree. The size of the smallest tree is set to the
locality area size, the same size as the head tree in FD-tree. The
multi-page I/O optimization is also applied to the merge operation
between tree components.

We implemented BFTL at the application level and tuned its per-
formance on the flash SSD. One important parameter for BFTL is
c, the maximum number of pages per tree node scattered over the
disk. This parameter is a factor to balance the asymmetric perfor-
mance of search and updates. Since BFTL is originally designed
for embedded systems with small flash cards, the recommended c
value is not suitable for the large flash SSDs. We varied the pa-
rameter and found that c = 16, c = 11, and c = 2 is the best
configuration for balance this asymmetry on Samsung SSD, Mtron
SSD and Intel SSD respectively. Since an index node may scat-
ter over multiple pages, BFTL needs around nEC/2f memory for
storing the mapping table, for example, 256MB for an 8GB index
on Mtron SSD. We separate this memory area from the buffer pool.

Workload Design. We used the workloads with search only or
update only, as well as mixed ones with different operations. In
particular, we use a workload of 80% searches, 10% insertions,
5% deletions and 5% updates to simulate a workload dominated
by reads, denoted as W-Search. We define W-Insert as a workload
consisting 20% searches, 50% insertions, 20% deletions and 10%
updates to simulate a workload dominated by insertions. We define
W-Delete as a workload consisting 20% searches, 20% insertions,
50% deletions and 10% updates to simulate a workload dominated
by deletions.

All experiments focus on evaluating long running indexes. At
the beginning of all experiments, B+-tree is built by bulk loading
with the load factor of 0.7. Then we insert entries to make 20% leaf
nodes split. We build FD-tree and LSM-tree in a similar process.
The index is first built by bulk loading and then we keep insert-
ing entries into the index until each level of FD-tree or each tree
component of LSM-tree is at least half full. For BFTL, after bulk
loading, we keep inserting entries into the index until each node
scatters over multiple pages.


