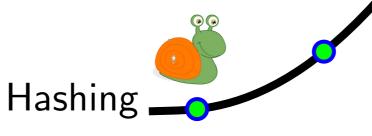


Model and problem

Model: External memory model. Block size b words, cache size m words. Cost is "number of blocks read/write (I/Os)"

Problem: Maintain a hash table to support update and query.

Try to understand "the inherent tradeoff between queries and updates"



Previous results

Hashing in the internal memory is well understood (under random inputs).

Knuth, 1970s: $t_q = \frac{1}{2}(1+1/(1-\alpha)), t_u = 1 + \frac{1}{2}(1+1/(1-\alpha)^2)$. α : load factor: minimum storage should be use/storage actually used

Previous results

- Hashing in the internal memory is well understood (under random inputs).
 Knuth, 1970s: t_q = ¹/₂(1+1/(1-α)), t_u = 1+ ¹/₂(1+1/(1-α)²). α: load factor: minimum storage should be use/storage actually used
- In external memory (random inputs)
 Knuth, 1970s: Expected average cost of a query is 1 + 1/2^{Ω(b)} I/Os, provided the load factor α is less than a constant smaller than 1. Update has a similar bound.

Exact Numbers Calculated by D. E. Knuth

Bucket size, b	al an Bas : h		N AN UNSUCCESSFUL SEARCH BY SEPARATE CHAINING Load factor, α							
	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
1	1.0048	1.0187	1.0408	1.0703	1.1065	1.1488	1.197	1.249	1.307	
2	1.0012	1.0088	1.0269	1.0581	1.1036	1.1638	1.238	1.327		1.34
3	1.0003	1.0038	1.0162	1.0433	1.0898	1.1588	1.252	1.369	1.428 1.509	1.48
4	1.0001	1.0016	1.0095	1.0314	1.0751	1.1476	1.253	1.394	1.509	1.59
5	1.0000	1.0007	1.0056	1.0225	1.0619	1.1346	1.233	1.394	1.620	1.07
10	1.0000	1.0000	1.0004	1.0041	1.0222	1.0773	1.249	1.410	1.020	2.00
20	1.0000	1.0000	1.0000	1.0001	1.00222	1.0234	1.113			2.00
50	1.0000	1.0000	1.0000	1.0000	1.0028	1.0234	1.113	1.367 1.182	1.898 1.920	2.29

Table 3

AVERACE ACCESSES IN A OU

Bucket size, b	10%			Load factor, α						
		20%	30%	40%	50%	60%	70%	80%	90%	95%
1	1.0500	1.1000	1.1500	1.2000	1.2500	1.3000	1.350	1.400	1.450	1.48
2	1.0063	1.0242	1.0520	1.0883	1.1321	1.1823	1.238	1.299	1.364	1.40
3	1.0010	1.0071	1.0215	1.0458	1.0806	1.1259	1.181	1.246	1.319	1.30
4	1.0002	1.0023	1.0097	1.0257	1.0527	1.0922	1.145	1.211	1.290	1.33
5	1.0000	1.0008	1.0046	1.0151	1.0358	1.0699	1.119	1.186	1.268	1.32
10	1.0000	1.0000	1.0002	1.0015	1.0070	1.0226	1.056	1.115	1.206	1.27
20	1.0000	1.0000	1.0000	1.0000	1.0005	1.0038	1.018	1.059	1.150	1.22
50	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.001	1.015	1.083	1.16

The Art of Computer Programming, volume 3, 1998, page 542

Can we batch updates? However, in external memory model, disk reads/writes are expensive and powerful. Can we hope for lower than 1 I/O per update?

Can we batch updates?

- However, in external memory model, disk reads/writes are expensive and powerful. Can we hope for lower than 1 I/O per update?
 - No, if there is no space in main memory for buffering. But, not the case in reality!

Can we batch updates?

- However, in external memory model, disk reads/writes are expensive and powerful. Can we hope for lower than 1 I/O per update?
 - No, if there is no space in main memory for buffering. But, not the case in reality!
 - Maybe yes, if we have an Ω(b) main memory for buffering! Like numerous problems in external memory, e.g. stack. More: priority queue, buffer tree ...

Can the amortized update cost be something like $O(1/b^c)$ (for some $0 < c \le 1$) for hashing?

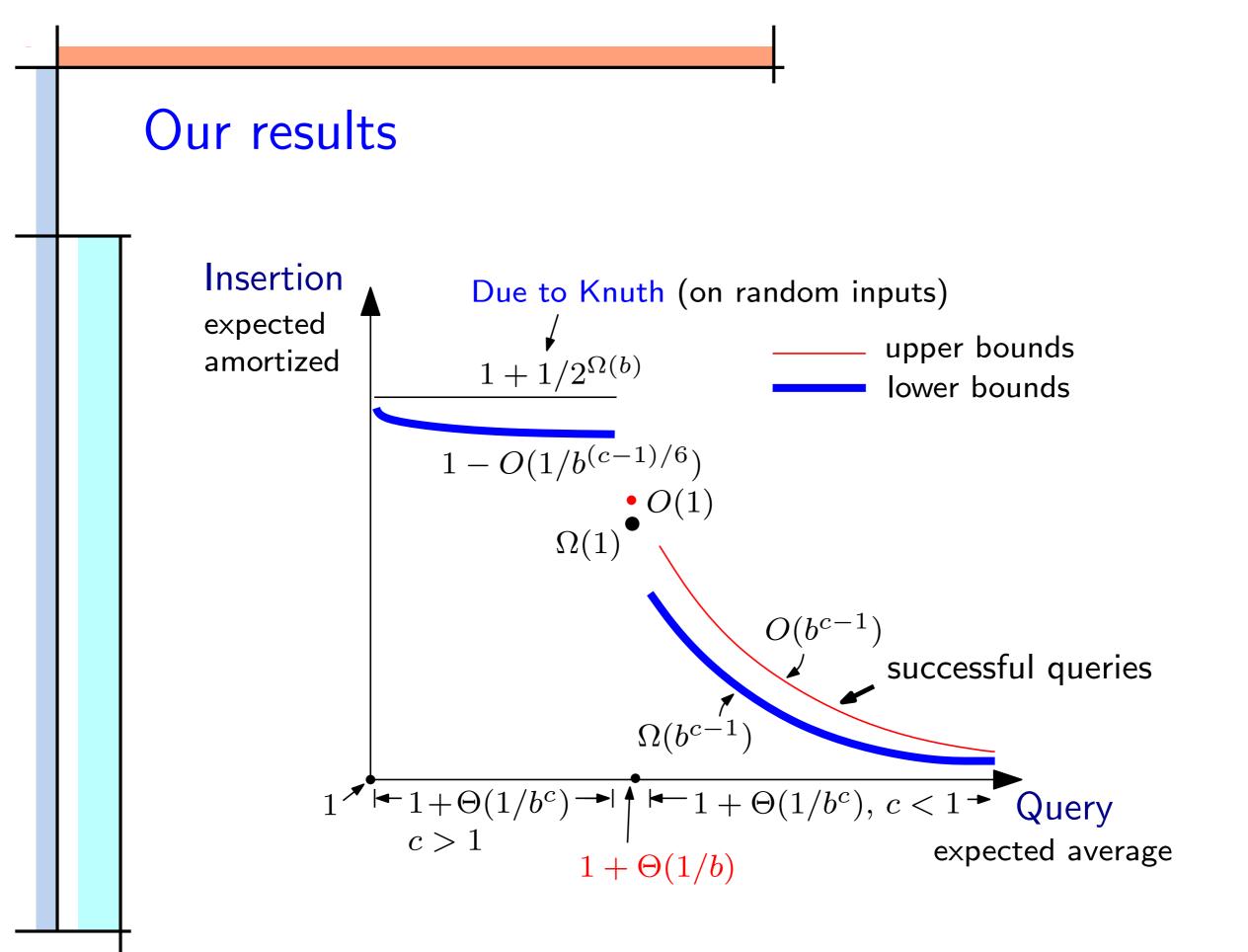
Can we batch updates?

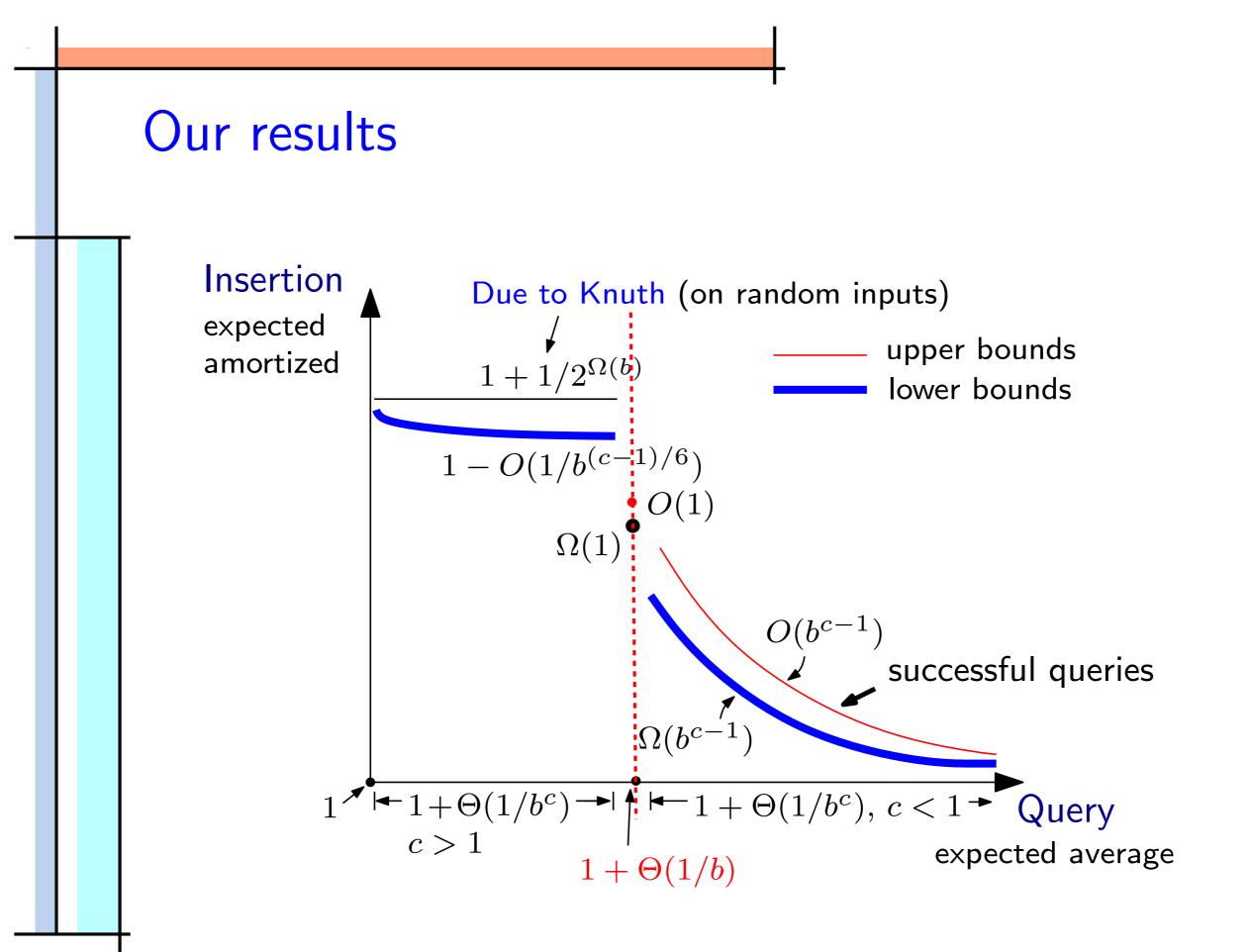
- However, in external memory model, disk reads/writes are expensive and powerful. Can we hope for lower than 1 I/O per update?
 - No, if there is no space in main memory for buffering. But, not the case in reality!
 - Maybe yes, if we have an Ω(b) main memory for buffering! Like numerous problems in external memory, e.g. stack. More: priority queue, buffer tree ...

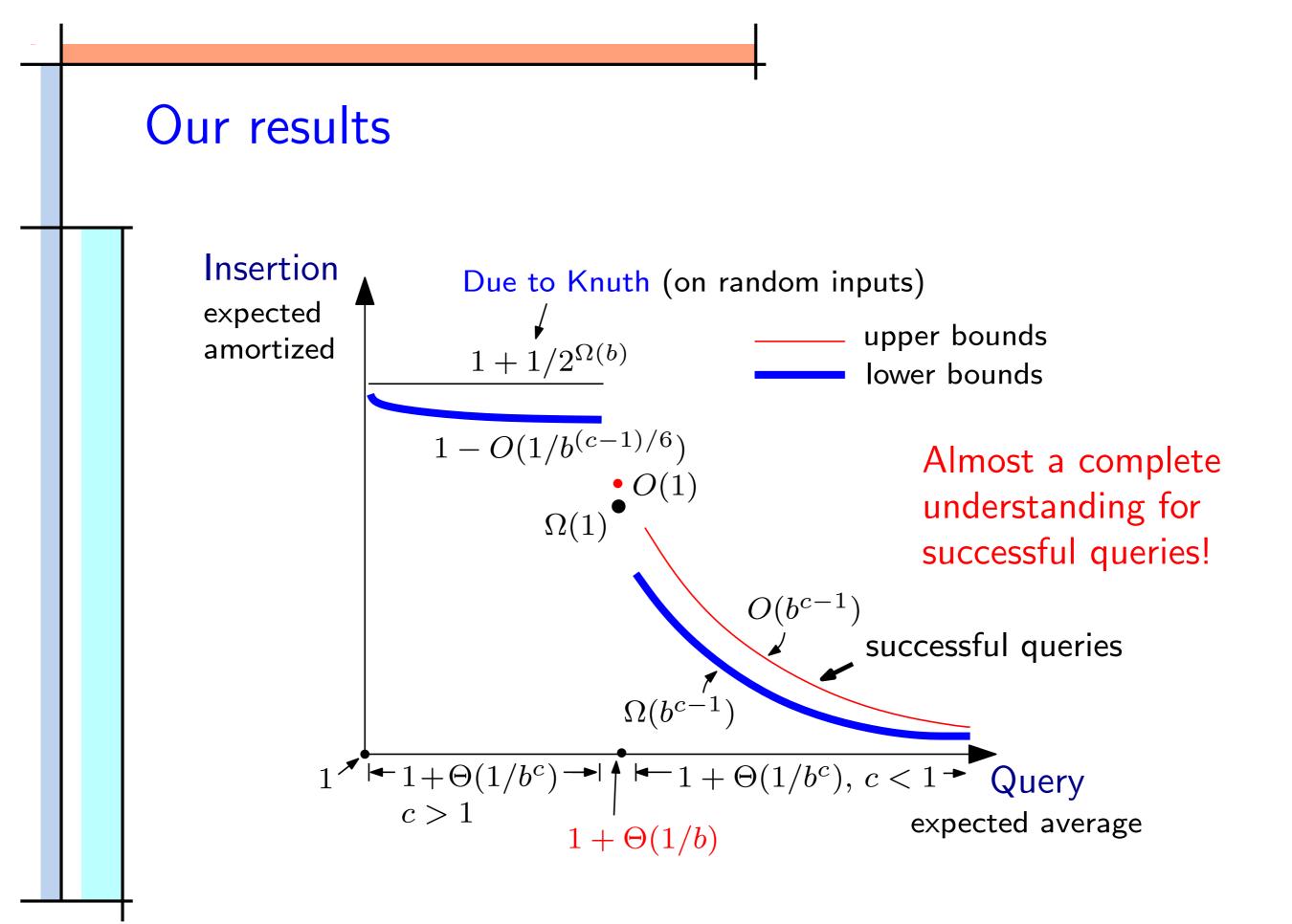
Can the amortized update cost be something like $O(1/b^c)$ (for some $0 < c \le 1$) for hashing?

Conjectured by Jensen and Pagh (2007):

The insertion cost must be $\Omega(1)$ I/Os if the query cost is required to be O(1) I/Os.







Other related results

Upper bounds

- Remove ideal hash function assumption [Carter and Wegman 1979], making query worst-case [i.e. Fredman, Komlos and Szemeredi, 1984] ... (internal)
- Queries and updates in $1 + O(1/b^{\frac{1}{2}})$ I/Os with $\alpha = 1 O(1/b^{\frac{1}{2}})$ [Jensen and Pagh, 2007]. (external, no memory)

Other related results

Upper bounds

- Remove ideal hash function assumption [Carter and Wegman 1979], making query worst-case [i.e. Fredman, Komlos and Szemeredi, 1984] ... (internal)
- Queries and updates in $1 + O(1/b^{\frac{1}{2}})$ I/Os with $\alpha = 1 O(1/b^{\frac{1}{2}})$ [Jensen and Pagh, 2007]. (external, no memory)

Lower bounds (internal)

Very sparse, only with some strong requirements, e.g., the algorithm is deterministic and query is worst-case [Dietzfelbinger et. al. 1994].

Other related results

Upper bounds

- Remove ideal hash function assumption [Carter and Wegman 1979], making query worst-case [i.e. Fredman, Komlos and Szemeredi, 1984] ... (internal)
- Queries and updates in $1 + O(1/b^{\frac{1}{2}})$ I/Os with $\alpha = 1 O(1/b^{\frac{1}{2}})$ [Jensen and Pagh, 2007]. (external, no memory)

Lower bounds (internal)

Very sparse, only with some strong requirements, e.g., the algorithm is deterministic and query is worst-case [Dietzfelbinger et. al. 1994].

Lower bounds in other dynamic external memory problems Only known are query-update tradeoffs for the *predecessor* [Fagerberg and Brodal 2003], *range reporting* [Yi 2009]. Technical details: Lowerbounds

Preliminaries

u $U = \{0, 1, \dots, u - 1\}$: universe. |U| = u.

m: size of main memory. *n*: total number of items.
 b: size of one block. All in words.

Preliminaries

u $U = \{0, 1, \dots, u - 1\}$: universe. |U| = u.

m: size of main memory. *n*: total number of items.
 b: size of one block. All in words.

- Some mild assumptions
 - Atomic elements
 - $\square n \ge \Omega\left(m\log u \cdot b^{2c}\right) \text{ for some constant } c > 0$

Preliminaries

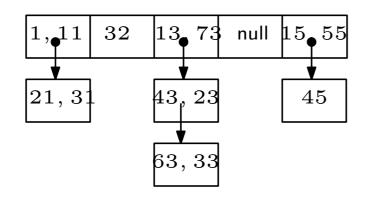
u $U = \{0, 1, \dots, u - 1\}$: universe. |U| = u.

m: size of main memory. *n*: total number of items.
 b: size of one block. All in words.

- Some mild assumptions
 - Atomic elements
 - $\square n \ge \Omega\left(m\log u \cdot b^{2c}\right) \text{ for some constant } c > 0$
- Deterministic data structure + a random distrib. of inputs (Via a method similar to Yao's Minimax Principle) ⇒
 Randomized data structure

Observations

- Two extreme cases
 - One exterme: only use a fixed mapping for all items.

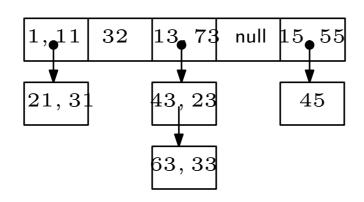


$$b=2$$
 Update is expensive!

Observations

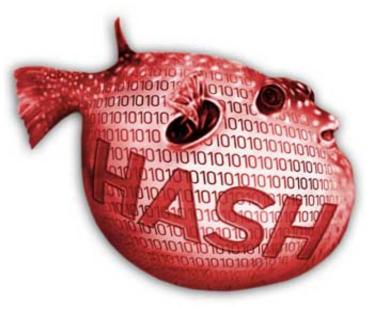
Two extreme cases

• One exterme: only use a • Another exterme: for every bfixed mapping for all items.



$$b=2$$
 Update is expensive!

items come, write to a new block.

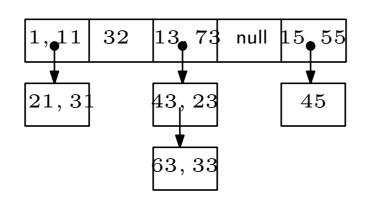


Too many possible mappings.

Observations

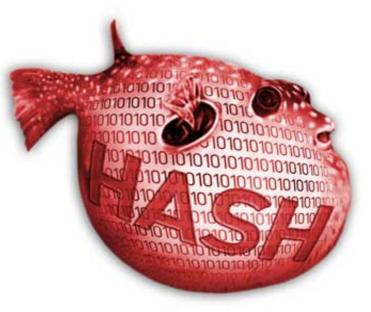
Two extreme cases

fixed mapping for all items.



$$b=2$$
 Update is expensive!

One exterme: only use a \Box Another exterme: for every b items come, write to a new block.



Too many possible mappings.

Also easy to see

If with only the information in memory, the hash table cannot locate the item, then querying it takes at least 2 I/Os.

The abstraction

Consider the layout of a hash table at any snapshot. Denote all the blocks on disk by $B_0, B_1, B_2, \ldots, B_d$ $(B_0 = M)$. Let $f: U \to \{0, 1, \ldots, d\}$ be any function computable within memory.

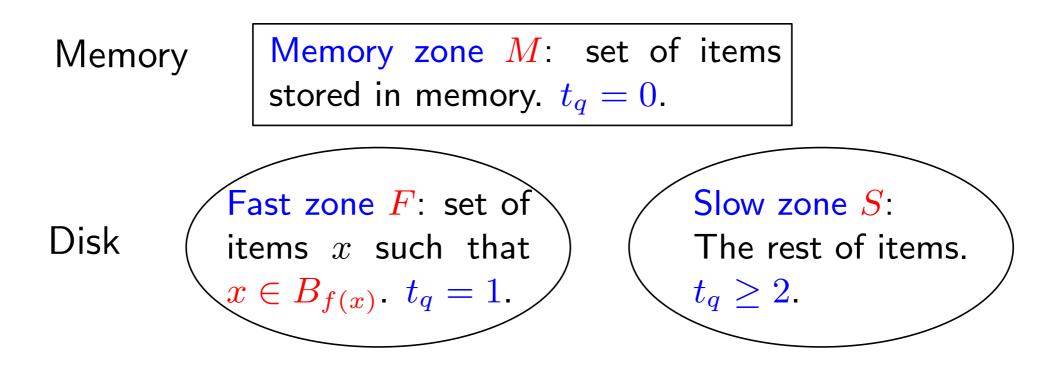
When querying $x \in U$, f(x): index of the first block the DS will probe. If f(x) = 0, the DS will still probe the memory.

The abstraction

Consider the layout of a hash table at any snapshot. Denote all the blocks on disk by $B_0, B_1, B_2, \ldots, B_d$ $(B_0 = M)$. Let $f: U \to \{0, 1, \ldots, d\}$ be any function computable within memory.

When querying $x \in U$, f(x): index of the first block the DS will probe. If f(x) = 0, the DS will still probe the memory.

• We divide items inserted into 3 zones with respect to f.



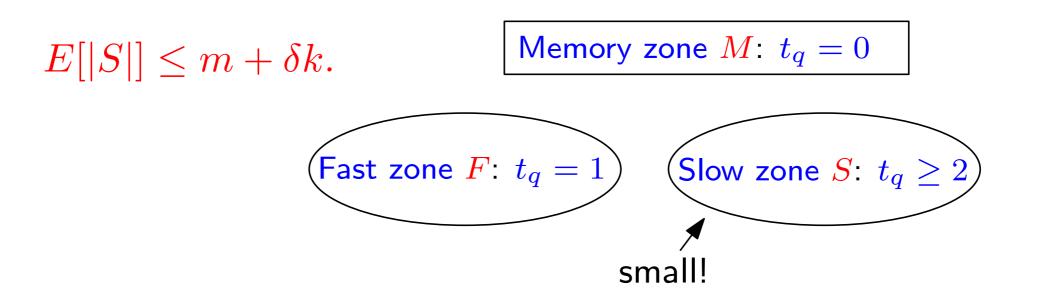
The key idea

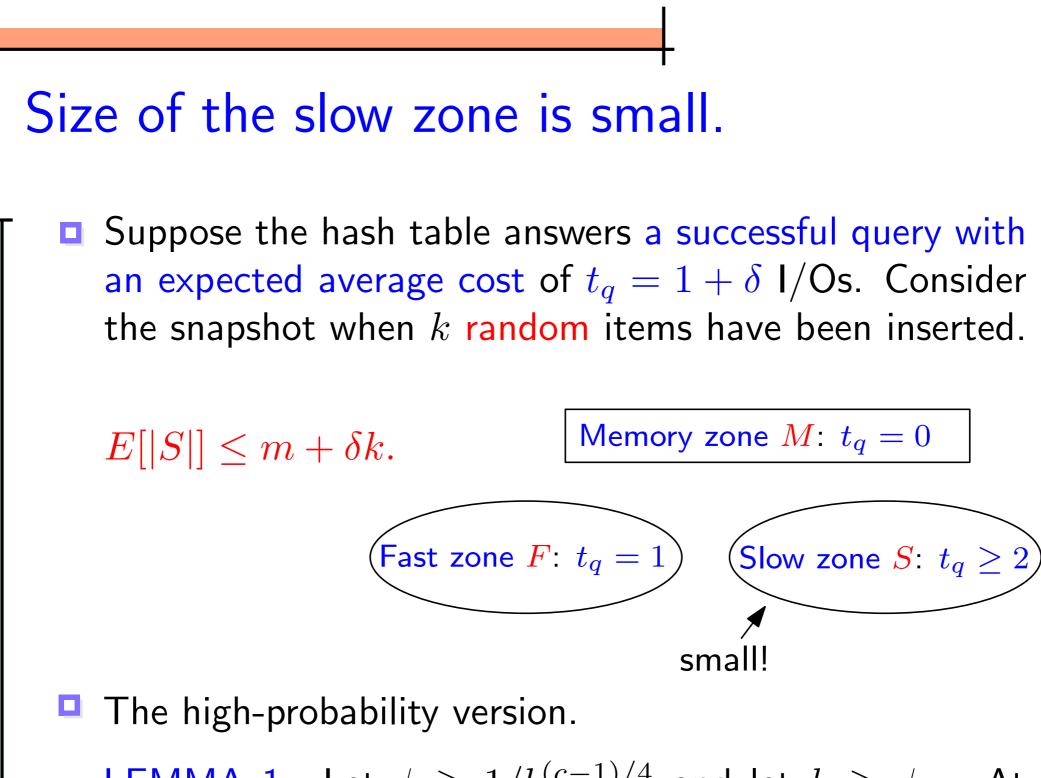
The hash table can employ a family \mathcal{F} of at most $2^{m \log u}$ distinct f's.

Note that the current f adopted by the hash table is dependent upon the already inserted items, but the family \mathcal{F} has to be fixed beforehand.

Size of the slow zone is small.

Suppose the hash table answers a successful query with an expected average cost of $t_q = 1 + \delta$ I/Os. Consider the snapshot when k random items have been inserted.

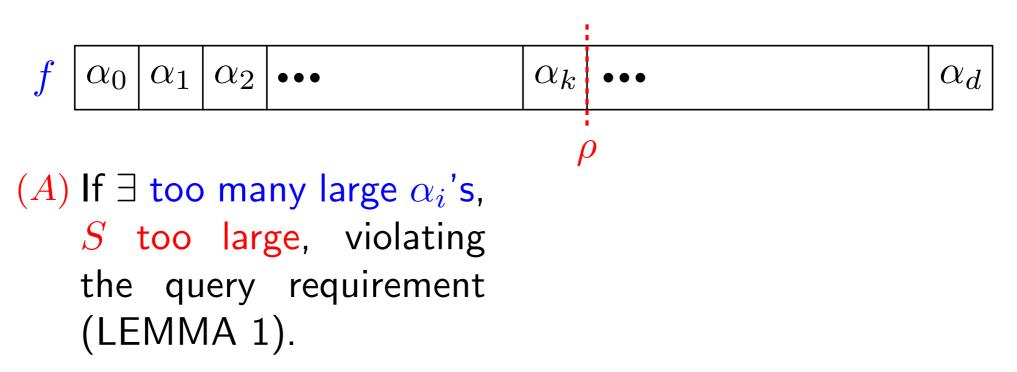




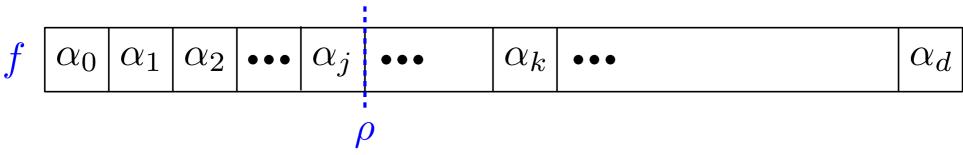
LEMMA 1. Let $\phi \geq 1/b^{(c-1)/4}$ and let $k \geq \phi n$. At the snapshot when k items have been inserted, with probability at least $1 - 2\phi$, $|S| \leq m + \frac{\delta}{\phi}k$.

Consider any $f: U \to \{0, 1, \ldots, d\}$. For $i = 0, \ldots, d$, let $\alpha_i = |f^{-1}(i)|/u$, and we call $(\alpha_0, \alpha_1, \ldots, \alpha_d)$ the characteristic vector of f.

- Consider any $f: U \to \{0, 1, \ldots, d\}$. For $i = 0, \ldots, d$, let $\alpha_i = |f^{-1}(i)|/u$, and we call $(\alpha_0, \alpha_1, \ldots, \alpha_d)$ the characteristic vector of f.
- After ϕn random insertions. Pick a fixed threshold ρ . Assume $\alpha_0 \ge \alpha_1 \ge \ldots \ge \alpha_d$

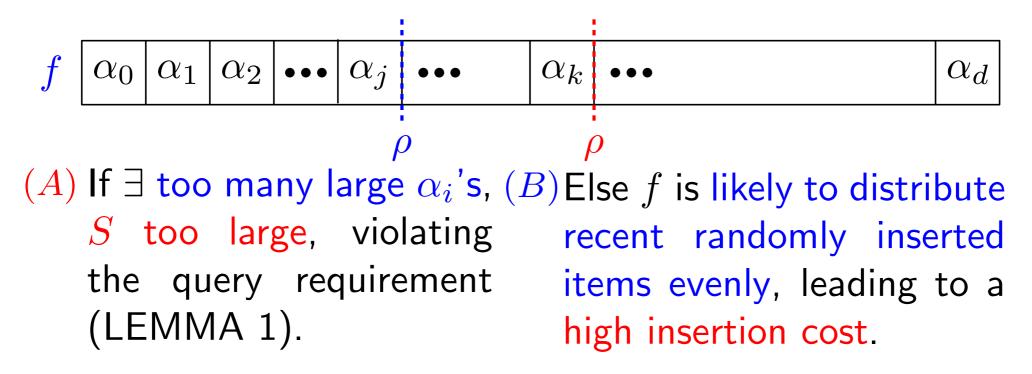


- Consider any $f: U \to \{0, 1, \ldots, d\}$. For $i = 0, \ldots, d$, let $\alpha_i = |f^{-1}(i)|/u$, and we call $(\alpha_0, \alpha_1, \ldots, \alpha_d)$ the characteristic vector of f.
- After ϕn random insertions. Pick a fixed threshold ρ . Assume $\alpha_0 \ge \alpha_1 \ge \ldots \ge \alpha_d$

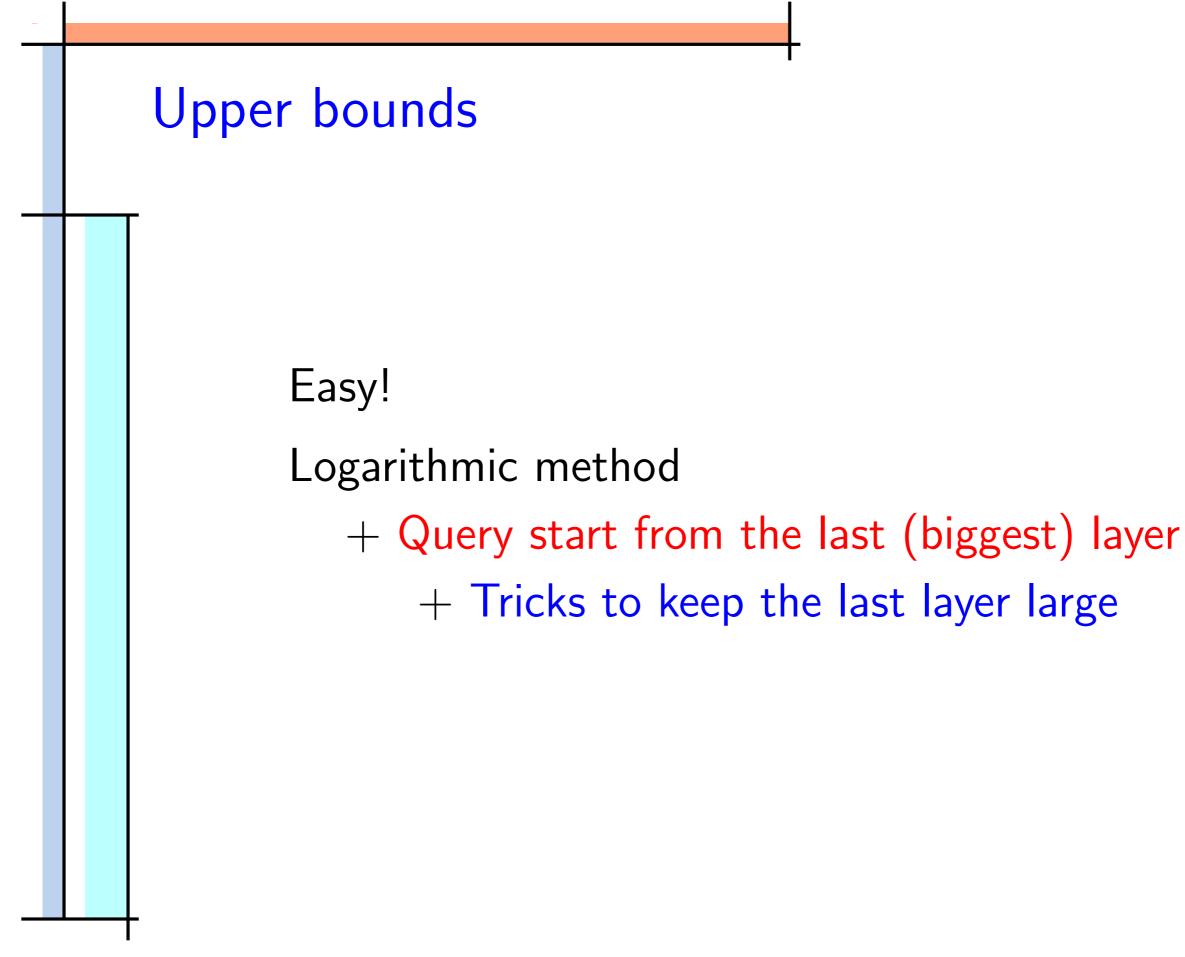


(B)Else f is likely to distribute recent randomly inserted items evenly, leading to a high insertion cost.

- Consider any $f: U \to \{0, 1, \ldots, d\}$. For $i = 0, \ldots, d$, let $\alpha_i = |f^{-1}(i)|/u$, and we call $(\alpha_0, \alpha_1, \ldots, \alpha_d)$ the characteristic vector of f.
- After ϕn random insertions. Pick a fixed threshold ρ . Assume $\alpha_0 \ge \alpha_1 \ge \ldots \ge \alpha_d$



Both hold with very high probability, even after taking union of all $O(2^{m \log u})$ different f.



Beyond hashing: Subsequent and future work

Hashing (successful)

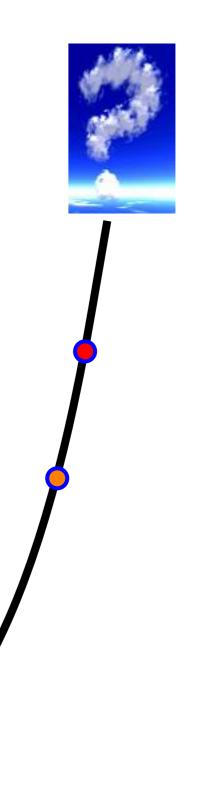
Beyond hashing

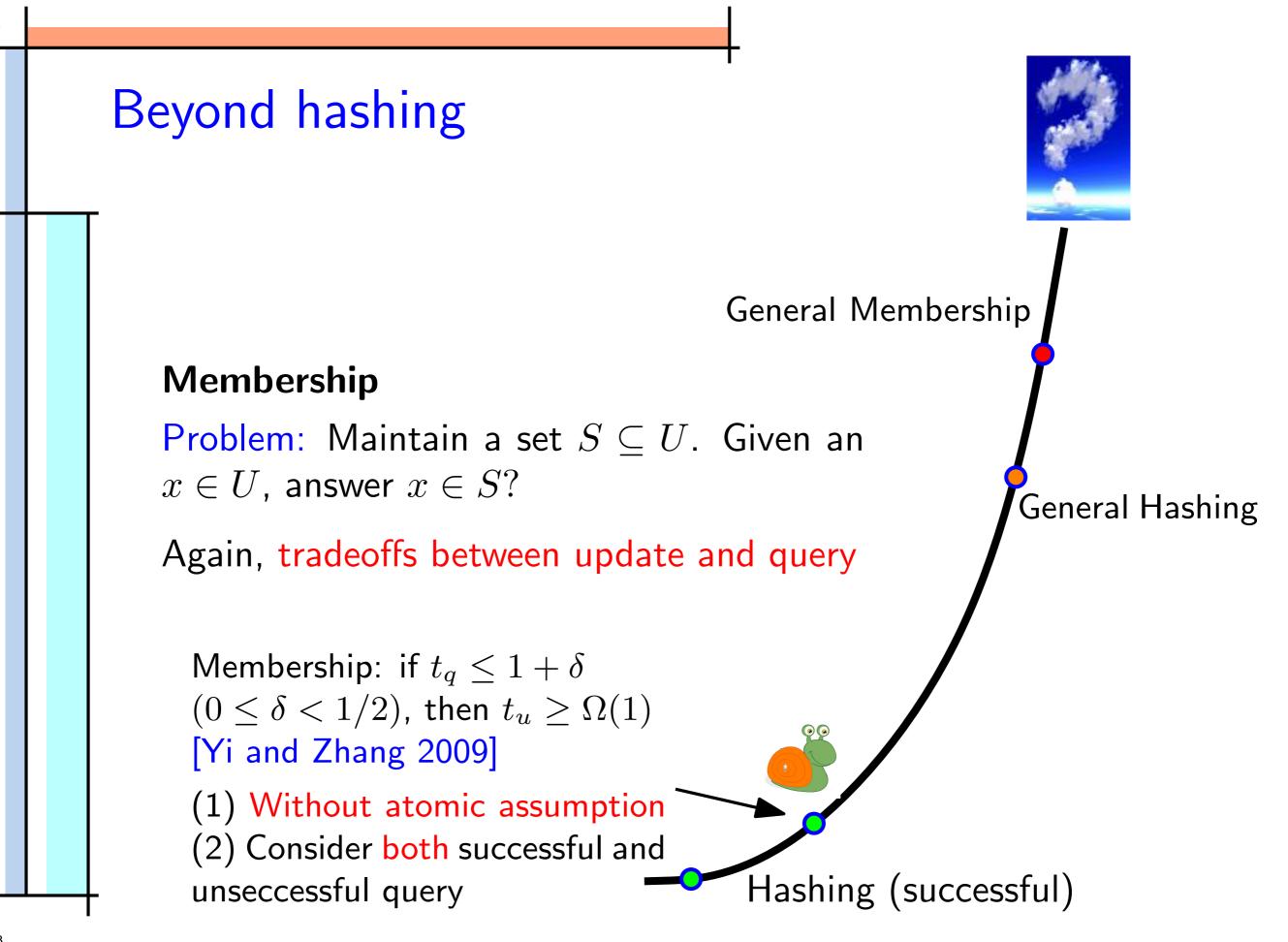
Membership

Problem: Maintain a set $S \subseteq U$. Given an $x \in U$, answer $x \in S$?

Again, tradeoffs between update and query

Membership: if $t_q \le 1 + \delta$ $(0 \le \delta < 1/2)$, then $t_u \ge \Omega(1)$ [Yi and Zhang 2009] (1) Without atomic assumption (2) Consider both successful and unseccessful query Hashing (successful)





More problems

Lower bounds of other dynamic problems in the cell probe with cache setting.

1. predecessor, range-sum

2. union-find

3. . . .

