

Uncertain, uncertain, uncertain ... (Probabilistic, probabilistic, probabilistic ...)

Uncertain data management has become a really hot important area of active research Uncertain, uncertain, uncertain ... (Probabilistic, probabilistic, probabilistic ...)

- Uncertain data management has become a really het important area of active research
- Many types of real-world data are uncertain: sensor readings, multimedia, data integration, ...

The model

An uncertain database is a probability distribution of certain (deterministic) databases

> $\{t_1, t_2, t_3\}$, prob = 0.1 $\{t_1, t_3, t_4\}$, prob = 0.2 $\{t_2, t_3\}$, prob = 0.5

 $\{t_3, t_4\}$, prob = 0.05

The model

An uncertain database is a probability distribution of certain (deterministic) databases

> $\{t_1, t_2, t_3\}$, prob = 0.1 $\{t_1, t_3, t_4\}$, prob = 0.2 $\{t_2, t_3\}$, prob = 0.5

 $\{t_3, t_4\}$, prob = 0.05

possible worlds

The model

- An uncertain database is a probability distribution of certain (deterministic) databases
 - A succinct uncertain model (e.g. an x-relation)

 $\{t_1, t_2, t_3\}$, prob = 0.1 $\{t_1, t_3, t_4\}$, prob = 0.2 $\{t_2, t_3\}$, prob = 0.5

 $\{t_3, t_4\}$, prob = 0.05

possible worlds

The model An uncertain database is a probability distribution of certain (deterministic) databases $\{t_1, t_2, t_3\}$, prob = 0.1 A succinct uncertain model (e.g. an x-relation) $\{t_1, t_3, t_4\}$, prob = 0.2 tuples p(t) $\{t_2, t_3\}$, prob = 0.5 rules 0.4 t_1 $\{t_1\}$ au_1 0.5 t_2 $\{t_2, t_4\}$ au_2 1 t_3 $\{t_3, t_4\}$, prob = 0.05 $\{t_3\}$ au_3 0.5 t_4 possible worlds Query algorithm Query semantics (definition)

A principled approach: probabilistic thresholding [Dalvi, Suciu, 04]

- A principled approach: probabilistic thresholding [Dalvi, Suciu, 04]
 - What's the probability that a tuple appears in the query result?

- A principled approach: probabilistic thresholding [Dalvi, Suciu, 04]
 - What's the probability that a tuple appears in the query result?
 - Set a threshold τ , return all tuples t such that $\Pr[t \text{ is in the query results}] \geq \tau$

- A principled approach: probabilistic thresholding [Dalvi, Suciu, 04]
 - What's the probability that a tuple appears in the query result?
 - Set a threshold τ , return all tuples t such that $\Pr[t \text{ is in the query results}] \geq \tau$
 - Or, rank all the tuples by this probability [Re, Dalvi, Suciu, 07]

- A principled approach: probabilistic thresholding [Dalvi, Suciu, 04]
 - What's the probability that a tuple appears in the query result?
 - Set a threshold τ , return all tuples t such that $\Pr[t \text{ is in the query results}] \geq \tau$
 - Or, rank all the tuples by this probability [Re, Dalvi, Suciu, 07]
- Has been applied to a variety of queries
 - Selection, projection, join [Dalvi, Suciu, 04]
 - Range queries [Tao, Cheng, Xiao, Ngai, Kao, Prabhakar, 05]
 - Frequent items [Zhang, Li, Yi, 08]

Ranking (top-k) queries (with scores)

Very useful queries: rank by importance, rank by similarity, rank by relevance, k-nearest neighbors

Ranking (top-k) queries (with scores)

- Very useful queries: rank by importance, rank by similarity, rank by relevance, k-nearest neighbors
 - U-topk: [Soliman, Ilyas, Chang, 07], [Yi, Li, Srivastava, Kollios, 08]
 - □ U-*k*Ranks: [Soliman, Ilyas, Chang, 07], [Lian, Chen, 08]
 - PT-k: [Hua, Pei, Zhang, Lin, 08]
 - Global-topk: [Zhang, Chomicki, 08]

Ranking (top-k) queries (with scores)

- Very useful queries: rank by importance, rank by similarity, rank by relevance, k-nearest neighbors
 - U-topk: [Soliman, Ilyas, Chang, 07], [Yi, Li, Srivastava, Kollios, 08]
 - □ U-*k*Ranks: [Soliman, Ilyas, Chang, 07], [Lian, Chen, 08]
 - PT-k: [Hua, Pei, Zhang, Lin, 08]
 - Global-topk: [Zhang, Chomicki, 08]
 - Expected ranks: [this work]

Uncertain data models (with a score attribute)

Two possibilities: uncertain tuples and uncertain scores

tuples	score	p(t)	rules
$\frac{t_1}{t_1}$	100	0.4	
• 1 +	02		$\tau_1 \mid \{t_1\}$
ι_2	92	0.5	$\tau_0 \left\{ t_0, t_4 \right\}$
t_3	80	1	$12 \mid \{02, 04\}$
t_A	70	0.5	$\underline{\tau_3} \mid \{t_3\}$
			_

world W	$\Pr[W]$
$\{t_1, t_2, t_3\}$	$p(t_1)p(t_2)p(t_3) = 0.2$
$\{t_1, t_3, t_4\}$	$p(t_1)p(t_3)p(t_4) = 0.2$
$\{t_2, t_3\}$	$(1 - p(t_1))p(t_2)p(t_3) = 0.3$
$\{t_3, t_4\}$	$(1 - p(t_1))p(t_3)p(t_4) = 0.3$

Uncertain data models (with a score attribute) Two possibilities: uncertain tuples and uncertain scores tuples | score | p(t) m/se

tupies	score	p(t)	rulas
$\frac{t_1}{t_1}$	100	0.4	
t_{0}	92	0.5	$\tau_1 \mid \{t_1\}$
			$ au_2 \mid \{t_2, t_4\}$
ι_3	80		$\tau_{0} \int f_{0} \int$
$t_{\it A}$	70	0.5	$13 \mid 103 f$
T			_

world W	$\Pr[W]$
$\{t_1, t_2, t_3\}$	$p(t_1)p(t_2)p(t_3) = 0.2$
$\{t_1, t_3, t_4\}$	$p(t_1)p(t_3)p(t_4) = 0.2$
$\{t_2, t_3\}$	$(1 - p(t_1))p(t_2)p(t_3) = 0.3$
$\{t_3, t_4\}$	$(1 - p(t_1))p(t_3)p(t_4) = 0.3$

tuple-level uncertainty

attribute-level (score-level) uncertainty

P	T - <i>k</i> :	[Hua,	Pei, Z	hang,	Lin, 08	8]
	Follow	wing the	probabil	istic thre	sholding a	approach

PT-k: [Hua, Pei, Zhang, Lin, 08]

- Following the probabilistic thresholding approach
- For given k, p, consider $\Pr[t \text{ is in the top-}k \text{ list}]$, and return all tuples with this probability $\geq p$

PT-k: [Hua, Pei, Zhang, Lin, 08]

Following the probabilistic thresholding approach

For given k, p, consider $\Pr[t \text{ is in the top-}k \text{ list}]$, and return all tuples with this probability $\geq p$

tuples	score	p(t)	rules	Suppose $k = 2, p = 0.5$
t_1	100	0.4		
t_2	92	0.5	$\gamma_1 \mid \{\iota_1\}$	
$\overline{t_3}$	80	1	$ au_2 \mid \{t_2, t_4\}$	$\Pr[t_1] = 0.4$
•5 t	70	05	$\tau_3 \mid \{t_3\}$	$\Pr[t_2] = 0.5$
	10			$\Pr[t_3] = 0.8$
world V	V		$\Pr[W]$	$\Pr[t_4] = 0.3$
$\overline{\{t_1, t_2, t\}}$	3}	$\overline{p(t_1)p(}$	$(t_2)p(t_3) = 0.2$	
$\{t_1,t_3,t_3\}$	$_4\}$	$p(t_1)p($	$(t_3)p(t_4) = 0.2$	
$\{t_2,t_3\}$	$\left.\right (1)$	$-p(t_1)$	$p(t_2)p(t_3) = 0.3$	
$\{t_3,t_4\}$	} (1	$- p(t_1)$	$p(t_3)p(t_4) = 0.3$	

Global-topk: [Zhang, Chomicki, 08]

Global-topk: [Zhang, Chomicki, 08]

For given k, consider $\Pr[t \text{ is in the top-}k \text{ list}]$, and return the k tuples having the highest probabilties

Global-topk: [Zhang, Chomicki, 08]

For given k, consider $\Pr[t \text{ is in the top-}k \text{ list}]$, and return the k tuples having the highest probabilties

tuples	score	p(t)	rı	ules	Suppose $k = 2, n = 0.5$
t_1	100	0.4			
t_2	92	0.5	τ_1	$\{l_1\}$	
$\frac{1}{t_2}$	80	1	$ au_2$	$\{t_2, t_4\}$	$\Pr[t_1] = 0.4$
•3 t	70	05	$ au_3$	$\{t_3\}$	$\Pr[t_2] = 0.5$
	10	0.5			$\Pr[t_3] = 0.8$
world V	V		$\Pr[W]$		$\Pr[t_4] = 0.3$
$\overline{\{t_1, t_2, t\}}$	3}	$\overline{p(t_1)p(t_1)}$	$(2)p(t_3) =$	0.2	
$\{t_1, t_3, t_3\}$	$_4\}$	$p(t_1)p(t$	$_3)p(t_4) =$	0.2	
$\{t_2,t_3\}$	$\left.\right\}$ (1	$-p(t_1))$	$p(t_1)p(t_2)p(t_3) = 0.3$		
$[t_3, t_4]$	$\{ (1) \}$	$-p(t_1))$	$p(t_3)p(t_4)$	= 0.3	

U-topk: [Soliman, Ilyas, Chang, 07]

U-topk: [Soliman, Ilyas, Chang, 07]

For given k, consider $\Pr[T \text{ is the top-}k \text{ list}]$, where T is a k-set, and return the T having the highest probability

U-topk: [Soliman, Ilyas, Chang, 07]

For given k, consider $\Pr[T \text{ is the top-}k \text{ list}]$, where T is a k-set, and return the T having the highest probability

tuples	score	p(t)	_	rules	Suppose $k=2$
t_1	100	0.4			
t_2	92	0.5	γ_1	$\{\iota_1\}$	
t_3	80	1	τ_2	$\{t_2, t_4\}$	$\Pr[\{t_1, t_2\}] = 0.2$
t_4	70	0.5	τ_3	$\{t_3\}$	$\Pr[\{t_1, t_3\}] = 0.2$
			-		$\Pr[\{t_2, t_3\}] = 0.3$
world V	V		$\Pr[W]$		$\Pr[\{t_3, t_4\}] = 0.3$
$\overline{\{t_1, t_2, t\}}$	3}	$p(t_1)p(t_1)$	$(t_2)p(t_3) =$	= 0.2	
$\{t_1, t_3, t_3\}$	$_4\}$	$p(t_1)p(t_1)$	$(t_3)p(t_4) =$	= 0.2	
$\{t_2,t_3\}$	$\left.\right\}$ (1	$-p(t_1)$	$)p(t_2)p(t_3)$) = 0.3	
$\{t_3,t_4\}$	} (1	$-p(t_1)$	$))p(t_3)p(t_4)$) = 0.3	

U-*k*Ranks: [Soliman, Ilyas, Chang, 07]

U-*k*Ranks: [Soliman, Ilyas, Chang, 07]

For any rank *i*, consider $\Pr[t \text{ is ranked at } i]$, and return the *t* having the highest probability for $i = 1, \ldots, k$, respectively

U-kRanks: [Soliman, Ilyas, Chang, 07]

For any rank *i*, consider $\Pr[t \text{ is ranked at } i]$, and return the *t* having the highest probability for $i = 1, \ldots, k$, respectively

tuples	score	p(t)	rulac	At rank $i = 1$
t_1	100	0.4	$\frac{\tau_1}{\tau_1} \{t_1\}$	
$egin{array}{c} t_2 \ t_3 \end{array}$	92 80	0.5	$\tau_2 \mid \{t_2, t_4\}$	$\Pr[t_1] = 0.4$ $\Pr[t_2] = 0.3$
t_4	70	0.5	$\underline{\tau_3} \mid \{t_3\}$	$\Pr[t_3] = 0.3$
world V $\{t_1, t_2, t$	V 3}	$\overline{p(t_1)p(t_1)}$	$\frac{\Pr[W]}{t_2)p(t_3) = 0.2}$	At rank $i = 2$
$\{t_1, t_3, t_1, t_2, t_3, t_4, t_3, t_4\}$	$ \begin{array}{c c} _{4} \\ _{5} \\ _{6} \\ _{7} \\{7} \\$	$p(t_1)p(-p(t_1)) - p(t_1)$	$(t_3)p(t_4) = 0.2$ $(p(t_2)p(t_3) = 0.3$ $(p(t_3)p(t_4) = 0.3$	$\Pr[t_2] = 0.3$ $\Pr[t_3] = 0.5$
				$Pr t_4 = 0.3$

In stead of jumping forward and formulate yet another definition, we step back and first think about what properties that a ranking query should satisfy.

Property one: Value-invariance

The scores only determine the relative behavior of the tuples: changing the score values without altering the relative ordering should not change the top-k

Property one: Value-invariance

The scores only determine the relative behavior of the tuples: changing the score values without altering the relative ordering should not change the top-k

Ranking method	Value-invariant
U-topk	\checkmark
U-kRanks	\checkmark
PT- k	\checkmark
$Global ext{-top}k$	\checkmark

Property two: *Exact-k*

The top-k list should contain exactly k items. Also proposed in [Zhang, Chomicki, 08]

Droporty two	Evect la	
Froperty two.	LXACL-K	
The top- k list s Also proposed in	hould contain ex n [Zhang, Chomi	actly k items. cki, 08]
	Ranking method	Exact- k
	U-topk	weak
	U- $kRanks$	\checkmark
	PT- k	×
	$Global ext{-top}k$	\checkmark

14-4

Within the top-k, each reported item should be assigned exactly one position: the same item should not be listed multiple times within the top-k

Within the top-k, each reported item should be assigned exactly one position: the same item should not be listed multiple times within the top-k

Ranking method	Unique-rank
U-topk	\checkmark
U- k Ranks	×
PT- k	\checkmark
${\sf Global}{\operatorname{-top}} k$	\checkmark

Within the top-k, each reported item should be assigned exactly one position: the same item should not be listed multiple times within the top-k

Ranking method	Unique-rank
U-topk	\checkmark
U-kRanks	×
PT- k	\checkmark
$Global ext{-top}k$	\checkmark

world W	$\Pr[W]$
$\{t_1 = 100, t_2 = 92, t_3 = 85\}$	0.24
$\{t_1 = 100, t_3 = 85, t_2 = 80\}$	0.16
$\{t_2 = 92, t_3 = 85, t_1 = 70\}$	0.36
$\{t_3 = 85, t_2 = 80, t_1 = 70\}$	0.24

Within the top-k, each reported item should be assigned exactly one position: the same item should not be listed multiple times within the top-k

Ranking m	nethod	Unique-rank	
U-topk		\checkmark	
U-kRanks		×	
$PT extsf{-}k$		\checkmark	
Global-top	bk	\checkmark	
world W	$ \Pr[W]$	At rank 1:	At rank 3:
$\{t_1 = 100, t_2 = 92, t_3 = 85\}$	0.24	$\Pr[t_1] = 0.4$	$\Pr[t_1] = 0.6$
$\{t_1 = 100, t_3 = 85, t_2 = 80\}$	0.16	$\Pr[t_2] = 0.36$	$\Pr[t_2] = 0.16$
$\{t_2 = 92, t_3 = 85, t_1 = 70\}$	0.36	$\Pr[t_3] = 0.24$	$\Pr[t_3] = 0.24$
$\{t_3 = 85, t_2 = 80, t_1 = 70\}$	0.24		

Ranking method	Unique-rank
U-topk	X
U- k Ranks	\checkmark
PT-k	weak
${\sf Global}{\sf -top}k$	×

Ranking method	Unique-rank	
U-topk	X	U-topk with $k =$
U-kRanks	\checkmark	$\Pr[\{t_1\}] = 0.4$
PT- k	weak	$\Pr[\{t_2\}] = 0.3$
${\sf Global}{-}{\sf top}k$	×	$\Pr[\{t_3\}] = 0.3$

world W	$\Pr[W]$
$\{t_1, t_2, t_3\}$	$p(t_1)p(t_2)p(t_3) = 0.2$
$\{t_1, t_3, t_4\}$	$p(t_1)p(t_3)p(t_4) = 0.2$
$\{t_2, t_3\}$	$(1 - p(t_1))p(t_2)p(t_3) = 0.3$
$\{t_3, t_4\}$	$(1 - p(t_1))p(t_3)p(t_4) = 0.3$

The top-(k+1) list should contain all items in the top-k

Ranking method	Unique-rank
U-topk	X
U- k Ranks	\checkmark
PT-k	weak
${\sf Global}{-}{\sf top}k$	×

U-topk with k = 1 $\Pr[\{t_1\}] = 0.4$ $\Pr[\{t_2\}] = 0.3$ $\Pr[\{t_3\}] = 0.3$

world W	$\Pr[W]$
$\{t_1, t_2, t_3\}$	$p(t_1)p(t_2)p(t_3) = 0.2$
$\{t_1, t_3, t_4\}$	$p(t_1)p(t_3)p(t_4) = 0.2$
$\{t_2, t_3\}$	$(1 - p(t_1))p(t_2)p(t_3) = 0.3$
$\{t_3, t_4\}$	$(1 - p(t_1))p(t_3)p(t_4) = 0.3$

U-top k with $k=2$
$\Pr[\{t_1, t_2\}] = 0.2$
$\Pr[\{t_1, t_3\}] = 0.2$
$\Pr[\{t_2, t_3\}] = 0.3$
$\Pr[\{t_3, t_4\}] = 0.3$

Ranking	g method	Unique-rank	
U-topk		Х	Global-topk with $k = 1$
$U extsf{-}kRan$	ks	\checkmark	$\Pr[t_1] = 0.4$
PT- k		weak	$\Pr[t_2] = 0.3$
Global-t	copk	×	$\Pr[t_3] = 0.3$
world W		$\Pr[W]$	
$\{t_1, t_2, t_3\}$	$p(t_1)p$	$(t_2)p(t_3) = 0.2$	-
$\{t_1, t_3, t_4\}$	$p(t_1)p$	$(t_3)p(t_4) = 0.2$	
$\{t_2, t_3\}$	$(1-p(t_1))$	$))p(t_2)p(t_3) = 0.3$	
$\{t_3,t_4\}$	$(1-p(t_1))$	$))p(t_3)p(t_4) = 0.3$	

The top-(k+1) list should contain all items in the top-k

Ranking method	Unique-rank
U-topk	×
U- k Ranks	\checkmark
PT- k	weak
${\sf Global}{\sf -top}k$	×

Global-topk with k = 1 $\Pr[t_1] = 0.4$ $\Pr[t_2] = 0.3$ $\Pr[t_3] = 0.3$

world W	$\Pr[W]$
$\{t_1, t_2, t_3\}$	$p(t_1)p(t_2)p(t_3) = 0.2$
$\{t_1, t_3, t_4\}$	$p(t_1)p(t_3)p(t_4) = 0.2$
$\{t_2, t_3\}$	$(1 - p(t_1))p(t_2)p(t_3) = 0.3$
$\{t_3, t_4\}$	$(1 - p(t_1))p(t_3)p(t_4) = 0.3$

Global-topk with k = 2 $\Pr[t_1] = 0.4$ $\Pr[t_2] = 0.5$ $\Pr[t_3] = 0.8$ $\Pr[t_4] = 0.3$

Property five: Stability

Making an item in the top-k list more likely (higher probability) or more important (higher score) should not remove it from the list. Also in [Zhang, Chomicki, 08]

In the score-level uncertainty model, replace "higher probability or higher score" with "stochastically greater than"

Ranking method	Unique-rank	
U-topk	\checkmark	
U-kRanks	×	[Zhang, Chomicki, 08]
PT-k	\checkmark	
$Global ext{-top}k$	\checkmark	

Our definition: Expected Ranks						
	Consid expect	der $E[t$'s rank], and ret ed ranks	urn the k tuples having the highest			
	tuples	\mathbf{SCORe}	$ E[r(t2)] = 0.24 \times 2 + 0.16 \times 3 + 0.26 \times 1 + 0.24 \times 2 - 1.8 $			
	$egin{array}{c} t_1 \ t_2 \end{array}$	$\{(100, 0.4), (70, 0.6)\} \\ \{(92, 0.6), (80, 0.4)\}$	$3 + 0.30 \times 1 + 0.24 \times 2 - 1.0$			
	t_3	$\{(85,1)\}$				
		world W	$\Pr[W]$			
	$\{t_1 = 1$	$00, t_2 = 92, t_3 = 85$	$0.4 \times 0.6 \times 1 = 0.24$			
	$\{t_1 = 1$	$00, t_3 = 85, t_2 = 80$	$0.4 \times 0.4 \times 1 = 0.16$			
	$\{t_2 = 1\}$	$92, t_3 = 85, t_1 = 70\}$	$0.6 \times 0.6 \times 1 = 0.36$			
	$\{t_3 = 3\}$	$85, t_2 = 80, t_1 = 70\}$	$0.6 \times 0.4 \times 1 = 0.24$			

Our definition: Expected Ranks						
	Consid expect	der $E[t$'s rank], and retted ranks	urn the k tuples having the highest			
			E[r(t1)] = 2.2			
	tuples t_1	score $\{(100, 0.4), (70, 0.6)\}$	$E[r(t2)] = 0.24 \times 2 + 0.16 \times 3 + 0.36 \times 1 + 0.24 \times 2 = 1.8$			
	t_2 t_3	$ \{ (92, 0.6), (80, 0.4) \} $ $ \{ (85, 1) \} $	E[r(t3)] = 2			
		world W	$\Pr[W]$			
	${t_1 = 1}$	$00, t_2 = 92, t_3 = 85$	$0.4 \times 0.6 \times 1 = 0.24$			
	$\{t_1 = 1$	$\{00, t_3 = 85, t_2 = 80\}$	$0.4 \times 0.4 \times 1 = 0.16$			
	$\{t_2 = 0\}$	$92, t_3 = 85, t_1 = 70\}$	$0.6 \times 0.6 \times 1 = 0.36$			
	$\{t_3 = 0\}$	$\delta_0, t_2 = \delta_0, t_1 = 10$	$0.0 \times 0.4 \times 1 = 0.24$			

Our de	efiniti	on: E	Expect	ed Ran	ks
If a If a the	tuple d last one	oesn't e	appear ir	n a world,	its rank is considered to be
$\begin{array}{c} tuples \\ t_1 \\ t_2 \\ t_3 \\ t_4 \end{array}$	score 100 92 80 70	$\begin{array}{c c} p(t) \\ 0.4 \\ 0.5 \\ 1 \\ 0.5 \end{array}$	$ au_1 au_2 au_3$	rules $\{t_1\}$ $\{t_2, t_4\}$ $\{t_3\}$	$E[r(t2)] = 0.2 \times 2 + 0.2 \times 4 + 0.3 \times 1 + 0.3 \times 3 = 2.4$
$\begin{array}{c c} \text{world } V \\ \hline \{t_1, t_2, t_4 \\ \{t_1, t_3, t_4 \\ \{t_2, t_3 \\ \{t_3, t_4 \} \end{array}$	$ \begin{array}{c c} V \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$p(t_1)p(p_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_1)p(p_2)(t_2)p(p_2)(t$	$\frac{\Pr[W]}{(t_2)p(t_3)} = \\ (t_3)p(t_4) = \\ 0p(t_2)p(t_3)p(t_4) = \\ 0p(t_3)p(t_4) = \\ 0p(t_4)p(t_4) = \\ 0p(t_5)p(t_$	= 0.2 = 0.2 = 0.3 = 0.3 = 0.3	

Our definition: Expected Ranks						
	If a the	tuple d last one	oesn't e	appear in a w	orld,	its rank is considered to be
	tuples	score	p(t)	w.l.a.a		E[r(t1)] = 2.2
	$\overline{t_1}$	100	0.4	- rules $\overline{\tau_1} \int f$	<u>_ </u>	
	t_2	92	0.5	$\begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} \begin{cases} t_2 \\ t_3 \end{cases}$	1∫ ≁,\	$E[r(t2)] = 0.2 \times 2 + 0.2 \times$
	t_3	80	1	$\tau_2 \mid t_2, \\ \tau_3 \mid t_2, \\ t_4$	24j 2}	$4 + 0.3 \times 1 + 0.3 \times 3 = 2.4$
	t_4	70	0.5	- <u>'3 (°</u>	5 J	F[m(+2)] = 1.0
		T 7		$\mathbf{D}_{m}[\mathbf{W}]$		$E[T(\iota 5)] = 1.9$
	$\frac{\text{world } v}{\int t_1 + t_2 + t_1}$		$n(t_{i})n$	$\frac{\Gamma\Gamma[VV]}{(t_{a})n(t_{a}) - 0.2}$		E[r(t3)] = 2.9
	$\begin{cases} \iota_1, \iota_2, \iota \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	3]	$p(t_1)p$ $n(t_1)n$	$(t_2)p(t_3) = 0.2$ $(t_2)n(t_4) = 0.2$		
	$\{t_2, t_3\}$	$\frac{4}{1}$ (1)	$-n(t_1)p$	$(t_3)p(t_4) = 0.2$ $(t_2)n(t_3) = 0.2$).3	
	$\{t_3, t_4\}$	$\{ 1 \} $	$-p(t_1)$	$p(t_2)p(t_3) = (t_4) = (t_4)$).3	
			1 (1)			

Properties: Summary Value-Invariant Containment Unique-R_{ank} E_{Xact-k} Stabili_{tv} Ranking method U-topk weak \times U-kRanks \checkmark \times \times PT -kweak Х $\mathsf{Global}\mathsf{-top}k$ \times Expected rank

There are also pruning techniques that prune tuples that are not in the top-k

Why these five properties?

- Why these five properties?
 - "Faithfulness" [Zhang, Chomicki, 08]

- Why these five properties?
 - "Faithfulness" [Zhang, Chomicki, 08]
- Why expectation of the rank?

- Why these five properties?
 - "Faithfulness" [Zhang, Chomicki, 08]
- Why expectation of the rank?
 - How about "median rank"?

