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Abstract—Given a time series S = ((x1, y1), (x2, y2), . . . ) and
a prescribed error bound ε, the piecewise linear approximation
(PLA) problem with max-error guarantees is to construct a
piecewise linear function f such that |f(xi)−yi| ≤ ε for all i. In
addition, we would like to have an online algorithm that takes
the time series as the records arrive in a streaming fashion, and
outputs the pieces of f on-the-fly. This problem has applications
wherever time series data is being continuously collected, but
the data collection device has limited local buffer space and
communication bandwidth, so that the data has to be compressed
and sent back during the collection process.

Prior work addressed two versions of the problem, where
either f consists of disjoint segments, or f is required to be
a continuous piecewise linear function. In both cases, existing al-
gorithms can produce a function f that has the minimum number
of pieces while meeting the prescribed error bound ε. However,
we observe that neither minimizes the true representation size of
f , i.e., the number of parameters required to represent f . In this
paper, we design an online algorithm that generates the optimal
PLA in terms of representation size while meeting the prescribed
max-error guarantee. Our experiments on many real-world data
sets show that our algorithm can reduce the representation size
of f by around 15% on average compared with the current
best methods, while still requiring O(1) processing time per data
record and small space.

I. INTRODUCTION

Piecewise linear approximation (PLA) for time series data is
a classic problem in data compression and signal tracking that
dates back to the 1960’s [1]. In recent years, the problem has
rejuvenated itself, due to the proliferation of ubiquitous data
collection devices that continuously capture almost every mea-
surable data source: temperature, humidity, pollution levels,
and even people’s locations. Since the data collection devices
have limited local buffer space and data communication is
costly, it is important to be able to compress and send back
the data on-the-fly, which calls for online algorithms that take
the data record one by one, and construct the compressed
representation of the time series as the data is streaming in.

Two basic criteria for measuring the quality of the com-
pression are error and size. The most commonly used error
form is the `p-error for p = 1, 2, or ∞. Let the time series
be S = ((x1, y1), (x2, y2), . . . , (xn, yn)), where x1 < x2 <
· · · < xn. The `p-error of a function f for approximating
S is (

∑n
i=1 |f(xi) − yi|p)1/p. In particular, when p = ∞,

the `∞-error (a.k.a. the max-error) is maxi |f(xi)− yi|. This
paper, like most prior work that studied this problem in the
online setting, uses the `∞-error, i.e., for a prescribed ε, we
would like to construct a piecewise linear function f such that

|f(xi) − yi| ≤ ε for all i. This is because the `1/`2-error is
ill-suited for online algorithms as it is a sum of errors over
the entire time series. When the algorithm has no knowledge
about the future, in particular the length of the time series n,
it is impossible to properly allocate the allowed error budget
over time. Another advantage of the `∞-error is that it gives
us a guarantee on any data record in the time series, while
the `1/`2-error only ensures that the “average” error is good
without a bound on any particular record. Admittedly, the `∞-
error is sensitive to outliers, but one could remove them before
feeding the stream to the PLA algorithm, and there is abundant
work on outlier removal from streaming data (e.g. [2], [3]).

In terms of size, the natural measure is the number of pieces
that f has. Specifically, two versions of the problem have
been studied: either f is required to be a continuous piecewise
linear function, or f consists of disjoint segments. Both cases
have been solved optimally (i.e., minimizing the number of
pieces of f ) by online algorithms that have O(1) amortized
processing time per data record using small working space1.
The disjoint case was first solved optimally by O’Rourke
[4] in 1981. The same algorithm was rediscovered recently
by Elmeleegy et al. [5], who were probably unaware of
O’Rourke’s work. This algorithm is called the slide filter2

in [5]. The continuous case was solved optimally by Hakimi
and Schmeichel [6]. Elmeleegy et al. [5] also presented an
algorithm for the continuous case (called the swing filter), but
it is not optimal.

We revisit the PLA problem by asking if the number of
pieces used by f is really the right measure to optimize.
Clearly, the disjoint case uses fewer segments than the con-
tinuous case due to fewer restrictions, but it also needs more
parameters to represent a segment. Figure 1 shows an example
where two consecutive segments are either joint or disjoint at
a knot, from which we see that the former only requires 2
parameters to represent while the latter requires 3. Previous
work require all the knots to be of the same type, thus does not
really optimize the number of parameters needed to represent
f . To optimize the representation size of f thus calls for an

1The worst-case space complexity of these algorithms is actually O(n),
but it occurs only on rather contrived inputs; on most real data sets, the space
usage is essentially constant.

2The slide filter algorithm, as presented in [5], actually has a worst-case
running time O(n) per data record, but it can be easily improved to O(1) by
using an observation made in [4] that the convex hull structure used in this
algorithm can in fact be updated in O(1) time.
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Fig. 1. A joint knot needs 2 parameters to represent, while a disjoint knot
needs 3.

adaptive solution that uses a mixture of joint and disjoint knots.
We call such a piecewise linear function a mixed-type PLA.

Figure 2 shows a concrete example where we try to con-
struct a PLA for a time series consisting of 8 data records.
The best (in terms of number of pieces) disjoint PLA has 3
segments: AuD′, DuG′, GlHu, with a representation size of
3 × 2 = 6 (ignoring the starting point of the first segment
and the ending point of the last segment, which are needed
in any method); the best continuous PLA has 4 segments
AuB′DuE′H , with a representation size of 2 × 3 = 6.
However, the best mixed-type PLA consists of 3 segments
AuD′, DuE′H , with one disjoint knot and one joint knot,
resulting in a representation size of 3 + 2 = 5, which is better
than both.
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Fig. 2. Different ways to approximate a time series S =
(A,B,C,D,E, F,G,H) with `∞-error ε. The vertical segment centered at
each data point has length 2ε. The best disjoint PLA is AuD′, DuG′, GlHu;
the best continuous PLA is AuB′DuE′H; the best mixed-type PLA is
AuD′, DuE′H .

A. Problem definition

Before formally defining the problem we study in this paper,
we first describe how to represent a mixed-type PLA. A
mixed-type PLA is a piecewise linear function f in which
any two consecutive segments are connected via either a joint
or disjoint knot. In theory, this requires an extra Boolean
array to record the knot types, but in practice, we can exploit
the fact that the x-coordinate, which is the timestamp in the
time series, is always positive. So we can just use a single
array R to record all the parameters needed to represent f .
More precisely, for every joint knot (x, y) (see Figure 1), its
coordinates are simply stored as they are, while for a disjoint
knot (x, y, y′), we store it as (−x, y, y′). This way, when we
obtain f from R, upon reading a negative entry, we know that
this represents a disjoint knot, so we should read the next 3
entries and revert the x-coordinate; otherwise, we know it is
a joint knot and just read the next 2 entries.

Thus, we define the representation size of f as the size of
the array R, i.e.,

size(f) = 2× (# joint knots) + 3× (# disjoint knots).

Note that we have ignored the starting point of the first
segment and the ending point of the last segment, to make
the definition cleaner.

Now we can formally define the mixed-type PLA problem:
Problem 1 (Mixed-type PLA): Given a time series stream

S = ((x1, y1), . . . , (xn, yn)) where x1 < x2 < · · · < xn, and
an error ε, the goal is to construct a mixed-type PLA f such
that size(f) is minimized, while |f(xi)− yi| ≤ ε for all i.

In addition, we would like to solve the problem online, i.e.,
the records of S are given one at a time. The algorithm has no
knowledge about the future, including n, and it should output
the pieces of f on-the-fly.

B. Our contributions

In this paper, we design an efficient online algorithm to
compute the optimal mixed-type PLA for streaming time series
data. The algorithm has O(1) amortized processing time per
data record and uses small working space. We have conducted
extensive experiments on many real-world data sets, and the
results demonstrate 15% reduction on average in terms of the
representation size of the constructed PLA, compared with the
optimal continuous PLA or disjoint PLA. Note that a reduction
in the PLA size brings savings in all downstream processing
of the time series data, such as clustering, indexing, similarity
search, storage, etc.

A major technical challenge is that, while a simple greedy
approach can find the optimal solution for both the continuous
and the disjoint PLA problem [4], [6], no greedy algorithms
would work for the mixed-type PLA problem. We thus develop
a dynamic programming algorithm, based on some nontrivial
geometric properties of PLAs. Secondly, as dynamic program-
ming typically works only for offline problems, yielding the
optimal solution only after all input data has been processed,
we propose a novel early-output technique that can extract part
of the optimal solution from the dynamic program as soon as
possible, thus making the algorithm online. Our experiments
demonstrate that this early-output technique is highly effective
on real-world data sets, usually causing a delay of only 3 or
4 segments.

Our algorithm almost always uses small space; in our
experiments with many real-world time series data sets, the
space usage is always just about 1KB. However, theoretically
speaking, there are still some highly contrived inputs on
which our algorithm uses O(n) space in the worst case. In
Section VI, we show that this is inherently unavoidable by
presenting a corresponding lower bound. The lower bound not
only holds for the mixed-type PLA problem, it also holds for
the continuous and the disjoint PLA problem, explaining why
previous algorithms on these problems also inevitably require
O(n) space in the worst case.

To summarize, our contributions are as follows.



1) We observe that neither the continuous nor the disjoint
PLA problem studied previously truly optimizes the
representation size of the PLA, and propose a new
formulation of the problem allowing the PLA to adap-
tively use a mixture of joint and disjoint knots, so as to
minimize the representation size.

2) We design an optimal online algorithm with O(1) pro-
cessing time per data record, while using small working
space. The algorithm is quite different from existing
algorithms for the continuous or disjoint PLA problem,
which all use a simple greedy approach.

3) We have performed extensive experiments on many real-
world data sets. The results demonstrate a reduction of
15% in terms of representation size by using the optimal
mixed-type PLA, compared with current best methods.

4) We prove an Ω(n) worst-case space lower bound on any
algorithm for solving any version of the PLA problem.
This means no algorithm can always guarantee small
space usage if the problem is to be solved optimally.

II. RELATED WORK

Constructing good PLAs to approximate time series data
is a fundamental problem in data compression, statistics, and
databases. There has been extensive work on this problem, on
both the case where the PLA is a continuous piecewise linear
function and the case where it consists of disjoint segments.
But our work is the first to consider a mixed-type PLA, which
truly optimizes the representation size.

For both the continuous and the disjoint case, past work
simply used the number of segments as the size of the PLA.
There are two ways to formulate this problem. The instance
studied in this paper assumes a given error bound ε, and tries
to minimize the size of the PLA. Flipping the question around,
one may also ask that for a given size k, how to construct the
optimal PLA with at most k segments that minimizes the error.
The former is often called the min-k problem while the latter
the min-ε problem. Note that, however, the min-ε version is
not compatible with the online requirement, since the optimal
k-segment PLA (for a fixed k) inevitably changes as more data
arrives, so it is not possible to output the optimal solution in
an online fashion.

Different error measures have been considered, most com-
monly the `1/`2/`∞-error. Under `∞-error, the min-k problem
is exactly the problem studied in this paper, and past work has
already been reviewed in Section I. Lazaridis and Mehrotra [7]
studied a restricted version of this problem where the PLA
is replaced by a piecewise constant function. For the min-
ε problem, the continuous case is known as the polygonal
fitting problem in computational geometry. It was first solved
by Hakimi and Schmeichel [6] in O(n2 log n) time, which
was improved to O(n2) by Wang et al. [8] and further to
O(n log n) by Goodrich [9]. The disjoint case was solved by
Chen and Wang [10].

Under `1/`2-error, the min-ε problem using k disjoint
segments is also known as the histogram construction problem
in the database literature. A histogram can be considered

as a piecewise constant function, and it turns out that all
algorithms for the piecewise constant case also apply to the
disjoint piecewise linear case. Jagadish et al. [11] were the first
to consider this problem and presented an O(n2k) dynamic
programming algorithm. Guha et al. [12] gave near-linear time
algorithms, although only returning approximately optimal
solutions. Their algorithms also work in the streaming model,
but are not online algorithms as the solution is only constructed
at the end of the stream. The min-k problem can be solved by
using a binary search on k while invoking a min-ε algorithm.
The continuous PLA problem (either the min-ε or the min-k
version) under `1/`2-error turns out to be much more difficult.
Currently it only has an approximation algorithm by Aronov
et al. [13], and it is not even known if the problem is NP-hard.

As the `1/`2-error is ill-suited for the online setting,
compromises have been sought. A widely used online PLA
algorithm that heuristically optimizes the `1/`2-error is the
SWAB algorithm of Keogh et al. [14]. Instead of imposing
an `1/`2-error constraint on the entire time series, it puts an
error bound on each segment of the PLA, and combines a
greedy algorithm with a bottom-up heuristic to optimize the
overall error. This algorithm produces a disjoint PLA. One
can also use `∞-error in SWAB, but the result is not optimal.
Palpanas et al. [15] proposed another online PLA algorithm
using a variant of the `2-error that puts less emphasis on the
past, hence the name “amnesic”.

Finally, there are many other compressed representations
for time series data, such as Discrete Fourier Transform [16],
Piecewise Aggregate Approximation [17], Discrete Wavelet
Transform [18], Adaptive Piecewise Constant Approximation
[19], [7], and Chebyshev Polynomials [20]. Each one has its
advantages and disadvantages. Nevertheless, PLA remains one
of the most commonly used representations for time series
data, as argued in [14], [15], [21].

III. CONCEPTS AND PROPERTIES

In this section, we introduce a series of concepts with
regard to the PLA problem and their properties, which will be
essential to the correctness and optimality of our algorithm.

We model the time series as a sequence of points in the
plane. Let S = (p1, p2, . . . , pn) be the time series consisting
of n points, where pi = (xi, yi) and x1 < x2 < · · · < xn. We
use the following notation throughout the paper: For two points
p, q, pq denotes the line segment with p, q as the endpoints,
and←→pq denotes the (infinite) line passing through p and q. We
use ←→pq (·) to denote the linear function corresponding to the
line←→pq , namely,←→pq (x) is the y-coordinate of the point on the
line ←→pq at x.

A. Mixed-type PLA fitting through an extended polygon

We first convert Problem 1 into the problem of fitting a
mixed-type PLA through an extended polygon.

For a prescribed error ε, for each point pi, we create two
new points pui = (xi, yi + ε) and pli = (xi, yi− ε). Obviously,
any valid PLA that approximates S with `∞-error at most
ε must intersect the segment pui p

l
i for every i. This restricts
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Fig. 3. The extended polygon P

the position of the PLA only at every xi; below we define a
polygon P that restricts the PLA at all other x-coordinates.

The extended polygon of S, denoted by P , is the following
region:

P = {(x, y) | xi ≤ x ≤ xi+1, li(x) ≤ y ≤ ui(x), i = 1, . . . , n−1},
where

li(x) =

{←−→
pl1p

l
2(x) if i = 1

min{
←−−→
pui−1p

l
i(x),

←−−→
plip

l
i+1(x)} if 2 ≤ i ≤ n− 1

and

ui(x) =

{←−→
pu1p

u
2 (x) if i = 1

max{
←−−→
pli−1p

u
i (x),

←−−→
pui p

u
i+1(x) if 2 ≤ i ≤ n− 1

.

Please see Figure 3 for an example. Intuitively, the polygon
is upper bounded by the polygonal line pu1p

u
2 . . . p

u
n, but we

expand it by extending the segment pli−1p
u
i to the right until

xi+1, for i = 2, . . . , n− 1. We do a similar extension for the
lower boundary. Note that the extension does not necessarily
expand the polygon; for example in Figure 3, extending pu1p

l
2

does not expand the polygon.
We can see that P is bounded from the left by pu1p

l
1, which

we call the initial window, bounded from the right by punp
l
n,

which we call the final window, bounded from above by an
upper chain from pu1 to pun, denoted by U , and bounded from
below by a lower chain from pl1 to pln, denoted by L.

Note that we can easily construct P in an online fashion,
since each portion of P only depends on 3 consecutive points
in the time series. It will also soon be clear that we do not
need to store the entire P in memory; the portions of P
corresponding to old data can be discarded as soon as the
algorithm is done with them.

The benefit of introducing the extended polygon is that it
restricts the position of the optimal PLA. More precisely, we
define the mixed-type PLA fitting problem as follows, and then
reduce the original PLA problem to it.

Problem 2 (Mixed-type PLA fitting): Given an extended
polygon P , the goal is to construct a mixed-type piecewise
linear function f that starts from somewhere on the initial
window of P , goes entirely inside P , and finally reaches

somewhere on the final window of P , and find such an f
with the smallest size(f).

The following lemma reduces the original mixed-type PLA
problem (Problem 1) to Problem 2.

Lemma 1: An optimal solution for the mixed-type PLA
fitting problem on P is also an optimal solution for the mixed-
type PLA problem on S.

Proof: It is obvious that any valid solution to the fitting
problem on P is also a valid solution for the PLA problem
on S. So to prove the lemma, it suffices to show that, for any
optimal solution f for the PLA problem on S, if it does not
fit in P , we can do some transformation to fit into P without
increasing its size.

Let f be an optimal solution for the PLA problem on S.
First, observe that f cannot have more than one knot between
xi and xi+1 for any i. Otherwise we could replace two knots
(whatever their types are) by a new disjoint knot, which would
reduce the size of the PLA by at least 1. Second, a disjoint knot
between xi and xi+1 for any i can always be aligned to xi+1

by extending(resp. shrinking) the preceding(resp. succeeding)
segment of this knot.

Without loss of generality, we only consider the case where
f goes above U somewhere between xi and xi+1. Let uv be
the segment that crosses U , where u is inside P and v is
outside (see Figure 3, where i = 3). Since f must go below
pui+1, v must be on the left side of xi+1. Similarly, since f
must go above pli−1, u must be on the right of xi−1. Since v

is above U , it must be above
←−−→
pli−1p

u
i , whose slope is therefore

smaller than that of uv.
Now let us consider the knots at u and v, which we denote

by knotu and knotv , respectively. If both knots are disjoint,
then we can simply replace uv by u′′v′′, where u′′ (resp. v′′) is
the intersection between

←−−→
pli−1p

u
i and the vertical line placed at

u (resp. v). If knotu is joint and knotv is disjoint, we consider
the segment preceding uv. Suppose it intersects pli−1p

u
i at u′.

Then we can replace uv by u′v′′. If knotu is disjoint and
knotv is joint, we similarly consider the succeeding segment
of uv, which intersects pli−1z at v′, and replace uv by u′′v′.
Finally, if both knots are joint, then we can replace it by u′v′.
It should be clear that these operations do not increase the
size of f . Doing so for every segment that is outside P will
eventually make all parts of f inside P .

B. Visible regions and closing windows

From now on, we can focus on the mixed-type PLA fitting
problem on the extended polygon P .

We first introduce some terms. Given an extended polygon
P , a window w of P is a segment wuwl with one endpoint
wu on U and the other endpoint wl on L, while the whole
segment is inside P . For example, the initial window pu1p

l
1 and

the final windows punpln are both special windows. A window
w (except the initial and final window) cuts P into two sub-
polygons. The one that connects with the initial window is said
to be on the left side of w, while the other is on the right side.
Note that this left-right relationship is relative to the polygon
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P . For the example in Figure 4(a), the shaded region is on the
right side of w, although part of it is immediate to the left of
w.

A point q is said to be visible from w if q is on the right
side of w and can be reached by a ray shooting from some
point p on w, i.e., the segment pq completely lies inside P .
The visible region of w, denoted as vr(w), is thus the set of
all points visible from w. Intuitively, if we imagine w as a
light source (emitting light only to the right), then vr(w) is
simply the area that can be lit up by w (see Figure 4(b)).

Suppose vr(w) does not reach the final window. Then
vr(w) is a polygon inside P , which is bounded from the right
by another window. We call this window the closing window of
w, denoted by cw(w) (see Figure 4(b)). We have the following
observation with respect to the closing window: If we extend
cw(w) to the left, the line will hit w without leaving P . To
see why this is true, see Figure 4(c). We extend cw(w) to the
left until it hits w, and denote the resulting segment pr where
p is on w and r is the right endpoint of cw(w). Suppose pr is
intersected by the boundary of P . Consider an arbitrary point
q on cw(w), which must be visible from some point p′ on
w other than p. Since pq and cw(w) are not coincident, that
means that p′ must be able to see some q′ on the right side
of cw(w). This contradicts with the definition of the visible
region. We will call pr the generating segment of the visible
region and denote it by gen(vr(w)). Note that this segment
is the one that goes the furthest (relative to P ) starting from
somewhere on w.

Computing the visible region and the closing window.
For a given window w, vr(w) and cw(w) can be efficiently
computed in an online fashion, with amortized O(1) time per
data point, by the algorithm in [22]. For self-containment, we
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Fig. 5. Algorithm for computing the visible region and closing window.

briefly describe the algorithm below, adapted to our setting.
Starting from w, the algorithm maintains the convex hull

of U (bounding from below), as well as the convex hull of
L (bounding from above). See the dashed lines in Figure 5.
In addition, it maintains two supporting lines z+, z−, which
separate the two convex hulls, and among all such separating
lines, z+ (resp. z−) has the maximum (resp. minimum) slope.
These two supporting lines are tangent to the two convex hulls
at four vertices, l+, r+, l−, r−.

Suppose a new vertical segment uv on U arrives; the case
with L is symmetric. We first update the convex hull of U by
inserting v into it. Then there are 3 cases: 1) if v is above z+,
there is nothing more to do; 2) if v is below z+ but above
z−, we rotate z+ by setting r+ to be v, and moving l− to
the right if necessary; 3) if v is below z−, we compute the
crossing point q between z− and uv, close the visible region
and set the closing window cw(w) = r−q.

From the algorithm above, it is clear that the right endpoint
of the closing window is always on a vertical segment of U or
L. And it was shown in [22] that the amortized processing time
per data point of this algorithm is O(1). Its space complexity
depends on the size of the two convex hulls, which could
be O(n) in the worst case. But in reality it is essentially a
constant.

Two key properties. We now prove two key properties with
regard to closing windows, which will be essential for the
correctness and optimality of our algorithm.

For two windows w1, w2 of P , if w2 is completely on the
right side of w1, we say w2 is on the right side of w1, denoted
by w1 � w2. The relationship � defines a partial order on the
windows of P ; if two windows cross each other, then they are
not comparable under �.

The first property is quite intuitive.
Lemma 2 (Order-preserving property): For any two

windows w1, w2 of P , if w1 � w2, then cw(w1) � cw(w2).
Proof: First, it is trivial to see that cw(w2) � cw(w1) is

impossible. This is because any ray shooting from w1 must
cross w2 to get to the right side of w2, hence any point (on
the right side of w2) that can be seen from w1 can also be
seen from w2.

Now suppose that cw(w1) crosses cw(w2) at some point
q as shown in Figure 6. Consider the generating segment of



vr(w1), i.e., the one obtained by extending cw(w1) to the left,
which hits w1 at some point p. Since pq is completely inside
P , it must cross w2 at some point p′. Next, let q′ be some
point on←→pq but on the right side of cw(w2). It is visible from
w2 from p′, but this contradicts with the fact that q′ is on the
right side of cw(w2) so should not be visible from w2.

The second property is less obvious.
Lemma 3 (Non-crossing property): For any two win-

dows w1, w2 of P , cw(w1) and cw(w2) do not cross.
Proof: Lemma 2 already has established that if w1 and w2

do not cross, then cw(w1) and cw(w2) do not cross. So we just
consider the case where w1 and w2 cross each other. Let their
crossing point be p. Suppose for contradiction that cw(w1)
crosses cw(w2) at point q. Consider the generating segment
of vr(w1) by extending cw(w1) to the left, which hits w1 at
p1. Further consider the segment p1q. If p1q crosses w2, then
by the same argument as in the proof of Lemma 2, we can
find some q′ on that right side of cw(w2) that is visible from
w2, which causes a contradiction. So p1q cannot cross w2.
Similarly, the generating segment of vr(w2), p2q for some
point p2 on w2, cannot cross w1. Therefore, except for the
directions of the two closing windows, Figure 7 shows the
only possible situation.

Clearly p2 is visible from w1 since pp2 is completely in
P and p2 is on the right side of w1. And we know p2q is
completely inside P . Now, if the direction of cw(w1) is not
the same as shown in Figure 7, then p2q will be completely
on the right side of cw(w1), which implies that p2 will not be
visible from w1. Therefore, we conclude that the direction of
cw(w1) must be as shown in the figure. Using a symmetric
argument, the direction of cw(w2) must also be as shown.

Now focus on p1q where p1 and q are both on the generating
segment of vr(w1). Since the direction of cw(w1) is as shown,
that means if we rotate p1q clockwise slightly according to a
center placed on somewhere along this segment, it will remain
in vr(w1), but we cannot rotate it counterclockwise according
to a center placed on anywhere along this segment without
leaving vr(w1). This implies that there exist a point l− on the
lower chain L and a point r+ on the upper chain U that both
touch p1q as shown in the figure. However, since p2q is inside
P , point l− must be on or below p2q. This leaves the only
possibility which is that both p1 and p2 must coincide with
p. This in turn makes cw(w1) and cw(w2) coincide, but with
opposite directions. This is not possible, since every window
of P has a unique direction.

w1
w2

cw(w1)

cw(w2)

q q′

p

p′

Fig. 6. The order-preserving property. The shade of each window indicates
the left side.

w1 w2

cw(w2)

cw(w1)

p

q

p2

p1

q′

l−

r+

Fig. 7. The non-crossing property. The shade of each window indicates the
left side.
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Fig. 8. Rightmost reachable window.

C. Rightmost reachable window

Recall that the mixed-type PLA fitting problem (Problem 2)
asks us to find the f with the smallest size(f) that starts from
the initial window of P and goes to its final window. In our
algorithm, we will flip the question around, and ask that for a
given size k, what is the rightmost point reachable by an f with
size(f) = k. Then, the smallest k such that f reaches some
point on the final window of P yields the optimal solution to
the original problem.

However, it is difficult to develop a dynamic programming
algorithm based on the “rightmost reachable point” concept.
Another technical problem is that the rightmost reachable point
is not unique. For example, in Figure 8, for k = 0, all points
on the segment av are the rightmost points reachable from the
initial window w0. Thus, we consider the rightmost reachable
window by an f with size(f) = k starting from w0, and
denote this window by C[k]. Recall that a window of P is
a segment with one endpoint on the upper chain U and the
other endpoint on the lower chain L, and the “rightmost” one
is defined relative to P under the partial order �. However,
as � is a partial order and not all windows are comparable,
it is not clear if this “rightmost reachable window” is a valid
definition at all. Below, we show that C[k] is indeed well-
defined and unique for any k (except for the case k = 1 since
no PLA has size 1).

We start by analyzing some simple cases.
• For k = 0, which means that no knots can be used, the

problem is exactly to compute vr(w0). By the definition
of the visible region, if w0 can “see” the final window



directly, then we have already found the optimal solution
with size(f) = 0. Otherwise, vr(w0) is bounded by
the closing window cw(w0), and there is a segment
(the generating segment gen(vr(w0))) that starts from
somewhere on w0 and goes through cw(w0), so we
have C[0] = cw(w0). In the example of Figure 8,
gen(vr(w0)) = uv.

• Next, consider the case k = 2, which means that the PLA
must consist of 2 segments connected by a joint knot.
We will argue that C[2] = cw(cw(w0)), i.e., in order to
go the furthest to the right, the second segment of the
PLA should just start from somewhere on cw(w0). To
see why this is true, consider any PLA with 2 segments
connected by a joint knot v′ (see Figure 8). The first
segment of the PLA is u′v′. Since C[0] = cw(w0) is the
rightmost reachable window with one segment, v′ must be
on the left side of C[0] or on C[0]. Thus, any ray shooting
from v′ must penetrate C[0], so any point reachable by
a segment starting from v′ must also be reachable by a
segment starting from somewhere on C[0]. Therefore, to
find the rightmost reachable window for any PLA with
k = 2, it is sufficient to restrict the starting point of
the second segment to C[0], i.e., C[2] = cw(C[0]) =
cw(cw(w0)).

• When k = 3, the PLA must consist of 2 segments
connected by a disjoint knot. For any window w,
we let its next window, nw(w), to be the window
pui p

l
i on its immediate right that is defined by a data

point. For example in Figure 8, cw(w0)’s next win-
dow is nw(cw(w0)) = pu5p

l
5. We claim that C[3] =

cw(nw(C[0])) = cw(nw(cw(w0))). Again, by the defi-
nition of the rightmost reachable window C[0], its next
window pu5p

l
5 cannot be reached by the first segment of

the PLA. However, the first segment’s right endpoint can
have the same x-coordinate as the next window pu5p

l
5.

Thus, the second segment is restricted to have a starting
point on pu5p

l
5, so we must have C[3] = cw(nw(C[0])).

• For k ≥ 4, the PLA consists of two or more knots.
Consider the last knot. If it is a joint knot, using similar
arguments as the k = 2 case above, we have C[k] =
cw(C[k − 2]). If it is a disjoint knot and k ≥ 5, using
similar arguments as the k = 3 case above, we have
C[k] = cw(nw(C[k − 3])).

To summarize, we have the following recursive definition
of C[k]:

C[k] =


cw(w0) if k = 0

cw(nw(C[k − 3])) if k = 3 or (k ≥ 5 and
cw(C[k − 2]) � cw(nw(C[k − 3])))

cw(C[k − 2]) else.

Note that by the non-crossing lemma (Lemma 3), cw(C[k−
2]) and cw(nw(C[k − 3])) must be comparable as both are
closing windows.

This recursion clearly yields a well-defined and unique
C[k] for any k 6= 1. Below we establish its correctness and

optimality.
Lemma 4: Let C[k] be defined as above. For any k 6= 1,

we have that (1) there exists a PLA f of size(f) = k that fits
inside P and its last segment contains C[k]; and (2) for any
PLA f of size(f) = k that fits inside P , it cannot reach the
right side of C[k].

Proof: The proof for the base cases k = 0, 2, 3 is straight-
forward following the discussion above. Now we assume by
induction that the lemma is true for 0, 2, 3, . . . , k−1, and will
prove that it is true for k, where k ≥ 4.

The (1) part is straightforward, since C[k] is set to either
cw(nw(C[k− 3])) or cw(C[k− 2]). By the induction hypoth-
esis, there exists a PLA f1 of size(f1) = k − 3 and its last
segment contains C[k − 3]. If C[k] = cw(nw(C[k − 3])). we
add a segment to f1 (preceded by a disjoint knot) that starts at
nw(C[k−3]) and goes through cw(nw(C[k−3])). This gives
us the desired f of size(f) = k. Similarly, by the induction
hypothesis, there exists a PLA f2 of size(f2) = k− 2 and its
last segment contains C[k − 2]. If C[k] = cw(C[k − 2]), we
add a segment to f2 (preceded by a joint knot) that starts at
C[k − 2] and goes through cw(C[k − 2]).

Next, we consider the (2) part. By Lemma 3, cw(nw(C[k−
3])) and cw(C[k − 2]) must be comparable, and we take the
one on the right and set it as C[k]. Suppose that there exists an
f of size(f) = k that reaches the right side of C[k]. Consider
its last knot v′, and let f1 be the PLA after removing v′ and
the last segment of f . If v′ is a joint knot, then f1 must have
size k − 2. By the induction hypothesis, f1 cannot reach the
right side of C[k−2], so v′ must be on the left side of C[k−2].
By Lemma 2, it is impossible for a segment to start from v′

and reach the right side of cw(C[k − 2]) � C[k]. If v′ is a
disjoint knot, then f1 must have size k − 3. By the induction
hypothesis, f1 cannot reach the right side of C[k − 3], hence
also nw(C[k−3]). Thus, the last segment of f must start from
nw(C[k − 3]) or earlier. Again by Lemma 2, it is impossible
for a segment to start from nw(C[k − 3]) and reach the right
side of cw(nw(C[k − 3])) � C[k].

Summarizing these cases, we conclude that C[k] is the
rightmost reachable window for any PLA of size k.

IV. THE ALGORITHM

Based on the recurrence of C[k], it is easy to have a dynamic
programming algorithm. Some care, however, needs to be
taken to make the algorithm online while using small working
space.

A. Dynamic programming

We first describe the data structures needed for the dynamic
programming algorithm. Obviously we need the array C[·],
which is computed using the recurrence. For each entry C[k],
we also need a pointer pred[k] that points to either k − 3 or
k− 2 depending on whether C[k] is set to cw(nw(C[k− 3]))
or cw(C[k − 2]). This can actually be implemented as a bit
array as each pred[k] has only two possibilities. As the base
cases, we set pred[2] = pred[3] = 0 since C[1] and C[−1]



Algorithm 1 UPDATE(p)
1: for each vr ∈ lvr do
2: if vr is open then
3: vr.update(pt);
4: end if
5: end for
6: while vr(nw(C[k−3])), vr(C[k−2]) are both closed do
7: if cw(nw(C[k − 3])) � cw(C[k − 2]) then
8: C[k]← cw(nw(C[k − 3])), pred[k]← k − 3,

ref [k − 3]← ref [k − 3] + 1;
9: else

10: C[k]← cw(C[k − 2]), pred[k]← k − 2,
ref [k − 2]← ref [k − 2] + 1;

11: end if
12: discard vr(nw(C[k − 3])), vr(C[k − 2]) from lvr;
13: create vr(C[k]), vr(nw(C[k])) and insert them to lvr;
14: k ← k + 1;
15: PRUNE(C[·], pred[·]);
16: end while
17: EARLY-OUTPUT(C[·], pred[·]);

are both ill-defined; and we further set pred[0] = null for
convenience.

As the algorithm takes incoming data points, it executes a
number of instances of the algorithm for computing visible re-
gions as described in Section III-B. Abusing notation, we also
use vr(w) to denote the data structures needed for computing
the visible region of w. When vr(w) is closed by a closing
window, we have obtained cw(w) and can discard vr(w).
Before reaching the closing window cw(w), we say vr(w)
is open, and we maintain a list lvr which keeps at most 5
open visible regions, namely, vr(nw(C[k−3])), vr(C[k−2]),
vr(nw(C[k−2])), vr(C[k−1]), vr(nw(C[k−1])) during the
period when computing C[k]. Initially, we set lvr = {vr(w0)}
and k = 0.

When a data point p arrives, we first update all the open
visible regions in the list lvr. If p closes one or more regions,
then we obtained their closing windows, and can move ahead
with the dynamic programming using the recurrence. The
algorithm is outlined in Algorithm 1. Note that we have not
considered the base cases k = 0, 2, 3, 4 in the pseudocode
for better clarity, which are easy to handle. There are two
functions PRUNE(), EARLY-OUTPUT() and another array ref [·]
used in the algorithm, which will be explained later.

When the stream finishes, the current k corresponds to the
optimal size of the PLA. To construct the actual PLA, we look
at vr(nw(C[k − 3])) or vr(C[k − 2]). Note that at least one
of them must be open, since otherwise the algorithm would
have computed C[k] and incremented k. If vr(nw(C[k− 3]))
is open, the last piece of the PLA can be any line segment
starting from nw(C[k−3]) and reaching the final window, e.g.,
one of the supporting lines z+ or z− maintained by the visible-
region algorithm. We also know that the knot preceding the last
segment is a disjoint knot. Then following the pointers starting

Algorithm 2 PRUNE(C[·], pred[·])
1: i← k − 4;
2: while i > 0 and ref [i] = 0 do
3: i′ ← pred[i];
4: delete C[i], pred[i], ref [i];
5: ref [i′]← ref [i′]− 1;
6: i← i′;
7: end while

from pred[k − 3], we can construct the PLA iteratively. The
case with vr(C[k − 2]) being open can be handled similarly.

Note that at any time, there are at most 5 open visible
regions in lvr. Since updating each visible region takes
amortized constant time, the total time spent by the algorithm
in lines 1–5 is O(1) amortized. The while loop in lines 6–16
also takes O(1) time amortized, since each iteration increases
k by 1, and k is at most n. So the total running time of the
update algorithm is O(1) amortized, excluding PRUNE() and
EARLY-OUTPUT().

However, the space usage of the algorithm is large, required
by the two arrays C[·] and pred[·]. More seriously, the
algorithm is not online, as it has to wait until the end of the
stream, and then traces back following the pred pointers to
reconstruct the optimal solution. In the rest of this section, we
show how to tackle these two issues.

B. Pruning the array

We first consider how to reduce the number of entries in the
array C[·], hence pred[·]. The idea is to delete those entries
that are impossible to be part of the optimal solution. For this
purpose, we introduce another array ref [·], with ref [k] being
the number of times C[k] has been pointed to. Note that this
array can be easily maintained whenever we add a new C[k]
and set its pred[k] pointer.

An important observation is that since pred[k] can only be
k − 2 or k − 3, ref [i] will never be incremented for any i <
k − 3. If ref [i] = 0 for such an i, that means C[i] will never
be used and thus can be discarded. After deleting C[k] (and
also pred[k]), we will also decrement ref [pred[k]], which in
turn may trigger iterative deletions. The pruning algorithm is
outlined in Algorithm 2. Note that to facilitate the pruning, it
is actually easier to implement C[·], pred[·], and ref [·] as a
list of objects with 3 fields.

Clearly, PRUNE() takes amortized constant time since each
entry of C[·] is deleted at most once.

C. Early output

Next, we consider the problem of outputting the optimal
solution while the input data arrives over time. In general,
dynamic programming algorithms have to wait for the entire
space of subproblems to be computed to start reconstructing
the optimal solution. However, we observe an interesting
special property of the subproblem state diagram, which allows
us to output the optimal solution as early as possible.



C[i] C[k − 3] C[k − 2] C[k − 1]C[0] · · · · · ·· · ·

Fig. 9. The structure of C[·].

First, since a backward pointer pred jumps at most 3 steps,
any solution has to pass through at least one of C[k − 1],
C[k − 2], or C[k − 3]. Meanwhile, each entry of C[·] has
exactly one backward pointer (except the first entry). Suppose
we trace the solution backward with C[k − 1], C[k − 2], and
C[k − 3] as the starting point, respectively, and the 3 traces
first meet at some C[i]. After C[i], the 3 traces will always
stay together. This means that the common part of the 3 traces
must be a prefix of each trace, and it must be a prefix of the
optimal solution, thus can be outputted.

On the other hand, consider any C[j] for j < i in the pruned
array. We will show that ref [j] = 1. Obviously, ref [j] > 0
since we have pruned all entries with ref [j] = 0. Meanwhile,
observe that no backward pointers jump over C[i], since C[i]
is common to all 3 traces by definition (note that there is
no other trace). Thus, all references to C[j] must come from
some entry before C[i] (including C[i]), which means that
the total number of references to C[0], . . . , C[i − 1] must
equal to the total number of entries that have not been pruned
in C[0], . . . , C[i], minus 1 (the first entry does not have a
backward pointer), which equals to the number of entries in
C[0], . . . , C[i−1]. Thus, every C[j], j < i must have reference
count exactly equal to 1, since if some entry has 2 or more
references, then there must be another with 0 reference, which
violates the precondition that all such entries have already been
pruned.

The above observations imply that the structure of the C[·]
array (implemented as a list) has a very special form, as
illustrated in Figure 9. Therefore, we can output the “tail”
part as soon as possible. After outputting the corresponding
solution, the “tail” can also be deleted (thus, the real picture
as maintained by the algorithm does not have the tail).

Since we implement C[·] as a list, the early-output algorithm
is actually quite simple, as illustrated in Algorithm 3. The
algorithm also takes amortized constant time since each entry
of C[·] is deleted at most once.

Algorithm 3 EARLY-OUTPUT(C[·])
1: head← the first entry in C[·];
2: next← the second entry in C[·];
3: while ref [head] = 1 and ref [next] = 1 do
4: if next < k − 3 then
5: output the corresponding piece of C[head];
6: discard C[head];
7: head← next;
8: next← the next entry after C[next];
9: end if

10: end while

Note that the non-tail part of C[·] can still get very long,
and linear in n in the worst case. However, such cases only
happen on contrived inputs. In practice, the non-tail part is
very short (usually 3 or 4 entries).

Theorem 1: Our algorithm solves the mixed-type PLA
problem optimally, spending amortized O(1) time per data
point in the stream. It outputs the partial optimal solution as
early as possible. Its worst-case space complexity is O(n).

V. EXPERIMENTS

A. Experimental setup

In this section, we report our experimental findings on a
variety of real-world data sets. Like prior work [5], [7] on
the PLA problem, we used the sea surface temperature data3

which consists 210851 temperature readings with 10-minute
intervals. In addition, we also picked 8 representative data sets
from the UCR time series data archive4. These data sets exhibit
different characteristics in terms of smoothness, stationarity,
etc.

We compared four algorithms: (1) Swing filter, (2) Slide
filter, (3) Cont-PLA, and (4) Mixed-PLA, where (1) is a heuris-
tic algorithm introduced in [5] that generates a suboptimal
disjoint PLA; (2) is the optimal disjoint PLA algorithm of
O’Rourke [4] which was rediscovered in [5]; (3) is the optimal
continuous PLA algorithm of Hakimi and Schmeichel [6]; and
(4) is our algorithm. All experiments were conducted on a
machine with 16G RAM and a 3.00GHz processor.

B. PLA size

We first measure the size of the generated PLAs of these
algorithms for a given `∞-error ε. We first found the maximum
and minimum value in each data set and computed their
difference. Then we set ε to be 0.5%, 1%, . . . , 5% of this
difference and ran each of the 4 algorithms. The resulting
PLA sizes for the 9 data sets are shown in Figure 10. For ease
of comparison, we have normalized their sizes with that of
Slide filter being 1.

From the plots, we see the following trends. First, Swing
filter generates the largest PLA and is worse than the other
algorithms by a large margin. Between Slide filter and Cont-
PLA, the two algorithms that generate the optimal disjoint
and continuous PLAs respectively, there is no clear winner,
with perhaps Cont-PLA being better on more cases, and the
relative advantage seems to depend on both the data set and
the choice of ε. Finally, Mixed-PLA consistently beats Slide
filter and Cont-PLA by roughly 15%.

In terms of `∞-error, all algorithms exactly attain the given
ε as they all try to minimize the PLA size within the allowed
`∞ constraint. We also looked at the `2-error of the PLAs
returned by the 4 algorithms. Note that to be fair, we should
compare PLAs of the same size, so we plot the results in the
plane with `2-error and the PLA size as the two dimensions,
and the results on two of the data sets are shown in Figure

3http://www.pmel.noaa.gov/tao
4http://www.cs.ucr.edu/˜eamonn/time series data/
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Fig. 10. Normalized PLA size

11(a) and 11(b) (results on other data sets are similar). Note
that the points are not aligned since we cannot control the PLA
size (we controlled the `∞-error ε). To our pleasant surprise,
Mixed-PLA seems to yield the smallest `2 error, although none
of these algorithms really takes `2-error into consideration.

C. Space and time
Next, we investigate the space and time costs of the 4

algorithms. The space and time costs of these algorithms
are not sensitive to data characteristics, so we only report
the results on the sea surface temperature data set, which
is the largest among the 9. We first vary ε, and plot the
average update cost per data record in Figure 11(c). Recall that
theoretically, all algorithms have O(1) amortized update time.
In practice, the worst algorithm in terms of quality (i.e., PLA
size) usually is also the fastest. The Mixed-PLA algorithm
is slowest, due to the need of running up to 5 instances of
the visible region algorithm. Anyway, all algorithms are quite
efficient, with the average update time per data record below 2
microsecond. We also have checked the update cost over time

(Figure 11(d)), and are assured that it is not affected by n, the
length of the time series.

Although we do not have a good worst-case bound on the
space usage, in reality the space usage is low for all algorithms.
In Figure 11(e) we plot the maximum space usage for different
values of ε. Again, algorithms with lower quality tend to use
smaller space. Our algorithm uses the most space, but still it
is just around 1KB. In Figure 11(f), we plot the space usage
over time. Again, the space usage does not increase as n.

Although our algorithm uses more space and time than the
previous algorithms, these are just one-time costs, while the
benefits of a smaller PLA (with the same `∞-error and smaller
`2-error) are long-term, reducing the cost of any downstream
processing including time series analysis, clustering, indexing,
similarity search, storage, etc. In addition, the space and time
costs are still very low, with 1KB of working space and
2 microsecond of processing time, these costs are almost
negligible compared to their long-term benefits.
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Fig. 11. `2-error, space and time cost

D. Output delay
Finally, we examine the effectiveness of the early-output

technique, and see how much delay the algorithm has when
returning the PLA. We have tested all 9 data sets, with ε = 5%,
and recorded maximum delay when the segments of PLA are
outputted over the entire time series. Table I shows that the
early-output technique is highly effective, with the maximum
delay being just 3 or 4 segments.

Data set a b c d e f g h i
Delay 4 3 2 3 3 3 3 3 2

TABLE I
MAXIMUM OUTPUT DELAY

VI. LOWER BOUND

Our algorithm has very small space overhead as shown
in the experiments, but its worst-case space complexity is
still O(n). In this section, we show that this is inherently
unavoidable, by proving corresponding a lower bound. In
addition, we show that this is not specific to the mixed-type
PLA problem. It applies to the continuous and disjoint PLA
problem as well. In fact, we consider the following simple
problem, which is a special case of the mixed-type, continuous,
or the disjoint PLA problem, so lower bounds proved for this
problem also hold for the more general problems.

Problem 3 (One-line approximation): Given a time se-
ries stream S = ((x1, y1), . . . , (xn, yn)) where x1 < x2 <
· · · < xn, and an error ε, the goal is to find a linear function
f such that |f(xi)− yi| ≤ ε for all i. Return “no solution” if
such an f does not exist.

To get a space lower bound for the one-line approximation
problem, we use a reduction from the INDEX problem in
communication complexity. In the INDEX problem, Alice has
an array A[·] of n bits, and Bob has an index j. Bob needs
to know the value of A[j], and Alice can only send one
message to Bob. It is well known that the INDEX problem
has communication complexity Ω(n) [23].

Theorem 2: The worst-case space complexity of the one-
line approximation problem is Ω(n).

Proof: (sketch) Let A be any algorithm for the one-
line approximation problem. The reduction from the INDEX
problem to the one-line approximation problem consists of the
following steps.

1) First, Alice constructs an instance of the one-line ap-
proximation problem S = (q1, . . . , qn) from her input
array A[·]. More precisely, for i = 1, . . . , n, she creates
a point qi = (i, yi), where

yi =

{
i(i+ 1)/2 + δ if A[i] = 1

i(i+ 1)/2 if A[i] = 0,

where δ > 0 is a sufficiently small constant.
2) Alice runs algorithm A on S with ε = n2. When S

has processed all the n points, Alice sends the memory
content of A to Bob.

3) Let p∗ = (t∗,m∗) where t∗ = j + 1/2 and m∗ = ε −
j2/2 + δ/2. Bob creates two data points qn+1 = (n +
1, n2 +m∗+(n+1)t∗) and qn+2 = (n+2,−n2 +m∗+
(n+ 2)t∗).

4) After receiving the memory content of A from Alice,
Bob continues the execution of A to take two more



m

t

δ

δ

Fig. 12. The reduction.

points qn+1 and qn+2. Then Bob asks A whether a
solution to the one-line approximation problem exists.
If the answer is yes, Bob declares A[j] = 1, otherwise
A[j] = 0.

It is obvious that in this reduction, the communication cost
is a lower bound on the memory usage of A, so the space
complexity of A is Ω(n).

Below, we show the correctness of the reduction. Due to
space constraint, we only sketch the high-level ideas and leave
out the tedious calculations.

We write any linear function in the form f = −tx + m,
and consider the parameter space (t,m). The requirement of
f approximate a point (xi, yi) within ε error translates to the
constraint yi − ε ≤ −txi +m ≤ yi + ε, which corresponds to
a slab (i.e., the region bounded by two parallel lines) in the
parameter space. Thus, the one-line approximation problem on
the n+2 data points has a solution iff the n+2 corresponding
slabs have a nonempty intersection in the parameter space.

The intersection of the slabs corresponding to q1, . . . , qn
will look like the left figure in Figure 12. We call this region
R. The two slabs corresponding to qn+1 and qn2 have an
intersection that is a skinny parallelogram whose bottom vertex
is exactly p∗, as shown in the middle figure of Figure 12. The
position of the parallelogram is determined by the value of j
held by Bob. We can set the value of δ such that, if A[j] = 0,
the parallelogram will not intersect R, but if A[j] = 1, it
will intersect R (see the dashed lines in the right figure of
Figure 12). Thus, deciding whether all the n+ 2 slabs have a
nonempty intersection will also tell us whether A[j] = 1 or 0.

As the one-line approximation problem is a special case
of the mixed-type, continuous, and disjoint PLA problem, the
same lower bounds also hold for these problems.

Corollary 1: The worst-case space complexity of the
mixed-type, continuous, and disjoint PLA problem is Ω(n).

VII. CONCLUSION

In this paper, we have revisited the classical PLA problem
over streaming time series data, and presented an online
algorithm that truly optimizes the representation size of the
PLA. The algorithm has O(1) update cost per data record, and
uses small working space. The worst-case space complexity is
O(n), but the space usage on all real-world data sets is very
low. We have also complemented this by a space lower bound

of Ω(n) showing that no algorithm can always guarantee small
working space.
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