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Abstract
Computing joins is expensive, and often unnecessary when the output size is large. In 1999,
Chaudhuri et al. [7] posed the problem of random sampling over joins as a potentially effective
approach to avoiding computing the join in full, while obtaining important statistical information
about the join results. Unfortunately, no significant progress has been made in the last 20 years,
except for the case of acyclic joins. In this paper, we present the first non-trivial result on sampling
over cyclic joins. We show that after a linear-time preprocessing step, a join result can be drawn
uniformly at random in expected time O(INρ/OUT), where INρ is known as the AGM bound of the
join and OUT is its output size. This result holds for all joins on binary relations, as well as certain
joins on relations of higher arity. We further show how this algorithm immediately leads to a join
size estimation algorithm with the same running time.
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1 Introduction

A join query can be modeled as a hypergraph H = (V, E), with |V| = n vertices and m = |E|
hyperedges. Each vertex models an attribute, and for each hyperedge F ∈ E , there is a
relation RF on attribute set F . We use Q :=onF∈E RF to denote the set of join results. In
this paper, we consider the data complexity of query evaluation, i.e., the running time of the
algorithms will be measured by the total input size IN =

∑
F∈E |RF | and the output size

OUT = |Q|, while assuming n and m are constants.
Algorithms for computing Q have been extensively studied. It is well known that Q can

be computed in O(INρ) time, where ρ is the optimal solution of the following linear program
[3, 13, 14, 16]:

min
xF ,F∈E

logIN |RF | · xF

s.t.
∑
F,v∈F

xF ≥ 1, for every v ∈ V, (1)

0 ≤ xF ≤ 1, for every F ∈ E .

This is worst-case optimal since OUT can be as large as Θ(INρ) on some instances.
Alternatively, output-sensitive algorithms are known that compute Q in O(INw + OUT)
time, where w is certain notion of width of the hypergraph H [10, 11]. But this is still very
expensive for highly cyclic queries, for which w is close to ρ, or when OUT is large. Indeed,
computing multi-way joins is still the bottleneck in query evaluation in modern database
systems.
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7:2 Random Sampling Over Cyclic Joins

One key observation made in as early as 1999 [7] is that rarely are full join results
required by the user. In almost all use cases, the join results are aggregated and presented
to the user in a succinct form. The aggregation function can be as simple as a count or
a sum, a random sample, or an arbitrary UDF. Thus, the intriguing question is, can we
compute the final query result without computing the join in full? To make the problem well
defined and amenable to theoretical investigation, in this paper we consider two particular
aggregation functions: random sampling and (approximate) counting. These are arguably
the two most basic aggregates, which other more complicated aggregations can be based
upon. For example, sum can be considered as a weighted version of the count, while many
UDFs (e..g, median and quantiles) can be computed approximated from a random sample in
lieu of full data.

1.1 Previous results on random sampling over joins
The starting observation from the pioneering work of Chaudhuri et al. [7] is that the
sampling operator cannot be pushed down through a join operator, i.e, sample(R1) on
sample(R2) 6= sample(R1 on R2). To see this, consider a binary join R1(A,B) on R2(B,C),
with R1 = {(a1, b1), (a1, b2), . . . , (aN , b2)} and R2 = {(b1, c1), (b1, c2), . . . , (b1, cN ), (b2, c1)}.
Note that the join size is OUT = 2N . Thus, to be able to sample a join result uniformly at
random from these 2N join results, one has to non-uniformly sample tuples from either R1
or R2. In particular, the (a1, b1) in R1 must be sampled with a probability that is N times
larger than the other tuples in R1, because it joins with N tuples in R2. More formally,
Chaudhuri et al. [7] prove that, without precomputing some auxiliary information from the
data, drawing a sample from R1 on R2 requires at least Ω(IN) time. In view of this negative
result, they first collect the frequency information from R2, i.e., |σB=bR2| for each distinct
b, and build a weighted sampling data structure on R1 using these frequencies as weights.
One can use the “alias method” [6] to build a weighted sampling structure in linear time,
which supports drawing a weighted sample in O(1) time. After drawing a weighted sample
t1 from R1, we randomly draw a tuple t2 from R2 n t1

1, which can be done in constant time
if there is an index on R2. Note that an index can also be built in linear time. Therefore,
the formal result of Chaudhuri et al. [7] is that a data structure can be built in linear time,
which allows one to draw a random sample from R1 on R2 in O(1) time.

At the same SIGMOD conference with Chaudhuri et al. [7], Acharya et al. [1] studied
the problem of random sampling over multi-way joins. However, their algorithm only works
for a very special type of joins with foreign-key constraints, which imply that there is a
one-to-one correspondence between the join results and tuples in the largest table. Thus,
random sampling from the join reduces to sampling from a single table, which is trivial.

This problem then stayed dormant for almost 20 years, until Zhao et al. [19] designed an
algorithm to sample from multi-way acyclic joins. They show that, on any acyclic join, a data
structure can be build in linear time that allows one to draw a random sample from the join
results in constant time. Their observation is that, on a multi-way join Q, one should sample
a tuple t with probability proportional to |Qt|, where Qt =onF∈E (RF n t) is the residual
query of t. Note that on the binary join R1(A,B) on R2(B,C), the size of the residual query
of some tuple t = (a, b) ∈ R1 is exactly the frequency of b in R2. Then, the idea is to do so
recursively, with the algorithm of Chaudhuri et al. [7] becoming the base case. Finally, they
make use of the (probably folklore) result that, for an acyclic join [18], all the residual query

1 We use R n t as an abbreviation for R n {t}.
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sizes can be computed in O(IN) time. Then they organize these residual query sizes in an
appropriate data structure so that a sample can be drawn in O(1) time. They also adapt
their algorithm to cyclic queries, but there is no formal guarantee on its performance.

1.2 Previous results on join size estimation
For an acyclic query Q, it is well known that OUT = |Q| can be computed in O(IN) time.
But the problem looks very difficult for cyclic queries. Even for the simplest cyclic query, the
triangle query Q4 = R{A,B} on R{B,C} on R{A,C}, we currently do not have any algorithm
that can compute OUT faster than O(INρ) time2, i.e., counting seems to be as difficult as
computing the full join results. On general cyclic queries, the O(INw + OUT)-time output-
sensitive join algorithm above can be modified so as to compute OUT in O(INw) time, but
this is still very expensive for highly cyclic queries.

In most applications, we do not need an accurate OUT, while a reasonable estimate would
be good enough. In the database literature, this is known as the “query size estimation”
problem, and has been extensively studied. However, most results in this area are heuristics
without formal guarantees on the accuracy of the estimate.

The problem of estimating |Q4|, i.e., counting triangles in a graph, has received particular
attention. A commonly used model in the algorithms community is the property testing
model, which assumes that the graph has already been preprocessed into some standard
graph data structure (e.g., adjacent lists with hash tables), so that one can perform the
following operations in constant time: randomly sampling a vertex, randomly sampling an
edge, returning the degree of a vertex, returning the i-th neighbor of a vertex, and testing if
an edge exist between two vertices. In this model, Eden et al. [8] designed an Õ

(
IN3/2

OUT

)
-time3

algorithm that returns a constant-factor approximation of OUT with constant probability,
and showed that this is optimal. Their algorithm has been later extended to counting length-
k cycles and size-k cliques for any constant k, and the running time becomes Õ

(
INk/2

OUT

)
[4, 9]. Very recently, Assadi et al. [2] extended this algorithm to computing a constant-factor
approximation of the join size of any query on binary relations in time of Õ

( INρ
OUT

)
. They

also proved a matching lower bound, which actually holds for the problem of distinguishing
between an input with no join result and one with OUT join results. So it holds for both
the sampling problem and the join size estimation problem. However, their algorithm only
works for the join size estimation problem, not sampling.

Unfortunately, the aforementioned algorithms perform very badly in practice, despite
their theoretical optimality. For the triangle counting problem, one of the most practically
efficient algorithms is wedge sampling [15], which departs from the property testing model
slightly. A wedge is just a length-2 path. The basic idea of wedge sampling is to first uniformly
sample a wedge, and then check if the wedge is closed, i.e., forms a triangle. The standard
property testing model does not allow one to uniformly sample a wedge in constant time, but
this can be easily supported by building a weighted sampling structure on all the vertices,
where the weight of each vertex v is d(v)(d(v)− 1)/2, which is exactly the number of wedges
centered at v. This weighted sampling data structure can be built cheaply in a linear-time

2 On the triangle query, the optimal solution to the linear program (1) is either x1 = x2 = x3 = 1/2, or
x1 = x2 = 1, x3 = 0 (ignoring the other two symmetric cases). In the former case, O(INρ) = O(IN3/2);
in the latter case, O(INρ) = O(|R1| · |R2|).

3 The bound stated in [8] has an extra term, since they did not use edge sampling, which is sometimes not
included in the standard property testing model. When edge sampling is allowed, the bound simplifies
to Õ

(
IN3/2

OUT

)
.
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7:4 Random Sampling Over Cyclic Joins

preprocessing step. Extending the idea of wedge sampling, MOSS-5 [17] is an algorithm that
can count any pattern with up to 5 vertices. Instead of sampling wedges, MOSS-5 samples
spanning trees of up to 5 vertices, and then checks if the other required edges are present. The
same algorithm also applies to the join size estimation problem on joins over binary relations
involving up to 5 attributes, but it does not have any theoretical guarantees. Wander Join
[12] is an effective approach to answering join-aggregate queries approximately, with join
size estimation as a special case. It returns non-uniform samples from the join results, and
de-biases them using the Horvitz-Thompson estimator. The estimator is unbiased, but there
is no guarantee on its error.

1.3 Our results
In this paper, we present the first nontrivial algorithm for random sampling over arbitrary
cyclic queries. More formally, we show how to construct a data structure in linear time
(the size of the data structure is thus necessarily no more than linear), so that a sample
can be drawn uniformly at random from the join results in O

( INρ
OUT

)
time in expectation,

for the class of sequenceable queries. The precise definition of sequenceable queries is a bit
technical; please see Section 2.5 for details. They include all queries on binary relations,
as well as certain queries on relations of higher arity. For non-sequenceable queries, the
running time for drawing a sample is O

(
INρ+1

OUT

)
. These results hold for both full join queries

and join-project queries. Prior to this work, the only solution to this problem with formal
guarantees is to either precompute the full join results, which has O(INρ) preprocessing and
storage cost4, and O(1) sampling cost, or compute the full join at sampling time, which has
no preprocessing cost but O(INρ) sampling cost.

We also adapt our algorithm to solve the join size estimation problem. We show that
after drawing a constant number of samples, a constant-factor approximation to the join
size can be obtained with constant probability. This matches the recent result of Assadi
et al. [2] on joins over binary relations5. Compared with [2], our result is different in the
following aspects: (1) We have to build some additional data structures (still in linear time),
while only standard graph representations are needed in [2], so their result in stronger in
this respect. (2) Our algorithm supports random sampling from the join results, with join
size estimation as a simple corollary, while [2] does not support random sampling. (3) Our
algorithm supports certain queries on relations of higher arity, while [2] only supports binary
relations. (4) The algorithm of [2] has some hidden logarithmic factors, while ours does not.
(5) Unlike the algorithm [2] which is of only theoretical interest, our algorithm is actually
very practical. We conducted some experiments in Section A, showing that our algorithm is
competitive with the best known heuristics on the join size estimation problem.

The O
( INρ

OUT
)
bound may not look attractive when OUT is small. In particular, if

OUT = O(1), our algorithm is no better than computing the join results in full. However,
improving this can be very difficult. Note that when OUT = O(1), random sampling
from the join results is the same as finding all the results. Even for the triangle query,
the best algorithm to date still takes O(IN1.408) time when OUT = O(1) [5], using the
highly impractical fast matrix multiplication algorithm. This is only slightly better than
O(INρ) = O(IN1.5).

4 By combining the acyclic join sampling algorithm [19] with the generalized tree decomposition framework
[10], the preprocessing cost can be driven down to O(INfhw), where fhw is the fractional hypertree width
of the query, but ρ = fhw for highly cyclic queries.

5 In fact, our work was done independent of [2], which we just came to know before submitting this paper.
Also, our approach is completely different from [2].
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2 Random Sampling over Cyclic Queries

2.1 Overview of approach
Order the vertices (attributes) in V arbitrarily as v1, v2, . . . , vn. Let dom(vi) be the domain
of attribute vi. For any X ⊆ V, let EX = {F ∈ E | F ∩X 6= ∅}. We use I to denote the
attribute set {v1, v2, . . . , vi} and J denotes {vi+1, . . . , vn}, for i = 1, . . . , n. Define I = ∅
when i = 0. For a tuple t on attributes I, define the residual query on t as:

Qt =onF∈EJ πJ(RF n t). (2)

Our starting point is Generic-Join [14], an elegant worst-case optimal join algorithm. A
particular version of the algorithm is shown in Algorithm 1 . In the algorithm description, 〈〉
denotes the empty tuple; (t, y) denotes the concatenation of t and y, where t is a tuple on
attributes I, and y ∈ dom(vi+1).

Algorithm 1 Generic-Join(i, t):

1 // t is a tuple on I = {v1, . . . , vi} and t ∈ πIRF for all F ∈ EI
2 if i = n then return {〈〉}
3 Qt ← ∅
4 Lt ←

⋂
F∈E{vi+1}

πvi+1(RF n t)
5 foreach y ∈ Lt do
6 Q(t,y) ← Generic-Join(i+ 1, (t, y))
7 Qt ← Qt ∪ {y} ×Q(t,y)

8 return Qt

Let (xF , F ∈ E) be the optimal solution to linear program (1). It is known that the total
running time of the Generic-Join algorithm is bounded by the AGM bound [3] of the query:

AGM(Q) =
∏
F∈E
|RF |xF .

Furthermore, the time spent on each recursive call Generic-Join(i, t) is bounded by the AGM
bound on the residual query Qt (define 00 = 0):

AGM(Qt) =
∏
F∈EJ

|πJ(RF n t)|xF =
∏
F∈EJ

|RF n t|xF . (3)

Unfolding the recursion, the execution process of the Generic-Join algorithm forms a tree
T . The root node of T corresponds to the initial call Generic-Join(0, 〈〉); every node on
the i-th level of T corresponds to a tuple t on attribute I = (v1, . . . , vi); a leaf node on
level n corresponds to a join result. This tree has exactly OUT leaves. Below, we will not
differentiate between a node in the tree and its corresponding tuple t.

If we know the residual query size |Qt| for every t, then this algorithm immediately yields
a random sampling algorithm: At each node t of T , instead of exploring all its children (t, y)
for y ∈ Lt, we just sample one of them with probability proportional to its subtree size, i.e.,
sample (t, y) with probability |Q(t,y)|/|Qt|. This way, we will reach every leaf with equal
probability. In fact, this is exactly the basic idea of the random sampling algorithm over
acyclic queries [19].

ICDT 2020



7:6 Random Sampling Over Cyclic Joins

For cyclic queries, unfortunately, there is no efficient way to compute all the residual
query sizes |Qt|. Our idea is to assume that each node t had a subtree size of AGM(Qt),
and perform the sampling using these subtree size upper bounds. This can be equivalently
viewed as adding “rejection nodes” at various places of T , such that each node t has exactly
AGM(Qt) leaves below, which include |Qt| “accept nodes”, which correspond to true join
results, and AGM(Qt)− |Qt| rejection nodes, which correspond to failed sampling paths.

More precisely, to sample a join result, we start at the root of T . At each node t,
we randomly sample a child y ∈ Lt with probability AGM(Q(t,y))/AGM(Qt), and reject
with probability 1 −

∑
y∈Lt(AGM(Q(t,y))/AGM(Qt)). Note that the sum of the sampling

probabilities of all children y ∈ Lt will not exceed 1, due to the query decomposition lemma
[14], which states that∑

y∈Lt

AGM(Q(t,y)) ≤ AGM(Qt). (4)

Finally, the probability to reach any leaf t = (y1, y2, . . . , yn) ∈ Q is

AGM(Q(y1))
AGM(Q) ·

AGM(Q(y1,y2))
AGM(Q(y1))

· · · · ·
AGM(Q(y1,...,yn))

AGM(Q(y1,...,yn−1))
= 1

AGM(Q) ,

i.e., all join results are uniformly sampled. The probability to successfully reach a leaf node
is OUT

AGM(Q) , so it takes O
(

AGM(Q)
OUT

)
= O

( INρ
OUT

)
attempts in expectation to draw a sample, as

desired. Note that when Generic-Join is used as a sampling algorithm, there is no need to
materialize the whole tree T ; only one root-to-leaf path needs to be explored.

However, to achieve a running time of O
( INρ

OUT
)
, we only have constant time for each

attempt. This means that we need to perform the sampling of a child y ∈ Lt in constant
time, which poses the two main technical difficulties that we must resolve in the rest of the
paper: (1) How to avoid computing Lt, which would take super-constant time, and (2) how
to build appropriate weighted sampling data structures so as to sample a y with probability
AGM(Q(t,y))/AGM(Qt) in constant time. We resolve these two difficulties in the rest of this
section.

2.2 Avoid computing Lt

First, we order the attributes as V = {v1, . . . , vn} in a way such that for any 2 ≤ j ≤ n there
is an 1 ≤ i ≤ j − 1 with {vi, vj} ⊆ F for some F ∈ E . Here, we assume that the query is
connected; otherwise, we can just sample a result from each connected component Q1, . . . , Qk
and return their concatenation. The sampling time would be

AGM(Q1)
|Q1|

+ · · ·+ AGM(Qk)
|Qk|

≤ AGM(Q1)
|Q1|

· · · · · AGM(Qk)
|Qk|

= AGM(Q)
OUT .

We will also assume that there are no relations of arity 1. Such relations can be easily
removed in a preprocessing step: Suppose there is an arity-1 relation R{vi}. We just replace
every other relation RF with RF nR{vi}, and then we remove R{vi}.

Suppose t is a tuple on I = {v1, . . . , vi}. Computing Lt requires computing the set
intersection of πvi+1(RF n t) for F ∈ E{vi+1}, which we cannot afford. Instead, we take one
of these sets, chosen as follows:

F ∗t =
{

arg minF∈E{v1} |RF |, if i = 0;
arg minF∈E{vi+1}∩EI |RF n t|, if i ≥ 1. (5)
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Then we use

L′t = πvi+1(RF∗t n t) (6)

instead of Lt as the children of t in T . Note that we always have L′t ⊇ Lt.
Because every L′t depends on only one particular relation, they are readily available from

standard index structures (e.g., hash tables). More precisely, we build an index on each
relation RF , such that for any tuple t, the index returns the list πv(RF n t), as well as its
size, for any v ∈ F . This list is also known as the neighbor list of t in F on v, and its size
the degree of πF t in F on v. In fact, the Generic-Join algorithm requires exactly the same
index. Using these indexes, L′t can be found in O(1) time for any t on I = {v1, . . . , vi}. For
i = 0, F ∗t is a fixed relation, and L′t is simply πv1RF∗t . For i ≥ 1, F ∗t is one of the relations
in E{vi+1}. For any F ∈ E{vi+1}, the neighbor list πvi+1(RF n t) is available from the index.
By comparing their sizes, we can determine F ∗t and L′t in O(1) time. Finally, it is easy to
see that the total size of all the neighbor lists is linear.

2.3 The sampling algorithm
Replacing Lt with L′t, together with the discussion in Section 2.1, we obtain the Generic-
Join-Sample algorithm, as shown in Algorithm 2. In addition, we need to check the validity
of t in line 2. This is because we now sample from L′t, which is a superset of Lt, so the parent
call cannot guarantee its validity as in Algorithm 1.

Algorithm 2 Generic-Join-Sample(i, t):

1 // t is a tuple on I = {v1, . . . , vi}
2 if t 6∈ πIRF for any F ∈ EI then reject
3 if i = n then return t

4 Set F ∗t and L′t as in (5) and (6)
5 qt ←

∑
y∈L′t

AGM(Q(t,y))
6 y ← a random sample from L′t with probability AGM(Q(t,y))/qt
7 With probability qt/AGM(Qt) return Generic-Join-Sample(i+ 1, (t, y))
8 else reject

Note that AGM(Qt) is never zero in line 7. This is because in line 2, we reject t if
|RF n t| = 0 for any F ∈ EI , which implies that |RF n t| > 0 for any F ∈ EJ (assuming the
input relations are all nonempty).

Except line 5–6, all other operations in Algorithm 2 take O(1) time using the indexes.
Before describing how to implement line 5–6 efficiently, we first see an example.

An example

We illustrate the Generic-Join-Sample algorithm on the query R{A,B} on R{B,C} on R{A,C} on
R{C,D} on R{C,E} on R{D,E}, with the database instance shown in Figure 1. For simplicity, we
will write e.g. {A,B} as AB, then R{A,B} is written as RAB . Similarly, we write xAB , xBC , . . .
as the optimal solution to (1). Suppose we order the attributes as A,B,C,D,E. We start
the algorithm by calling Generic-Join-Sample(0, 〈〉). When i = 0, F ∗t is always AB, since
|πv1RAB | = 2 and |πv1RAC | = 3. So L′t = {a1, a2}. We sample each y ∈ L′t with probability

AGM(Qy)
AGM(Q) = |RAB n y|xAB |RAC n y|xAC |RBC |xBC |RCD|xCD |RCE |xCE |RDE |xDE

|RAB |xAB |RAC |xAC |RBC |xBC |RCD|xCD |RCE |xCE |RDE |xDE

= |RAB n y|xAB |RAC n y|xAC
|RAB |xAB |RAC |xAC

.
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7:8 Random Sampling Over Cyclic Joins

A

B

C

E

D

a1
a2

a3

b1
b2

b3

d1
d2

d3

e1
e2

e3

c1c1

c2
c3

c4

Figure 1 A database instance: The big circles represent attributes, the vertices inside a circle
represent values in the domain of that attribute. The edges between two attributes, say, A,B
represent tuples in the relation RAB .

So a1 and a2 are sampled with probabilities ( 2
4 )xAB ( 1

4 )xAC and ( 2
4 )xAB ( 2

4 )xAC , respectively,
and reject otherwise. Suppose a2 is sampled. Then we call Generic-Join-Sample(1, 〈a2〉).
When i = 1, F ∗t can only be AB and L′t = {b1, b2}. Canceling the common terms as above,
we sample each y ∈ L′t with probability

AGM(Q(t,y))
AGM(Qt)

= |RBC n (t, y)|xBC
|RAB n t|xAB |RBC |xBC

= |RBC n y|xBC
|RAB n t|xAB |RBC |xBC

.

So b1 and b2 are sampled with probabilities ( 1
2 )xAB ( 1

5 )xBC and ( 1
2 )xAB ( 3

5 )xBC , respectively.
Suppose b2 is sampled.

Then we call Generic-Join-Sample(2, 〈a2, b2〉), which is the most interesting step. When
i = 2, F ∗t is either AC or BC, depending on t. With t = 〈a2, b2〉, we take F ∗t = AC and thus
L′t = {c1, c2}. (If we had sampled b1 from B in the previous step, we would take F ∗t = BC

and L′t = {c3}.) Then we sample each y ∈ L′t with probability

AGM(Q(t,y))
AGM(Qt)

= |RCD n (t, y)|xCD |RCE n (t, y)|xCE
|RAC n t|xAC |RBC n t|xBC |RCD|xCD |RCE |xCE

= |RCD n y|xCD |RCE n y|xCE
|RAC n t|xAC |RBC n t|xBC |RCD|xCD |RCE |xCE

.

So c1 and c2 are sampled with probabilities ( 1
2 )xAC ( 1

3 )xBC ( 3
5 )xCD( 1

5 )xCE and
( 1

2 )xAC ( 1
3 )xBC ( 1

5 )xCD( 1
5 )xCE , respectively. Note that AGM(Q〈a2,b2,c2〉) 6= 0, although

〈a2, b2, c2〉 is not part of any valid join result. This is because the residual query Qt is
defined (see definition (2)) only over relations containing at least one free variable (i.e.,
attributes not appearing in t). This is exactly where we depart from Generic-Join: In
Generic-Join, c2 is not in Lt because it does not join with t = 〈a2, b2〉 in RBC . More precisely,
Lt = πC(RAB n t) ∩ πC(RBC n t), but L′t is only the smaller of the two sets. In general, L′t
is a superset of Lt, but as argued before, we cannot afford to compute this set intersection
during sampling time, so can only sample from L′t. In particular, this means that c2 also
has a chance to be sampled at this step, but it will be rejected immediately in the next
recursive call, in line 2 of Algorithm 2. Note that this line is not needed in the Generic-Join
algorithm, because every y ∈ Lt is guaranteed to join with t in every relation. Although we
have avoided computing L′t, one immediate concern is that whether the sum of the sampling
probabilities AGM(Q(t,y))

AGM(Qt) over all y ∈ L′t would still be at most 1, as the query decomposition
lemma only guarantees so when summed over Lt. We show in the next subsection that this
is indeed still the case, which can be actually considered as a stronger version of the query
decomposition lemma.
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a relation in Ci

a relation in Ai

a relation in Bi

vi+1

Figure 2 Three types of relations in E{vi+1}. The attributes in I are represented as solid disks
and attributes in J ′ are represented as hollow circles.

Let us finish the example. As mentioned above, if c2 is sampled, it will be rejected in the
next step and we will start over. Now suppose c1 is sampled. Then we move on to Generic-Join-
Sample(3, 〈a2, b2, c1〉). When i = 3, F ∗t can only be CD, and L′t = {d1, d2, d3}. Each of them
will be sampled with the same probability ( 1

3 )xCD ( 1
3 )xDE . Suppose d3 is sampled, we move

on to Generic-Join-Sample(4, 〈a2, b2, c1, d3〉). Then F ∗t = DE, L′t = {e1}. e1 will be sampled
with probability ( 1

2 )xCE ( 1
1 )xDE . Finally, we call Generic-Join-Sample(5, 〈a2, b2, c1, d3, e1〉),

which checks that e1 joins with c1 in RCE , and then returns 〈a2, b2, c1, d3, e1〉 as a sampled
join result.

2.4 Correctness
In each step of the Generic-Join-Sample algorithm, we sample from some L′t that is a superset
of Lt, so the algorithm can reach every valid join result. In addition, each y ∈ L′t is still
sampled with probability AGM(Q(t,y))/AGM(Qt), so the uniformity argument in Section 2.1
that every join result is sampled with probability 1/AGM(Q) is not affected. To prove
the correctness of the algorithm, it only remains to show that qt =

∑
y∈L′t

AGM(Q(t,y)) ≤
AGM(Qt), so that line 7 of Algorithm 2 is well defined.

I Lemma 1. For any i = 0, 1, . . . , n and any tuple t on attributes I = (v1, v2, . . . , vi), let F ∗t
and L′t be defined as in (5) and (6). Then∑

y∈L′t

AGM(Q(t,y)) ≤ AGM(Qt). (7)

As mentioned, if L′t is replaced by Lt in (7), this is just the query decomposition lemma.
However, since L′t is a superset of Lt, this requires another proof. Before giving the proof,
we first cancel out the common factors on both sides on (7). The remaining factors are all
on relations in E{vi+1}. Denote I ∪ {vi+1} as I ′ and J \ {vi+1} as J ′. We partition E{vi+1}
into the following three types:
1. Ai = E{vi+1} ∩ EI ∩ EJ′ .
2. Bi = E{vi+1} \ EI .
3. Ci = E{vi+1} \ EJ′ .
Please see Figure 2 for an illustration of these three types of relations. Note that Ai,Bi, Ci
depend on the particular ordering of the attributes, and these three types of relations will also
play an important role in characterizing the class of queries we can sample from efficiently.
Now F ∗t can be equivalently defined as F ∗t = arg minF∈Ai∪Ci |πvi+1(RF n t)|.
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7:10 Random Sampling Over Cyclic Joins

Note that Q(t,y) does not involve any relation in Ci, so (7) can be simplified to the
following:∑

y∈L′t

∏
F∈Ai∪Bi

|RF n (t, y)|xF ≤
∏

F∈Ai∪Bi∪Ci

|RF n t|xF . (8)

Since only the relations in Ai,Bi, Ci are relevant, we introduce the notation

AGM′(Q(t,y)) =
∏

F∈Ai∪Bi

|RF n (t, y)|xF ,

AGM′(Qt) =
∏

F∈Ai∪Bi∪Ci

|RF n t|xF .

Define q′t =
∑
y∈L′t

AGM′(Q(t,y)). Then to prove Lemma 1, we just need to prove

q′t ≤ AGM′(Qt) (9)

for all i ≥ 1.

Proof. We first consider the case when i = 0 and t = 〈〉. In this case, Lt =
⋂
F∈E{v1}

πv1RF .
Observe that for any y 6∈ Lt, there is some F ∈ E{v1} such that RF n y = ∅. Also, F
cannot be {v1} since we assumed that there are no relations of arity 1. Thus, AGM(Q(t,y)) =
AGM(Qy) = 0 for any y 6∈ Lt. So

∑
y∈L′t

AGM(Q(t,y)) =
∑
y∈Lt AGM(Q(t,y)) ≤ AGM(Qt),

following directly from the query decomposition lemma (4). Next we show the case for i ≥ 1.
In the following discussion, we fix an arbitrary i ∈ [1, n]. If |RF n t| = 0 for some

F ∈ Ai ∪Bi ∪ Ci, then (7) clearly holds because the both sides of (7) become 0. (In fact, the
Generic-Join-Sample algorithm will never reach this case – such a t would be rejected in line
2.) Below, we assume |RF n t| ≥ 1 for every F ∈ Ai ∪ Bi ∪ Ci.

Let xAiBi =
∑
F∈Ai∪Bi xF and xCi =

∑
F∈Ci xF . Consider the following three cases.

1. 0 < xAiBi < 1. In this case, we have

q′t =
∑
y∈L′t

∏
F∈Ai∪Bi

|RF n (t, y)|xF

=
∑
y∈L′t

(
1 ·

∏
F∈Ai∪Bi

|RF n (t, y)|xF
)

≤

∑
y∈L′t

1
1

1−xAiBi

1−xAiBi

·

∑
y∈L′t

∏
F∈Ai∪Bi

|RF n (t, y)|
xF

xAiBi

xAiBi

, (10)

where the last inequality is due to Hölder’s inequality. Applying Hölder’s inequality again
on the term in the second parentheses, we have

∑
y∈L′

t

∏
F∈Ai∪Bi

|RF n(t, y)|
xF

xAiBi ≤
∏

F∈Ai∪Bi

∑
y∈L′

t

|RF n (t, y)|


xF

xAiBi

≤
∏

F∈Ai∪Bi

|RF n t|
xF

xAiBi .

(11)

Meanwhile, the term in the first parentheses of (10) is∑
y∈L′t

1
1

1−xAiBi = |L′t| = |πvi+1(RF∗t n t)|. (12)
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Substituting (11) and (12) into (10), we obtain

q′t ≤ |πvi+1(RF∗t n t)|1−xAiBi ·
∏

F∈Ai∪Bi

|RF n t|xF . (13)

Note that when xAiBi < 1, Ci cannot be empty. By the definition of F ∗t , we have

|πvi+1(RF∗t n t)| ≤ |πvi+1(RF n t)| ≤ |RF n t|

for any F ∈ Ci. Also, since vi+1 is covered by Ai ∪ Bi ∪ Ci, xAiBi + xCi ≥ 1. Applying
these to (13), we obtain

q′t ≤|πvi+1(RF∗t n t)|xCi ·
∏

F∈Ai∪Bi

|RF n t|xF

=
∏
F∈Ci

|πvi+1(RF∗t n t)|xF ·
∏

F∈Ai∪Bi

|RF n t|xF

≤
∏
F∈Ci

|RF n t|xF ·
∏

F∈Ai∪Bi

|RF n t|xF = AGM′(Qt).

2. xAiBi = 0. Then xCi ≥ 1. Recall that we define 00 = 0. Thus,

q′t ≤
∑
y∈L′t

1 = |RF∗t n t| ≤ |RF∗t n t|xCi =
∏
F∈Ci

|RF∗t n t|xF ≤
∏
F∈Ci

|RF n t|xF , (14)

where the last inequality follows from the definition of F ∗t and the observation that
|πvi+1(RF n t)| = |RF n t| for any F ∈ Ci. If Ai ∪ Bi = ∅, then (14) is the same as the
RHS of (8). Otherwise, recall that we have assumed |RF n t| ≥ 1 for every F ∈ Ai ∪ Bi,
so (14) must be no more than AGM′(Qt).

3. xAiBi ≥ 1. In this case, we apply Hölder’s inequality directly on q′t:

q′t ≤
∏

F∈Ai∪Bi

∑
y∈L′t

|RF n (t, y)|

xF

≤
∏

F∈Ai∪Bi

|RF n t|xF . (15)

If Ci = ∅, then (15) is the same as the RHS of (8). Otherwise, recall that we have assumed
|RF n t| ≥ 1 for every F ∈ Ci, so (15) must be no more than AGM′(Qt). J

2.5 Weighted sampling
It remains to show how to perform the sampling step in line 5–7 of the Generic-Join-Sample
algorithm. Recall from Section 2.2 that L′t is just one of the neighbor lists, which are all
available in the index, and we can find the right one in O(1) time during each sampling step.
However, since we do weighted sampling, a simple list is not enough. If we can compute all
the sampling probabilities in advance, then we can build a weighted sampling data structure
[6] on every neighbor list, which can then support drawing a weighted sample in O(1) time
when we conduct the sampling. The total preprocessing time will be linear since the total
size of all the neighbor lists is linear, and the weighted sampling data structure can also be
built in linear time [6].

Lines 5–7 of the Generic-Join-Sample algorithm sample each y ∈ L′t with probability
p(t,y) = AGM(Q(t,y))

AGM(Qt) . Canceling out the common factors on the numerator and the denominator,
this can be simplified as (using the notation AGM′(Q(t,y)), AGM′(Qt), and q′t introduced
after Lemma 1)

p(t,y) =
AGM′(Q(t,y))

AGM′(Qt)
.
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7:12 Random Sampling Over Cyclic Joins

To sample a y ∈ L′t in constant time according to p(t,y), we perform rejection sampling in
the following two steps:

(1) Sampling: sample a y ∈ L′t with probability AGM′(Q(t,y))
q′t

.

(2) Rejection: keep the sample with probability q′t
AGM′(Qt) .

Note that AGM′(Qt) can be computed in constant time by looking up |RF n t| from the
index, so it only remains to describe how to do step (1) and compute q′t. For each i, the
corresponding sets Ai, Bi, Ci must be in the following there cases.

The case with Ai = ∅

In this case, AGM′(Q(t,y)) =
∏
F∈Bi |RF n (t, y)|xF =

∏
F∈Bi |RF n y|xF ; please also refer to

the example in Section 2.3, where we made the same simplification. Note that this does not
depend on t. Thus, we can precompute all AGM′(Q(t,y)) and construct a weighted sampling
structure on every neighbor list πvi+1(RF n t) to support sampling step (1) in constant time.
We also store the value of q′t together with the list to do the rejection sampling (2) in constant
time.

Going back to the example in Section 2.3, to support Generic-Join-Sample(2, t) for any
possible t, we precompute AGM′(Q(t,y)) for every y ∈ dom(C): AGM′(Q(t,c1)) = 3xCD2xCE ,
AGM′(Q(t,c2)) = AGM′(Q(t,c3)) = 1xCD1xCE , AGM′(Q(y,c4)) = 0. Note that they do not
actually depend on t. Using these as weights, we build a weighted sampling structure on
each neighbor list of RAC and RBC , i.e., πC(RAC n 〈A = a〉) for every a ∈ dom(A) and
πC(RBC n 〈B = b〉) for every b ∈ dom(B). Note that the total size of these neighbor list
is O(|RAC | + |RBC |). Then we store qt with each neighbor list. For example, with the
list πC(RAC n 〈A = a2〉), we store pt = AGM′(Q(t,c1)) + AGM′(Q(t,c2)). During the call to
Generic-Join-Sample(2, t), we first decide F ∗t , and then use the neighbor list πC(RF∗t n t) to
perform the sampling.

The case with |Ai| = 1 and Ci = ∅

When type-A relations are present, AGM′(Q(t,y)) will depend on t, which creates complications.
However, when there is just one type-A relation (call it A) and no type-C relations, then
we must have F ∗t = A. In this case, we are sampling a y ∈ L′t = πvi+1(RA n t) with weights
AGM′(Q(t,y)) = |RA n (t, y)|xA

∏
F∈Bi |RF n y|xF . Although this depends on t, the key

observation is that it only depends on the attributes of t that are included in F ∗t = A. Thus,
we can precompute all the AGM′(Q(t,y)) and construct a weighted sampling structure on
each neighbor list πvi+1(RAn t) to support sampling step (1) in constant time. We also store
the value of qt together with the list to do the rejection sampling (2) in constant time.

Other cases

Unfortunately, for other cases, we do not currently know how to preprocess the weights
AGM′(Q(t,y)) in linear time and support constant-time sampling. Nevertheless, we can always
compute all the AGM′(Q(t,y)) for y ∈ L′t on-the-fly, as well as qt, which takes O(|L′y|) = O(IN)
time. This means that each sampling attempt will take O(IN) time as opposed to constant
time.

We call a query Q sequenceable if there is an ordering of the attributes such that for every
i, there is either Ai = ∅, or |Ai| = 1 and Ci = ∅ for every i. Note that if Q is disconnected, Q
is sequenceable iff every connected component is sequenceable. We arrive at the main result
of this paper:
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A B C

D E F

(a) Sequenceable in order: A, B,
C, D, E, F.

F A G

D B E

H C I

(b) Sequenceable in order: A, B,
C, D, E, F, G, H, I.

(c) Not sequenceable.

Figure 3 Sequenceable and non-sequenceable queries.

I Theorem 2. Given a sequenceable join query, after a linear-preprocessing step, the Generic-
Join-Sample algorithm returns a join result uniformly at random in expected time O

( INρ
OUT

)
.

For a non-sequenceable query, it returns a sample in expected time O
(

INρ+1

OUT

)
.

As a type-A relation must have at least 3 attributes, any query over binary relations is
sequenceable. In addition, Figure 3 shows two sequenceable queries of higher arity, as well as
a query that is not sequenceable. Indeed, the definition of sequenceable queries is a rather
technical one, which follows from the two cases above that we know how to handle efficiently.
Whether more general queries can be handled remains an interesting open problem.

3 Sampling from Join-Project Queries

In this section, we extend our sampling algorithm to join-project queries πO(Q) (a.k.a.
conjunctive queries), where O ⊆ V is the set of output attributes. Let Ō = V − O. The
algorithm consists of two simple steps: (1) Use Generic-Join-Sample to sample a join result
t from QO =onF∈EO (πORF ). Note that it is possible that QO is disconnected; in which
case we take a sample from each connected component, as described at the beginning of
Section 2.2. (2) Check if QŌ(t) =onF∈EŌ (RF n t) is empty. If not, we return t as a sampled
result, otherwise we repeat.

The Correctness of the algorithm is straightforward: Observe that πO(Q) ⊆ QO. The
Generic-Join-Sample algorithm returns a sample t from QO uniformly at random. Then we
return it iff t ∈ πO(Q), so every t ∈ πO(Q) has equal probability to be returned. Next we
analyze its running time.

We will assume that QO is sequenceable. The analysis for the case when QO is not
sequenceable is similar. We iterate steps (1) and (2) until a t sampled from QO is in πO(Q),
which happens with probability p = |πO(Q)|

|QO| . Let Xi denote the running time of the i-th
iteration. Note that Xi = 0 if the i-th iteration does not take place. The total expected
running time is thus

∑
i≥1 E[Xi]. Conditioned on the i-th iteration taking place, step (1)

takes time O
(

AGM(QO)
|QO|

)
= O

(
AGM(Q)
|QO|

)
in expectation. Step (2) takes time O(AGM(QŌ(t)),

using any worst-case optimal join algorithm, e.g., Generic-Join. Because each t ∈ QO is
sampled with probability 1/|QO|, the expected running time of step (2) is (the big-Oh of)

∑
t∈QO

1
|QO|

· AGM(QŌ(t)) =
∑
t∈QO AGM(QŌ(t))

|QO|
≤ AGM(Q)

|QO|
,

where the last inequality follows from the query decomposition lemma. Thus, we have
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E[Xi | the i-th iteration takes place] = O
(

AGM(Q)
|QO|

)
. Since the i-th iteration takes place with

probability (1− p)i−1, we have E[Xi] = (1− p)i−1 ·O
(

AGM(Q)
|QO|

)
. Thus, the total expected

running time is∑
i≥1

(1−p)i−1 ·O
(

AGM(Q)
|QO|

)
= 1
p
·O
(

AGM(Q)
|QO|

)
= |QO|
|πO(Q)| ·O

(
AGM(Q)
|QO|

)
= AGM(Q)
|πO(Q)| .

I Theorem 3. Given a join-project query πO(Q), after a linear-preprocessing step, we can
return a query result uniformly at random in expected time O

( INρ
OUT

)
if QO is sequenceable,

and O
(

INρ+1

OUT

)
time otherwise.

Note that Theorem 3 degenerates into Theorem 2 when O = V.

4 Join Size Estimation

Because the Generic-Join-Sample algorithm succeeds in returning a random sample with
probability exactly OUT

INρ , this can be turned into a join size estimation algorithm using
standard techniques. More precisely, we simply make k attempts, and see how many of them
succeed. Suppose X out of the k attempts succeed, then we return INρ · Xk as an estimator
of OUT.

It is obvious that this estimator is unbiased. Its variance is(
INρ

k

)2
Var[X] ≤

(
INρ

k

)2
· k · OUT

INρ = INρ ·OUT
k

.

To obtain a constant-factor approximation with constant probability, it is sufficient to make
this variance smaller than OUT2/4, and it takes k = O

( INρ
OUT

)
attempts to achieve so. Since

each attempt takes O(1) time (assuming Q is sequenceable), this means that we can obtain
a constant-factor approximation of OUT in O

( INρ
OUT

)
time.

However, a technical issue is that k depends on OUT, which is exactly the value we want
to estimate. In [2], the standard technique of making repeated guesses for OUT by a binary
search is used, which results in a logarithmic-factor increase in the running time. For our
algorithm, a simpler strategy can be deployed: We simply keep repeating the attempts until
c samples have been successfully obtained, where c is some constant. Note that the total
running time is still O

( INρ
OUT

)
in expectation. Below, we show that it returns a constant-factor

approximation of OUT with constant probability.
Note that in this version of the algorithm, k becomes a random variable. We need to show

that with at least constant probability, we stop the algorithm with, say, c2 ·
INρ

OUT ≤ k ≤ 2c· INρ
OUT .

For k ≥ 2c· INρ
OUT to happen, we must have collected less than c samples when 2c· INρ

OUT attempts
have been made. We know that in expectation, we should have collected 2c · INρ

OUT ·
OUT
INρ = 2c

so far. As each attempt is independent, we can use the Chernoff inequality to bound

Pr
[
k ≥ 2c · INρ

OUT

]
≤ e−

( 1
2 )2·2c

2 = e−
c
4 ,

which can be made as small as possible by choose c large enough. Using a similar argument,
we can show that k ≤ c

2 ·
INρ

OUT also happens with a constant probability small enough. Then
by a union bound, c2 ·

INρ
OUT ≤ k ≤ 2c · INρ

OUT happens with at least a constant probability.
Finally, standard techniques can be applied to boost the accuracy and success probability

to achieve an (ε, δ) guarantee. We omit the detailed proof of the following result. This result
also holds for join-project queries.
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I Theorem 4. Given a join-project query πO(Q), after a linear-preprocessing step, we can
return a (1 + ε)-approximation of OUT with probability at least 1− δ. The running time is
O
( 1
ε2 log 1

δ ·
INρ

OUT
)
if QO is sequenceable, and O

(
1
ε2 log 1

δ ·
INρ+1

OUT

)
otherwise.

A more practical algorithm

If the goal is just to estimate the join size, not uniformly sampling, we can further improve
the efficiency of the algorithm, by simply omitting rejection step (2) in Section 2.5. This
means that a y ∈ L′t is always sampled and there is no rejection step in line 7 of the
Generic-Join-Sample algorithm (it may still be rejected in line 2 of the next recursive call,
though). This results in non-uniform samples, i.e., the sampling probability of a tuple t
in each attempt, denoted as pt, will be different for different t. We can no longer use the
simple estimator as above. Instead, after each sampling attempt, we return the following
Horvitz-Thompson estimator:

X̃ =
{

1
pt
, if the attempt successfully returns t;

0, otherwise.

Note that pt can be computed as t is sampled, which is simply the product of the sampling
probabilities used in sampling step (1) in Section 2.5. It can be easily shown that E[X̃] = OUT.
Thus, we repeat the attempts and return the average of the above estimator.

The variance of the estimator is Var[X̃] =
∑
t∈Q

1
pt
−OUT2. Since skipping the rejection

step only increases pt, we have pt ≥ 1
AGM(Q) for every t ∈ Q. Thus, Var[X̃] is always no larger

than O(INρ · OUT), and the same theoretical guarantee from above applies. In practice,
Var[X̃] can be much smaller, as demonstrated by the experimental results shown in the
appendix.

5 Open Questions

The obvious open problem is if it is possible to improve the sampling time to O(INρ/OUT)
for non-sequenceable joins. Another intriguing question is whether the bound O(INρ/OUT)
is optimal. Note that the Ω(INρ/OUT) lower bound [2] assumes that the algorithm can only
access the database through standard operations, such as sampling a tuple, looking up the
degree, sampling a neighbor, etc. Because our algorithm builds auxiliary data structures
(still in linear time though), this lower bound does not apply.
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A Experiments

After skipping the rejection sampling step, the join size estimation algorithm described above
is very practical. Here we report some preliminary experimental results, comparing it with
Wander Join [12] and MOSS-5 [17], two best heuristic algorithms for estimating the size of
a cyclic join. We have also implemented and tested the other algorithm [2] with the same
O
( INρ

OUT
)
running time guarantee, but its performance is far worse than the other three. We

used 4 real-world graph data sets and tested 2 cyclic queries as self-joins on each graph: a
length-5 cycle and the two-triangle query as shown in Figure 1.

We used a machine with an Intel Xeon E5-2650 v4 2.20GHz CPU and 256G main memory
for our experiments. To see how fast the estimator converges, when running an algorithm, we
collect the estimated counts reported by the algorithm at regular intervals, say, every 1 second.
Then we repeat the algorithm 100 times and compute the relative RMSE (root-mean-square
error) to the true count at each time interval. We ran all algorithms in single-thread mode,
but all algorithms can be easily parallelized as they all repeatedly take independent samples.

The experimental results are given in Figures 4–7. Note that the preprocessing time is
included, which is why the curves do not start from time 0. We see that Wander Join has
the shortest preprocessing time, as it only needs hash tables to be built. Our algorithm
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needs more preprocessing time to build weighted sampling data structures. MOSS-5 needs
the longest preprocessing time to prepare the weighted sampling structures for all spanning
trees. After preprocessing, the estimates returned by all algorithms converge to the true
value as they are all unbiased estimators. The convergence rates are different, though. While
Wander Join and MOSS-5 seem to behave differently on different data sets, our algorithm
consistently performs on par with the better of the two, probably due to the theoretical
guarantee it enjoys. On the other hand, the other O

( INρ
OUT

)
algorithm [2] performs extremely

poorly in the experiments, with no reasonable estimates returned after 60 seconds.
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Figure 4 Experimental results on amazon.
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Figure 5 Experimental results on dblp.
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Figure 6 Experimental results on skitter.
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Figure 7 Experimental results on youtube.
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