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Abstract—Packet corruption caused by collision is a criti-
cal problem that hurts the performance of wireless networks.
Conventional medium access control (MAC) protocols resort to
collision avoidance to maintain acceptable efficiency of chan-
nel utilization. According to our investigation and observation,
however, collision avoidance comes at the cost of miscellaneous
overhead, which oppositely hurts channel utilization, not to
mention the poor resiliency and performance of those protocols
in face of dense networks or intensive traffic. Discovering the
ability to tolerate collisions at the physical layer implementations
of wireless networks, we in this paper propose Coco, a MAC pro-
tocol that advocates simultaneous accesses from multiple senders
to a shared channel, i.e., optimistically allowing collisions instead
of simply avoiding them. With a simple but effective design, Coco
addresses the key challenges in achieving collision tolerance, such
as precise sender alignment and fine control of the transmission
concurrency. We implement Coco in 802.15.4 networks and
evaluate its performance through extensive experiments with 21
TelosB nodes. The results demonstrate that Coco is light-weight
and enhances channel utilization by at least 20% in general cases,
compared with state-of-the-arts protocols.

I. INTRODUCTION

Wireless networks suffer from collisions. This is essentially
due to the broadcast nature of wireless communications. Si-
multaneous transmissions that collide in a common channel are
likely to interfere with each other and thus cause corruptions
of the transmitted packets. Without appropriate handling of
collisions, network performance like channel utilization is
degraded. Hence how to resolve collisions is a crucial issue
in the area of wireless networks.

In order to improve wireless channel utilization, an intuitive
approach is to avoid collision. Namely, no more than one
sender should transmit concurrently in any specific time slot.
Based on the philosophy of collision avoidance, many proto-
cols have been proposed in the past decades. Their common
principle is to scatter the transmissions along the temporal
dimension to limit the chance of collisions. The ability of
collision avoidance, however, usually comes at the cost of
sacrificing the efficiency of channel utilization. Specifically,
TDMA-like protocols incur non-negligible overhead in coor-
dination and synchronization to make schedules. For CSMA
protocols, senders always conservatively choose the size of
backoff window, e.g., using the Binary Exponential Backoff
algorithm, because the potential contention is fundamentally
uncertain and difficult to be accurately predicted. As a result,

a lot of idle slots (i.e., time without packet transmission) are
left unused in the channel. That problem becomes even more
serious in the scenarios with high node density and intensive
traffic load [1].

Based on the above fact, we find there is an inherent
conflict between collision avoidance and channel utilization.
That motivates us to reconsider the way to handle collisions
from a new respect. For the purpose of better utilization of the
channel, one can choose to tolerate or even allow collisions1

instead of simply avoiding them. Following that idea, we
make some preliminary attempts on modifying the medium
access control mechanism. Fig. 1 plots the comparison between
collision avoidance and collision tolerance. Using collision
avoidance, nodes take random backoffs against collisions such
that packets are separated with numerous idle slots. In com-
parison, supported by the principle of collision tolerance, the
senders can adopt a relatively aggressive strategy in packet
transmissions. More than one packet transmissions are allowed
to appear in the shared channel at one time. The surprising
result is that 5 more packets are successfully transmitted using
collision tolerance. The utilization is enhanced by 71.4%.

The feasibility of collision tolerance actually comes from
the physical layer implementations of wireless networks
(e.g., 802.15.4 and 802.11 networks). For example, the
DSSS (direct-sequence spread spectrum) modulation scheme
in those implementations increase the resistance to interference
by introducing redundancy [2]. Though collision tolerance
demonstrates great potential to improve channel utilization,
several critical challenges by far restrict the application of
collision tolerance in practice. First, collision tolerance poses
stringent timing requirement on transmissions. Concurrent
packet transmissions must be aligned. Second, the concurrency
of transmissions must be limited. If such issues cannot be well
solved, collisions still result in packet corruptions.

In order to address the above challenges, in this paper
we propose Coco, a protocol for medium access control
that leverages the ability of collision tolerance. Using Coco,
concurrent senders optimistically contend with each other to
access the shared medium. A feedback control mechanism is
devised to assign an appropriate transmission probability p for
colliding senders and all senders transmit with the probability

1We differ collision from corruption in this paper. Collision only indicates
the overlap of signals in time domain while corruption means failure in
decoding any signal involved in the collision.978-1-4799-1270-4/13/$31.00 c©2013 IEEE
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Fig. 1. Channel utilization under collision avoidance and collision tolerance.
The ACK packets are omitted for clear display.

p. In this way, Coco delicately limits the concurrency and
achieves near-optimal channel utilization. The contributions of
this paper are summarized as follows:

• We propose to tolerate collisions instead of avoid-
ing them. We present the principle behind collision
tolerance and theoretically analyze the performance
gain brought by collision tolerance, compared with
collision avoidance.

• We investigate the challenges in achieving collision
tolerance and design the Coco protocol to tackle
those challenges in practice. Coco mainly consists
of two parts: the sender alignment mechanism and
the feedback control algorithm to adaptively set the
transmission probability p for colliding senders.

• We implement Coco in 802.15.4 networks and eval-
uate its performance under a wide variety of network
settings. The results show that Coco is light-weight
and enhances channel utilization by at least 20% in
general cases, compared with state-of-the-arts proto-
cols.

The rest of this paper is organized as follows. Section II
presents in detail the challenges to achieve collision tolerance.
In Section III, we present the theoretical model of channel
utilization with collision tolerance and analyze the achievable
performance gain, compared with collision avoidance. Sec-
tion IV introduces the design details of Coco, followed by
the performance evaluation results in Section V. We discuss
the related work in Section VI and conclude this paper in
Section VII.

II. CHALLENGES IN COLLISION TOLERANCE

Recent studies on protocol designs pay increasing attention
to physical layer (PHY) characteristics, which demonstrate
potential opportunities in improving network performance.
One of the most promising directions is collision tolerance.
In 802.15.4 networks using the DSSS modulation scheme, the
tolerance to collisions is manifested as capture effect [3], [4].
Capture effect is a phenomenon that the receiver correctly
receives a stronger signal in face of other signals’ interfer-
ence [5]. This phenomenon enables successful transmission of
a packet along with collisions. Collision tolerance, however, is
a non-trivial task and induces several challenges in practice.
In this section, we investigate the challenges that hinder the
exploitation of collision tolerance. We first conduct a series of
experiments to look into the behavior of collision tolerance,
and then we show through analysis the direction to overcome
those challenges.

Preamble SFD Len Payload FCS

4 bytes 1 byte 1 byte 2 bytes

Fig. 2. Format of 802.15.4 packet. In the reception process, preamble is
used to detect the beginning of a packet and synchronize the receiver and the
sender. After that, SFD triggers the reception of the packet.

We conduct our experiments in ContikiOS [6] with Telos-
B [7] motes. There are one receiver and multiple senders in
the experiment setting. For senders, the carrier sense function
is disabled to deliberately generate collisions. In each round
of transmission, the receiver first broadcasts a probe packet.
On receiving the probe, the senders are triggered to send their
packets and therefore collisions occur. The length of the sent
packets is 120 bytes. The format of a 802.15.4 packet is shown
in Fig. 2. In the following content, we introduce the challenges
from timing and concurrency requirements respectively.

A. Timing Requirement

We first examine the impact of timing, namely the offset
of arrival time among the packets. Two nodes are used as
senders. One of them transmits a packet once it receives the
probe packet from the receiver. The other sender waits for a
pre-configured offset time Δt before transmitting its packet.
We vary Δt and measure the resulting packet reception ratio
at the receiver side. For each Δt, we run the experiment for
100 rounds, in which the senders and receiver are placed at
different locations to generate different SNR for each sender.

As we can see from Fig. 3(a), a sharp increase in the loss
ratio appears when the offset Δt exceeds 160 μs, which is the
time duration of the preamble plus SFD. The reason behind
is as follows. When the signals overlap with each other, the
receiver always tries to find the strongest one by identifying
the preamble and SFD. Therefore when the offset is less than
160 μs, the strong signal is always captured no matter it comes
early or late. On the contrary, when the strong signal comes
after the SFD of the early-arriving weak signal, it acts as strong
interference to the weak one. In this case, the weak signal is
corrupted by the strong signal. Nevertheless, the receiver is
unable to receive the strong signal because it misses the SFD
of the strong signal. Therefore, tolerance of collisions requires
the offset among the colliding signals be restricted in a certain
range, i.e., the time length of the preamble plus SFD.

B. Concurrency Requirement

For the purpose of collision tolerance, the concurrency
(the number of concurrent transmissions) must be limited.
Otherwise all packets will be corrupted. We start with an
experiment with two senders (S1 and S2) and one receiver.
The senders instantly transmit packets upon receiving the
probe from the receiver, so that the above-mentioned timing
requirement is satisfied. S1 is placed stationarily near the
receiver while S2 is moved towards the receiver from a far
place. At the beginning, S1 has a stronger SNR than S2.
When S2 approaches the receiver, the SNR of S1 decreases
while the SNR of S2 increases. At some point, they have an
equivalent SNR. After that, S2 has stronger SNR than S1.
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Fig. 3. Investigation of difficulties in exploiting collision tolerance. In Fig. 3(a), loss ratio has sharp increase when offset exceeds a value of 160 μs. Fig. 3(b)
shows reception ratio for 2-sender case, total reception ratio degrades only when the two senders have nearly strong signal strength. Fig. 3(c) depicts the reception
ratio with different number of senders, and reception ratio decreases with the increase of sender number. Fig. 3(d) plots the theoretical C(k) in existing models.

We record the reception ratio at the receiver side and contrast
it to the SNR of S1 and S2. In Fig. 3(b), we can see that
with the increase of S2’s SNR, the reception ratio of the two
senders’ packets demonstrate opposite trends. The aggregated
reception ratio is high, however. The key finding here is that
the aggregated reception ratio degrades only when the two
senders have comparably strong power, i.e., an SNR near 0 dB
in Fig. 3(b). For all the cases with two senders, the wireless
channel shows high tolerance of collisions.

We increase the number of senders from 2 to 10 to further
observe collision tolerance. The senders are randomly placed
at different locations near the receiver. For each quantity of
senders, we repeat the experiments for 100 rounds. Fig. 3(c)
shows that the reception ratio decreases accordingly when total
number of senders goes up. The average reception ratio is
nearly zero when there are more than 7 senders. Moreover, the
average reception ratio is surprisingly high when the number
of senders does not exceed 4. Note that in this series of
experiments, we did not deliberately differ the SNR of the
senders. The experimental results apparently indicate the wide
applicability of collision tolerance as well as its requirement on
transmission concurrency. Compared with other techniques to
achieve collision tolerance, e.g. power control [8], controlling
the transmission concurrency (i.e., limiting the number of
concurrent senders) is relatively effective, cost-efficient, and
easy to implement in practice.

As a brief summary, collision tolerance is an attractive abil-
ity of wireless channels, which poses two critical challenges:
the timing requirement and the concurrency requirement. In
the subsequent sections, we first theoretically formulate the
channel utilization problem with collision tolerance and ana-
lyze the corresponding performance in comparison with col-
lision avoidance based approaches. Based on such theoretical
foundations, we address the aforementioned challenges in the
design and implementation of Coco protocol, which will be
presented in Section IV.

III. THEORETICAL FORMULATION

A. Channel Utilization Model

In this part, we model channel utilization as a function of
transmission probability p and formulate it into an optimization
problem. For convenience, we assume a time slot is the
basic element of time. The duration of a packet transmission
generally consists of multiple time slots.

At the receiver side, a time slot should be in one of the
three possible states as follows:

• Idle slot, where there is no transmission to the receiver.

• Successful slot, where there is at least one sender
transmitting and a packet is correctly received.

• Corrupted slot, where multiple senders transmit con-
currently and all packets are corrupted.

For each of the above three slot states, we use Pi, Ps and
Pc to respectively denote the probability for the state to appear.
Specifically, the probability for a slot to be idle is:

Pi = (1− p)N (1)

where N is the total number of senders. Note that in Coco, Ps

is different from that in traditional protocols. Conventionally,
a slot is a successful slot when and only when there is one
sender transmitting while the others stay silent. With collision
tolerance, Coco increases Ps by exploiting successful packet
transmissions while allowing the occurrence of collisions. Thus
Ps is calculated by:

Ps =
N∑

k=1

(
N

k

)
pk(1− p)N−kC(k) (2)

where C(k) is the capture probability [9], which means
the probability that a packet can be correctly received from
collision when k senders are transmitting concurrently. In [9],
[10], various models are proposed to measure the capture
probability considering the power difference, fading and multi-
path effect. We follow the model in [10] which is widely
adopted:

C(k) =
k√
2πσs

∫ ∞

−∞

(∫ ∞

0

[g (ξ, r)]
k−1

f (r) dr

)
e

−ξ2

2σ2
s dξ

(3)
where

g(ξ, r) =
1√
2πσs

∫ ∞

−∞

(∫ ∞

0

f(r1)dr1
1 + zeξ1−ξ( r

r1
)β

)
e

−ξ2
1

2σ2
s dξ1

(4)
in Eqs. (3) and (4), ξ is a Gaussian variable with zero mean and
σ2 variance. r is the distance between the pair of sender and
receiver. Eqs. (3) demonstrates the specific capture ratio with
the increase of k. Fig. 3(d) plots C(k) with different parameter
settings. The result is consistent with the experimental result
in Fig. 3(c).
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For a corrupted slot, the probability Pc can be calculated
by:

Pc = 1− Pi − Ps (5)

To measure channel utilization and derive the performance gain
compared with backoff-based protocols, we model channel
utilization as a function of Pi, Ps and Pc (Eqs. 1, 2 and 5).
For a specific time instant, channel utilization is the ratio of a
successful slot’s duration to the total time:

Util(p) =
PsTs

PsTs + PcTc + PiTslot
(6)

Ts is the average transmission time of a single packet, which
depends on the physical layer (PHY) and MAC layer specifi-
cations. Tc is the average corruption time of a packet and Tslot

is the time of a single slot. Note that in our model Tc is equal
to Ts because transmissions of packets are aligned to exploit
collision tolerance. Tslot is much shorter than Ts and Tc. For
example in a typical implementation, we follow the standard
of IEEE 802.15.4 in which the maximum packet size is 128
bytes and the maximum data rate is 250 kbps. Each slot lasts
for about 0.032 ms , which is the transmission time of 1 byte.
Tc lasts for at most 4.096 ms. Thus the ratio η = Tc/Tslot is
in the range from 1 to 128.

Since channel utilization is modeled as a function of p and
N , one can find the optimal probability popt that maximizes
channel utilization or minimize the inverse of Eqs. (6) for
different N . Therefore for a specific N , popt should be
calculated as follows:

popt = argmax
p

Util(p) (7)

B. Improvement against Collision Avoidance

It is worth noticing that Coco improves the achievable up-
per bound of channel utilization, compared with conventional
protocols. For backoff-based protocols, e.g., linear backoff in
802.15.4 and 802.11 Distributed Coordination Function (DCF)
in 802.11 networks, the achievable upper bound of channel
utilization is the ratio of successful slots to the total time. The
performance gain brought by Coco is due to the significantly
enhanced probability of a successful slot. The probability P

′
s

for random backoff based protocols is:

P
′
s = Np(1− p)N−1 (8)

In such protocols, senders take random backoffs and it is
therefore difficult to calculate the duration of collisions Tc.
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Conservatively we use Ts as the upper bound of Tc, similarly
with the analysis in [11]. Fig. 5 shows the numerical compar-
ison of achievable upper bound of channel utilization between
Coco and backoff based protocols with different η = Tc/Tslot.
It is clear that the gap is about 15% with η = 10, 10% with
η = 30 and 8% with η = 90.

Note that the achievable channel utilization for random
backoff based protocols seems as high as 86% when η = 90. In
practice, however, it is difficult to achieve that performance.
Our analysis above is based on the assumption that senders
have the knowledge of each other and thus the optimal
transmission probability p can be calculated. In fact, senders
running random backoff protocol can only autonomously set
their own backoff time to avoid collisions. As a result, the
global optimum cannot be reached with an increasing number
of senders [12]. The author in [1] reveals the performance
degradation with a large number of senders for 802.11 DCF.
In comparison, Coco is able to approach its optimal utilization
via accurate estimation of network conditions and online
regulation of the transmission probability p. In the next section,
we show how we address the above design issues in the Coco
protocol.

IV. DESIGN OF Coco

Coco is a protocol for medium access control that co-
ordinates the behavior of a receiver and multiple senders.
Supported by the principle of collision tolerance, the basic idea
and key feature of Coco is to align the packet transmissions
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from multiple concurrent senders and control the transmission
probability p of every sender, so that the channel is fully
utilized.

This section presents the design of Coco. We start with a
brief overview of the workflow, and then explain the details
of two key components: sender alignment and feedback con-
trol. We also analyze the protocol’s performance optimality,
convergence speed and discuss its limitations.

A. Overview

Fig. 4 depicts the workflow of Coco with an example of 4
senders and a receiver. We assume each sender has one packet
to send for simplicity. The whole workflow is divided into five
periods. In period 1, only S1 (Sender 1) sends a packet. The
receiver acknowledges S1 on receiving its packet. Because the
ACK is broadcasted, not only S1, but also the other senders
hear the ACK, from which they learn that the receiver is
active and ready for receiving upcoming packets. Then they
are triggered to transmit with the initial probability p = 1,
which results in packet corruption. Detecting the corruption,
the receiver realizes the channel is overly crowded and decides
to reduce the transmission concurrency. So it regulates the
probability p based on the feedback control algorithm (detailed
in the third subsection) and piggybacks the new value of
p = 0.8 in the ACK packet.

In period 2, S1, S2 and S3 decide to transmit and suffer
another corruption. As a result, the receiver further regulates p
to 0.5. With the appropriately controlled probability, in period
3 S3, S2 and S4 transmit their packets successfully one after
another. Note that transmissions turn out to be successful even
when there are more than 1 concurrent transmissions.

S3, S2 and S4 finish transmission in period 3. Therefore
in period 4, an idle slot occurs as p is too small in the case
that only S1 is active. Under this condition, the receiver waits
for a maximum interval Tmax and realizes that the channel is
under utilized. So it resends an ACK after Tmax with a new
probability p, e.g., 1 finally. If there is no response after Nmax

ACKs (Nmax = 3 in this example), the receiver believes all
senders have finished transmissions and it may cease the ACK
behavior, as shown in period 5.

In the following subsections, we elaborate on the two
components: (1) The mechanism for precise sender alignment

D1

Preamble

SFD Pin of S1

SFD Pin of S2

Data over RF

Offset

SFD MPDULen

D2

ACK packet from receiver

Delay to respond to interruptReception process

Fig. 8. Senders are aligned by SFD interrupts of ACK packet. Transmission
offset are mainly caused by delay in responding the falling-edge interrupt.

and (2) The online feedback control algorithm to regulate p.

B. Align Senders’ Packets

The first difficulty mentioned in Sec. 2 can be overcome
with the help of ACK mechanism. Instead of transmitting
randomly in traditional protocols, senders transmit by detect-
ing ACK packet broadcasted by the intended receiver. The
principle is that SFD rising edge and falling edge are strictly
aligned for all senders during reception of an identical ACK.
Fig. 8 shows two senders are triggered by an ACK, their
reception process are synchronized by SFD interrupt. Based on
this observation, the offset only occurs when senders respond
the interrupt of SFD falling edge. In the evaluation part, we
show that this delay is extremely small. In this way, senders
with identical receiver are able to transmit their packets with
bounded offset.

Exploiting ACK to trigger the transmission of senders
also benefits resolution of hidden terminal problem [13], [14].
In Coco, senders explicitly contend. It makes no difference
whether senders can sense the existence of each other or not.
In evaluation part, we evaluate Coco in topologies with hidden
terminals and demonstrate Coco’s robustness.

C. Feedback Control Algorithm

In Section III, we analyze that popti can be numerically
found for different numbers of senders i. However, it is hard in
practice, due to the following reasons. First, the receiver has no
idea about the total number or the identity of senders. Thus it
cannot directly calculate popti using Eqs. (6). Second, the total
number and identities of active senders vary greatly over time,
as some senders finish their transmission tasks earlier than the
others. Some senders may join in the concurrent transmissions
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TABLE I. popt AND Pc FOR N FROM 1 TO 20.

N popt P opt
c N popt P opt

c

1 1 0 11 0.0351 0.0107

2 0.3533 0.0125 12 0.0320 0.0107

3 0.1621 0.0109 13 0.0294 0.0107

4 0.1105 0.0108 14 0.0272 0.0107

5 0.0843 0.0107 15 0.0253 0.0107

6 0.0683 0.0107 16 0.0237 0.0107

7 0.0574 0.0107 17 0.0222 0.0107

8 0.0495 0.0107 18 0.0209 0.0107

9 0.0436 0.0107 19 0.0198 0.0107

10 0.0389 0.0107 20 0.0188 0.0107

without prior notice to the receiver. Considering the dynamics
of networks, even there is a method to figure out the total
number and identities of the senders, it still means considerable
overhead at the receiver to reach the value of popti . In order to
obtain proper p in the dynamic network condition, we propose
a feedback control algorithm based on the states of past slots.
This algorithm releases Coco from the task of deciding the
exact number of active senders and helps to obtain a close-to-
optimal value of popti in real time. Next, we mainly answer the
following questions: (1) How to judge whether p is proper or
not? (2) If not, how to adjust p to approximate popti ? (3) What
is the convergence speed and (4) what are the error bounds?

For the first question, we demonstrate via simulation that
P opt
c converges to a constant value quickly, as is shown in

Tab. I. We set η = 60 here for general analysis. We see that
P opt
c is 0 when N = 1, while it approaches 0.0107 when N

increases. In other words, the value of P opt
c does not change

when N increases. This property aids us to decide whether p
is proper or not. We can first calculate Pc from the statistical
number of corrupted slots in a time period and then compare
Pc with P opt

c , as is shown in Fig. 9. If Pc is larger than P opt
c ,

which means that p is too large, we decrease p, otherwise we
increase p. Note that when N = 1, Pc is always 0, in which
case we increase p until 1.

When the current value of p is detected to be inappropriate,
we apply a dichotomous algorithm to find the proper value of
p for the current network condition. The pseudo code of this
algorithm is shown in Alg. 1. In this algorithm, pl and pu
mean the lower and upper bound of the confidence interval.
p is calculated as the center point of this interval. Initially

Algorithm 1 The Feedback Control Algorithm

Input: nc, W
Output: p

1: Pc ⇐ nc/W # Calculate Pc

2: if P opt
c ≤ Pc < P opt

c + ε then
3: return p # p is proper
4: else if Pc < P opt

c then
5: pl ⇐ p
6: p ⇐ (pl + pu)/2 # Increase p
7: return p
8: else if Pc ≥ P opt

c + ε then
9: pu ⇐ p

10: p ⇐ (pl + pu)/2 # Decrease p
11: return p
12: end if

pl = 0, pu = 1, and p = 0.5. In each iteration, the resulting
Pc is compared with P opt

c to get the new interval bounds as
well as the new p. Specifically, if Pc is smaller, the new interval
is set to (p, pu) and it is set to (pl, p) otherwise. Based on the
new interval, p is further updated. The iterations do not halt
until p converges to popt, for which we claim that Pc satisfies
the following condition:

P opt
c ≤ Pc < P opt

c + ε (9)

where ε is the error bound of Pc. Note that we restrict Pc

to a range instead of the exact value P opt
c , so as to avoid

fluctuations in feedback control. Besides, the range is set to
begin from P opt

c rather than from P opt
c − ε. The reason is that

the value of Util(p) varies greatly when Pc is in the range
from P opt

c − ε to P opt
c . Fig. 6 shows how Util(p) changes

on the left and right side of P opt
c (0.0107). It is easy to see

that Util(p) decreases to 0 quickly on the left side. Note that
X-axis is log-scale.

Error introduced by ε. As Pc is not exactly equal to its
optimal value P opt

c , the real utilization function Util(p) may
not be able to achieve its optimal Utilopt as shown in Fig. 5. To
examine the error of Util(p) caused by ε and choose a proper
ε, we calculate the difference between Util(p) and Utilopt

with four different ε values. Results are shown in Fig. 7. It
shows that the error caused by ε is well bounded. For example,
when ε = 0.03, i.e., 0.0107 ≤ Pc < 0.0407, the error of
Util(p) is limited to 3%. Therefore we choose ε = 0.05 in
our implementation.

Convergence speed. Another performance metric we care
is the convergence speed of Alg. 1. We claim that in this
algorithm p can converge quickly from its initial value to the
approximate value popt. From Tab. I, we see that popt has a
resolution of 0.001, when the total number of senders is at
most 20. Therefore the algorithm needs at most 10 iterations
to regulate p from the initial value to popt. For a more intuitive
understanding, we suppose for each iteration the receiver has
to check states of 100 slots and each checking time lasts for
at most 4.096 ms. The total convergence time is at most
10× 100× 4.096 ms, which is equal to 4.1 s.
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Fig. 10. Transmission offset between senders. Offset is measured between
10 different senders with respect to a reference sender on the receiver side.

D. Discussion

As a MAC layer protocol, Coco can be a good candidate
substitution of the traditional CSMA backoff mechanism for
various protocol scenarios, such as data aggregation [15],
relay [16] and data collection. Especially when data rate is
high and nodes are dense [17], Coco shows it advantages.

However, we claim that there are two issues for Coco to
be considered. First, because transmission is triggered by the
receiver’s ACK, Coco is like a receiver-initiated protocol [18].
As a result, senders should transmit according to the coordi-
nation of the receiver. Another consideration is the tradeoff
between random-backoff based protocols and Coco. Although
backoff mechanism has poor performance when the number
of senders is large, it shows flexibility and low-complexity,
especially when the number of senders is small. Coco has
particular advantages in the scenarios of high contention and
high data rates. When the networks are sparse (i.e., the
neighbor size of a node is small) or the traffic load is low,
the performance advantages of Coco might diminish.

V. EVALUATION

We implement Coco in ContikiOS [6] on TelosB [7] plat-
form. Based on the implementation, we conduct experiments
to evaluate the performance of Coco from different aspects.
First, we verify how well Coco copes with the difficulties
mentioned in Section II to achieve collision tolerance. Namely,
we evaluate the timing accuracy and how well p is adjusted in
practical networks. Second, we also conduct macrobenchmark
experiments to evaluate performance of Coco. We compare
the channel utilization with conventional protocols based on
collision avoidance. Third, we evaluate the robustness of Coco
with different network settings.

A. Timing Accuracy

We first evaluate the time accuracy of aligning packets with
ACK. As discussed in protocol design, senders are synchro-
nized by SFD interrupts. In this experiment, we measure the
delay to handle the interrupt, i.e., transmission offset, between
two senders with a dual-channel digital oscilloscope. To e-
liminate the bias caused by hardware, we run this evaluation
on 10 different senders. Fig. 10 shows the average offset,

Outdoor

Hall

Testbed

Fig. 11. Environments illustration. A testbed environment is shown in the
left figure. We also evaluate Coco in an hall and nodes are placed on the
desks, which is shown in the top-right figure. The bottom-right figure shows
the an outdoor environment and nodes are placed on the ground.

TABLE II. PERFORMANCE IN THREE ENVIRONMENTS.

Env. avg. min. max.

Testbed 0.904 0.802 0.968

Hall 0.901 0.798 0.978

Outdoor 0.915 0.802 0.977

the minimum and maximum offset for different nodes in the
experiment.

We can see that the maximum offset is about of 100 ns for
all 10 senders. this value is far less than the required 160 μs,
i.e., the duration of preamble plus SFD byte. Therefore, the
timing requirement can be well satisfied by exploiting ACK to
align packets on real sensor nodes.

B. Evaluation of Adjustment Algorithm

In this set of experiments, we demonstrate the effectiveness
of the feedback control algorithm. In the first experiment,
we show the convergence process of p and how p can be
adjusted to different number of senders. We manually change
the number of senders from 1 to 20, and then to 10, and
finally to 3. We record the corresponding value of p during
the process. We set the parameter ε = 0.05 in this experiment.

Fig. 12(a) shows the convergence process. Initially, p =
0.5 and therefore it is not fit for the case N = 1. Thus p is
increased from 0.5 to 0.75 and finally converges to 0.967. Then
when N changes to 20, p is decreased and finally converges to
a small value. When N changes from 20 to 10 and from 10 to
3, p adaptive changes and finally converges to a stable value.
We can also calculate the convergence time in this figure. For
example, when N increases from 1 to 20, the time for p to
converge is about 1.7 s. While when N changes from 10 to 3,
the time for convergence is only 0.7 s. This demonstrates that
the feedback control algorithm can quickly adjust p according
to the network condition.

To further examine the impact of ε, we record Pc and
Util(p) and then compare them with the optimal values. We
repeat the experiment with four different ε settings. The impact
on Pc and Util(p) introduced by ε are shown in Fig. 12(b)
and Fig. 12(c). The impact on Pc is calculated as the ratio
of difference between Pc and P opt

c to P opt
c . Error of Util is
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Fig. 12. Evaluation of the feedback control algorithm. Fig. 12(a) depicts the dynamic adjustment process of p to approach popt with different N . Fig. 12(b)
plots the difference between Pc and P opt

c in the adjustment process with four settings of ε. Fig. 12(c) plots the difference between Util(p) and Utilopt.
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Fig. 13. Performance comparison with CSMA linear backoff (CSMA-L) and CSMA exponential backoff (CSMA-E) with different packet lengths. Fig. 13(a)
shows the results in scenario with hidden terminals and Fig. 13(b) shows the scenario without hidden terminals. Fig. 13(c) shows the CDF of average backoff
time per packet in both CSMA-E and CSMA-L.

calculated in a similar way. From Fig. 12(b), we can find that
with smaller ε, the resulting error of Pc is also small. Fig. 12(c)
shows us the utilization difference caused by a small ε is also
small. Nevertheless, there is no significant difference among
the different settings of ε. Especially, all four ε settings have
less than 5% difference for 80% cases. This tells us that as long
as ε is small (e.g., 0.1), the difference between the achieved
performance and the optimal performance is small.

C. Protocol Robustness Evaluation

In this subsection, we conduct comprehensive evaluation
to the robustness of Coco under various network settings.
Especially we examine the impact of network environment,
network topology and packet size. In all the following three
experiments, we use 20 nodes transmitting packets to a com-
mon receiver. Each sender transmits 100 packets and we repeat
each test for several rounds to calculate statistical channel
utilization.

1) Impact of environment: Besides testbed-based exper-
iments, we also conduct experiments in a hall and in an
outdoor environment. Fig. 11 depicts the view of the three
environments. For the outdoor scenario, we place nodes on
the ground. In all three scenarios, we run Coco and record the
corresponding utilization. Tab. II shows the average, minimum
and maximum utilization in those environments. We find that

there is no significant difference among those environments.
The average utilization in outdoor environment is slightly
better than the other two cases. This experiment result shows
that Coco can be applied to different environments.

2) Impact of packet length: The second parameter we
examine is the average packet length. As discussed in the
protocol design, the upper bound of optimal utilization is
related to η = Tc/Tslot. Packet length l is set to 20, 60 and 100
bytes respectively and we record the corresponding utilization
in the testbed environment. For different packet lengths, we
also evaluate the utilization when there exist hidden terminal.
The results are shown in Fig. 13(a) and Fig. 13(b). We can
see that for both cases, Coco achieves higher utilization than
collision avoidance based approaches. Further, no matter there
is hidden terminal or not, Coco achieves higher utilization for
longer packets. Details are shown in the overall evaluation.

3) Impact of topology: Another parameter that may effect
the performance of Coco is network topology. We place
nodes to form three different topologies, namely (1) the circle
topology where senders are placed to form a circle around
the receiver, (2) the line topology where senders are placed
in a line and the receiver is located at one side of the line
and (3) the random topology in which senders are randomly
placed near the receiver. In circle topology, nodes cannot sense
the existence of the node on the opposite side, resulting hidden
terminals in the network. In line topology, nodes far away from



the receiver have weaker received signal strength than nodes
that are closer to the receiver. The circle topology is used to
test the performance of Coco in face of hidden terminal while
the line topology is to test Coco’s performance for nodes with
different signal strengths.

D. Overall Performance Evaluation

We compare Coco with other existing random-backoff
based protocols to show the performance gain. In 802.15.4
networks, we choose B-MAC [19] as the representative of
random-backoff based protocols.

1) Comparison with CSMA backoff: In this experiment,
we implement both linear and exponential backoff in B-MAC,
denoted as CSMA-L and CSMA-E respectively. Experiments
are conducted in both circle topology (with hidden terminals)
and random topology with packet lengths of 20, 60 and 100
bytes. We measure time for all senders to finish transmission
at the receiver side to compute the overall utilization.

Fig. 13(a) and Fig. 13(b) show the results. There are
several findings to be revealed in this experiment. First, CSMA
protocols are not robust to hidden terminal. Both CSMA-L
and CSMA-E demonstrate performance degradation in circle
topology with hidden terminals. Second, the impact of packet
length on CSMA protocols and Coco are essentially different.
For CSMA-L and CSMA-E, shorter packets are preferred.
While for Coco, longer packets are better. The reason lies
in the fact that packet length doesn’t affect the corruption
probability in Coco, while it does for CSMA protocols. Third,
CSMA-L shows advantages against CSMA-E in 802.15.4
networks. The exponential backoff scheme does not perform
well in 802.15.4 networks as it does in 802.11 networks. The
reason is that the maximum packet length is only 128 bytes in
802.15.4 networks while it is 2304 bytes in 802.11 networks.
Thus it is desirable to apply larger backoff window in 802.11
networks. At last, the overall utilization of Coco outperforms
both CSMA-L and CSMA-E in both topologies with different
packet lengths. The performance improvement ranges from
about 10% to about 50%.

To further investigate the performance of CSMA backoff
protocols and Coco, we look into the backoff time. Fig. 13(c)
shows the average backoff time for each packet in the exper-
iment. We find that the average backoff time for each packet
is at least 5 ms for CSMA-E. The average backoff time of
CSMA-L for each packet is about 7ms for 80% of the packets.
However, backoff time is not required in Coco. Therefore, it
is easy to understand the reason for performance gain with
Coco.

2) Improvement to AMAC: Besides comparison with C-
SMA protocols that run in an always-on mode, we show
that Coco can also be applied in duty-cycling wireless sensor
networks (WSNs). Here we select AMAC [20], which is the
most representative receiver-initiated duty-cycling protocol in
TinyOS. The basic mechanism of AMAC works as follows.
Each node periodically wakes up. After waking up, each node
polls the channel by sending polling packets to see if there is
any transmission to the node. If a node has packets to send,
it will sense the channel to see if there is any polling packets
from the receiver. If there is, the node will send packets to the
receiver.
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Fig. 14. Per-packet waiting time before and after AMAC is integrated with
Coco.

As stated in [20], AMAC suffers from collisions in dense
networks. In AMAC, senders have asynchronous wake-up
schedules. It is possible that multiple senders for the same
receiver wake up in the same cycle. Those senders will receive
the same probe from the receiver and then they will perform
backoffs to avoid collisions. As in CSMA, collisions occur
when two senders choose the same backoff time.

In our experiment, we integrate Coco with AMAC to
improve its ability to handle collision. We piggyback the
probability p in the polling packets. The modification is that
after receiving a probe packet from the receiver, all senders
who are awake should perform backoff in a time window
of less than 160 μs, as is the time of preamble plus SFD
byte. After the backoff timer fires, senders apply p to transmit.
This backoff mechanism ensures that backoff time is bounded
in AMAC. We record the time that a packet needs to wait
(including backoff and duty-cycling period) before and after
Coco is added into AMAC.

As shown in Fig. 14, after integrating Coco with AMAC,
the average used time for each packet is significantly reduced.
The average used time per packet is reduced from about 7 ms
to only 1 ms in Coco. This indicates Coco is efficient to
resolve collisions in AMAC.

VI. RELATED WORK

Collision resolution protocols for improving channel uti-
lization fall into the following three categories:

Collision avoidance. This is the most typical class of
protocols [21]. Based on the mechanism how to avoid colli-
sions, collision avoidance based protocols can be divided into
schedule based and contention based. For the former, TDMA
and FDMA are the representative protocols. Active senders are
coordinated and allocated with different time slots/frequencies
for transmission. For the latter, CSMA is applied as the medi-
um access control method and senders perform random backoff
for collision avoidance. The overhead in avoiding collision,
however, degrades the performance of channel utilization.
For example, coordination and synchronization in schedule
based protocols consumes large portion of transmission time.
Contention based protocols conservatively perform backoff and
result in many idle slots that cannot be utilized.



Collision tolerance. Different from collision avoidance,
the idea of collision tolerance allows collisions. Flash flood-
ing [22], Chorus [23] and Glossy [24] propose protocols for
efficient data transmission exploiting capture effect in flooding
scenarios. However, the common limitation of the existing
protocols trying to use collision tolerance is that they can
be only applied in flooding or broadcasting scenarios, where
transmitted packets must carry the same data. This requirement
greatly limits their application scope. The behind reason is
that these protocols fail to understand the basic timing and
concurrency requirements of collision tolerance, which are
investigated in this paper.

Protocols by modifying PHY layer. Another category of
protocols try to recover collided signals with advanced PHY
layer techniques [14], [25], [26], [27]. For example, Zigza-
g [14] iteratively decodes the collision-free part in the collided
signals first and then subtracts it from the collided signal.
SIC [25] on the other hand, recovers the strong signal with
capture effect and then recover the weak signal by cancelling
the strong one from the collided signals. The limitations of
these protocols are that they require special modification in the
PHY layer and are not supported in commercial hardware. On
the contrary, Coco is light-weight. Ineeds little modification in
the MAC or PHY layer and can be directly used on off-the-
shelf hardwares.

VII. CONCLUSION AND FUTURE WORK

Collision resolution is a crucial issue in wireless networks.
Based on the insight of collision tolerance, this paper proposes
Coco, a novel practice of MAC protocol that exploits the
opportunities to transmit packets under collisions. Coco ad-
dresses the practical challenges in achieving collision tolerance
and brings significant performance gain in wireless channel
utilization. We implement Coco in 802.15.4 networks and
evaluate its performance in various network settings. The e-
valuation results demonstrate that Coco significantly improves
channel utilization.

In our future work, we are going to integrate Coco with
other application-layer protocols, e.g., the CTP [28] protocol
in TinyOS. Moreover, we plan to extend the implementation
and evaluation of Coco to 802.11 networks and extend the
application scenario of Coco from single receiver to multiple-
receiver case.
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