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Abstract—Consider a distributed system with n nodes
where each node holds a multiset of items. In this paper,
we design sampling algorithms that allow us to estimate
the global frequency of any item with a standard deviation
of eN, where N denotes the total cardinality of all these
multisets. Our algorithms have a communication cost of
O(n + +/n/¢), which is never worse than theO(n + 1/&?)
cost of uniform sampling, and could be much better when
n < 1/52. In addition, we prove that one version of our
algorithm is instance-optimal in a fairly general sampling
framework. We also design algorithms that achieve op-
timality on the bit level, by combining Bloom filters of
various granularities. Finally, we present some simulatia
results comparing our algorithms with previous techniques
Other than the performance improvement, our algorithms
are also much simpler and easily implementable in a large-
scale distributed system.

I. INTRODUCTION

Consider a distributed system with nodes where
each node holds a list of (item, frequency) pairs, recor
ing the local frequency of these items. In this paper,

study the problem of estimating the global frequencies (1

the items where an item’s global frequency is the sum
all the local frequencies at all the nodes, with minimu
communication. This problem is motivated by many a
plications in distributed databases, network monitori
sensor networks, data centers, cloud computing, etc.
example, estimating the frequencies of queried keywor
is a routine task for search engines, while the que
logs have to be stored in a distributed manner due
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reporting the occurrences of different species of birds in
a sensor network, and so on.

A. Problem definition

We assume that the items are drawn from a bounded
universefu] = {1,...,u}. There aren distributed nodes
in the system; we denote thecal countof item at node
Jj by z; ;, and theglobal countof itemi is y; = 3, x; ;.

The total count of all items is denotéd = > . ;. There

is a coordinatorC' whose job is to estimatg; for all

i € [u] by communicating with the nodes with minimum
cost. Here and further the word “cost” will always refer
to “communication cost”.

Since computing all thg;’s exactly incurs high costs
and is often unnecessary, we will allow an absolute error
of at moste N for some smalk > 0. When probabilistic
algorithms are concerned, this should be achieved with
aet least constant probability. This error definition has

en used in most works on this problem [6,7,12,13,
]. Under such an error definition, we can zero out all
e frequencies less thanV, so that the output size
IS bounded byl/e. On the other hand, if we use a

relativec-error, then we are forced to make very accurate

it

Igstlmanons for low-frequency items, which is expensive

or
(Set unnecessary. Note that there are some proposals of a
,€)-error [2,11] that guarantees a relatis@rror only

r frequencies at leagt/V, which we briefly discuss in
ection VII.

their sheer scale. The recently developed MapReducé

framework [8] has provided a highly efficient and reIi—B Preliminaries and previous results
able programming environment for processing massive P
distributed data sets. As another example, in DDoS There is a simple deterministic algorithm with cost
attacks the attacker tries to send a lot of traffic to th@(n/c). The idea is to ask each node to send in all
same victim via many different routes, so any individuats items with local counts greater tharV/n. Thus,
router may not see a large number of packets destinfedt any item, each node contributes an error at most
to the victim. Thus in order to detect DDoS attacks weN/n, totaling N from all the n nodes. This simple
will have to estimate the global frequency of destinatioalgorithm has been used in some previous work [5], and
IP addresses. Other examples include estimating tiseconjectured to be optimal for deterministic algorithms,
popularity of files in peer-to-peer file-sharing networksalthough there has not been a proof.



With randomization there is potential to do better} D 2L = O(N/d) = ©(1/e%). We also need to
To start with, it is well known [18] that uniformly computeN and broadcast to all nodes, so the total cost
sampling each item with probability= 1/2N suffices is ©(n + 1/¢2), which is the same as that of uniform
to estimate the count of any item within an erroredf sampling. [21] also proposed some other complicated
with constant probability. To do the sampling, we neebeuristics, but they do not improve th@(n + 1/¢2)
to computeN and then broadcagtto all nodes, which worst-cast cost. Therefore, although Zhao et al. [21]
requireO(n) communication. The total (expected) cosproposed a nice general sampling framework, they did
of the sampling is thu®)(n + pN) = O(n + 1/€?). notdemonstrate whether this framework yields a solution
So uniform sampling beats the deterministic algorithriinat is asymptotically better than uniform sampling.
whenn > 1/e. But how about the case < 1/e, which
is more likely in real applications? Bear in mind thaf- Our results
the e-error as defined is an absolute error=d¥, where In this paper we answer the above question in the
N is the total count oflll items, so typical values of  affirmative, and in a very strong sense. Specifically, we
range from0.0001 to 0.01 (see e.g. [6]), whilex in real  optain the following results.
systems is usually no more than a few hundred. We first show in Section Il that the linear sam-

Zhao et al. [21] defined a general sampling framewoiling functiont ¢;(z) = 2/n/cN achievesVar[Y;] <
for the frequency estimation problem. Let N — [0, 1]  O((cN)2), which, by Chebyshev's inequality, allows us
be asampling functionlf an item has local count ata to estimatey; within an error of eN with constant
pode, then the nodg with probabilig_(a:)_samples this probability. The communication cost B, 9(ri) =
item and sends the item together with its local count o(, /77 /<) under any inpit This is clearly better than the
to the coordinator. In addition to the local countwe  ((p /) deterministic bound. It is also much better than
also allow the functiory(z) to depend onV,n,e. Set the O(1/22) uniform sampling cost when < 1/&2. In

Y j = @i if the coordinator receives the (item, countipe (rare) case > 1/22, uniform sampling still performs
pair (i, z; ;) from nodej, andY; ; = 0 otherwise. Then petter.

the coordinator can estimatg using (defineg =0) Next, we prove af2(min{+/n/e, 1/2}) lower bound
Y, Yin on the worst-case cost for alblid sampling functions.
Y = 9(Yi1) (Vi)' @ a sampling function isvalid if it achievesVar[Y;] <

) _ ) ‘O((eN)?) for all i under any input. This means that
which was shown [21] to be an unbiased estimator Wl@amp“ng withg; and uniform sampling are respectively

variance optimal in the cases < 1/2 andn > 1/¢2.
- Y; "Lxf (1= g(zi ) Although we have found optimal sampling functions
Var[Yi] =} Var {g(x. .)} => ~ g(z.,) forallvalues ofn ande, these are actually not the main
=1 i =1 " 5 Tresults of this paper. We observe that on some inputs,

This framework is more general and should intuitive . , .
onsider an extreme case where all ihg's are either

do better than uniform sampling. But as pointed o .
in [21], central to this framework is the choice of the0 or L. If we usegy, the cost is9(+/n/¢). (In fact, dge

sampling functiong. To be able to estimate; with tc; the Illnearsgfeature 01;91,hIFS cost)_; 91(5'”1%9‘) 'Sh
error at most N with a constant probability, we need to?'MOSt alway (vn/c).) In this casey, samples eac

choose ag such thatVar[Y;] = O((=N)?). From (2) Yid = 1 with probability y/n/cN. However, we observe
it is clear thatVar[Y;] gets smaller ag; gets larger. from (2) that when thex,;'s are all very small, we can

On the other hand, the expected total number of (iterﬂﬁom| to use a smaller_sam_pling rate while still keeping
count) pairs sent to the coordinator s, ; g(zi ), SO ar(Yi] sme}ll. Indeed,. n this Ca526 we can .samplle each
we would want to choose the smallegtsuch that Y = 1 With pr02bab|llty n/(eN)* while still having
VarY;] = O((eN)2). Var[Y;] = O((¢N)?). When using sug:h a samphglg rate,
Zhao et al. [21] proposed to ugér) — «/(z +d) for e total cost reduces ©(Nn/(eN)7) = O(n/e"N),

some_flxedi. When using such g, Var[Yi]_S|mpI|f|es 00 1r e function is actuallyg: (z) = min{eyi/eN, 1} as anyg
dy;. Sincey; can be as large &3(/V ), we will have to Set cannot exceed. We omit the min” here and further for brevity.
d = ©(£2N) in order to guarante®ar[Y;] = O((eN)?) 2Henceforth we omit theD(n) term for computingNV and broad-

for anyi. Thus, the communication cost of their a|gocastingg to all nodes when considering the algorithms’ costs, bexaus
. : ’ _ zi 1) it makes the bounds cleaner; 2) this cost is common togdirithms
rithm is Z'Lg g(xi,j) = le d+mz - In the worst case in this sampling framework; and 3) this cost is due to conmuuiV,

(when all thex; ;'s are no more ff‘lald), this is at least which can be easily shown to be unavoidableNifis unknown.

% is possible to further reduce the communication cost.




which, interestingly, approach@&sas N — oo, and can 1. RELATED WORK

be much lower than both tt@(y/n/c) cost ofg; andthe  Besides the work of Zhao et al. [21] which is the
©(1/£?) cost of uniform sampling. Although practicalcjosest work to ours, a number of related problems have
cases are not as extreme, it is very common to havé,gen studied by the database and distributed computing
lot of smallz; ;'s due to the heavy tail property of manycommunities.
real-world distributions. Of course, in view of the above Theheavy hitteproblem [6, 13] has been well studied
lower bound, it is not possible to beat (the better @f) in the centralized case. The goal here is to report all items
and uniform sampling on the worst input, but can we dgjith frequency exceedingN for some user specified,
something better for these typical, not-so-worst casesgot report items with frequency belog — ¢) N, while
The answer is yes. In Section IV we show that theve do not care frequencies in between. Our algorithms
sampling function clearly solve this problem in the distributed setting.
Zhao et al. [20] studied the distributed heavy hitter
problem while using a relative-error 0 < A < 1):
the heavy hitters’ global counts are more thamvhile
the non-heavy hitters’ counts should be less than
also achievesvVar[Y;] < O((¢N)?) with the optimal for some threshold. The communication cost of their
worst-case cost ad(min{/n/c,1/2}). Soin the worst algorithm is O(nuA?), so it only applies to situations
case, it performs the same gs (for n < 1/¢%) and where there is a very small universe. Furthermore, note
uniform sampling (fom > 1/¢?). To analytically estab- that O(nu) is a trivial upper bound (each node sending
lish the superiority ofgz, we prove that it isinstance- all items would cost this much), so this algorithm beats
optimal [9], i.e., for every given inpuf : {z; ;}, g has the naive solution only when there is a very large gap
the optimal cost (up to a constant factor) among all thsetween the heavy and non-heavy hitters. Meanwhile,
valid sampling functions on that input. More preciselythey also showed a matchin@(ku\?) lower bound
let opt(I) = 3>, ; g2(;,;) be the cost of sampling with This apparent hardness of the problem actually stems
g2 on inputl, we show that any valid sampling functionfrom distinguishing between a global countloéind1/\,
must have cosf2(opt(I)) on I, which essentially meanswhich corresponds to using a very smalllf 7 = ¢n
that g» is the best sampling function on every singleas mostly used in the literature [6], this problem can be
input. This is a much stronger optimality notion tharin fact solved efficiently as shown in this paper.
the traditional worst-case optimality. The distributedtop-k problem [4,14,15] is another

So far we have treated an (item, count) pair as a cori¢lated one, where the goal is to find the topnost
munication unit. If one desires a more precise analysigequent items. Cao and Wang [4] designed an algorithm
such a pair actually consuméXlog v+ log N) bits. To that solves this problem exactly, but it could ship all
further reduce the communication cost, we design tecthe data to the coordinator on some inputs. They also
niques that are more careful about the bits they send. \meoved that their algorithm is instance-optimal, but this
show in Section V how to reduce the communication cognly holds for inputs following a certain distribution
on the bit level by using multiple Bloom filters [1, 16] atand the optimality ratio is as large &4n?). Note that
different levels of granularity. Althougiy is not as good our instance-optimality ratio is a constant and it holds
as g, in terms of sampling, it is particularly amenabldor any input. The apparent difficulty of their approach
to Bloom filters. It turns out that we can remove thétems from situations where thieth frequent item is
extraO(log u+log N) factor completely when using;, ~Very close to thek + 1)-st one, and they want to detect
i.e., we obtain an algorithm communicatiig(\/n/c) this exactly. Patt-Shamir and Shafrir [15] considered a
bits. The instance-optimal sampling functignis more more solvable version of the problem where they allow
difficult to directly plug into Bloom filters, but then we a relative s-error when separating the tdpiist from
use an interesting combination ¢f and g, to achieve the rest. The communication cost of their algorithm is
a cost ofO (Opt(l) log? (—/n bits. _O(l/pfa?) wherep” is the frequency of thé-th frequent

e-opt(1) item divided byN. Their algorithm uses multiple rounds

. leally, v(\j/e con;)ment t_?a@ alllour altg(()jrl_thmsl are VenYt uniform sampling to estimate the frequencies. If we
Simple, and can be easily Implemented In a large-scajg, algorithms in place of uniform sampling, the

distributed system. In particular, they can be easilé/Ost imbroves ta0) ) when 1/£2. Usin
accomplished in the MapReduce framework. Thus, P (vin/pe) n < /e 9

. . . r instance-optimal algorithm will result in a larger
would claim that our algorithms are both theoretically P g g
interesting and practically useful. 3The™ notation suppresses all polylog factorsunN, n, 1/e.

go(x) = min{z?n/(eN)? z/e* N}



improvement for certain inputs, although it is hard to _ ( Yi 5N)2 n (eN)? < 1(5N)2
analytically quantify, since instance optimality has to be Vn 2 4 ~ 4 '
stated for a specific problem and in a clearly defined -
framework. Michel et al. [14] generalized and improved Next we establish the worst-case optimality @f
the algorithm of [4], but with no analytical results. whenn < 1/e2. For the (unrealistic) case > 1/2,
The distributed approximagguantileproblem has also yniform sampling turns out to be optimal already. Recall
been well studied, where the goal is to return a set @{at a sampling function is valid if there exists some
items whose ranks are betwegh—c)N and(¢+¢)N  constantc such that on any inpuy; achievesVar[Y;] <
for all 0 < ¢ < 1. Itis known [6] that the frequency (- N)2 for all i.
estimation problem reduces to the quantile problem, butTheorem 3.2:Any valid sampling function has cost
the best algorithms for the latter incGX(n/<) costs [10, ) (min{\/n/c,1/¢2}) on some input.
17], at least a facto©(y/n) worse than our bounds. Proof: Let g be any valid sampling function. We
Finally, there have been a lot of interests in th@ill consider the following two cases, respectively.
problem ofcontinuously trackinghe heavy hitters, quan- 1), < 1/£2: In this case, we consider an input where
tiles, and topk items in distributed data [3,5, 19]. Thexm, = ¢N/\/n for all i,j. Thus each item hag, =

tracking problem is more general as it requires solving,,, . — =, /n - N copies over all nodes, and there are
the respective problems at all times continuously, rathgr/@_j — /n/e suchz; ;'s.

than a one-shot computation. However, all these citedrrom (2) we have

works studied only deterministic algorithms; in fact, the N )

deterministic complexity for tracking the heavy hitters Varlvi] =3 (eN)?/n- (1 - g(@ij))

and quantiles has been settled@in/c) in [19]. We 9(wi ;)

believe that the techniques developed in this paper could

lead to probabilistic schemes solving these problenfince we requireVar(y;] < c¢(eN)* and all z; ; are

j=1

with costO(y/n/e). equal, we have—#50) < ¢, or g(wi ;) > .
The cost ofg is thus
I11. A WORSTFCASE OPTIMAL SAMPLING FUNCTION 1
ij) = . =Q .
In this section, we show that the sampling function ;g(x ) =n/e 1+4+c¢ (Vin/e)

g1(x) = x\/n/eN is worst-case optimal. In this section _ _ _
and Section IV, we measure the communication cost as2) 7 > 1/e% In this case, we consider an input where
the expected total number of (item, count) pairs sampléaere is only one item in the universe = 1, and it
and sent to the coordinator, i.&, . g(x: ) for a given exists only atl/e* nodes withz, ; = eV at each of
g. In Section V we will conduct a more precise analysithiese nodes; the other nodes are empty.
measuring the cost in terms of the bits communicated. From (2) we have

Theorem 3.1:The sampling function g;(z) = ,1— g(e2N)
zv/n/eN has a cost of O(y/n/e) and achieves Var[Y1] = (eN) —@N)
Var[V;] = $(eN)? for all 4. .

Proof: The analysis of the cost is trivial: By the requirement tha¥ar[Y;] < ¢(¢N)?, we have

2ijo(wiy) < 3 xijvn/eN = N - y/nfeN = (£2N) > 1
Vn/e. g “1+c¢

Now we consider the variance ®f. Since we sample . 5 5 5
an item with probability one (i.e., zero variance) wher] 1€ COSt 0fg is thus1/c%. g(e V) = Q(1/%). u

the local counts; ; > N//n, itis sufficient to consider |y, AN INSTANCE-OPTIMAL SAMPLING FUNCTION
the worst case when atl;, ; < eN/\/n. By (2), we have

In this section, we first show that the sampling func-

" 22 (1 -z j/n/eN) tion
— (3% bJ .
Var[Y;] = Zl i /nJeN g2(7) = min{z*n/(eN)? x/e*N}
= :
N n also achievesvar[Y;] = O((eN)?). In terms of cost,
== @ — Y i since gs () < g2(z), the cost ofg, is always no more
v j=1 j=1 than that ofg;; also sincegs(z) < z/e2N, its cost is
eN 1, at mostO(1/€?). Thus it has the optimal worst-case
= %% Y (Cauchy-Schwartz) - (3) ¢q of O(min{\/n/e,1/¢%}). To analytically establish



its superiority, we later prove that it is instance-optimaDne can check thah:z:f,j > (eN)? always holds. So
i.e., for any inputl, its cost is optimal among all valid

sampling functions foll. Var[Y;] = m:v?,- ( o 1) > (eN)? ( I 1) .
Theorem 4.1:The sampling functionyz(x) achieves *\g(@ij) 9(@ij)
Var[Yj] < O((eN)?) for all i. Whenn < 1/¢2 andz;; > €2N, go(zij) = 1. So by

Proof: Similar to the proof of Theorem 3.1, wethe assumption, we havgz; ;) < 1/2. Thus
can assume thag(z; ;) < 1 for all j; otherwise its

contribution toVar[Y;] is zero. From (2), we have Var[Y] > (eN)?.
n 22 (1 — go(as noog2 2)n > 1/e* If 2;; < N/n < eN/\/n, we setz] ; =
Varly;] = z_: l’J(gz(xgjj() 3) < E 92(;;) zi,,for all j. By the assumption, we havg(z; ;) <
=t = 3wz then we have
anﬁ max{ (eN)” EQN} E 2
— 2 7 > )
= nai; " @i Var[V;] = n < T xf_j> >n <M - xf_j) > (eN)2.
. . , g(zij) " n ’
< Z :vfj (d\g) +Zx§7j€ N If z; ; > N/n, then we setc’iyj =ux;; forl <j<
j=1 "ig o 5= Tirj N/z; ;. In this casey; ; may be either greater than or
= O((eN)?). less thans2N. If it is less thane?N, then go(x; ;) =
. .’L‘i7j/€2N, and
To prove thatgs is instance-optimal, for any input N I?,j 5 Nuxz; 5 5
I {z;;} we write opt(I) = >, g2(z;,;) Which is Var[Y;] = Ti (9(%}]’) _Ii-ﬂ) ~ g(xm,)_(aN) > (eN)”.
the cost ofg,. We then show that any valid sampling )
function on/ must have cosf(opt(I)). If 2;; is greater thare? N, we havegs(z;;) = 1 and
Theorem 4.2:0n input] : {z; ;}, any valid sampling henceg(z; ;) <1/2, so
function must have cos®(opt(I)).
Proof: Let g be any valid sampling function, and we Var[Yj] = Nz, (m - 1) > (eN)2.
will show that}>, . g(x; ;) = Q(opt(I)). We will prove N “ _ _
it by contradiction: Ifg(x: ;) < Lga(x: ;) for somes, ;, _ Summarizing all caseg; cannot be a valid function
we show that it is possible to construct another input f_9(#ij) < 392(zi;). This holds for alli,j, so
(with the sameV, n, = so thaty stays the same) on which2-:.j 9(%i.;) = $(opt(1)). u

g fails to achieveVar[Y;] < ¢(eN)?2. In the proof we will
usec = 1 for simplicity; the same proof works for any
other constant by properly adjusting the parameters.

We consider the following two cases:

1) n < 1/e% If ;; <eN/y/n, then we construct’
by settingz; ; = x; ; for all j. Now the global count o
itemi is y; = nxz; ; = ey/n- N < N. We set the other
z; ; so thaty, . x; ; = N. Thus the variance of; is

V. REDUCING COMMUNICATION BY BLOOM FILTERS

In this section we will conduct a more precise analysis
of the communication cost in terms of the number of
bits transmitted. If the nodes directly send a sampled
f (item, count) pair to the coordinator, the cost will be
O(logu + log N) bits per pair. Below we show how
to reduce this cost by encoding the sampled items into
Bloom filters. Recall that a Bloom filter is a space-

22 efficient encoding scheme that compactly stores a set
Var[Y;] =n ﬁ - 127 of items S. The particularly interesting feature is that it
9\Tij usesO(1) bits per item, regardless of the length of the

Note that whenn < 1/e2 andz;; < eN//n, we item. A Bloom filter does not have false negatives, but
havegs(x; ;) = a?,n/(¢N)?, so by the assumption thatMay have a constant false positive probabijtfor any

g(zi;) < %gz(wi e queried item. More precisely, if the queried item is in
- - S, the answer is always “yes”; if it is not ¥, then
2(eN)? eN\? 5 with probability ¢ it returns “yes” and with probability
Var[Yi] > n N (ﬁ) = (eN)”. 1 — ¢ returns “no”. The false positive probability can

be made arbitrarily small by usin@(log(1/q)) bits per
If z; ; >eN/\/n > 2N, we constructl’ by setting item. We omit the details of Bloom filters (see e.g. [1]

:c’iyj = x;,; for1 < j < m, wherem = min{N/z; ;,n}. for general information and [16] for the current state



of the Bloom filter), but only point out that the false -
) y P = 1_q g gi(xig) + (1= gi(2i7)a)

positive probabilityg can be computed exactly frons|
and the size of the Bloom filter. These two numbers only

require O(log |S| + loglog(1/q)) bits, so transmitting (1= g1(wiy) = (1= 91(@i))a))

them together with the Bloom filter does not affect the __(eN)* (n ((1 —qyi  (1- 2(1)\/_>2
O(log(1/q))-bit cost per item. n(l—q)? \ 4 eN 2
Sampling with g,, the easy case.. Althoughg, has  _ _(¢N)’

a higher sampling rate thag, its linear feature (when — 4(1 —¢)?’
z < eN/4/n) does have an advantage when it comes to

saving bits: - YY 5 is either0 or N//n in the estimator
(1). Thisis mdependent af; ;, which means that for any
sampled (item, count) pair, the nodes do not actual _ -
need to send the count! Thus, the set of (item, coun ly(f;)—nfgn’lff(log(l/q)) = O(1) bits, the total cost
pairs a node sends to the coordinator becomes just a

set of items, which can be encoded in a Bloom filteGampling with g, the general case.: The above
Suppose for now that; ; < eN/y/n for all 4, . In this simple scheme works when al; ; < eN/\/n. When
case, each nodesimply samples item with probability 2 > eN//n, g1(x) hits 1 and is no longer linear. So any
g1(z; ), then encodes the sampled items into a Bloow, ; > ¢N//n cannot be encoded in a Bloom filter, and
filter and sends it to the coordinator. For any [u], unfortunately, there could b@(y/n/¢) of them, costing
suppose among the Bloom filters that the coordinator O(/n/e - (logu + log N)) bits. Smarter techniques are
has receivedZ; of them asserts its existence, then wehus needed for the general case when the's take

[ |
Thus, it is sufficient to set a constanso thatVar[Y;] =
((eN)?). Since now each sampled (item, count) pair

can estimatey; as arbitrary values.
eN Z;—ng We write eachy; ; in the form of
v 1-gq .
We show that (4) is an unbiased estimator and has a Lij = am‘% + bi (®)

small variance. We also note that for the analysis to go o
through, the nodes need to use independent random h#étere a; ; andb; ; are both non-negative integers and

functions in their Bloom filters. a;; < ﬁ,bij < &L Note that
(eN)? ’ e vn
Lemma 5.1:E[Y;] = y;; Var[Y;] < ISRk . .
' (L= g
Proof: We defineZ; ; to be the indicator random yi = N > aii+> by (6)
variable set tal if the Bloom Filter from nodej asserts Vin j= j

that it contains the item, and0 otherwise. It is easy to
see thatPr[Z; ; = 1] = g1(z:;) + (1 — g1(z4;))g, and The termz ., bi,; can be estimated using Lemma 5.1
thusE[Z; ;] = g1(zi;) + (1 — g1(xi;))g. Then we have sinceb; ; 3! so we focus on estimating the first term

eN E[Z]-ng with varianceO((en)?).
ElY]] = Jn T 1-q Our idea is to consider eaaly ; in its binary form
N S E[Zi]-n and dealing with each bit individually. Let; ;[r] be the
S e J q r-th rightmost bit ofa; ; (counting from0). For eachr,
vn l—gq nodej encodes all the items wherea, ;[r] = 1 in a
eN (1—¢)> 5 g1(zij) +ng—ng  Bloom filter with false positive probability,.. Intuitively,
- ﬁ ' 1—gq ¢ should be smaller for more significant bits (i.e., larger
cN r), but we will derive this relationship later. For any item
= — Zg1(xi,j) = Yi- i, supposeZ; , is the number of Bloom filters that asserts
v =1 a; ;[r] = 1. Below we show that

The variance of the estimator is

N leslvr/e)
_ (EN)Q . - r
VarlV;] = 7(1 - q)QVar[Zi,j] A \F Z = .
E :Var is an unbiased estimator for the first term of (6) and
1 n(l—q)? i) ; ;
q) bound its variance.



Lemma 5.2:E[4;] = eN iai,j;Var[Ai] - Let 7, be the estimator thus obtained. It is clear that

vn pt it is an unbiased estimator. Its variance, by the law of
log(v/n /) ' total variance, is
(eN)? Z g2r_dr
=0 I=a Var[T;] = E[Var[T; | Yi]] + Var[E[T; | Yi]]
Proof: Let ¢; , = Z?:l a; ;[r]. Since there are — < O((eN)?) + (eN)? = O((eN)?).

¢;» Bloom filters which may, with probability,., assert
aij[r] = 1 despitea; ;[r] = 0, it is easy to see that Now we analyze the cost of this algorithm. First of

ElZi.] = cir + (n — cir)gr, and Var[Z;.] = (n —  all, since
Ci,r)Qr(l - QT) < TI’QT‘(]‘ - QT)' Thus we have
eN ¥ E(Z:,] - ng, o) D IS S ) P
E[4] = — Z gr—1er A — g2(Y; ;) ,
\/ﬁ r—0 1- qr b v
log(v/n/e) n Yi, .
_ &N Z oo eN Za’ ‘ the wE S for_m exactly anc_>ther instance of the .fre—
NS N o guency estimation problem with the samiVen, ¢ (albeit
=0 =t in expectation), so its cost is no more thé@t./n/<)
and bits. To see the real improvement, the key observation
(eN)? log(v/m/¢) o2 is that overall there are onlypt(I) non-zerogz’(/gj)’s,
Var[4;] = : — Var[Z; ;] whereas there are much more non-zero local counts in
n = (1—q) ' the original problem. When encoding a non-zefg:,
log(v/n/¢) we write it in the form of (5) and spen@(r) bits for

IN

Ny Y o T

- . every a; ;[r] = 1. This is O(log® a; ;) bits. (Note that
—d4r
r=0

we cannot use the charging argument as in Theorem 5.3
m because here we need to bound the cost in terms of
So as long as we set. < 1/23T+1, we can bound opt(I).) Thus the total number of bits required is
Var[A;] by O((en)?), as desired. The cost for each
ai j[r] = 1is thusO(log(1/¢.)) = O(r) bits. Since each S logtai; < opt(l)log? <Zi,j ai,j)
a;,j[r] = 1 represente” <L copies of an item, the amor- <~ ' opt(I)

tized cost for everyf/—f\l copies isO(r/2") = O(1) bits. NG
" ot = t(I) log? [ ———
Therefore, the total communication cost @¥/n/¢c) op c-opt(D) )’
bits.
Theorem 5.3:When sampling withy;, the communi- where equality holds when all thg ;'s are equal.
cation cost can be made @(/n/¢) bits. Theorem 5.4:When sampling withy,, the communi-
. 2 Vvn
Sampling with g».:  Because of its non-linear fea-CatioN cost can be made © (Opt(") log (s-opt(l)))

ture, the termY; ;/g2(Y; ;) will depend on the actual PitS: ) _
value of z; ; when sampling withg,, so it is more _ Remarks: When » > 1/e%, as argued in
difficult to save bits. In the following, we show howSection Il we should sample the_=:='s by

. . . . 92(Yi,5) ~.
to combineg; andgs to reduce the communication costiniform samplmg_, which is better than using .
to O (opt(I) 1Og2 Vi bits. which is better than So the bound in the theorem above should be

z-opt(I) 2 min{\/ﬁ/a,l/52})) :
using eitherg, alone org,” alone. 0 (Opt(l) log ( opt(1) , to be more precise.

We observe that the estimat®d} = Z;‘:l q;(/;'/jj) is
itself another a frequency estimation problem, when we VI. SIMULATION RESULTS
consider—=Z— as the local count of iten at node;. : . .
92(Yi,5) J We generated a data set with= 10, 000 items with

. g2\ti,j n
So if Y; estimategy; well and we can estimatg; well,

we will be estimatingy; well. To estimatey;, we simply their frequencies following the Zipf distribution, i.ehe

) . . Yii e i-th item has a frequency; « 1/i. We make the total
run the sampling algorithm with; on them(Yf,j) S 1€ count of all items to beNV = 1/09. This represents a
we sample eaCQMYiTjj) with probability g (%YJ])) heavy-tail distribution that is typical in many real-world
and then encode the sampled items into Bloom filters applications. Then for each item we randomly split its
above. global count ton = 1000 nodes.




a) Sampling functions.: We We first compared the reduced the cost af; by almost a factor o10. As seen
performance of the three sampling functiogs(z) = before, sampling withy, is more difficult to combine
x/(x + d) proposed in [21], and the two functiogs with Bloom filters, and as a result, the improvement is
andgs proposed in this paper. The purpose of this cormot as dramatic. The end result is that the two algorithms
parison is two-fold: 1) we would like to see how larggerformed quite similarly. For instance, both of them
the gap is between worst-case optimality and instant@nsmitted!.5 x 10* ~ 15K bytes to estimate the counts
optimality on a typical data set; and 2) directly samplinfpr the top100 items with a maximum standard deviation
with these functions without using the techniques ajf 106, which corresponds te = 0.001, a typical error
Section V is extremely simple and this might be desirabks suggested in [6]. Note that the raw data has roughly
in some implementations. nu = 107 (item, count) pairs, which amounts $0M of

We have tested with varying error parametefsqr data.
go ande for g1, g2) and plotted the results in Figure 1 We also did our best-effort implementation of the
(the three dashed lines). Each data point in the plot adgorithm of [21], which heuristically improves the bare
the result ofl00 repeated runs with the same parametause of go. We followed their description and optimized
The y-coordinate is the average cost (in terms of bytesyo sets of parameters. This gave the two data points
where each (item, count) pair is counteddsytes) over in Figure 1, which are roughl$ times worse than our
the 100 runs. For each of the topa0 frequent items, we algorithms. It is possible to tune the parameters to obtain
estimate its frequency and compute the variance of théher cost-variance tradeoffs, but it is doubtful that ¢her
100 runs. Then we take the maximum variance of thexists a point on its tradeoff curve where it is better than
100 items as ther-coordinate. The reason for lookingours.

at the worst variance is that our goal is to estimate the\ye glso generated data sets with different distributions
frequency ofeveryitem reasonably well. From the plotyg test the performance of the algorithms. We set the fre-
we see thays, is generally2 to 3 times cheaper than qyency ofi-th itemy; « (1/i)* (the general definition of

g1 for achieving the same variance, apd is 2 10 3 the Zipf), then by varying the value of, we get different
times cheaper thag, (note the log scale op). So the isiributions. The Simulation results for differemt are
difference is not as extreme as in the example we 9a¥Rytted in Figure 2. Here we also set= 10,000 and

in the beginning, but we think we are happy to see thig — 149, and for each item we randomly split its global

improvement on such a typical data set. count ton = 1000 nodes.
o ‘ ‘ — VIl. RELATIVE ERRORS
-e-% B n
i o Here we briefly discuss how to guarantee(ae)-
0k 0,1, error, i.e., estimating every; > pN with variance
x_ 9 *bloom

(ey;)?. First, it is known [11] that a uniform sample

of size O(1/e%p) achieves this guarantee. Next we

see if the general sampling framework can bring any

improvement. Recall that the sampling function of [21],

g(x) = z/(x + d), has a variance oVar[Y;] = dy;. We

needdy; = (cy;)?, namely,d = 2y;, for all y; > pN.

10 ‘ ‘ So we need to sef = 2pN, which implies that the

, _ _ variance _ x10° cost could beD(N/d) = O(1/2%p).

Fig. 1. Simulation results for different sampling functo(dashed N ider the li l f i .

lines) and for various algorithms based on Bloom filtersigstihes). ow consider the 'n.ear sampling functigyiz) =
x/a for somea. From (3) in the proof of Theorem 3.1 we

haveVar|Y;] = ay; —y?/n. Thus we needy; —y?/n <

cost (bytes)

b) Combining with Bloom filters.:  We have imple- 5 3 .

mented our algorithm of using, with Bloom filters and (€%i)"» namelya < (g +1/n)y; for all y; > pN. So it

the algorithm of usingy, g» together with Bloom filters. suffices to set = (¢* +1/n)pN, which means that the

In the Bloom filters, we used the simple hash functiorst isO(N/a) = O m) This, again, is better

h(z) = (az? + bz + ¢) mod p wherep is a large thanO(1/e%p) whenn < 1/¢2.

prime, while each node uses randamm, c generated However, the sampling functiog, is tailored for the

independently. absolute error. It remains an interesting problem to see if
The results are also plotted in Figure 1 (the solithere is an instance-optimal sampling function (ore)-

lines). We can see that the use of Bloom filters hasrors.
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Fig. 2. Simulation results for different’s.

VIll. REMARKS AND OPEN PROBLEMS [8]

In this paper we have designed worst-case optimal and
instance-optimal sampling algorithms for the distributedyg;
frequency estimation problem. However, we need to
emphasize that the optimality of our algorithms holds
only within the sampling framework defined in Section |10
Theoretically, it is an intriguing open question to deter-
mine the (worst-case) complexity of the problem with no
restrictions on the way how the algorithm works. Thi11]
could be a difficult problem, since even the deterministic
complexity is not understood yet. Note that, howeve, 12]
instance-optimality will not be possible to achieve if wi
do not have any restrictions on the algorithm, since we
can design a “wild guessing” algorithm that just outputg.3]
the result directly if the input is the one being guessed,
while falls back to a naive algorithm on all other inputs.
No reasonable algorithm can beat this algorithm on th[alt4]
particular input.
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