
Optimal Sampling Algorithms for Frequency
Estimation in Distributed Data

Zengfeng Huang Ke Yi Yunhao Liu

Hong Kong University of Science and Technology
{huangzf, yike, liu}@cse.ust.hk

Guihai Chen

Shanghai Jiaotong University
gchen@nju.edu.cn

Abstract—Consider a distributed system with n nodes
where each node holds a multiset of items. In this paper,
we design sampling algorithms that allow us to estimate
the global frequency of any item with a standard deviation
of εN , where N denotes the total cardinality of all these
multisets. Our algorithms have a communication cost of
O(n +

√
n/ε), which is never worse than theO(n + 1/ε2)

cost of uniform sampling, and could be much better when
n ≪ 1/ε2. In addition, we prove that one version of our
algorithm is instance-optimal in a fairly general sampling
framework. We also design algorithms that achieve op-
timality on the bit level, by combining Bloom filters of
various granularities. Finally, we present some simulation
results comparing our algorithms with previous techniques.
Other than the performance improvement, our algorithms
are also much simpler and easily implementable in a large-
scale distributed system.

I. I NTRODUCTION

Consider a distributed system withn nodes where
each node holds a list of (item, frequency) pairs, record-
ing the local frequency of these items. In this paper, we
study the problem of estimating the global frequencies of
the items where an item’s global frequency is the sum of
all the local frequencies at all the nodes, with minimum
communication. This problem is motivated by many ap-
plications in distributed databases, network monitoring,
sensor networks, data centers, cloud computing, etc. For
example, estimating the frequencies of queried keywords
is a routine task for search engines, while the query
logs have to be stored in a distributed manner due to
their sheer scale. The recently developed MapReduce
framework [8] has provided a highly efficient and reli-
able programming environment for processing massive
distributed data sets. As another example, in DDoS
attacks the attacker tries to send a lot of traffic to the
same victim via many different routes, so any individual
router may not see a large number of packets destined
to the victim. Thus in order to detect DDoS attacks we
will have to estimate the global frequency of destination
IP addresses. Other examples include estimating the
popularity of files in peer-to-peer file-sharing networks,

reporting the occurrences of different species of birds in
a sensor network, and so on.

A. Problem definition

We assume that the items are drawn from a bounded
universe[u] = {1, . . . , u}. There aren distributed nodes
in the system; we denote thelocal countof item i at node
j by xi,j , and theglobal countof item i is yi =

∑

j xi,j .
The total count of all items is denotedN =

∑

i yi. There
is a coordinatorC whose job is to estimateyi for all
i ∈ [u] by communicating with the nodes with minimum
cost. Here and further the word “cost” will always refer
to “communication cost”.

Since computing all theyi’s exactly incurs high costs
and is often unnecessary, we will allow an absolute error
of at mostεN for some smallε > 0. When probabilistic
algorithms are concerned, this should be achieved with
at least constant probability. This error definition has
been used in most works on this problem [6, 7, 12, 13,
19]. Under such an error definition, we can zero out all
the frequencies less thanεN , so that the output size
is bounded by1/ε. On the other hand, if we use a
relativeε-error, then we are forced to make very accurate
estimations for low-frequency items, which is expensive
yet unnecessary. Note that there are some proposals of a
(p, ε)-error [2, 11] that guarantees a relativeε-error only
for frequencies at leastpN , which we briefly discuss in
Section VII.

B. Preliminaries and previous results

There is a simple deterministic algorithm with cost
O(n/ε). The idea is to ask each node to send in all
its items with local counts greater thanεN/n. Thus,
for any item, each node contributes an error at most
εN/n, totaling εN from all the n nodes. This simple
algorithm has been used in some previous work [5], and
is conjectured to be optimal for deterministic algorithms,
although there has not been a proof.

With randomization there is potential to do better.
To start with, it is well known [18] that uniformly
sampling each item with probabilityp = 1/ε2N suffices
to estimate the count of any item within an error ofεN
with constant probability. To do the sampling, we need
to computeN and then broadcastp to all nodes, which
requireO(n) communication. The total (expected) cost
of the sampling is thusO(n + pN) = O(n + 1/ε2).
So uniform sampling beats the deterministic algorithm
whenn > 1/ε. But how about the casen < 1/ε, which
is more likely in real applications? Bear in mind that
the ε-error as defined is an absolute error ofεN , where
N is the total count ofall items, so typical values ofε
range from0.0001 to 0.01 (see e.g. [6]), whilen in real
systems is usually no more than a few hundred.

Zhao et al. [21] defined a general sampling framework
for the frequency estimation problem. Letg : N → [0, 1]
be asampling function. If an item has local countx at a
node, then the node with probabilityg(x) samples this
item and sends the item together with its local countx
to the coordinator. In addition to the local countx, we
also allow the functiong(x) to depend onN, n, ε. Set
Yi,j = xi,j if the coordinator receives the (item, count)
pair (i, xi,j) from nodej, andYi,j = 0 otherwise. Then
the coordinator can estimateyi using (define0

0 = 0)

Yi =
Yi,1

g(Yi,1)
+ · · · + Yi,n

g(Yi,n)
, (1)

which was shown [21] to be an unbiased estimator with
variance

Var[Yi] =

n
∑

j=1

Var

[

Yi

g(xi,j)

]

=

n
∑

j=1

x2
i,j(1 − g(xi,j))

g(xi,j)
.

(2)
This framework is more general and should intuitively

do better than uniform sampling. But as pointed out
in [21], central to this framework is the choice of the
sampling functiong. To be able to estimateyi with
error at mostεN with a constant probability, we need to
choose ag such thatVar[Yi] = O((εN)2). From (2)
it is clear thatVar[Yi] gets smaller asg gets larger.
On the other hand, the expected total number of (item,
count) pairs sent to the coordinator is

∑

i,j g(xi,j), so
we would want to choose the smallestg such that
Var[Yi] = O((εN)2).

Zhao et al. [21] proposed to useg(x) = x/(x+d) for
some fixedd. When using such ag, Var[Yi] simplifies to
dyi. Sinceyi can be as large asΘ(N), we will have to set
d = Θ(ε2N) in order to guaranteeVar[Yi] = O((εN)2)
for any i. Thus, the communication cost of their algo-
rithm is

∑

i,j g(xi,j) =
∑

i,j
xi,j

d+xi,j
. In the worst case

(when all thexi,j ’s are no more thand), this is at least

1
2

∑

i,j
xi,j

d = Θ(N/d) = Θ(1/ε2). We also need to
computeN and broadcastd to all nodes, so the total cost
is Θ(n + 1/ε2), which is the same as that of uniform
sampling. [21] also proposed some other complicated
heuristics, but they do not improve theΘ(n + 1/ε2)
worst-cast cost. Therefore, although Zhao et al. [21]
proposed a nice general sampling framework, they did
not demonstrate whether this framework yields a solution
that is asymptotically better than uniform sampling.

C. Our results

In this paper we answer the above question in the
affirmative, and in a very strong sense. Specifically, we
obtain the following results.

We first show in Section III that the linear sam-
pling function1 g1(x) = x

√
n/εN achievesVar[Yi] ≤

O((εN)2), which, by Chebyshev’s inequality, allows us
to estimateyi within an error of εN with constant
probability. The communication cost is

∑

i,j g(xi,j) =

O(
√

n/ε) under any input2. This is clearly better than the
O(n/ε) deterministic bound. It is also much better than
the O(1/ε2) uniform sampling cost whenn ≪ 1/ε2. In
the (rare) casen > 1/ε2, uniform sampling still performs
better.

Next, we prove anΩ(min{√n/ε, 1/ε2}) lower bound
on the worst-case cost for allvalid sampling functions.
A sampling function isvalid if it achievesVar[Yi] ≤
O((εN)2) for all i under any input. This means that
sampling withg1 and uniform sampling are respectively
optimal in the casesn < 1/ε2 andn > 1/ε2.

Although we have found optimal sampling functions
for all values ofn andε, these are actually not the main
results of this paper. We observe that on some inputs,
it is possible to further reduce the communication cost.
Consider an extreme case where all thexi,j ’s are either
0 or 1. If we useg1, the cost isΘ(

√
n/ε). (In fact, due

to the “linear” feature ofg1, its cost
∑

i,j g1(xi,j) is
almost alwaysΘ(

√
n/ε).) In this case,g1 samples each

xi,j = 1 with probability
√

n/εN . However, we observe
from (2) that when thexi,j ’s are all very small, we can
afford to use a smaller sampling rate while still keeping
Var[Yi] small. Indeed, in this case we can sample each
xi,j = 1 with probability n/(εN)2 while still having
Var[Yi] = O((εN)2). When using such a sampling rate,
the total cost reduces toΘ(Nn/(εN)2) = Θ(n/ε2N),

1The function is actuallyg1(x) = min{x√n/εN, 1} as anyg
cannot exceed1. We omit the “min” here and further for brevity.

2Henceforth we omit theO(n) term for computingN and broad-
castingg to all nodes when considering the algorithms’ costs, because
1) it makes the bounds cleaner; 2) this cost is common to all algorithms
in this sampling framework; and 3) this cost is due to computing N ,
which can be easily shown to be unavoidable ifN is unknown.

2

which, interestingly, approaches0 asN → ∞, and can
be much lower than both theΘ(

√
n/ε) cost ofg1 and the

Θ(1/ε2) cost of uniform sampling. Although practical
cases are not as extreme, it is very common to have a
lot of smallxi,j ’s due to the heavy tail property of many
real-world distributions. Of course, in view of the above
lower bound, it is not possible to beat (the better of)g1

and uniform sampling on the worst input, but can we do
something better for these typical, not-so-worst cases?

The answer is yes. In Section IV we show that the
sampling function

g2(x) = min{x2n/(εN)2, x/ε2N}

also achievesVar[Yi] ≤ O((εN)2) with the optimal
worst-case cost ofO(min{√n/ε, 1/ε2}). So in the worst
case, it performs the same asg1 (for n < 1/ε2) and
uniform sampling (forn > 1/ε2). To analytically estab-
lish the superiority ofg2, we prove that it isinstance-
optimal [9], i.e., for every given inputI : {xi,j}, g2 has
the optimal cost (up to a constant factor) among all the
valid sampling functions on that input. More precisely,
let opt(I) =

∑

i,j g2(xi,j) be the cost of sampling with
g2 on inputI, we show that any valid sampling function
must have costΩ(opt(I)) on I, which essentially means
that g2 is the best sampling function on every single
input. This is a much stronger optimality notion than
the traditional worst-case optimality.

So far we have treated an (item, count) pair as a com-
munication unit. If one desires a more precise analysis,
such a pair actually consumesO(log u+log N) bits. To
further reduce the communication cost, we design tech-
niques that are more careful about the bits they send. We
show in Section V how to reduce the communication cost
on the bit level by using multiple Bloom filters [1, 16] at
different levels of granularity. Althoughg1 is not as good
as g2 in terms of sampling, it is particularly amenable
to Bloom filters. It turns out that we can remove the
extraO(log u+logN) factor completely when usingg1,
i.e., we obtain an algorithm communicatingO(

√
n/ε)

bits. The instance-optimal sampling functiong2 is more
difficult to directly plug into Bloom filters, but then we
use an interesting combination ofg1 and g2 to achieve
a cost ofO

(

opt(I) log2
(√

n
ε·opt(I)

))

bits.

Finally, we comment that all our algorithms are very
simple, and can be easily implemented in a large-scale
distributed system. In particular, they can be easily
accomplished in the MapReduce framework. Thus, we
would claim that our algorithms are both theoretically
interesting and practically useful.

II. RELATED WORK

Besides the work of Zhao et al. [21] which is the
closest work to ours, a number of related problems have
been studied by the database and distributed computing
communities.

Theheavy hitterproblem [6, 13] has been well studied
in the centralized case. The goal here is to report all items
with frequency exceedingφN for some user specifiedφ,
not report items with frequency below(φ − ε)N , while
we do not care frequencies in between. Our algorithms
clearly solve this problem in the distributed setting.
Zhao et al. [20] studied the distributed heavy hitter
problem while using a relativeλ-error (0 < λ < 1):
the heavy hitters’ global counts are more thanτ while
the non-heavy hitters’ counts should be less thanλτ ,
for some thresholdτ . The communication cost of their
algorithm is O(nuλ2), so it only applies to situations
where there is a very small universe. Furthermore, note
that O(nu) is a trivial upper bound (each node sending
all items would cost this much), so this algorithm beats
the naive solution only when there is a very large gap
between the heavy and non-heavy hitters. Meanwhile,
they also showed a matching̃Ω(kuλ2) lower bound3

This apparent hardness of the problem actually stems
from distinguishing between a global count of1 and1/λ,
which corresponds to using a very smallτ . If τ = φn
as mostly used in the literature [6], this problem can be
in fact solved efficiently as shown in this paper.

The distributedtop-k problem [4, 14, 15] is another
related one, where the goal is to find the top-k most
frequent items. Cao and Wang [4] designed an algorithm
that solves this problem exactly, but it could ship all
the data to the coordinator on some inputs. They also
proved that their algorithm is instance-optimal, but this
only holds for inputs following a certain distribution
and the optimality ratio is as large asO(n2). Note that
our instance-optimality ratio is a constant and it holds
for any input. The apparent difficulty of their approach
stems from situations where thek-th frequent item is
very close to the(k + 1)-st one, and they want to detect
this exactly. Patt-Shamir and Shafrir [15] considered a
more solvable version of the problem where they allow
a relative ε-error when separating the top-k list from
the rest. The communication cost of their algorithm is
Õ(1/p∗ε2) wherep∗ is the frequency of thek-th frequent
item divided byN . Their algorithm uses multiple rounds
of uniform sampling to estimate the frequencies. If we
use our algorithms in place of uniform sampling, the
cost improves toÕ(

√
n/p∗ε) when n ≪ 1/ε2. Using

our instance-optimal algorithm will result in a larger

3Thẽ notation suppresses all polylog factors inu, N, n, 1/ε.

3

improvement for certain inputs, although it is hard to
analytically quantify, since instance optimality has to be
stated for a specific problem and in a clearly defined
framework. Michel et al. [14] generalized and improved
the algorithm of [4], but with no analytical results.

The distributed approximatequantileproblem has also
been well studied, where the goal is to return a set of
items whose ranks are between(φ− ε)N and(φ + ε)N
for all 0 < φ < 1. It is known [6] that the frequency
estimation problem reduces to the quantile problem, but
the best algorithms for the latter incur̃O(n/ε) costs [10,
17], at least a factor̃O(

√
n) worse than our bounds.

Finally, there have been a lot of interests in the
problem ofcontinuously trackingthe heavy hitters, quan-
tiles, and top-k items in distributed data [3, 5, 19]. The
tracking problem is more general as it requires solving
the respective problems at all times continuously, rather
than a one-shot computation. However, all these cited
works studied only deterministic algorithms; in fact, the
deterministic complexity for tracking the heavy hitters
and quantiles has been settled atΘ̃(n/ε) in [19]. We
believe that the techniques developed in this paper could
lead to probabilistic schemes solving these problems
with costÕ(

√
n/ε).

III. A W ORST-CASE OPTIMAL SAMPLING FUNCTION

In this section, we show that the sampling function
g1(x) = x

√
n/εN is worst-case optimal. In this section

and Section IV, we measure the communication cost as
the expected total number of (item, count) pairs sampled
and sent to the coordinator, i.e.,

∑

i,j g(xi,j) for a given
g. In Section V we will conduct a more precise analysis
measuring the cost in terms of the bits communicated.

Theorem 3.1:The sampling function g1(x) =
x
√

n/εN has a cost of O(
√

n/ε) and achieves
Var[Yi] = 1

4 (εN)2 for all i.
Proof: The analysis of the cost is trivial:

∑

i,j g1(xi,j) ≤
∑

i,j xi,j
√

n/εN = N · √n/εN =√
n/ε.
Now we consider the variance ofYi. Since we sample

an item with probability one (i.e., zero variance) when
the local countxi,j > εN/

√
n, it is sufficient to consider

the worst case when allxi,j ≤ εN/
√

n. By (2), we have

Var[Yi] =

n
∑

j=1

x2
i,j(1 − xi,j

√
n/εN)

xi,j
√

n/εN

=
εN√

n

n
∑

j=1

xi,j −
n
∑

j=1

x2
i,j

≤ εN√
n

yi −
1

n
y2

i (Cauchy-Schwartz) (3)

= −
(

yi√
n
− εN

2

)2

+
(εN)2

4
≤ 1

4
(εN)2.

Next we establish the worst-case optimality ofg1

when n < 1/ε2. For the (unrealistic) casen > 1/ε2,
uniform sampling turns out to be optimal already. Recall
that a sampling functiong is valid if there exists some
constantc such that on any input,g achievesVar[Yi] ≤
c(εN)2 for all i.

Theorem 3.2:Any valid sampling function has cost
Ω(min{√n/ε, 1/ε2}) on some input.

Proof: Let g be any valid sampling function. We
will consider the following two cases, respectively.

1) n < 1/ε2: In this case, we consider an input where
xi,j = εN/

√
n for all i, j. Thus each item hasyi =

nxi,j = ε
√

n · N copies over alln nodes, and there are
N/xi,j =

√
n/ε suchxi,j ’s.

From (2) we have

Var[Yi] =
n
∑

j=1

(εN)2/n · (1 − g(xi,j))

g(xi,j)
.

Since we requireVar[Yi] ≤ c(εN)2 and all xi,j are
equal, we have1−g(xi,j)

g(xi,j)
≤ c, or g(xi,j) ≥ 1

1+c .
The cost ofg is thus

∑

i,j

g(xi,j) =
√

n/ε · 1

1 + c
= Ω(

√
n/ε).

2) n > 1/ε2: In this case, we consider an input where
there is only one item in the universeu = 1, and it
exists only at1/ε2 nodes withx1,j = ε2N at each of
these nodes; the other nodes are empty.

From (2) we have

Var[Y1] = (εN)2
1 − g(ε2N)

g(ε2N)
.

By the requirement thatVar[Y1] ≤ c(εN)2, we have

g(ε2N) ≥ 1

1 + c
.

The cost ofg is thus1/ε2 · g(ε2N) = Ω(1/ε2).

IV. A N INSTANCE-OPTIMAL SAMPLING FUNCTION

In this section, we first show that the sampling func-
tion

g2(x) = min{x2n/(εN)2, x/ε2N}

also achievesVar[Yi] = O((εN)2). In terms of cost,
sinceg2(x) ≤ g2

1(x), the cost ofg2 is always no more
than that ofg1; also sinceg2(x) ≤ x/ε2N , its cost is
at most O(1/ε2). Thus it has the optimal worst-case
cost of O(min{√n/ε, 1/ε2}). To analytically establish

4

its superiority, we later prove that it is instance-optimal,
i.e., for any inputI, its cost is optimal among all valid
sampling functions forI.

Theorem 4.1:The sampling functiong2(x) achieves
Var[Yi] ≤ O((εN)2) for all i.

Proof: Similar to the proof of Theorem 3.1, we
can assume thatg2(xi,j) < 1 for all j; otherwise its
contribution toVar[Yi] is zero. From (2), we have

Var[Yi] =

n
∑

j=1

x2
i,j(1 − g2(xi,j))

g2(xi,j)
≤

n
∑

j=1

x2
i,j

g2(xi,j)

=

n
∑

j=1

x2
i,j max

{

(εN)2

nx2
i,j

,
ε2N

xi,j

}

≤
n
∑

j=1



x2
i,j

(εN)2

nx2
i,j

+
n
∑

j=1

x2
i,j

ε2N

xi,j





= O((εN)2).

To prove thatg2 is instance-optimal, for any input
I : {xi,j} we write opt(I) =

∑

i,j g2(xi,j) which is
the cost ofg2. We then show that any valid sampling
function onI must have costΩ(opt(I)).

Theorem 4.2:On inputI : {xi,j}, any valid sampling
function must have costΩ(opt(I)).

Proof: Let g be any valid sampling function, and we
will show that

∑

i,j g(xi,j) = Ω(opt(I)). We will prove
it by contradiction: Ifg(xi,j) < 1

2g2(xi,j) for somexi,j ,
we show that it is possible to construct another inputI ′

(with the sameN, n, ε so thatg stays the same) on which
g fails to achieveVar[Yi] ≤ c(εN)2. In the proof we will
usec = 1 for simplicity; the same proof works for any
other constantc by properly adjusting the parameters.

We consider the following two cases:
1) n < 1/ε2: If xi,j ≤ εN/

√
n, then we constructI ′

by settingx′
i,j = xi,j for all j. Now the global count of

item i is yi = nxi,j = ε
√

n · N ≤ N . We set the other
x′

i,j so that
∑

i,j x′
i,j = N . Thus the variance ofYi is

Var[Yi] = n

(

x2
i,j

g(xi,j)
− x2

i,j

)

.

Note that whenn < 1/ε2 and xi,j ≤ εN/
√

n, we
haveg2(xi,j) = x2

i,jn/(εN)2, so by the assumption that
g(xi,j) < 1

2g2(xi,j),

Var[Yi] > n

(

2(εN)2

n
−
(

εN√
n

)2
)

= (εN)2.

If xi,j > εN/
√

n > ε2N , we constructI ′ by setting
x′

i,j = xi,j for 1 ≤ j ≤ m, wherem = min{N/xi,j, n}.

One can check thatmx2
i,j > (εN)2 always holds. So

Var[Yi] = mx2
i,j

(

1

g(xi,j)
− 1

)

> (εN)2
(

1

g(xi,j)
− 1

)

.

When n < 1/ε2 and xi,j > ε2N , g2(xi,j) = 1. So by
the assumption, we haveg(xi,j) < 1/2. Thus

Var[Yi] > (εN)2.

2) n > 1/ε2: If xi,j ≤ N/n < εN/
√

n, we setx′
i,j =

xi,j for all j. By the assumption, we haveg(xi,j) <
nx2

i,j

2(εN)2 , then we have

Var[Yi] = n

(

x2
i,j

g(xi,j)
− x2

i,j

)

> n

(

2(εN)2

n
− x2

i,j

)

> (εN)2.

If xi,j > N/n, then we setx′
i,j = xi,j for 1 ≤ j ≤

N/xi,j . In this case,xi,j may be either greater than or
less thanε2N . If it is less thanε2N , then g2(xi,j) =
xi,j/ε2N , and

Var[Yi] =
N

xi,j

(

x2
i,j

g(xi,j)
− x2

i,j

)

>
Nxi,j

g(xi,j)
−(εN)2 > (εN)2.

If xi,j is greater thanε2N , we haveg2(xi,j) = 1 and
henceg(xi,j) < 1/2, so

Var[Yi] = Nxi,j

(

1

g(xi,j)
− 1

)

> (εN)2.

Summarizing all cases,g cannot be a valid function
if g(xi,j) < 1

2g2(xi,j). This holds for all i, j, so
∑

i,j g(xi,j) = Ω(opt(I)).

V. REDUCING COMMUNICATION BY BLOOM FILTERS

In this section we will conduct a more precise analysis
of the communication cost in terms of the number of
bits transmitted. If the nodes directly send a sampled
(item, count) pair to the coordinator, the cost will be
O(log u + log N) bits per pair. Below we show how
to reduce this cost by encoding the sampled items into
Bloom filters. Recall that a Bloom filter is a space-
efficient encoding scheme that compactly stores a set
of itemsS. The particularly interesting feature is that it
usesO(1) bits per item, regardless of the length of the
item. A Bloom filter does not have false negatives, but
may have a constant false positive probabilityq for any
queried item. More precisely, if the queried item is in
S, the answer is always “yes”; if it is not inS, then
with probability q it returns “yes” and with probability
1 − q returns “no”. The false positive probabilityq can
be made arbitrarily small by usingO(log(1/q)) bits per
item. We omit the details of Bloom filters (see e.g. [1]
for general information and [16] for the current state

5

of the Bloom filter), but only point out that the false
positive probabilityq can be computed exactly from|S|
and the size of the Bloom filter. These two numbers only
require O(log |S| + log log(1/q)) bits, so transmitting
them together with the Bloom filter does not affect the
O(log(1/q))-bit cost per item.

Sampling with g1, the easy case.: Although g1 has
a higher sampling rate thang2, its linear feature (when
x ≤ εN/

√
n) does have an advantage when it comes to

saving bits: Yi,j

g1(Yi,j)
is either0 or εN/

√
n in the estimator

(1). This is independent ofxi,j , which means that for any
sampled (item, count) pair, the nodes do not actually
need to send the count! Thus, the set of (item, count)
pairs a node sends to the coordinator becomes just a
set of items, which can be encoded in a Bloom filter.
Suppose for now thatxi,j ≤ εN/

√
n for all i, j. In this

case, each nodej simply samples itemi with probability
g1(xi,j), then encodes the sampled items into a Bloom
filter and sends it to the coordinator. For anyi ∈ [u],
suppose among then Bloom filters that the coordinator
has received,Zi of them asserts its existence, then we
can estimateyi as

Yi =
εN√

n
· Zi − nq

1 − q
. (4)

We show that (4) is an unbiased estimator and has a
small variance. We also note that for the analysis to go
through, the nodes need to use independent random hash
functions in their Bloom filters.

Lemma 5.1:E[Yi] = yi; Var[Yi] ≤
(εN)2

4(1 − q)2
.

Proof: We defineZi,j to be the indicator random
variable set to1 if the Bloom Filter from nodej asserts
that it contains the itemi, and0 otherwise. It is easy to
see thatPr[Zi,j = 1] = g1(xi,j) + (1 − g1(xi,j))q, and
thusE[Zi,j] = g1(xi,j)+ (1− g1(xi,j))q. Then we have

E[Yi] =
εN√

n
· E[Zi] − nq

1 − q

=
εN√

n
·
∑n

j=1 E[Zi,j] − nq

1 − q

=
εN√

n
·
(1 − q)

∑n
j=1 g1(xi,j) + nq − nq

1 − q

=
εN√

n

n
∑

j=1

g1(xi,j) = yi.

The variance of the estimator is

Var[Yi] =
(εN)2

n(1 − q)2
Var[Zi,j]

=
(εN)2

n(1 − q)2

n
∑

j=1

Var[Zi,j]

=
(εN)2

n(1 − q)2

n
∑

j=1

((g1(xi,j) + (1 − g1(xi,j))q)

(1 − g1(xi,j) − (1 − g1(xi,j))q))

=
(εN)2

n(1 − q)2

(

n

4
−
(

(1 − q)yi

εN
− (1 − 2q)

√
n

2

)2
)

≤ (εN)2

4(1 − q)2
.

Thus, it is sufficient to set a constantq so thatVar[Yi] =
O((εN)2). Since now each sampled (item, count) pair
only consumesO(log(1/q)) = O(1) bits, the total cost
is O(

√
n/ε) bits.

Sampling with g1, the general case.: The above
simple scheme works when allxi,j ≤ εN/

√
n. When

x ≥ εN/
√

n, g1(x) hits 1 and is no longer linear. So any
xi,j ≥ εN/

√
n cannot be encoded in a Bloom filter, and

unfortunately, there could beO(
√

n/ε) of them, costing
O(

√
n/ε · (log u + log N)) bits. Smarter techniques are

thus needed for the general case when thexi,j ’s take
arbitrary values.

We write eachxi,j in the form of

xi,j = ai,j
εN√

n
+ bi,j , (5)

whereai,j and bi,j are both non-negative integers and
ai,j ≤

√
n

ε , bi,j < εN√
n

. Note that

yi =
εN√

n

n
∑

j=1

ai,j +
n
∑

j=1

bi,j . (6)

The term
∑k

j=1 bi,j can be estimated using Lemma 5.1
sincebi,j < εN√

n
, so we focus on estimating the first term

with varianceO((εn)2).
Our idea is to consider eachai,j in its binary form

and dealing with each bit individually. Letai,j [r] be the
r-th rightmost bit ofai,j (counting from0). For eachr,
nodej encodes all the itemsi whereai,j [r] = 1 in a
Bloom filter with false positive probabilityqr. Intuitively,
qr should be smaller for more significant bits (i.e., larger
r), but we will derive this relationship later. For any item
i, supposeZi,r is the number of Bloom filters that asserts
ai,j [r] = 1. Below we show that

Ai =
εN√

n

log(
√

n/ε)
∑

r=0

2r Zi,r − nqr

1 − qr

is an unbiased estimator for the first term of (6) and
bound its variance.

6

Lemma 5.2:E[Ai] =
εN√

n

n
∑

j=1

ai,j ; Var[Ai] ≤

(εN)2
log(

√
n/ε)

∑

r=0

22r qr

1 − qr
.

Proof: Let ci,r =
∑n

j=1 ai,j [r]. Since there aren−
ci,r Bloom filters which may, with probabilityqr, assert
ai,j [r] = 1 despiteai,j [r] = 0, it is easy to see that
E[Zi,r] = ci,r + (n − ci,r)qr, and Var[Zi,r] = (n −
ci,r)qr(1 − qr) ≤ nqr(1 − qr). Thus we have

E[Ai] =
εN√

n

log(
√

n/ε)
∑

r=0

2r E[Zi,r] − nqr

1 − qr

=
εN√

n

log(
√

n/ε)
∑

r=0

2rci,r =
εN√

n

n
∑

j=1

ai,j ,

and

Var[Ai] =
(εN)2

n

log(
√

n/ε)
∑

r=0

22r

(1 − qr)2
Var[Zi,r]

≤ (εN)2
log(

√
n/ε)

∑

r=0

22r qr

1 − qr
.

So as long as we setqr ≤ 1/23r+1, we can bound
Var[Ai] by O((εn)2), as desired. The cost for each
ai,j [r] = 1 is thusO(log(1/qr)) = O(r) bits. Since each
ai,j [r] = 1 represents2r εN√

n
copies of an item, the amor-

tized cost for everyεN√
n

copies isO(r/2r) = O(1) bits.
Therefore, the total communication cost isO(

√
n/ε)

bits.
Theorem 5.3:When sampling withg1, the communi-

cation cost can be made toO(
√

n/ε) bits.

Sampling with g2.: Because of its non-linear fea-
ture, the termYi,j/g2(Yi,j) will depend on the actual
value of xi,j when sampling withg2, so it is more
difficult to save bits. In the following, we show how
to combineg1 andg2 to reduce the communication cost
to O

(

opt(I) log2
(√

k
ε·opt(I)

))

bits, which is better than
using eitherg1 alone org2 alone.

We observe that the estimatorYi =
∑n

j=1
Yi,j

g2(Yi,j) is
itself another a frequency estimation problem, when we
consider Yi,j

g2(Yi,j)
as the local count of itemi at nodej.

So if Yi estimatesyi well and we can estimateYi well,
we will be estimatingyi well. To estimateYi, we simply
run the sampling algorithm withg1 on the Yi,j

g2(Yi,j)
’s, i.e.,

we sample each Yi,j

g2(Yi,j)
with probability g1

(

Yi,j

g2(Yi,j)

)

and then encode the sampled items into Bloom filters as
above.

Let Ti be the estimator thus obtained. It is clear that
it is an unbiased estimator. Its variance, by the law of
total variance, is

Var[Ti] = E[Var[Ti | Yi]] + Var[E[Ti | Yi]]

≤ O((εN)2) + (εN)2 = O((εN)2).

Now we analyze the cost of this algorithm. First of
all, since

E





∑

i,j

Yi,j

g2(Yi,j)



 = E

[

∑

i

yi

]

= N,

the Yi,j

g2(Yi,j)
’s form exactly another instance of the fre-

quency estimation problem with the sameN, n, ε (albeit
in expectation), so its cost is no more thanO(

√
n/ε)

bits. To see the real improvement, the key observation
is that overall there are onlyopt(I) non-zero Yi,j

g2(Yi,j)
’s,

whereas there are much more non-zero local counts in
the original problem. When encoding a non-zeroYi,j

g2(Yi,j)
,

we write it in the form of (5) and spendO(r) bits for
every ai,j [r] = 1. This is O(log2 ai,j) bits. (Note that
we cannot use the charging argument as in Theorem 5.3
because here we need to bound the cost in terms of
opt(I).) Thus the total number of bits required is

∑

i,j,ai,j 6=0

log2 ai,j ≤ opt(I) log2

(

∑

i,j ai,j

opt(I)

)

= opt(I) log2

(√
n

ε · opt(I)

)

,

where equality holds when all theai,j ’s are equal.
Theorem 5.4:When sampling withg2, the communi-

cation cost can be made toO
(

opt(I) log2
(√

n
ε·opt(I)

))

bits.
Remarks: When n > 1/ε2, as argued in

Section III we should sample the Yi,j
g2(Yi,j)

’s by
uniform sampling, which is better than usingg1.
So the bound in the theorem above should be
O
(

opt(I) log2
(

min{√n/ε,1/ε2}
opt(I)

))

, to be more precise.

VI. SIMULATION RESULTS

We generated a data set withu = 10, 000 items with
their frequencies following the Zipf distribution, i.e., the
i-th item has a frequencyyi ∝ 1/i. We make the total
count of all items to beN = 109. This represents a
heavy-tail distribution that is typical in many real-world
applications. Then for each item we randomly split its
global count ton = 1000 nodes.

7

a) Sampling functions.: We We first compared the
performance of the three sampling functions:g0(x) =
x/(x + d) proposed in [21], and the two functionsg1

andg2 proposed in this paper. The purpose of this com-
parison is two-fold: 1) we would like to see how large
the gap is between worst-case optimality and instance
optimality on a typical data set; and 2) directly sampling
with these functions without using the techniques of
Section V is extremely simple and this might be desirable
in some implementations.

We have tested with varying error parameters (d for
g0 and ε for g1, g2) and plotted the results in Figure 1
(the three dashed lines). Each data point in the plot is
the result of100 repeated runs with the same parameter.
The y-coordinate is the average cost (in terms of bytes,
where each (item, count) pair is counted as8 bytes) over
the100 runs. For each of the top-100 frequent items, we
estimate its frequency and compute the variance of the
100 runs. Then we take the maximum variance of the
100 items as thex-coordinate. The reason for looking
at the worst variance is that our goal is to estimate the
frequency ofevery item reasonably well. From the plot
we see thatg2 is generally2 to 3 times cheaper than
g1 for achieving the same variance, andg1 is 2 to 3
times cheaper thang0 (note the log scale ony). So the
difference is not as extreme as in the example we gave
in the beginning, but we think we are happy to see this
improvement on such a typical data set.

0 5 10 15

x 10
12

10
3

10
4

10
5

10
6

10
7

variance

co
st

 (
by

te
s)

g
0

g
1

g
2

g
1
+bloom

g
1
+g

2
+bloom

g
0
+bloom

Fig. 1. Simulation results for different sampling functions (dashed
lines) and for various algorithms based on Bloom filters (solid lines).

b) Combining with Bloom filters.: We have imple-
mented our algorithm of usingg1 with Bloom filters and
the algorithm of usingg1, g2 together with Bloom filters.
In the Bloom filters, we used the simple hash functions
h(x) = (ax2 + bx + c) mod p where p is a large
prime, while each node uses randoma, b, c generated
independently.

The results are also plotted in Figure 1 (the solid
lines). We can see that the use of Bloom filters has

reduced the cost ofg1 by almost a factor of10. As seen
before, sampling withg2 is more difficult to combine
with Bloom filters, and as a result, the improvement is
not as dramatic. The end result is that the two algorithms
performed quite similarly. For instance, both of them
transmitted1.5×104 ≈ 15K bytes to estimate the counts
for the top-100 items with a maximum standard deviation
of 106, which corresponds toε = 0.001, a typical error
as suggested in [6]. Note that the raw data has roughly
nu = 107 (item, count) pairs, which amounts to80M of
data.

We also did our best-effort implementation of the
algorithm of [21], which heuristically improves the bare
use ofg0. We followed their description and optimized
two sets of parameters. This gave the two data points
in Figure 1, which are roughly3 times worse than our
algorithms. It is possible to tune the parameters to obtain
other cost-variance tradeoffs, but it is doubtful that there
exists a point on its tradeoff curve where it is better than
ours.

We also generated data sets with different distributions
to test the performance of the algorithms. We set the fre-
quency ofi-th itemyi ∝ (1/i)α (the general definition of
the Zipf), then by varying the value ofα, we get different
distributions. The Simulation results for differentα’s are
plotted in Figure 2. Here we also setu = 10, 000 and
N = 109, and for each item we randomly split its global
count ton = 1000 nodes.

VII. R ELATIVE ERRORS

Here we briefly discuss how to guarantee a(p, ε)-
error, i.e., estimating everyyi ≥ pN with variance
(εyi)

2. First, it is known [11] that a uniform sample
of size O(1/ε2p) achieves this guarantee. Next we
see if the general sampling framework can bring any
improvement. Recall that the sampling function of [21],
g(x) = x/(x + d), has a variance ofVar[Yi] = dyi. We
needdyi = (εyi)

2, namely,d = ε2yi, for all yi ≥ pN .
So we need to setd = ε2pN , which implies that the
cost could beO(N/d) = O(1/ε2p).

Now consider the linear sampling functiong(x) =
x/a for somea. From (3) in the proof of Theorem 3.1 we
haveVar[Yi] = ayi−y2

i /n. Thus we needayi−y2
i /n ≤

(εyi)
2, namelya ≤ (ε2 + 1/n)yi for all yi ≥ pN . So it

suffices to seta = (ε2 + 1/n)pN , which means that the

cost isO(N/a) = O
(

1
(ε2+1/n)p

)

. This, again, is better

thanO(1/ε2p) whenn ≪ 1/ε2.
However, the sampling functiong2 is tailored for the

absolute error. It remains an interesting problem to see if
there is an instance-optimal sampling function for(p, ε)-
errors.

8

0 2 4 6 8 10 12 14

x 10
12

10
3

10
4

10
5

10
6

10
7

variance

co
st

 (
by

te
s)

α = 1.2

g

0

g
1

g
2

g
1
+bloom

g
1
+g

2
+bloom

0 0.5 1 1.5 2 2.5

x 10
13

10
3

10
4

10
5

10
6

α = 1.5

variance

co
st

 (
by

te
s)

g

0

g
1

g
2

g
1
+bloom

g
1
+g

2
+bloom

0 0.5 1 1.5 2 2.5

x 10
13

10
3

10
4

10
5

10
6

variance

co
st

 (
by

te
s)

α = 1.7

g

0

g
1

g
2

g
1
+bloom

g
1
+g

2
+bloom

Fig. 2. Simulation results for differentα’s.

VIII. R EMARKS AND OPEN PROBLEMS

In this paper we have designed worst-case optimal and
instance-optimal sampling algorithms for the distributed
frequency estimation problem. However, we need to
emphasize that the optimality of our algorithms holds
only within the sampling framework defined in Section I.
Theoretically, it is an intriguing open question to deter-
mine the (worst-case) complexity of the problem with no
restrictions on the way how the algorithm works. This
could be a difficult problem, since even the deterministic
complexity is not understood yet. Note that, however,
instance-optimality will not be possible to achieve if we
do not have any restrictions on the algorithm, since we
can design a “wild guessing” algorithm that just outputs
the result directly if the input is the one being guessed,
while falls back to a naive algorithm on all other inputs.
No reasonable algorithm can beat this algorithm on that
particular input.

REFERENCES

[1] http://en.wikipedia.org/wiki/bloomfilter.
[2] B. Aronov, S. Har-Peled, and M. Sharir. On approx-

imate halfspace range counting and relative epsilon-
approximations. InProc. Annual Symposium on Com-
putational Geometry, pages 327–336, 2007.

[3] B. Babcock and C. Olston. Distributed top-k monitoring.
In Proc. ACM SIGMOD International Conference on
Management of Data, 2003.

[4] P. Cao and Z. Wang. Efficient top-k query calculations
in distributed networks. InProc. ACM Symposium on
Principles of Distributed Computing, 2004.

[5] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. InProc.
ACM SIGMOD International Conference on Management
of Data, 2005.

[6] G. Cormode and M. Hadjieleftheriou. Finding frequent
items in data streams. InProc. International Conference
on Very Large Data Bases, 2008.

[7] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58–75, 2005.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters.Communications of the
ACM, 51(1), 2008.

[9] R. Fagin, A. Lotem, and M. Noar. Optimal aggregation
algorithms for middleware. Journal of Computer and
System Sciences, 66:614–656, 2003.

[10] M. Greenwald and S. Khanna. Power conserving compu-
tation of order-statistics over sensor networks. InProc.
ACM Symposium on Principles of Database Systems,
2004.

[11] Y. Li, P. M. Long, and A. Srinivasan. Improved bounds on
the sample complexity of learning.Journal of Computer
and System Sciences, 62:516–527, 2001.

[12] G. Manku and R. Motwani. Approximate frequency
counts over data streams. InProc. International Con-
ference on Very Large Data Bases, 2002.

[13] A. Metwally, D. Agrawal, and A. E. Abbadi. An inte-
grated efficient solution for computing frequent and top-k
elements in data streams.ACM Transactions on Database
Systems, 2006.

[14] S. Michel, P. Triantafillou, and G. Weikum. KLEE:
A framework for distributed top-k query algorithms.
In Proc. International Conference on Very Large Data
Bases, 2005.

[15] B. Patt-Shamir and A. Shafrir. Approximate distributed
top-k queries.Distributed Computing, 21:1–22, 2008.

[16] E. Porat. An Optimal Bloom Filter Replacement Based
on Matrix Solving. Computer Science–Theory and Ap-
plications, 5675:263–273, 2009.

[17] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: New aggregation techniques for
sensor networks. InProc. International Conference on
Embedded Networked Sensor Systems, 2004.

[18] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities.Theory of Probability and its Applications,
16:264–280, 1971.

[19] K. Yi and Q. Zhang. Optimal tracking of distributed
heavy hitters and quantiles. InProc. ACM Symposium on
Principles of Database Systems, 2009.

[20] H. Zhao, A. Lall, M. Ogihara, and J. Xu. Global iceberg
detection over distributed data streams. InProc. IEEE
International Conference on Data Engineering, 2010.

[21] Q. Zhao, M. Ogihara, H. Wang, and J. Xu. Finding
global icebergs over distributed data sets. InProc. ACM
Symposium on Principles of Database Systems, 2006.

9

