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Abstract. We develop several linear or near-linear space and I/O-
efficient dynamic data structures for orthogonal range-max queries and
stabbing-max queries. Given a set of N weighted points in Rd , the range-
max problem asks for the maximum-weight point in a query hyper-
rectangle. In the dual stabbing-max problem, we are given N weighted
hyper-rectangles, and we wish to find the maximum-weight rectangle
containing a query point. Our structures improve on previous structures
in several important ways.

1 Introduction

Range searching and its variants have been studied extensively in the computa-
tional geometry and database communities because of their many important ap-
plications. Range-aggregate queries, such as range-count, range-sum, and range-
max queries, are some of the most commonly used versions of range searching in
database applications. Since many such applications involve massive amounts of
data stored in external memory, it is important to consider I/O-efficient struc-
tures for fundamental range-searching problems. In this paper, we develop I/O-
efficient data structures for answering orthogonal range-max queries, as well as
for the dual problem of answering stabbing-max queries.

Problem statement. In the orthogonal range-max problem, we are given a
set S of N points in Rd where each point p is assigned a weight w(p), and we wish
to build a data structure so that for a query hyper-rectangle Q in Rd , we can
compute max{w(p) | p ∈ Q} efficiently. The two-dimensional case is illustrated
in Figure 1(a). In the dual orthogonal stabbing-max problem, we are given a set
S of N hyper-rectangles in Rd where each rectangle γ is assigned a weight w(γ),
and want to build a data structure such that for a query point q in Rd , we can
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Fig. 1. (a) Two-dimensional range queries. (b) Two-dimensional stabbing queries.

compute max{w(γ) | q ∈ γ} efficiently. The two-dimensional case is illustrated
in Figure 1(b). We also consider the dynamic version of the two problems, in
which points or hyper-rectangles can be inserted or deleted dynamically. In the
following we drop “orthogonal” and often even “max” when referring to the two
problems.

We work in the standard external memory model [4]. In this model, the main
memory holds M words and each disk access (or I/O) transmits a continuous
block of B words between main memory and disk. We assume that M ≥ B2

and that any integer less than N , as well as any point or weight, can be stored
in a single word. We measure the efficiency of a data structure in terms of the
amount of disk space it uses (measured in number of disk blocks) and the number
of I/Os required to answer a query or perform an update. We will focus on data
structures that use linear or near linear space, that is, use close to n = dN/Be
disk blocks.

Related work. Range searching data structures have been studied extensively
in the internal memory RAM model of computation. In two dimensions, the best
known linear space structure for the range-max problem is by Chazelle [10]. It
answers a query in O(log1+ε n) time in the static case. In the dynamic case,
the structure supports queries and updates in O(log3 n log log n) time. The
best known structure for the one-dimensional stabbing-max problem is by Ka-
plan et al [16]. It uses linear space and supports queries and insertions in O(log n)
time and deletions in O(log n log log n) time. They also discuss how their struc-
ture can be extended to higher dimensions. Refer to [10, 16] and the survey by
Agarwal and Erickson [3] for additional results.

In the external setting, one-dimensional range-max queries can be answered
in O(logB n) I/Os using a standard B-tree [11, 8]. The structure can easily be up-
dated using O(logB n) I/Os. For two or higher dimensions, however, no efficient
linear-size structure is known; In the two-dimensional case, the kdB-tree [18],
the cross-tree [14], and the O-tree [15], designed for general range searching, can
be modified to answer range-max queries in O(

√
n) I/Os. All of them use linear

space. The cross-tree [14] and the O-tree [15] can also be updated in O(logB n)
I/Os. The CRB-tree [2] designed for range-counting can be modified to support
range-max queries in O(log2

B n) I/Os using O(n logB n) space.
For the one-dimensional stabbing-max problem, the SB-tree [20] can be used

to answer queries in O(logB n) I/Os using linear space. Intervals can be inserted
into the structure in O(logB n) I/Os. However, the SB-tree does not support



deletions. No worst-case efficient structures are known for higher-dimensional
stabbing max queries. Refer to recent surveys [5, 13] for additional results.

Our results. In this paper we obtain three main results. Our first result
is a linear-size structure for answering two-dimensional range-max queries
in O(log2

B n) I/Os. This is the first linear-size external memory data struc-
ture that can answer such queries in polylogarithmic number of I/Os. Using
O(n logB logB n) space, the structure can be made dynamic so that insertions
and deletions can be performed in O(log2

B n logM/B logB n) and O(log2
B n) I/Os

amortized, respectively. Refer to Table 1 for a comparison with previous results.

Problem Space Query Insertion Deletion Source

2D range max n logB n log2
B n [2]

queries (static) n log2
B n New

2D range max n
√

n logB n logB n [14, 15]

queries (dynamic) n logB logB n log3
B n log2

B n · log2
B n New

logM/B logB n

Table 1. Two-dimensional range max query results.

Our second result is a linear-size dynamic structure for answering one-
dimensional stabbing-max queries in O(log2

B n) I/Os. The structure supports
both insertions and deletions in O(logB n) I/Os. As mentioned, the previously
known structure only supported insertions [20].

Our third result is a linear-size structure for answering two-dimensional stab-
bing max queries in O(log4

B n) I/Os. The structure is an extension of our one-
dimensional structure, which also uses our two-dimensional range-max query
structure. The structure can be made dynamic with an O(log5

B n) query bound
at the cost of a factor of O(logB logB n) in its size. Insertions and deletions can
be performed in O(log2

B n logM/B logB n) and O(log2
B n) I/Os amortized, respec-

tively. Refer to Table 2 for a comparison with previous results.

Problem Space Query Insertion Deletion Source

1D stabbing max n logB n logB n [20]

queries (dynamic) n log2
B n logB n logB n New

2D stabbing max n log4
B n New

queries (static)

2D stabbing max n logB logB n log5
B n log2

B n · log2
B n New

queries (dynamic) logM/B logB n

Table 2. Two-dimensional stabbing max query results.

Finally, using standard techniques [2, 9, 12], both our range and stabbing
structures can be extended to higher dimensions at the cost of increasing each of



the space, query, and update bounds by an O(logB n) factor per dimension. Our
structures can also be extended and improved in several other ways. For example,
our one-dimensional stabbing-max structure can be modified to support general
semigroup stabbing queries.

2 Two-Dimensional Range-Max Queries

In this section we describe our structure for the two-dimensional range-max
problem. The structure is an external version of a structure by Chazelle [10].

The overall structure. Our structure consists of two parts. The first is simply
a B-tree Φ on the y-coordinates of the N points in S. It uses O(n) blocks and can
be constructed in O(n logB n) I/Os. To construct the second part, we first build
a base B-tree T with fanout

√
B on the x-coordinates of S. For each node v of T ,

let Pv be the sequence of points stored in the subtree rooted at v, sorted by their
y-coordinates. Set Nv = |Pv| and nv = Nv/B. With each node v we associate a
vertical slab σv containing Pv. If v1, v2, . . . , vk, for k = Θ(

√
B), are the children

of v, then σv1 , . . . , σvk
partition σv into k slabs. For 1 ≤ i ≤ j ≤ k, we refer

to the slab σv[i : j] =
⋃j

l=i σvi as a multi-slab; there are O(B) multi-slabs at
each node of T . Each leaf z of T stores Θ(B) points in Pz and their weights
using O(1) disk blocks. Each internal node v stores two secondary structures Cv

and Mv requiring O(nv/ logB n) blocks each, so that the overall structure uses
a total of O(n) blocks. We first describe the functionality of these structures.
After describing how to answer a query, we describe their implementation.

For a point p ∈ R2 , let rkv(p) denote the rank of p in Pv, i.e., the number
of points in Pv whose y-coordinates are not larger than the y-coordinate of p.
Given rkv(p) of a point p, Cv can be used to determine rkvi(p) for all children vi

of v using O(1) I/Os. Suppose we know the rank ρ = rkv(p) of a point p ∈ Pv,
we can find the weight of p in O(logB n) I/Os using Cv: If v is a leaf, then we
examine all the points of Pv and return the weight of the point whose rank is
ρ. Otherwise, we use Cv to find the rank of p in the set Pvj associated with the
relevant child vj , and continue the search recursively in vj . We call this step the
identification process.

The other secondary structure Mv enables us to compute the maximum
weight among the points in a given multi-slab and rank range. More precisely,
given 1 ≤ i ≤ j ≤ √

B and 1 ≤ ρ1 ≤ ρ2 ≤ Nv, Mv can be used to determine in
O(logB n) I/Os the maximum value in {w(p) | p ∈ Pv ∩ σv[i : j] and rkv(p) ∈
[ρ1, ρ2]}.
Answering a query. Let Q = [x1, x2]× [y1, y2] be a query rectangle. We wish
to compute max{w(p) | p ∈ S ∩ Q}. The overall query procedure is the same
as for the CRB-tree [2]. Let z1 (resp. z2) be the leaf of T such that σz1 (resp.
σz2) contains (x1, y1) (resp. (x2, y2)). Let ξ be the nearest common ancestor of
z1 and z2. Then S∩Q = Pξ ∩Q, and therefore it suffices to compute max{w(p) |
p ∈ Pξ ∩ Q}.



To answer the query we visit the nodes on the paths from the root to z1

and z2 in a top-down manner. For any node v on the path from ξ to z1 (resp.
z2), let lv (resp. rv) be the index of the child of v such that (x1, y1) ∈ σlv

(resp. (x2, y2) ∈ σrv ), and let Σv be the widest multi-slab at v whose x-span is
contained in [x1, x2]. Note that Σv = σv[lv +1 : rv −1] when v = ξ (Figure 2(a)),
and that for any other node v on the path from ξ to z1 (resp. z2), Σv = σv[lv +1 :√

B] (resp. Σv = σv[1 : rv −1]). At each such node v, we compute the maximum
weight of a point in the set Pv ∩ Σv ∩ Q in O(logB n) I/Os using the secondary
structure Cv and Mv. The answer to Q is then the maximum of the O(logB n)
obtained weights. We compute the maximum weight in Pv ∩ Σv ∩ Q as follows:
Let ρ−v = rkv((x1, y1)) and ρ+

v = rkv((x2, y2)). If v is the root of T , we compute
ρ−v , ρ+

v in O(logB n) I/Os using the B-tree Φ. Otherwise, since we know ρ−p(v), ρ
+
p(v)

at the parent of v, we can compute ρ−v , ρ+
v in O(1) I/Os using the secondary

structure Cp(v) stored at the parent p(v) of v. Once we know ρ−v , ρ+
v , we find the

maximal weight point in Pv ∩ Σv ∩ Q in O(logB n) I/Os by querying Mv with
the multi-slab Σv and the rank interval [ρ−v , ρ+

v ]. Overall the query procedure
uses O(logB n) I/Os in O(logB n) nodes, for a total of O(log2

B n) I/Os.

Secondary structures. We now describe the secondary structures stored at
a node v of T . Since Cv is the same as a structure used in the CRB-tree [2],
we only describe Mv. Recall that Mv is a data structure of size O(nv/ logB n),
and for a multi-slab σv[i : j] and a rank range [ρ1, ρ2], it returns the maximum
weight of the points in the set {p ∈ σv[i : j] ∩ Pv | rkv(p) ∈ [ρ1, ρ2]}. Since the
size of Mv is only O(nv/ logB n), it cannot store all the coordinates and weights
of the points in Pv explicitly. Instead, we store them in a compressed manner.

Let µ = B logB n. We partition Pv into s = dNv/µe chunks C1, . . . , Cs, each
(except possibly the last one) of size µ. More precisely, Ci = {p ∈ Pv | rkv(p) ∈
[(i − 1)µ + 1, iµ]}. Next, we partition each chunk Ci further into minichunks of
size B; Ci is partitioned into mc1, . . . ,mcνi , where νi = d|Ci|/Be and mcj ⊆ Ci

is the sequence of points whose y-coordinates have ranks (within Ci) between
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Fig. 2. (a) Answering a query. (b) Finding the max at the chunk level (using Ψ1
v ). (c)

Finding the max at the minichunk level (using Ψ2
v ) and within a minichunk (using Ψ3

v ).



(j − 1)B + 1 and jB. We say that a rank range [ρ1, ρ2] spans a chunk (or a
minichunk) X if for all p ∈ X , rkv(p) ∈ [ρ1, ρ2], and that X crosses a rank ρ if
there are points p, q ∈ X such that rkv(p) < ρ < rkv(q).
Mv consists of three data structures Ψ1

v , Ψ2
v , and Ψ3

v ; Ψ1
v answers max queries

at the “chunk level”, Ψ2
v answers max queries at the “minichunk level”, and

Ψ3
v answers max queries within a minichunk. More precisely, let σv[i : j] be a

multi-slab and [ρ1, ρ2] be a rank range, if the chunks that are spanned by [ρ1, ρ2]
are Ca, . . . , Cb, then we use Ψ1

v to report the maximum weight of the points in⋃b
l=a Cl∩σv[i : j] (Figure 2(b)). We use Ψ2

v , Ψ3
v to report the the maximum weight

of a point in Ca−1 ∩ σv[i : j], as follows. If mcα, · · · ,mcβ are the minichunks of
Ca−1 that are spanned by [ρ1, ρ2], then we use Ψ2

v to report the maximum weight
of the points in

⋃β
l=α mcl ∩ σv[i : j]. Then we use Ψ3

v to report the maximum
weight of the points that lie in the minichunks that cross ρ1 (Figure 2(c)). The
maximum weight of a point in in Cb+1 ∩ σv[i : j] can be found similarly. Below
we describe Ψ1

v , Ψ2
v and Ψ3

v in detail and show how they can be used to answer
the relevant queries in O(logB n) I/Os.

Structure Ψ3
v
. Ψ3

v consists of a small structure Ψ3
v [l] for each minichunk mcl,

1 ≤ l ≤ Nv/B = nv. Since we can only use O(nv/ logB n) space, we store logB n
small structures together in O(1) blocks. For each point p in mcl we store a
pair (ξp, ωp), where ξp is the index of the slab containing p, and ωp is the rank
of the weight of p among the points in mcl (i.e., ωp − 1 points in mcl have
smaller weights than that of p). Note that 0 ≤ ξp, ωp ≤ B, so we need O(log B)
bits to store this pair. The set {(ξp, ωp) | p ∈ mcl} is stored in Ψ3

v [l], sorted in
increasing order of rkv(p)’s (their ranks in Pv). Ψ3

b [l] needs a total of O(B log B)
bits. Therefore logB n small structures use O(B log B logB n) = O(B log n) bits
and fit in O(1) disk blocks.

A query on Ψ3
v is of the following form: Given a multi-slab σv[i : j], an interval

[ρ1, ρ2], and an integer l ≤ nv, we wish to return the the maximum weight of a
point in the set {p ∈ mcl | p ∈ σv[i : j], rkv(p) ∈ [ρ1, ρ2]}. We first load the whole
Ψ3

v [l] structure into memory using O(1) I/Os. Since we know the rkv(a) of the
first point a ∈ mcl, we can compute in O(1) time the contiguous subsequence
of pairs (ξp, ωp) in Ψ3

v [l] such that rkv(p) ∈ [ρ1, ρ2]. Among these pairs we select
the point q for which i ≤ ξq ≤ j (i.e., q lies in the multi-slab σv[i : j]) and ωq has
the largest value (i.e., q has the maximum weight among these points). Since we
know rkv[q], we use the identification process (the Cv structures) to determine,
in O(logB n) I/Os, the actual weight of q.

Structure Ψ2
v
. Similar to Ψ3

v , Ψ2
v consists of a small structure Ψ2

v [k] for each
chunk Ck. Since there are Nv/µ = nv/ logB n chunks at v, we can use O(1)
blocks for each Ψ2

v [k].
Chunk Ck has νk ≤ logB n minichunks mc1, . . . ,mcνk

. For each multi-slab
σv[i : j], we do the following. For each l ≤ νk, we choose the point of the
maximum weight in σ[i : j]∩mcl. Let Qk

ij denote the resulting set of points. We
construct a Cartesian tree [19] on Qk

ij with their weights as the key. A Cartesian
tree on a sequence of weights w1, . . . , wνk

is a binary tree with the maximum



weight, say wk, in the root and with w1, . . . , wk−1 and wk+1, . . . , wνk
stored

recursively in the left and right subtree, respectively. This way, given a range
of minichunks mcα, · · · ,mcβ in Ck, the maximal weight in these minichunks
is stored in the nearest common ancestor of wα and wβ . Conceptually, Ψ2

v [k]
consists of such a Cartesian tree for each of the O(B) multi-slabs. However, we
do not actually store the weights in a Cartesian tree, but only an encoding of its
structure. Thus we can not use it to find the actual maximal weight in a range of
minichunks, but only the index of the minichunk containing the maximal weight.
It is well known that the structure of a binary tree of size νk can be encoded
using O(νk) bits. Thus, we use O(logB n) bits to encode the Cartesian tree of
each of the O(B) multi-slabs, for a total of O(B logB n) bits, which again fit in
O(1) blocks.

Consider a multi-slab σv[i : j]. To find the maximal weight of the points in
the minichunks of a chunk Ck spanned by a rank range [ρ1, ρ2], we load the
relevant Cartesian tree using O(1) I/Os, and use it to identify the minichunk l
containing the maximum-weight point p. Then we use Ψ3

v [l] to find the rank of p
in O(1) I/Os. Finally, we as previously use the identification process to identify
the actual weight of p in O(logB n) I/Os.

Structure Ψ1
v
. Ψ1

v is a B-tree with fanout
√

B conceptually built on the
s = nv/ logB n chunks C1, . . . , Cs. Each leaf of Ψ1

v corresponds to
√

B con-
tiguous chunks, and stores for each of the

√
B slabs in v, the point with the

maximum weight in each of the
√

B chunks. Thus a leaf stores O(B) points and
fits in O(1) blocks. Similarly, an internal node of Ψ1

v stores for each of the
√

B
slabs the point with the maximal weight in each of the subtrees rooted in its√

B children. Therefore an internal node also fits in O(1) blocks, and Ψ1
v uses

O(nv/(logB n
√

B)) = O(nv/(logB n) blocks in total.
Consider a multi-slab σv[i : j]. To find the the maximum weight in chunks

Ca, · · · , Cb spanned by a rank range [ρ1, ρ2], we visit the nodes on the paths
from the root of Ψ1

v to the leaves corresponding to Ca and Cb. In each of these
O(logB n) nodes we consider the points contained in both multi-slab σv[i : j]
and one of the chunks Ca, · · · , Cb, and select the maximal weight point. This
takes O(1) I/Os. Finally, we select the maximum of the O(logB n) weights.

This completes the description of our static two-dimensional range max struc-
ture. In the full version of the paper we describe how it can be constructed in
O(n logB n) I/Os in a bottom-up, level-by-level manner.

Theorem 1. A set of N points in the plane can be stored in a linear-size struc-
ture such that an orthogonal range-max query can be answered in O(log2

B n)
I/Os. The structure can be constructed in O(n logB n) I/Os.

Dynamization. Next we sketch how to make our data structure dynamic.
Details will appear in the full paper.

To delete a point p from S we delete it from the relevant O(logB n) Mv

structures as well as from the base tree. The latter is done in O(logB n) I/Os
using global rebuilding [17]. To delete p from a Mv structure we need to delete
it from Ψ1

v , Ψ2
v , and Ψ3

v . Since we cannot update a Cartesian tree efficiently,



which is the building block of Ψ2
v , we modify the structure so that we no

longer partition each chunk Ck of Pv into minichunks (that is, we remove
Ψ2

v ). Instead we construct Ψ3
v [k] directly on the points in Ck. This allows us

to delete p from Mv in O(logB n) I/Os: We first delete p from Ψ3
v by mark-

ing its weight rank ωp as ∞, and then update Ψ1
v if necessary. However, since

|Ck| ≤ B logB N , Ψ3
v [k] now uses O(logB logB n) blocks and the overall size of

the structure becomes O(n logB logB n) blocks. The construction cost becomes
O(n logB n logM/B logB n) I/Os.

To handle insertions we use the external logarithmic method [6]; This way
an insertion takes O(log2

B n logM/B logB n) I/Os amortized and the query cost
is increased by a factor of O(logB n).

Theorem 2. A set of N points in the plane can be stored in a structure that
uses O(n logB logB n) disk blocks such that a range-max query can be answered
in O(log3

B n) I/Os. A point can be inserted or deleted in O(log2
B n logM/B logB n)

and O(log2
B n) I/Os amortized, respectively.

In the full paper we describe various extensions and improvements. For ex-
ample, by using Cartesian trees to implement Ψ1

v and a technique to speed up
the identification process [10], we can improve the query bound of our linear-size
static structure to O(log1+ε

B n) I/Os. However, we cannot construct this structure
efficiently and therefore cannot make it dynamic.

3 Stabbing-Max Queries

In Section 3.1 we describe our stabbing-max structure for the one-dimensional
case, and in Section 3.2 we sketch how to extend it to two dimensions.

3.1 One-dimensional structure

Given a set S of N intervals, where each interval γ ∈ S is assigned a weight w(γ),
we want to compute the maximum-weight interval in S containing a query point.
Our structure for this problem is based on the external interval tree of Arge and
Vitter [7], as well as on the ideas utilized in the point-location structure of
Agarwal et al [1]. We are mainly interested in the dynamic case, since the static
version of the problem is easily solved.

Overall structure. Our structure consists of a fanout
√

B base B-tree T on
the endpoints of the intervals in S, with the intervals stored in secondary struc-
tures associated with the internal nodes of T . Each leaf represents B consecutive
points and the tree has height O(logB n). As in Section 2, a canonical interval σv

is associated with each node v; σv is partitioned into k ≤ √
B slabs by the ranges

σv1 , . . . , σvk
associated with the children v1, v2, . . . , vk of v. An input interval γ

is assigned to v if γ ⊆ σv but γ * σvi for any 1 ≤ i ≤ k. A leaf z stores intervals
whose both endpoints lie in σz. The O(B) intervals Sz assigned to z are stored
using O(1) blocks. At each internal node v, Θ(

√
B) secondary structures are



used to store the set of intervals Sv assigned to v. A left-slab structure Lv[i] and
a right-slab structure Rv[i], for each of the

√
B slabs, and a multi-slab structure

Mv. Lv[i] (resp. Rv[i]) contains intervals from Sv whose left (resp. right) end-
points lie in σvi . It supports stabbing queries for points in σvi in O(logB n) I/Os.
The multi-slab structure Mv stores all intervals that span at least one slab. For
any query point q ∈ σvi , it can be used to find the maximum-weight interval that
completely spans σvi in O(1) I/Os. We describe the slab and multi-slab struc-
tures below. Refer to Figure 3(a). Overall, an interval is stored in at most three
secondary structures, and each secondary structure uses linear space, therefore
the overall structure also uses linear space.

Answering a query. To report the maximum-weight interval containing a
query point q, we search down the base tree T for the leaf z containing q. At each
of the O(logB n) nodes v on the path, we compute the maximum-weight interval
of Sv containing q and return the maximum-weight interval of these O(logB n)
intervals. To answer a query at an internal node v with q ∈ σvi , we simply
query the left-slab structure Lv[i] and right-slab structure Rv[i] to compute the
maximum-weight interval whose one endpoint lies in σvi and that contains q.
We then query the multi-slab structure Mv to compute the maximum-weight
interval spanning σvi . Refer to Figure 3(b). At the leaf z we simply scan the
O(B) intervals stored at z to find the maximum. Since we spend O(logB n) I/Os
in each node, we answer a query in a total of O(log2

B n) I/Os.

Left/right-slab structure. Let Ri
v ⊆ Sv be the set of intervals whose right

endpoints lie in σvi . These intervals are stored in the right-slab structure Rv[i].
Answering a stabbing query on Ri

v with a point q ∈ σvi is equivalent to answering
a one-dimensional range max query [q,∞] on the right endpoints of Ri

v. Refer
to Figure 3(c). As discussed in Section 2, such a query can easily be answered
in O(logB n) I/Os using a B-tree. Lv[i] is implemented in a similar way.

Multi-slab structure. A multi-slab structure Mv stores intervals S′
v from

Sv that span at least one slab. Mv is a fan-out
√

B B-tree on S′
v ordered by

v

v1 v2 v3 v4 v5

σv2 σv3 σv4

s

σv1 σv5

σv

(a)

q

σvi

(b)

q

σvi

(c)

Fig. 3. (a) Node v in the base tree. The range σv associated with v is divided into
5 slabs. Interval s is stored in the left slab structure corresponding to σv1 and the
right slab structure corresponding to σv4 , as well as in the multi-slab structure Mv .
(b) Querying a node with q. (c) Equivalence between a stabbing-max query q and a
one-dimensional range max query [q,∞].



interval id’s. For a node u ∈ Mv, let γij be the maximum-weight interval that
spans σvi and that is stored in the subtree rooted at the j-th child of u. For
1 ≤ i, j ≤ √

B, we store γij at u. In particular, the root of Mv stores the
maximum-weight interval spanning each of the

√
B slabs, and a stabbing query

in any slab σvi can therefore be answered in O(1) I/Os. Since each node can
be stored in O(1) blocks, Mv uses linear space. Note how Mv corresponds to
“combining”

√
B B-trees with fan-out

√
B in a single B-tree.

To insert or delete an interval γ, we first search down Mv to find and update
the relevant leaf z. After updating z, some of the intervals stored at nodes on
the path P from the root of Mv to z may need to be updated. To maintain a
balanced tree, we also perform B-tree rebalancing operations on the nodes on
P . Both can easily be done in O(logB n) I/Os in a traversal of P from z towards
the root, as in [6].

Dynamization. To insert a new interval γ we first insert the endpoints of γ
in T . By implementing T as a weight-balanced B-tree we can do so in O(logB n)
I/Os. Refer to [7] for details. Next, we use O(logB n) I/Os to search down T for
the node v where γ needs to be inserted in the secondary structures. Finally, we
use another O(logB n) I/Os to insert γ in a left and right slab structure, as well as
in the multi-slab structure Mv if it spans at least one slab. To delete an interval
γ we first delete it from the relevant secondary structures using O(logB n) I/Os.
Then we delete its endpoints from T using the global-rebuilding technique [17].
Since we can easily rebuild the structure in O(n logB n) I/Os, this adds another
O(logB n) I/Os to the delete bound. Details will appear in the full paper.

Theorem 3. A set of N intervals can be stored in a linear space data structure
such that a stabbing-max query can be answered in O(log2

B n) I/Os, and such that
updates can be performed in O(logB n) I/Os. The structure can be constructed
in O(n logB n) I/Os.

In the full paper we describe various extensions and improvements. For ex-
ample, we can easily modify our structure to handle semigroup stabbing queries.
Let (S, +) be a commutative semigroup. Given a set of N intervals S, where
interval γ ∈ S is assigned a weight w(γ) ∈ S, the result of a semigroup stabbing
query q is

∑
q∈γ,γ∈S w(γ). Max queries is the special case where the semigroup

is taken to be (R, max). Unlike the structure presented in this section, the 2D
range-max structure described in Section 2 cannot be generalized, since it uti-
lizes that in the semigroup (R, max) the result of a semigroup operation is one
of the operands.

By combining the ideas used in our structure with ideas from the external
segment tree of Arge and Vitter [7], we can also obtain a space-time tradeoff.
More precisely, for any ε > 0, a set of N intervals can be stored in a structure that
uses O(n logε

B n) disk blocks, such that a stabbing-max query can be answered
in O(log2−ε

B n) I/Os and such that updates can be performed in O(log1+ε
B n) I/Os

amortized.



3.2 Two-dimensional structure

In the two-dimensional stabbing-max problem we are given a set S of N weighted
rectangles in R2 , and want to be able to find the maximal-weight rectangle
containing a query point q. We can extend our one-dimensional structure to this
case using our one-dimensional stabbing-max and two-dimensional range-max
structures. For space reasons we only give a rough sketch of the extension.

The structure consists of a base B-tree T with fanout B1/3 on the x-
coordinates of the corners of the rectangles in S. As in the 1D case, an interval σv

is associated with each node v, and this interval is partitioned into B1/3 vertical
slabs by its children. A rectangle γ is stored at an internal node v of T if γ ⊆ σv

but γ * σvi for any child vi of v. Each internal node v of T stores a multi-slab
structure and one left- and right-slab structure for each slab. A multi-slab struc-
ture stores rectangles that span slabs and the left-slab (right-slab) structures of
the i-th slab σvi at v stores rectangles whose left (right) edges lie in σvi .

The slab and multi-slab structures are basically one-dimensional stabbing-
max structures on the y-projections of those rectangles. For the multi-slab struc-
ture we utilize the same “combining” technique as in the one-dimensional case
to conceptually build a one-dimensional structure for each slab. The decreased
fanout of B1/3 allows us to use only linear space while being able to answer a
query in O(log2

B n) I/Os. For the slab structures we utilize our two-dimensional
range-max structure to be able to answer a query in O(log3

B n) I/Os. Details will
appear in the full paper.

We answer a stabbing-max query by visiting O(logB n) nodes on a path in
T , and querying two slab structures and the multi-slab structure in each node.
Overall, a query is answered in O(log4

B n) I/O. As previously, we can also make
the structure dynamic using the external logarithmic method. Again details will
appear in the full paper.

Theorem 4. A set of N rectangles in R2 can be stored in a linear-size structure
such that stabbing-max queries can be answered in O(log4

B n) I/Os.
A set of N rectangles in R2 can be stored in a structure using

O(n logB logB n) disk blocks such that stabbing-max queries can be answered in
O(log5

B n) I/Os, and such that insertions and deletions can be performed in
O(log2

B n logM/B logB n) and O(log2
B n) I/Os amortized, respectively.
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