
Optimal Tracking of Distributed Heavy Hitters and
Quantiles

Ke Yi∗

HKUST
Hong Kong, China
yike@cse.ust.hk

Qin Zhang†

HKUST
Hong Kong, China

zhangqin@cse.ust.hk

ABSTRACT
We consider the the problem of tracking heavy hitters and
quantiles in the distributed streaming model. The heavy
hitters and quantiles are two important statistics for char-
acterizing a data distribution. Let A be a multiset of ele-
ments, drawn from the universe U = {1, . . . , u}. For a given
0 ≤ φ ≤ 1, the φ-heavy hitters are those elements of A
whose frequency in A is at least φ|A|; the φ-quantile of A
is an element x of U such that at most φ|A| elements of A
are smaller than A and at most (1−φ)|A| elements of A are
greater than x. Suppose the elements of A are received at k
remote sites over time, and each of the sites has a two-way
communication channel to a designated coordinator, whose
goal is to track the set of φ-heavy hitters and the φ-quantile
of A approximately at all times with minimum communi-
cation. We give tracking algorithms with worst-case com-
munication cost O(k/ε · log n) for both problems, where n
is the total number of items in A, and ε is the approxima-
tion error. This substantially improves upon the previous
known algorithms. We also give matching lower bounds on
the communication costs for both problems, showing that
our algorithms are optimal. We also consider a more gen-
eral version of the problem where we simultaneously track
the φ-quantiles for all 0 ≤ φ ≤ 1.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems; H.2.4 [Database
management]: Systems—distributed databases

General Terms
Algorithms, theory

∗supported in part by Hong Kong Direct Allocation Grant
(DAG07/08).
†Supported by Hong Kong CERG Grant 613507.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

Keywords
Distributed tracking, heavy hitter, quantile

1. INTRODUCTION
Data streams have been studied in both the database and

theory communities for more than a decade [1, 2]. In this
model, data items arrive in an online fashion, and the goal
is to maintain some function f over all the items that have
already arrived using small space. Of particular interests
to the database community are the frequent items (a.k.a.
heavy hitters) [6, 8, 16, 20, 19] and quantiles [7, 14, 15]. Af-
ter a long and somehow disorganized line of research, the
heavy hitter problem is now completely understood with
both space upper and lower bounds determined at Θ(1/ε),
where ε is the approximation error (formally defined later);
please see the recent paper by Cormode and Hadjielefthe-
riou [6] for a comprehensive comparison of the existing al-
gorithms for this problem. For maintaining quantiles, the
best upper bound is due to a sketch structure by Greenwald
and Khanna [15], using space O(1/ε · log(εn)) where n is the
number of items in the stream. It is still an open question
whether this bound can be improved.

Recent years have witnessed an increasing popularity of
another model more general than the streaming model, where
multiple streams are considered. In this model, multiple
streams are received at multiple distributed sites, and again
we would like to continuously track some function f over the
union of all the items that have arrived across all the sites.
Here the most important measure of complexity is the to-
tal communication cost incurred during the entire tracking
period. This model, which is either referred to as the dis-
tributed streaming model or the continuous communication
model, is a natural combination of the classical communi-
cation model [24] and the data stream model. Recall that
the communication model studies the problem of comput-
ing some function f over distributed data using minimum
communication. The data is predetermined and stored at a
number of sites, which communicate with a central coordi-
nator, and the goal is to do a one-time computation of the
function f . Thus the distributed streaming model is more
general as we need to maintain f continuously over time as
items arrive in a distributed fashion.

The rising interest on the distributed streaming model is
mainly due to its many applications in distributed databases,
wireless sensor networks, and network monitoring. As a re-
sult, it has attracted a lot of attention lately in the database
community, resulting in a flurry of research in this area [3,
4, 5, 10, 11, 12, 13, 17, 18, 21, 22, 23]. However, nearly all

works in this area are heuristic and empirical in nature, with
a few exceptions to be mentioned shortly. For many funda-
mental problems in this model, our theoretical understand-
ings are still premature. This is to be contrasted with the
standard streaming model, where theory and practice nicely
blend, and in fact many of the most practically efficient so-
lutions are the direct products of our theoretical findings. In
this paper, we take an important step towards an analyti-
cal study of the distributed streaming model, by considering
the worst-case communication complexity of tracking heavy
hitters and quantiles, arguably two of the most fundamental
problems on data streams.

The distributed streaming model. We now formally
define the distributed streaming model, which is the same
as in most works in this area. Let A = (a1, . . . , an) be a se-
quence of items, where each item is drawn from the universe
U = {1, . . . , u}. The sequence A is observed in order by
k ≥ 2 remote sites S1, . . . , Sk collectively, i.e., item ai is ob-
served by exactly one of the sites at time instance ti, where
t1 < t2 < · · · < tn. Let A(t) be the multiset of items that
have arrived up until time t from all sites. Then the gen-
eral goal is to continuously track f(A(t)) for some function
f at all times t with minimum total communication among
the sites. Note that in the classical communication model,
the goal is to just compute f(A(+∞)); in the data stream
model, the goal is to track f(A(t)) for all t but there is only
one site (k = 1), and we are interested in the space complex-
ity of the tracking algorithm, not communication. Thus, the
distributed streaming model is a natural combination of the
two, but is also significantly different from either.

We define the manner of communication more precisely
as follows. There is a distinguished coordinator C, who will
maintain (an approximate) f(t) at all times. There is a
two-way communication channel between the coordinator
and each of the k sites, but there is no direct communi-
cation between any two sites (but up to a factor of 2, this
is not a restriction). Suppose site Sj receives the item ai at
time ti. Based on its local status, Sj may choose to send a
message to C, which in turn may trigger iterative communi-
cation with other sites. We assume that communication is
instant. When all communication finishes, all the sites who
have been involved may have new statuses, getting ready for
the next item ai+1 to arrive. We will measure the commu-
nication cost in terms of words, and assume that each word
consists of Θ(log u) = Θ(log n) bits. Finally we assume that
n is sufficiently large (compared with k and 1/ε); if n is too
small, a naive solution that transmits every arrival to the
coordinator would be the best.

Heavy hitters and quantiles. By taking different f ’s,
we arrive at different continuous tracking problems. The
notion of ε-approximation also differs for different functions.
We adopt the following agreed definitions in the literature.
In the sequel, we abbreviate A(t) as A when there is no
confusion.

For any x ∈ U , let mx(A) be the number of occurrences
of x in A. For some user specified 0 ≤ φ ≤ 1, the set
of φ-heavy hitters of A is Hφ(A) = {x | mx(A) ≥ φ|A|},
where |A| denotes the total number of items in A. If an
ε-approximation is allowed, then the returned set of heavy
hitters must contain Hφ(A) and cannot include any x such
that mx(A) < (φ − ε)|A|. If (φ − ε)|A| ≤ mx(A) < φ|A|,

then x may or may not be reported. In the heavy hitter
tracking problem, the coordinator should always maintain
an approximate Hφ(A) at all times for a given φ.

For any 0 ≤ φ ≤ 1, the φ-quantile of A is some x ∈ U such
that at most φ|A| items of A are smaller than x and at most
(1 − φ)|A| items of A are greater than x. The quantiles
are also called order statistics in the statistics literature.
In particular, the 1

2
-quantile is also known as the median

of A. If an ε-approximation is allowed, we can return any
φ′-quantile of A such that φ − ε ≤ φ′ ≤ φ + ε. In the
φ-quantile tracking problem, the coordinator needs to keep
an ε-approximate φ-quantile of A at all times for a given
φ. We also consider a more general version of the problem,
where we would like to keep track of all the quantiles ap-
proximately. More precisely, here the “function” f is a data
structure from which an ε-approximate φ-quantile for any φ
can be extracted. Note that such a structure is equivalent
to an (approximate) equal-height histogram, which charac-
terizes the entire distribution.

In particular, from an all-quantile structure, we can easily
obtain the (2ε)-approximate φ-heavy hitters for any φ, as
observed in [5]. Therefore, the all-quantile tracking prob-
lem is more general than either the φ-heavy hitter tracking
problem or the φ-quantile tracking problem. In the rest of
the paper, we omit the word “approximate” when referring
to heavy hitters and quantiles when the context is clear.

Previous works. Various f ’s have been considered un-
der the distributed tracking streaming model. The simplest
case f(A) = |A| just counts the total number of items re-
ceived so far across all the sites. This problem can be eas-
ily solved with O(k/ε · log n) communication where each
site simply reports to the coordinator whenever its local
count increases by a 1 + ε factor [17]. The other important
single-valued statistics are the frequency moments: Fp(A) =P

x(mx(A))p. F0 is the number of distinct items, and can
be tracked with cost O(k/ε2 · log n log n

δ
) [9]; F2 is also

the self-join size, and can be tracked with cost O((k2/ε2 +

k3/2/ε4) log n log kn
εδ

) [9]. Some heuristic approaches based
on predicting future arrivals of items have been proposed in
[10, 4].

Heavy hitters and quantiles can better capture the dis-
tribution of data than single-valued statistics like the fre-
quency moments, and they have also been studied under the
distributed streaming framework. Babcock and Olston [3]
designed some heuristics for the top-k monitoring problem,
where the goal is to track the k most frequent items (whose
frequency may not be larger than φ|A|). Their techniques
can be adapted to tracking the heavy hitters [13], but the
approach remains heuristic in nature. Manjhi et al. [18] also
studied the heavy hitter tracking problem, but their commu-
nication model and the goal are different: They organize the
sites in a tree structure and the goal is to minimize the com-
munication only at the root node. The all-quantile tracking
problem has been studied by Cormode et al. [5], who gave
an algorithm with cost O(k/ε2 · log n). As commented ear-
lier, this also implies a heavy hitter tracking algorithm with
the same cost. This remains the best communication upper
bound for both problems to date. No lower bound is known.

Our results. Our main results in this paper are the match-
ing upper and lower bounds on the communication cost for
deterministic algorithms for both the heavy hitter tracking

problem and the quantile tracking problem. Specifically, we
show that for any φ, both the φ-heavy hitters (Section 2) and
the φ-quantile (Section 3) can be tracked with total commu-
nication cost O(k/ε·log n). This improves upon the previous
result of [5] by a Θ(1/ε) factor. We also give matching lower
bounds for both problems, showing that our tracking pro-
tocols are optimal in terms of communication. Note that in
the classical communication model, we can easily do a one-
shot computation of the φ-heavy hitters and the φ-quantile
easily with cost O(k/ε), as observed in [5]. Interestingly, our
results show that requiring the heavy hitters and quantiles
to be tracked at all times indeed increases the communi-
cation complexity, but only by a Θ(log n) factor. In Sec-
tion 4, we give an algorithm that tracks all quantiles with
cost O(k/ε · log2 1

ε
log n). Because this problem is more diffi-

cult than the single-quantile problem, it has the same lower
bound of Ω(k/ε · log n) as the latter. Thus, our all-quantile
tracking algorithm is also optimal up to a Θ(polylog 1

ε
) fac-

tor.
In this paper we will focus on the communication cost (or

simply the cost) while ignoring the memory requirements
and running times at the sites as well as the coordinator.
In particular, we will assume that each site can remember
the exact counts of all the items it has received. This is,
however, mainly for the convenience of presentation. All
our algorithms can be in fact implemented both space- and
time-efficiently. The observation is that instead of remem-
bering the exact counts, it is sufficient for a site to maintain
the Θ(ε)-approximations for these counts. Correspondingly
we just need to modify the constants in our algorithms ap-
propriately.

2. TRACKING THE HEAVY HITTERS

2.1 The upper bound

The algorithm. Let m be the current size of A. First, the
coordinator C always maintains C.m, an ε-approximation of
m. This can be achieved by letting each site send its local
count every time it has increased by a certain amount (to
be specified shortly). Each site Sj maintains the exact fre-
quency of each x ∈ U at site Sj , denoted mx,j , at all times.
The overall frequency of x is mx =

P
j mx,j . Of course, we

cannot afford to keep track of mx exactly. Instead, the coor-
dinator C maintains an underestimate C.mx,j of mx,j , and
sets C.mx =

P
j C.mx,j as an estimate of mx. Sj will send

its local increment of mx,j to C, hence updating C.mx,j ,
from time to time following certain rules to be specified
shortly. In addition, each site Sj maintains Sj .m, an es-
timate of m, a counter Sj .∆(m), denoting the increment of
Sj .m since its last communication to C about Sj .m, as well
as a counter Sj .∆(mx) for each x, denoting the increment
of Sj .mx since its last communication to C about mx,j .

We can assume that the system starts with m = k/ε items;
before that we could simply send each item to the coordina-
tor. So when the algorithm initiates, all the estimates are
exact. We initialize Sj .∆(m) and Sj .∆(mx) for all x to be 0.
The protocols of tracking the φ-heavy hitters are as follows.

1. Each site Sj: When a new item of x arrives, Sj .∆(m)
and Sj .∆(mx) are incremented by 1. When Sj .∆(m)
(resp. Sj .∆(mx)) reaches (ε ·Sj .m)/3k, site Sj sends a
message (all, (ε ·Sj .m)/3k) (resp. (x, (ε ·Sj .m)/3k)) to

the coordinator, and resets Sj .∆(m) (resp. Sj .∆(mx))
to 0.

2. Coordinator C: When C has received a message (all, (ε·
Sj .m)/3k) or (x, (ε · Sj .m)/3k), it updates C.m to
C.m + (ε · Sj .m)/3k or C.mx to C.mx + (ε · Sj .m)/3k,
respectively. Once C has received k signals in the
forms of (all, (ε ·Sj .m)/3k), it collects the local counts
from each site to compute the exact value of m, sets
C.m = m, and then broadcasts C.m to all sites. Then
each site Sj updates its Sj .m to m. After getting a
new Sj .m, Sj also resets Sj .∆(m) to 0.

Finally, at any time, the coordinator C declares an item
x to be a φ-heavy hitter if and only if

C.mx

C.m
≥ φ +

ε

2
. (1)

Correctness. To prove correctness we first establish the
following invariants maintained by the algorithm.

mx − εm

3
+ k ≤ C.mx ≤ mx, (2)

m− εm

3
+ k ≤ C.m ≤ m. (3)

The second inequalities of both (3) and (2) are obvious.
The first inequality of (2) is valid since once a site Sj gets
(ε · Sj .m)/3k items of x, it sends a message to the coordi-
nator and the coordinator updates C.mx accordingly. Thus
the maximum error of C.m in the coordinator is at mostPk

j=1(
ε·Sj .m

3k
− 1) ≤ εm

3
− k. The first inequality of (3) fol-

lows from a similar reason. Combining (2) and (3), we have

mx

m
− ε

3
<

C.mx

C.m
<

mx

m
· 1

1− ε/3
<

mx

m
+

ε

2
,

which guarantees that the approximate ratio C.mx
C.m

is within
ε/2 of mx

m
, thus classifying an item using (1) will not generate

any false positives or false negatives.

Analysis of communication complexity. We divide the
whole tracking period into rounds. A round start from the
time when the coordinator finishes a broadcast of C.m to
the time when it initiates the next broadcast. Since the
coordinator initiates a broadcast after C.m is increased by
a factor of 1 +

Pk
i=1(ε/3k) = 1 + ε/3, the number of rounds

is bounded by

log1+ε/3 n = O

„
log n

ε

«
.

In each round, the number of messages in the form of
(all, (ε·Sj .m)/3k) sent by all the sites is k by the definition of
our protocol. Since there are O(log n/ε) rounds in total, the
number of messages in the form of (all, (ε ·Sj .m)/3k) can be
bounded by O(k/ε·log n). On the other hand, it is easy to see
that total number of messages of the form (x, (ε ·Sj .m)/3k)
is no more than the total number of messages of the form
(all, (ε · Sj .m)/3k). Therefore, the total cost of the whole
system is bounded by O(k/ε · log n).

Theorem 2.1 For any ε ≤ φ ≤ 1, there is a deterministic
algorithm that continuously tracks the φ-heavy hitters and
incurs a total communication cost of O(k/ε · log n).

Implementing with small space. In the algorithm de-
scribed above, we have assumed that each site maintains
all of its local frequencies Sj .mx exactly. In fact, it is not
difficult to see that our algorithm still works if we replace
these exact frequencies with a heavy hitter sketch, such as
the space-saving sketch [20], that maintains the local ε′-
approximate frequencies for all items for some ε′ = Θ(ε).
More precisely, such a sketch gives us an approximate Sj .mx

for any x ∈ U with absolute error at most ε′|Sj |, where |Sj |
denotes the current number of items received at Sj so far.
We need to adjust some of the constants above, but this does
not affect our asymptotic results. By using such a sketch
at each site, our tracking algorithm can be implemented in
O(1/ε) space per site and amortized O(1) time per item.

2.2 The lower bound
To give a lower bound on the total communication cost

that any deterministic tracking algorithm must take, we first
consider the number of changes that the set of heavy hitters
could experience, where a change is defined to be the tran-
sition of the frequency of an item from above φ|A| to below
(φ − ε)|A|, or the other way round. Then we show that to
correctly detect each change, the system must exchange at
least a certain amount of messages. The following lemma
could be established by construction.

Lemma 2.2 For any φ > 3ε, there is a sequence of item ar-
rivals such that the set of heavy hitters in the whole tracking
period will have Ω(log n/ε) changes.

Proof. Set ε′ = 2ε. We construct two groups of l =
1/(2φ− ε′) items each: S0 = {t1, t2, . . . , tl} and S1 = {tl+1,
tl+2, . . . , t2l}. Since we only care about the total number of
changes of the set of heavy hitters during the whole tracking
period, we temporarily treat the whole system as one big
site and items come one by one. We will construct an input
sequence under which the set of heavy hitters will undergo
Ω(log n/ε) changes.

We still divide the whole tracking period to several rounds,
and let mi denote the total number of items when round i
starts. The following invariant will be maintained through-
out the construction:

Let b = i mod 2. When round i starts, all items t ∈
Sb have frequency φmi, and all items t ∈ S1−b have
frequency (φ− ε′)mi.

It can be verified that the total frequency of all items is
indeed mi. Note that from the start of round i to the
end of round i, all the non-heavy hitters become heavy
hitters, and all the heavy hitters become non-heavy hit-
ters. In what follows we only care about the changes of the
former type, which lower bounds the number of changes.
To maintain the invariant for round i + 1, we construct
item arrivals as follows. Without loss of generality, suppose

S1−b = {t1, t2, . . . , tl}. Let β = ε′(2φ−ε′)
φ−ε′ . We first generate

βmi copies of t1, and then βmi copies of t2, . . . , then βmi

copies of tl, in sequence. After these items we end round
i and start round i + 1. At this turning point, the total
number of items is

mi+1 = mi + l · βmi =
φ

φ− ε′
mi.

Now the frequency of each item in the set S1−b is

(φ− ε′)mi + βmi = φ · φ

φ− ε′
mi = φmi+1,

and the frequency of each item in Sb remains the same, that
is, φmi = (φ− ε′)mi+1. Now we have restored the invariant
and can start round i + 1.

Finally, we bound the number of rounds. Since the to-
tal number of items mi increases by a φ/(φ − ε′) factor in
each round, the total number of rounds is Θ(log φ

φ−ε′
n).

Consequently, the total number of changes in the set of
heavy hitters (from non-heavy hitters to heavy hitters) is

l ·Θ(log φ
φ−ε′

n) = Ω(1
φ−ε

· φ−ε′
ε′ log n) = Ω(log n/ε).

Now we go back to the distributed scenario and consider
the cost of communication for “recognizing” each change.
Because we allow some approximation when classifying heavy
hitters and non-heavy hitters, the valid time to report a
change is actually a time interval, from the time when its
frequency just passes (φ − ε)|A| to the time when its fre-
quency reaches φ|A|. As long as the tracking algorithm sig-
nals the change within this interval, the algorithm is consid-
ered to be correct. Consider the construction in the proof of
Lemma 2.2. In round i, the transition interval from a non-
heavy hitter to a heavy hitter for an item t must lie inside
the period in which the βmi copies of t arrive. Below we will
show that in order for the coordinator to signal the change
within this period, Ω(k) messages have to be exchanged in
the worst case using an adversary argument.

Before presenting the lower bound proof, let us be more
precise about the computation model. Recall that in the in-
troduction, the model forbids a site to spontaneously initiate
communication or change its local status; actions can only
be triggered as a result of the arrival of an item at this site, or
in response to the coordinator. Note that for deterministic
algorithms this is not a restrictive assumption. In our case,
since we only care about the frequency of a particular item
t increasing from mi to mi +βmi, we may assume that each
site Sj has a triggering threshold nj , meaning that Sj will
only initiate communication when the number of copies of t
received by Sj is nj . When all the communication triggered
by the arrival of an item finishes, all the sites that have par-
ticipated are allowed to update their triggering thresholds,
but the rest of the sites must retain their old thresholds.

Lemma 2.3 To correctly recognize a change in the heavy
hitters under the input constructed in the proof of lemma 2.2,
any deterministic algorithm has to incur a communication
cost of Ω(k).

Proof. We will construct an adversary who will send
the βmi copies of t to the sites in a way such that at least
Ω(k) sites must communicate with the coordinator. Since we
are dealing with deterministic algorithms, we may assume
that the adversary knows the triggering thresholds nj at any
time.

Initially, we must have

kX
j=1

(nj − 1) < βmi. (4)

Otherwise, the adversary can send nj − 1 copies to Sj for
all j without triggering any communication, and make the

algorithm miss the change. Therefore there must be some j
such that nj ≤ βmi/k + 1 ≤ 2βmi/k. The adversary first
sends 2βmi/k copies of t to Sj . Sj will then communicate
with the coordinator at least once. After the first 2βmi/k
copies, the new triggering thresholds must still satisfy (4).
Similarly, there is some nj′ ≤ 2βmi/k, and the adversary
will send another 2βmi/k copies of t to Sj′ . Such a process

can be repeated for βmi
2βmi/k

= Ω(k) times, triggering at least

Ω(k) messages of communication.

Our lower bound follows immediately from Lemma 2.2
and Lemma 2.3, for the reason that the tracking algorithm
has to correctly and continuously maintain the whole set of
heavy hitters.

Theorem 2.4 Any deterministic algorithm that continuously
tracks the φ-heavy hitters has to incur a total communication
cost of Ω(k/ε · log n), for any φ > 3ε.

Remark. Note that our lower bound above is actually lower
bound on the number of messages required. Also recall that
our algorithm in Section 2.1 sends O(k/ε·log n) messages and
each message if of constant size. Our lower bound implies
that one cannot hope to reduce the number of messages by
making each of them longer.

3. TRACKING THE MEDIAN
In this section we first present an algorithm to track any φ-

quantile for 0 ≤ φ ≤ 1. For ease of presentation we describe
how to track the median (the 1/2-quantile); the generaliza-
tion to any φ-quantile is straightforward. Then we give a
matching lower bound.

3.1 The upper bound
For simplicity we assume that all the items in A are dis-

tinct; issues with ties can be easily resolved by standard
techniques such as symbolic perturbation. We divide the
whole tracking period into O(log n) rounds; whenever |A|
doubles, we start a new round. In the following we focus
on one round, and show that our median-tracking algorithm
has a communication cost of O(k/ε).

Let m be the cardinality of A at the beginning of a round.
Note that m is fixed throughout a round and we always
have m ≤ |A|. The main idea of our algorithm is to main-
tain a dynamic set of disjoint intervals in the coordinator
(by maintaining a set of separating items), such that each
interval contains between ε

8
m and ε

2
m items. We first show

that if we have such a set of intervals, the median can be
tracked efficiently. Afterward we discuss how to maintain
these intervals.

Let M denote the approximate median that is kept at
the coordinator. We maintain two counters C.∆(L) and
C.∆(R), counting the number of items that have been re-
ceived at all sites to the left and the right of M , respectively.
These two counters are maintained as underestimates with
an absolute error at most ε

8
m, by asking each site to send

in an update whenever it has received ε
8k

m items to the left
or right of M . So the cost of maintaining them is O(k/ε).

Whenever |C.∆(L) − C.∆(R)| ≥ ε
2
m, we update M as

follows.

1. Compute C.L and C.R as the total number of items to

the left and the right of M . W.l.o.g., suppose C.L >
C.R and let d = (C.L− C.R)/2.

2. Compute a new median M ′ such that |r(M)−r(M ′)−
d| ≤ ε

4
m where r(M) is the rank of M in A. Update M

to M ′. Note that M ′ is at most ε
4
m items away from

the exact median. We will describe how to compute
such an M ′ shortly.

3. Reset C.∆(L) and C.∆(R) to 0.

For the correctness of the algorithm, we can show that
our tracking algorithm always maintains an approximate
median that is at most ε

4
m + 3ε

4
m = εm items away from

the exact median. The first term ε
4
m is due to the fact

that whenever we update M , M is within an error of at
most ε

4
m to the exact median. The second term 3ε

4
m ac-

counts for the error introduced by the triggering condition
|C.∆(L)−C.∆(R)| monitored in the coordinator. Note that
we keep both C.∆(L) and C.∆(R) within an additive error
of at most ε

8
m and whenever |C.∆(L)−C.∆(R)| ≥ ε

2
m, we

initiate an update. Therefore, the total error introduced is
at most 2 · ε

8
m + ε

2
m = 3ε

4
m.

Now we analyze the communication cost. Step 1 could be
done by exchanging O(k) messages. For step 2, first note
that d ≤ εm since by the reasoning above, M is still an
ε-approximate median. Next, we can find M ′ quickly with
the help of the set of intervals. We start by finding the first
separating item Y1 of the intervals to the left of M , and then
collect information from all sites to compute the number of
items in the interval [Y1, M], say n1. If |n1 − d| ≤ ε

2
m, we

are done; otherwise we go on to pick the second separating
item Y2 to the left of M , and check if |n2 − d| ≤ ε

2
m, where

n2 is the number of items in the interval [Y2, M]. It is easy
to see that after at most O(1) such probes, we can find an
item Y such that the rank difference between Y and the
exact median is no more than ε

2
m. Note that the cost of

each probe is O(k) thus the total cost of step 2 is O(k).
Finally, we update M at most O(1/ε) times within a single
round, since each update increases |A| by at least a factor of
1 + ε

2
. To sum up, the total cost of the algorithm within a

round is O(k/ε) provided that the dynamic set of intervals
are maintained.

Maintaining the set of intervals. When a new round
starts, we initialize the set of intervals as follows: Each site
Sj (1 ≤ j ≤ k) computes a set of intervals, each containing
ε|Aj |
32

items, where Aj stands for the set of items Sj has re-
ceived, and then sends the set of intervals to the coordinator
(by sending those separating items). Then the coordinator
can compute the rank of any x ∈ U with an error of at mostPk

j=1
ε
32
|Aj | = ε

32
m, therefore it can compute a set of in-

tervals, each of which contains at least ε
8
m and at most ε

4
m

items. After the coordinator has built the set of intervals,
it broadcasts them to all the k sites, and then computes the
exact number of items in each interval. The cost of each
rebuilding is O(k/ε).

During each round, each site Sj maintains a counter for
each interval as new items arrive. And whenever the local
counter of items in some interval I has increased by ε

4k
m,

it sends a message to the coordinator and the coordinator
updates the count for interval I accordingly. Whenever the
count of some interval in the coordinator C reaches ε

4
m,

the coordinator splits the interval into two intervals, each

of which containing at least ε
8
m and at most ε

4
m items.

To perform such a split, we can again call the rebuilding
algorithm above, except that the rebuilding is only applied
to the interval I, so the cost is only O(k).

The correctness of algorithm is obvious. The total com-
munication cost of interval splits is O(k/ε) in each round,
since there are at most O(1/ε) splits and each split incurs a
communication cost O(k).

Theorem 3.1 There is a deterministic algorithm that con-
tinuously tracks the ε-approximate median (and generally,
any φ-quantile (0 ≤ φ ≤ 1)) and incurs a total communica-
tion cost of O(k/ε · log n).

Implementing with small space. Similar to our heavy
hitter tracking algorithm, instead of maintaining the inter-
vals exactly at each site, we can again deploy a sketch that
maintains the approximate ε′-quantiles for some ε′ = Θ(ε)
to maintain these intervals approximately. Suppose we use
the Greenwald-Khanna sketch [15], then we can implement
our φ-quantile tracking algorithm with O(1/ε·log(εn)) space
per site and amortized O(log n) time per item.

3.2 The lower bound
The idea of the proof of the lower bound is similar as that

for the heavy hitters. We try to construct a sequence of
input with the following properties.

1. The median will change at least Ω(log n/ε) times.

2. To correctly recognize each update, any deterministic
algorithm has to incur a communication cost of Ω(k).

Consider the following construction. The universe con-
sists of only two items 0 and 1. We divide the whole track-
ing period to several rounds and let mi be the number of
items at the beginning of round i. We maintain the fol-
lowing invariant: When round i starts, the frequency of
item b is (0.5 − 2ε)mi and the frequency of item 1 − b is
(0.5 + 2ε)mi, where b = i mod 2. This could be done by
inserting 4ε

0.5−2ε
mi copies of b during round i and then start

a new round. It is easy to see that there will be at least
Ω(log n/ε) rounds and the median will change at least once
during each round, therefore the total number of changes of
the median is Ω(log n/ε). For the second property, we can
invoke the same arguments as that for Lemma 2.3. Combin-
ing the two properties, we have the following.

Theorem 3.2 Any deterministic algorithm that continuously
tracks the approximate median has to incur a total commu-
nication cost of Ω(k/ε · log n).

4. TRACKING ALL QUANTILES
In this section, we give a tracking algorithm so that the

coordinator C always tracks the ε-approximate φ-quantiles
for all 0 ≤ φ ≤ 1 simultaneously. We will solve the following
equivalent problem: The coordinator is required to maintain
a data structure from which we can extract the rank r(x)
for any x ∈ U in A with an additive error at most ε|A|. We
still assume that all items in A are distinct.

We divide the whole tracking period into O(log n) rounds.
In each round |A| roughly doubles. We will show that the

algorithm’s cost in each round is O(k/ε · log2 1
ε
). The algo-

rithm restarts itself at the beginning of each round, there-
fore the total communication of the algorithm will be O(k/ε·
log n log2 1

ε
).

The data structure. Let m be the cardinality of A at
the beginning of a round. The data structure is a binary
tree T with Θ(1/ε) leaves. The root r of T corresponds to
the entire A. It stores a splitting element xr which is an
approximate median of A, i.e., it divides A into two parts,
either of which contains at least (1

2
− α)|A| and at most

(1
2

+ α)|A| items, for some constant 0 < α < 1
2
. Then

we recursively build r’s left and right subtrees on these two
parts respectively, until there are no more than εm/2 items
left. It is clear that T has Θ(1/ε) nodes in total, and has
height at most h = log 1

2+α
ε
2

= Θ(log 1
ε
), though it is not

necessarily balanced. Each node in T is naturally associated
with an interval. Let Iu be the interval associated with u.
Then Ir is the entire U ; suppose v and w are u’s children,
then Iu is divided into Iv and Iw by xu. Set θ = ε

2h
. Each

node u of T is in addition associated with su, which is an
underestimate of |A ∩ Iu| with an absolute error of at most
θm, i.e., |A ∩ Iu| − θm ≤ su ≤ |A ∩ Iu|. Please see Figure 1
for an illustration of the data structure.

If the coordinator has such a data structure, it is not dif-
ficult to see that we can compute the rank of x with an
absolute error of at most εm. For a given x, we first search
down the binary tree and locate the leaf v such that x ∈ Iv.
As we go along the root-to-leaf path, whenever we follow
a right child, we add up the su of its left sibling. In the
end we add up h such partial sums, each contributing an
error of at most θm, totaling θm · h = εm/2. Finally, since
|A ∩ Iv| < εm/2, the sum of all the su’s for the preceding
intervals of x is off by at most εm from the actual rank of x.

Initialization. At the beginning of each round, we initial-
ize the data structure similarly as in Section 3. Suppose
the set of items at Sj is Aj . Each site Sj builds its own
structure Sj .T , but with ε/32 as the error parameter, and
ships to C. This costs a communication of O(k/ε). Note
that Sj .T allows one to extract the rank of any x within
Aj with an error of ε/32 · |Aj |. By querying each Sj .T , the
coordinator can compute the rank of any x with an error ofPk

i=1
ε
32
|Ai| = ε

32
m, which is enough for the coordinator to

build its own C.T . In particular, all the splitting elements
can be chosen to be within a distance of ε

32
m to the real me-

dian. After building C.T , the coordinator broadcasts it to
all the sites, costing communication O(k/ε). Now each site
Sj knows how U is subdivided into those Θ(1/ε) intervals
represented by the binary tree T . Then for each interval
Iu, it computes |Aj ∩ Iu| and sends the count to C, so that
the coordinator has all the exact partial sums su to start
with. It is easy to see that the total communication cost for
initializing the data structure is O(k/ε).

Maintaining the partial sums. As items arrive, each site
Sj monitors all the intervals Iu in T . For each Iu, every time
the local count of items in Iu at Sj has increased by θm/k,
it sends an updated local count to C. Thus in the worst
case, each site is holding (θm/k − 1) items that have not
been reported, leading to a total error of at most θm. The
cost of these messages can be bounded as follows. When Sj

sends a new count for some interval Iu, we charge the cost to

each leaf contains
Θ(ǫm) elements

approximate count with
absolute error < ǫm/ log(1/ǫ)

approximate median: either half
contains at least 1/4 of the elements

Figure 1: The data structure that can be used to extract the rank of any x with absolute error < εm.

the θm/k new items that have arrived since the last message
for Iu, O(k/(θm)) each. Since each item contributes to the
counts of at most h intervals, it is charged O(h) times, so
the total cost charged to one item is O(kh

θm
). There are a

total of O(m) items in a single round, so the overall cost is
O(kh/θ) = O(k/ε · log2 1

ε
).

Maintaining the splitting elements. The maintenance
algorithm above ensures that all the su are within the desired
error bound. We still need to take care of all the splitting
elements, making sure that they do not deviate from the real
medians too much. Specifically, when we build T , for any u
with children v and w, we ensure that

3

8
|A ∩ Iu| ≤ |A ∩ Iv| ≤ 5

8
|A ∩ Iu|. (5)

This property can be easily established during initialization,
since |A ∩ Iu| > ε

2
m for any internal node u of T , and we

can estimate |A ∩ Iv| with an error of ε
32

m. In the middle
of the round, we maintain the following condition:

1

4
su ≤ sv ≤ 3

4
su. (6)

Recall that su (resp. sv) is an estimate of |A ∩ Iu| (resp.
|A ∩ Iv|) with an error of at most θm. As long as (6) holds,
we have

1

4
(|A ∩ Iu| − θm) ≤ 1

4
su ≤ sv ≤ |A ∩ Iv|+ θm.

Rearranging,

|A∩Iv | ≥ 1

4
|A∩Iu|−5

4
· ε

2h
m ≥ 1

4
|A∩Iu|−5

4
· 1
h
|A∩Iu| ≥ 3

32
|A∩Iu|,

for h ≥ 8. (Note that assuming h larger than any constant
does not affect our asymptotic results.) Similarly, we also
have |A ∩ Iv| ≤ 29

32
|A ∩ Iu|. Thus condition (6) ensures that

the height of T is bounded by h = Θ(log 1
ε
).

Whenever (6) is violated, we do a partial rebuilding of
the subtree rooted at u to restore this condition. If multiple
conditions are violated at the same time, we rebuild at the
highest such node. To rebuild the subtree rooted at u, we
apply our initialization algorithm, but only for the range Iu.

This incurs a cost of O(k |A∩Iu|
εm

), since we are essentially
building a new data structure on |A ∩ Iu| elements with

error parameter ε′ = εm/|A∩ Iu|. After rebuilding, we have
restored (5) for u and all its descendants.

It remains to bound the cost of the partial rebuildings.
Similarly as before, we can show that when (6) is violated,
we must have

|A ∩ Iv| < 21

64
|A ∩ Iu|, (7)

or

|A ∩ Iv| > 43

64
|A ∩ Iu|, (8)

assuming h ≥ 16. Note that both |A ∩ Iv| and |A ∩ Iu|
may increase. From (5) to (7), |A ∩ Iu| must increase by
Ω(|A ∩ Iv|) = Ω(|A ∩ Iu|); from (5) to (8), |A ∩ Iv| must
increase by Ω(|A ∩ Iu|), which implies that |A ∩ Iu| must
also increase by Ω(|A ∩ Iu|) since Iv ⊂ Iu. This means
that between two partial rebuildings of u, |A ∩ Iu| must
have increased by a constant factor. Thus, we can charge
the rebuilding cost of u to the Ω(|A ∩ Iu|) new items that
have arrived since the last rebuilding, O(k/(εm)) each. Since
each item is contained in the intervals of O(h) nodes, it is
charged a cost of O(hk/(εm)) in total. Therefore, the total
cost of all the partial rebuildings in this round is O(hk/ε) =
O(k/ε · log 1

ε
).

Maintaining the leaves. Finally, we need to make sure
that |A ∩ Iv| ≤ ε

2
m for each leaf v as required by the data

structure. During initialization, we can easily ensure that
1
8
εm ≤ |A ∩ Iv| ≤ 3

8
εm. During the round, the coordinator

monitors sv, and will split v by adding two new leaves below
v whenever sv > (ε

2
− θ)m. Since sv has error at most

θm, this splitting condition will ensure that |A ∩ Iv| ≤ ε
2
m.

To split v, we again call our initialization algorithm on the

interval Iv, incurring a cost of O(k |A∩Iv|
εm

) = O(k). Since we
create at most O(1/ε) leaves in this entire round, the total
cost for all the splittings is O(k/ε).

Putting everything together, we obtain the following re-
sult.

Theorem 4.1 There is a deterministic algorithm that con-
tinuously tracks the φ-quantiles for all 0 ≤ φ ≤ 1 simul-
taneously and incurs a total communication cost of O(k/ε ·
log n log2 1

ε
).

Implementing with small space. Similar as before, in-
stead of maintaining the counts in the intervals associated
with T exactly at each site, we can again deploy a sketch that
maintains the approximate ε′-quantiles for some ε′ = Θ(θ)
to maintain these intervals approximately. Suppose we use
the Greenwald-Khanna sketch [15], then we can implement
our all-quantile tracking algorithm with O(1/θ · log(θn)) =
O(1/ε · log 1

ε
log(εn)) space per site and amortized O(log n)

time per item.

5. OPEN PROBLEMS
We have restricted ourselves to deterministic algorithms

in the paper. If randomization is allowed, simple random
sampling can be used to achieve a cost of O((k + 1/ε2) ·
polylog(n, k, 1/ε)) for tracking both the heavy hitters and
the quantiles. This observation has been well exploited in
maintaining the heavy hitters and quantiles for a single stream
when both insertions and deletions are present (see e.g. [14]).
This breaks the deterministic lower bound for ε = ω(1/k).
It is not known if randomization can still help for smaller ε.
Another possible direction is to design algorithms to track
the heavy hitters and quantiles within a sliding window in
the distributed streaming model or even allowing arbitrary
insertion and deletion of items.

6. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
Journal of Computer and System Sciences,
58:137–147, 1999. See also STOC’96.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. ACM Symposium on Principles of Database
Systems, 2002.

[3] B. Babcock and C. Olston. Distributed top-k
monitoring. In Proc. ACM SIGMOD International
Conference on Management of Data, 2003.

[4] G. Cormode and M. Garofalakis. Sketching streams
through the net: Distributed approximate query
tracking. In Proc. International Conference on Very
Large Databases, 2005.

[5] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In
Proc. ACM SIGMOD International Conference on
Management of Data, 2005.

[6] G. Cormode and M. Hadjieleftheriou. Finding
frequent items in data streams. In Proc. International
Conference on Very Large Databases, 2008.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Space- and time-efficient deterministic
algorithms for biased quantiles over data streams. In
Proc. ACM Symposium on Principles of Database
Systems, 2006.

[8] G. Cormode and S. Muthukrishnan. What’s hot and
what’s not: tracking most frequent items dynamically.
In Proc. ACM Symposium on Principles of Database
Systems, 2003.

[9] G. Cormode, S. Muthukrishnan, and K. Yi.
Algorithms for distributed functional monitoring. In
Proc. ACM-SIAM Symposium on Discrete Algorithms,
2008.

[10] G. Cormode, S. Muthukrishnan, and W. Zhuang.
What’s different: Distributed, continuous monitoring
of duplicate-resilient aggregates on data streams. In
Proc. IEEE International Conference on Data
Engineering, pages 20–31, 2006.

[11] G. Cormode, S. Muthukrishnan, and W. Zhuang.
Conquering the divide: Continuous clustering of
distributed data streams. In Proc. IEEE International
Conference on Data Engineering, 2007.

[12] A. Deshpande, C. Guestrin, S. R. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In Proc. International
Conference on Very Large Databases, 2004.

[13] R. Fuller and M. Kantardzic. FIDS: Monitoring
frequent items over distributed data streams. In
MLDM, 2007.

[14] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss. How to summarize the universe:
Dynamic maintenance of quantiles. In Proc.
International Conference on Very Large Databases,
2002.

[15] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. ACM
SIGMOD International Conference on Management of
Data, 2001.

[16] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A
simple algorithm for finding frequent elements in
streams and bags. ACM Transactions on Database
Systems, 2003.

[17] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of
thresholded counts. In Proc. ACM SIGMOD
International Conference on Management of Data,
2006.

[18] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and
C. Olston. Finding (recently) frequent items in
distributed data streams. In Proc. IEEE International
Conference on Data Engineering, 2005.

[19] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. International
Conference on Very Large Databases, 2002.

[20] A. Metwally, D. Agrawal, and A. E. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM
Transactions on Database Systems, 2006.

[21] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
Proc. ACM SIGMOD International Conference on
Management of Data, 2003.

[22] C. Olston and J. Widom. Efficient monitoring and
querying of distributed, dynamic data via approximate
replication. IEEE Data Engineering Bulletin, 2005.

[23] I. Sharfman, A. Schuster, and D. Keren. Shape
sensitive geometric monitoring. In Proc. ACM
Symposium on Principles of Database Systems, 2008.

[24] A. C. Yao. Some complexity questions related to
distributive computing. In Proc. ACM Symposium on
Theory of Computation, 1979.

