
Randomized Algorithms for Tracking Distributed Count,
Frequencies, and Ranks∗

Zengfeng Huang Ke Yi

Hong Kong University of Science and Technology
{huangzf, yike}@cse.ust.hk

Qin Zhang

MADALGO, University of Aarhus
qinzhang@cs.au.dk

ABSTRACT

We show that randomization can lead to significant improve-
ments for a few fundamental problems in distributed track-
ing. Our basis is the count-tracking problem, where there are
k players, each holding a counter ni that gets incremented
over time, and the goal is to track an ε-approximation of
their sum n =

P

i ni continuously at all times, using mini-
mum communication. While the deterministic communica-
tion complexity of the problem is Θ(k/ε · log N), where N is
the final value of n when the tracking finishes, we show that
with randomization, the communication cost can be reduced
to Θ(

√
k/ε · log N). Our algorithm is simple and uses only

O(1) space at each player, while the lower bound holds even
assuming each player has infinite computing power. Then,
we extend our techniques to two related distributed track-
ing problems: frequency-tracking and rank-tracking, and ob-
tain similar improvements over previous deterministic algo-
rithms. Both problems are of central importance in large
data monitoring and analysis, and have been extensively
studied in the literature.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms

Algorithms, theory

Keywords

Distributed tracking

1. INTRODUCTION
We start with a very basic problem in distributed track-

ing, what we call count-tracking. There are k players each

∗This work is supported by a DAG and an RPC grant from
HKUST and a Google Faculty Research Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’12,May 21–23, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1248-6/12/05 ...$10.00.

holding a counter ni that is initially 0. Over time, the coun-
ters get incremented and we denote by ni(t) the value of the
counter ni at time t. The goal is to track an ε-approximation
of the total count n(t) =

P

i ni(t), i.e., an n̂(t) such that
(1 − ε)n(t) ≤ n̂(t) ≤ (1 + ε)n(t),1 continuously at all times.
There is a coordinator whose job is to maintain such an
n̂(t), and will try to do so using minimum communication
with the k players (the formal model of computation will be
defined shortly).

There is a trivial solution to the count-tracking problem:
Every time a counter ni has increased by a 1 + ε factor, the
player informs the coordinator of the change. Thus, the co-
ordinator always has an ε-approximation of every ni, hence
an ε-approximation of their sum n. Letting N denote the fi-
nal value of n, simple analysis shows that the communication
cost of this algorithm is O(k/ε · log N).2 This algorithm was
actually used in [15] for solving essentially the same problem,
which also provided many practical motivations for study-
ing this problem. Note that this algorithm is deterministic
and only uses one-way communication (from the players to
the coordinator), and yet it turns out this simple algorithm
is already optimal for deterministic algorithms, even if two-
way communication is allowed [28]. Thus the immediate
questions are: What about randomized algorithms that are
allowed to fail with a small probability? Is two-way com-
munication not useful at all? In this paper, we set out to
address these questions, and then move on to consider other
related distributed tracking problems.

1.1 The distributed tracking model
We first give a more formal definition of the computation

model that we will work with, which is essentially the same
as those used in prior work on distributed tracking [2, 3, 5,
6, 8, 9, 15, 28]. There are k distributed sites S1, . . . , Sk, each
receiving a stream of elements over time, possibly at vary-
ing rates. Let N be the total number of elements in all k
streams. We denote by Ai(t) the multiset (bag) of elements

received by Si up until time t, and let A(t) =
Uk

i=1 Ai(t) be
the combined data set, where ⊎ denotes multiset addition.
There is a coordinator whose job is to maintain (an approx-
imation of) f(A(t)) continuously at all times, for a given
function f (e.g., f(A(t)) = |A(t)| for the count-tracking
problem above). The coordinator has a direct two-way com-
munication channel with each of the sites; note that broad-

1We sometimes omit “(t)” when the context is clear.
2A more careful analysis leads to a slightly better bound of
O(k/ε · log(εN/k)), but we will assume that N is sufficiently
large, compared to k and 1/ε, to simplify the bounds.

casting a message costs k times the communication for a
single message. The sites do not communicate with each
other directly, but this is not a limitation since they can
always pass messages via the coordinator. We assume that
communication is instant, i.e., no element will arrive until
all parties have decided not to send more messages. As in
prior work, our measures of complexity will be the commu-
nication cost and the space used to process each stream.
Unless otherwise specified, the unit of both measures is a
word, and we assume that any integer less than N , as well
as an element from the stream, can fit in one word.

This model was initially abstracted from many applied
settings, ranging from distributed data monitoring, wireless
sensor networks, to network traffic analysis, and has been
extensively studied in the database community. From 2008
[8], the model has started to attract interests from the theory
community as well, as it naturally combines two well-studied
models: the data stream model and multi-party communi-
cation complexity. When there is only k = 1 site who also
plays the role of the coordinator, the model degenerates to
the standard streaming model; when k ≥ 2 and our goal is to
do a one-shot computation of f(A(∞)), then the model de-
generates to the (number-in-hand) k-party communication
model. Thus, distributed tracking is more general than both
models. Meanwhile, it also appears to be significantly dif-
ferent from either, with the above count-tracking problem
being the best example. This problem is trivial in both the
streaming and the communication model (even computing
the exact count is trivial), whereas it becomes nontrivial in
the distributed tracking model and requires new techniques,
especially when randomization is allowed, as illustrated by
our results in this paper.

Note that there is some work on distributed streaming (see
e.g. [11, 16]) that adopts a model very similar to ours, but
with a fundamental difference. In their model there are k
streams, each of which runs a streaming algorithm on its
local data. But the function f on the combined streams is
computed only at the end or upon requests by the user. As
one can see that the count-tracking problem is also trivial
in this model. The crucial difference is that, in this model,
the sites wait passively to get polled. If we want to track f
continuously, we have to poll the sites all the time. Whereas
in our model, the sites actively participate in the tracking
protocol to make sure that f is always up-to-date.

1.2 Problem statements, previous and new re-
sults

In this paper, we first study the count-tracking problem.
Then we extend our approach to two related, more gen-
eral problems: frequency-tracking and rank-tracking. Both
problems are of central importance in large data monitor-
ing and analysis, and have been extensively studied in the
literature. In all the communication upper bounds, we will
assume k ≤ 1/ε2; otherwise all of them will carry an extra
additive O(k log N) term. All our results are summarized in
Table 1; below we discuss each of them separately.

As mentioned earlier, the deterministic communication
complexity for the count-tracking problem has been settled
at Θ(k/ε · log N) [28]3, with or without two-way communi-
cation. In this paper, we show that with randomization and

3The lower bound in [28] was stated for the heavy hitters
tracking problem, but essentially the same proof works for
count-tracking.

two-way communication, this is reduced to Θ(
√

k/ε · log N).
We first in Section 2.1 present a randomized algorithm with
this communication cost that, at any one given time in-
stance, maintains an ε-approximation of the current n with
a constant probability. The algorithm is very simple and
uses O(1) space at each site. It is easy to make the algo-
rithm correct for all time instances and boost the probability
to 1 − δ: Since we can use the same approximate value n̂
of n until n grows by a 1 + ε factor, it suffices to make the
algorithm correct for O(log1+ε N) = O(1/ε · log N) time in-

stances. Then running O(log(log N
δε

)) independent copies of
the algorithm and taking the median will achieve the goal
of tracking n continuously at all times, with probability at
least 1 − δ. The Ω(

√
k/ε · log N) lower bound (Section 2.2)

actually holds on the number of messages that have to be
exchanged, regardless of the message size, and holds even as-
suming the sites have unlimited space and computing power.
That randomization is necessary to achieve this

√
k-factor

improvement follows from the previous deterministic lower
bound [28]; here in Section 2.2 we give a proof that two-way
communication is also required. More precisely, we show
that any randomized algorithm with one-way communica-
tion has to use Ω(k/ε · log N) communication, i.e., the same
as that for deterministic algorithms.

In the frequency-tracking (a.k.a. heavy hitters tracking)
problem, A(t) is a multiset of cardinality n(t) at time t.
Let fj(t) be the frequency of element j in A(t). The goal is
to maintain a data structure from which fj(t), for any given
j, can be estimated with absolute error at most εn(t), with
probability at least 0.9 (say). Note that this problem degen-
erates to count-tracking when there is only one element. It
is reasonable to ask for an error in terms of n(t): if the error
were εfj(t), then every element would have to be reported
if they were all distinct. In fact, this error requirement is
the widely accepted definition for the heavy hitters problem,
which has been extensively studied in the streaming litera-
ture [7]. Several algorithms with the optimal O(1/ε) space
exist [17–19]. In the distributed tracking model, we previ-
ously [28] gave a deterministic algorithm with O(k/ε · log N)
communication, which is the best possible for deterministic
algorithms. In this paper, by generalizing our count-tracking
algorithm, we reduce the cost to O(

√
k/ε · log N), with ran-

domization (Section 3). Since this problem is more general
than count-tracking, by the count-tracking lower bound, this
is also optimal. Our algorithm uses O(1/(ε

√
k)) space to

process the stream at each site, which is actually smaller
than the Ω(1/ε) space lower bound for this problem in the
streaming model. This should not come as a surprise: Due
to the fact that the site is allowed to communicate to the co-
ordinator during the streaming process, the streaming lower
bounds do not apply in our model. To this end, we prove
a new space lower bound of Ω(1/(ε

√
k)) bits for our model,

showing that our algorithm also uses near-optimal space.
This space lower bound is conditioned upon the requirement
that the communication cost should be O(

√
k/ε · log N) bits.

Note that it is not possible to prove a space lower bound un-
conditional of communication: A site can send every element
to the coordinator and thus only needs O(1) space. In fact,
what we prove is a space-communication trade-off; please
see Section 3.2 for the precise statement.

For the rank-tracking problem, it will be convenient to as-
sume that the elements are drawn from a totally ordered
universe and A(t) contains no duplicates. The rank of an

space (per site) communication

count-tracking trivial O(1) Θ(k/ε · log N)

new O(1) O(
√

k/ε · log N)

Ω(
√

k/ε · log N) messages
frequency-tracking [28] O(1/ε) Θ(k/ε · log N)

new O(1/(ε
√

k)) O(
√

k/ε · log N)

Ω(1/(ε
√

k)) bits⋆ Ω(
√

k/ε · log N) messages

rank-tracking [28] O(1/ε · log n) O(k/ε · log N log2(1/ε))

new O
“

1/(ε
√

k) · log1.5 1
ε

log0.5 1

ε
√

k

”

O
“√

k/ε · log N log1.5 1

ε
√

k

”

Ω(1/(ε
√

k)) bits⋆ Ω(
√

k/ε · log N) messages

sampling [9] O(1) O(1/ε2 · log N)

Table 1: Space and communication costs of previous and new algorithms. We assume k ≤ 1/ε2. All upper

bounds are in terms of words. ⋆This is conditioned upon the communication cost being O(
√

k/ε · log N) bits.

element x in A(t) (x need not be in A(t)) is the number of
elements in A(t) smaller than x, and our goal is to com-
pute a data structure from which the rank of any given
x can be estimated with error at most εn(t), with con-
stant probability. Note that a rank-tracking algorithm also
solves the frequency-tracking problem (but not vice versa),
by turning each element x into a pair (x, y) to break all
ties (by comparing the pairs lexicographically) and main-
taining such a rank-tracking data structure. When the fre-
quency of x is desired, we ask for the ranks of (x, 0) and
(x,∞) and take the difference. We previously [28] gave a
deterministic algorithm for the rank-tracking problem with
communication O(k/ε · log N log2(1/ε)). In this paper, we
show in Section 4 how randomization can bring this down
to O(

√
k/ε · log N log1.5(1/ε

√
k)), which is again optimal ig-

noring polylog(1/ε, k) factors. Since rank-tracking is more
general than frequency-tracking, the previous lower bounds
also hold here. Our algorithm uses space that is also close
to the Ω(1/(ε

√
k)) lower bound.

Since we are talking about randomized algorithms with a
constant success probability, we should also compare with
random sampling. It is well known [24] that this probabilis-
tic guarantee can be achieved for all the problems above
by taking a random sample of size O(1/ε2). A random sam-
ple can be maintained continuously over distributed streams
[9, 23], solving these distributed tracking problems, with a
communication cost of O(1/ε2 · log N). This is worse than
our algorithms when k = o(1/ε2). As noted earlier, all the
upper bounds we have mentioned above have a hidden ad-
ditive O(k log N) term. Thus when k = Ω(1/ε2), all of them
boil down to O(k log N),4 so our results are more interesting
for the k ≤ 1/ε2 case, which we will assume in all the upper
bounds throughout the paper. In the lower bound state-
ments, however, we do distinguish between the two cases.
The lower bounds in Table 1 assume k ≤ 1/ε2, and they
all match the upper bounds (except for the rank-tracking
problem); for the k = Ω(1/ε2) case, the lower bound is Ω(k)
(Theorem 2.3), which leaves a gap of Θ(log N) from the up-
per bound.

The idea behind all our algorithms is very simple. Instead
of deterministic algorithms, we use randomized algorithms
that produce unbiased estimators for ni, the frequencies, and
ranks with variance (εn)2/k, leading to an overall variance

4The bound of the random sampling algorithm [9, 23] is ac-
tually slightly better, which is O(k log N/ log(kε2)).

of (εn)2, which is sufficient to produce an estimate within
error εn with constant probability. This means we can af-
ford an error of εn/

√
k from each site, as opposed to εn/k

for deterministic algorithms. This is essentially where we
obtain the

√
k-factor improvement by randomization. Our

algorithms are simple and extremely lightweight, in partic-
ular the count-tracking and frequency-tracking algorithms,
thus can be easily implemented in power-limited distributed
systems like wireless sensor networks.

1.3 Other related work
As distributed tracking is closely related to the stream-

ing and the k-party communication model, it could be en-
lightening to compare with the known results of the above
problems in these models. As mentioned earlier, the count-
tracking problem is trivial in both models, requiring O(1)
space in the streaming model and O(k) communication in
the k-party communication model.

Both the frequency-tracking and rank-tracking problems
have been extensively studied in the streaming model with
a long history. The former was first resolved by the MG al-
gorithm [19] with the optimal space O(1/ε), though several
other algorithms with the same space bound have been pro-
posed later on [17, 18]. The rank problem is also one of the
earliest problems studied in the streaming model [20]. The
best deterministic algorithm to date is the one by Green-
wald and Khanna [12]. It uses O(1/ε · log n) working space
to maintain a structure of size O(1/ε), from which any rank
can be estimated with error εn. Note that the rank prob-
lem is often studied as the quantiles problem in the liter-
ature. Recall that for any 0 ≤ φ ≤ 1, the φ-quantile of
D is the element in A(t) that ranks at ⌊φn⌋, while an ε-
approximate φ-quantile is any element that ranks between
(φ− ε)n and (φ+ ε)n. Clearly, if we have the data structure
for one problem, we can do a binary search to solve the other.
Thus the two problems are equivalent, for deterministic al-
gorithms. For algorithms with probabilistic guarantees, we
need all O(log(1/ε)) decisions in the binary search to suc-
ceed, which requires the failure probability to be lowered by
an O(log(1/ε)) factor. By running O(log log(1/ε)) indepen-
dent copies of the algorithm, this is not a problem. So the
two problems differ by at most a factor of O(log log(1/ε)).

The existing streaming algorithms for the frequency and
rank problems can be used to solve the one-shot version
of the problem in the k-party communication model eas-
ily. More precisely, we use a streaming algorithm to sum-

marize the data set at each site with a structure of size
O(1/ε), and then send the these summary structures to the
coordinator, resulting in a communication cost of O(k/ε).
Recently, we designed randomized algorithms for these two
problems with O(

√
k/ε) communication [13, 14], which have

just been shown to be near-optimal [26]. Here we have ex-
tended the one-shot algorithms of [13, 14] to the continu-
ous tracking setting. The results have demonstrated that,
the seemingly more challenging tracking problem, which re-
quires us to solve the one-shot problem continuously at all
times, is only harder by an Θ(log N) factor than the one-
shot version (except for the count-tracking problem, which
is much harder than its one-shot version).

Finally, we should mention that all these distributed track-
ing problems have been studied in the database commu-
nity previously, but mostly using heuristics. Keralapura et
al. [15] approached the count-tracking problem using pre-
diction models, which do not work under adversarial inputs.
Babcock and Olston [3] studied the top-k tracking problem,
a variant of the frequency (heavy hitters) tracking problem,
but did not offer a theoretical analysis. The rank-tracking
problem was first studied by Cormode et al. [6]; their al-
gorithm has a communication cost of O(k/ε2 · log N) under
certain inputs.

2. TRACKING DISTRIBUTED COUNT

2.1 The algorithm

The algorithm with a fixed p.
Let p be a parameter to be determined later. For now

we will assume that p is fixed. The algorithm is very sim-
ple: Whenever site Si receives an element (hence ni gets
incremented by one), it sends the latest value of ni to the
coordinator with probability p. Let n̄i be the last updated
value of ni received by the coordinator. We first estimate
each ni by

n̂i =

n̄i − 1 + 1/p, if n̄i exists;
0, else.

(1)

Then we estimate n as n̂ =
P

i n̂i.

Analysis.
As mentioned in the introduction, our analysis will hold

for any given one time instance. It is also important to
note that this given time instance shall not depend on the
randomization internal to the algorithm.

We show that each n̂i is an unbiased estimator of ni with
variance at most 1/p2. This is very intuitive, since ni − n̄i is
the number of failed trials until the site decides to send an
update to the coordinator, when we look backward from the
current time instance. This follows a geometric distribution
with parameter p, but not quite, as it is bounded by ni.
This is why we need to separate the two cases in (1). The
following calculation appeared in [13]; we include it here for
completeness.

Lemma 2.1. E[n̂i] = ni; Var[n̂i] ≤ 1/p2.

Proof. Define the random variable

X =

ni − n̄i + 1, if n̄i exists;
ni + 1/p, else.

Now we can rewrite n̂i as n̂i = ni − X + 1/p. Thus it
suffices to show that E[X] = 1/p and Var[X] ≤ 1/p2. Letting
t = ni − n̄i + 1, we have

E[X] =

ni
X

t=1

(t(1 − p)t−1p) + (ni + 1/p)(1 − p)ni =
1

p
.

Var[X] =

ni
X

t=1

((t − 1/p)2(1 − p)t−1p) + (ni + 1/p − 1/p)2(1 − p)ni

=
(1 − p)(1 − (1 − p)ni)

p2
≤ 1

p2
.

By Lemma 2.1, we know that n̂ is an unbiased estimator of
n with variance ≤ k/p2. Thus, if p =

√
k/εn, the variance

of n̂ will be (εn)2, which means that n̂ has error at most
2εn with probability at least 3/4, by Chebyshev inequality.
Rescaling ε and p by a constant will reduce the error to εn
and improves the success probability to 0.9, as desired.

Previously, we used similar ideas to solve the one-shot
quantile problem over distributed data [13]. Here, we essen-
tially treat the numerical values of the items in the quantile
problem as the timestamps in the count-tracking problem,
and simulate the one-shot sampling algorithm of [13] in the
continuous setting.

Dealing with a decreasing p.
It is not possible and necessary to set p exactly to

√
k/εn.

From the analysis above, it should be clear that keeping
p = Θ(

√
k/εn) will suffice. To do so, we first track n within

a constant factor. This can be done efficiently as follows.
Each site Si keeps track of its own counter ni. Whenever
ni doubles, it sends an update to the coordinator. The co-
ordinator sets n′ =

Pk
i=1 n′

i, where n′
i is the last update of

ni. When n′ doubles (more precisely, when n′ changes by
a factor between 2 and 4), the coordinator broadcasts n′ to
all the sites. Let n̄ be the last broadcast value of n′. It
is clear that n̄ is always a constant-factor approximation of
n. The communication cost is O(k log N), since each site
sends O(log N) updates to the coordinator and the coor-
dinator broadcasts O(log N) times, each of which costs k
messages. These broadcasts divide the whole tracking pe-
riod into O(log N) rounds, and within each round, n stays
within a constant factor of n̄, the broadcast value at the
beginning of the round.

Now, when n̄ ≤
√

k/ε, all the sites set p = 1. This causes

all the first O(
√

k/ε) elements to be sent to the coordinator.

When n̄ >
√

k/ε, the sites use p = 1/⌊εn̄/
√

k⌋2, where ⌊x⌋2
denotes the largest power of 2 smaller than x. Since n̄ is
monotonically increasing, p gets halved over the rounds. At
the beginning of a round, if the new p is half5 of that in
the previous round, each site Si adjusts its n̄i appropriately,
as follows. First with probability 1/2, the site decides if
n̄i remains the same. If so, nothing changes; otherwise, it
repeatedly flips a coin with probability 1/p (with the new p).
Every failed coin flip decrements n̄i by one. It does so until
a successful coin flip, or n̄i = 0. Finally, the site informs the
coordinator of the new value of n̄i; if n̄i = 0, the coordinator
will treat it as if n̄i does not exist. It should be clear that

5To be more precise, the new p might also be a quarter of
the previous p, but it can be handled similarly.

after this adjustment, the whole system looks as if it had
always been running with the new p.

It is easy to see that the communication cost in each round
is O(k + pn) = O(k +

√
k/ε) = O(

√
k/ε), thus the total cost

is O(
√

k/ε · log N).

Theorem 2.1. There is an algorithm for the count-tracking
problem that, at any time, estimates n =

P

i ni within error
εn with probability at least 0.9. It uses O(1) space at each

site and O(
√

k/ε · log N) total communication.

2.2 The lower bound
Before proving the lower bounds, we first state our lower

bound model formally, in the context of the count-tracking
problem. The N elements arrive at the k sites in an online
fashion at arbitrary time instances. We do not allow spon-
taneous communication. More precisely, it means that a site
is allowed to send out a message only if it has just received
an element or a message from the coordinator. Likewise, the
coordinator is allowed to send out messages only if it has just
received messages from one or more sites. When a site Sj

is allowed to send out a message, it decides whether it will
indeed send a message, and the content of the message if so,
based only on its local counter nj and the message history
between Sj and the coordinator, possibly using some ran-
dom source. We assume that the site does not look at the
current clock. We argue that the clock conveys no informa-
tion since the elements arrive at arbitrary and unpredictable
time instances. (If the elements arrive in a predictable fash-
ion, say, one per time step, the problem can be solved with-
out communication al all.) Similarly, when the coordinator
is allowed to send out messages, it makes the decision on
where and what to send based only on its message history
and some random source. We will lower bound the commu-
nication cost only by the number of messages, regardless of
the message size.

2.2.1 One-way communication lower bound

In this section we show that two-way communication is
necessary to achieve the upper bound in Theorem 2.1, by
proving the following lower bound. Remember that we as-
sume N is sufficiently larger than k and 1/ε.

Theorem 2.2. If only the sites can send messages to the
coordinator but not vice versa, then any randomized algo-
rithm for the count-tracking problem that, at any time, es-
timates n within error εn with probability at least 0.9 must
send Ω(k/ε · log N) messages.

Proof. We first define the hard input distribution µ.

(a) With probability 1/2, all elements arrive at one site
that is uniformly picked at random.

(b) Otherwise, the N elements arrive at the k sites in a
round-robin fashion, each site receiving N/k elements
in the end.

By Yao’s Minimax principle [27], we only need to argue that
any deterministic algorithm with success probability at least
0.8 under µ has expected cost Ω(k/ε · log N).

Note that when only one-way communication is allowed,
a site decides whether to send messages to the coordinator
only based on its local counter nj . Thus the communication

pattern can be essentially described as follows. Each site Sj

has a series of thresholds t1j , t
2
j , . . . such that when nj = ti

j ,
the site sends the i-th message to the coordinator. These
thresholds should be fixed at the beginning.

We lower bound the communication cost by rounds. Let
Wi be the number of elements that have arrived up until
round i. We divide the rounds by setting W1 = k/ε, and
Wi+1 = ⌈(1+ε)Wi⌉ for i ≥ 1. Thus there are 1/ε·log(εN/k)
rounds, which is Ω(1/ε · log N) for sufficiently large N .

At the beginning of round i+1, suppose that S1, S2, . . . , Sk

have already sent zi
1, z

i
2, . . . , z

i
k messages to the coordinator,

respectively. Let ti+1
max = (1 + ε) · max{tzi

j

j | j = 1, 2, . . . , k}.
We first observe that there must be at least k/2 sites with

their next threshold t
zi

j+1

j ≤ ti+1
max. Otherwise, suppose there

are less than k/2 sites with such next thresholds, then with
probability at least 1/4 case (a) happens and the random site

Sj chosen to receive all elements has t
zi

j+1

j > ti+1
max ≥ (1 +

ε)t
zi

j

j . Thus, with probability at least 1/4 the algorithm fails

when the ti+1
max-th element arrives, contradicting the success

guarantee.
On the other hand, with probability 1/2 case (b) happens.

In this case all t
zi

j

j (j = 1, 2, . . . , k) are no more than Wi/k,
since in case (b), elements arrive at all k sites in turn. In the
next εWi elements, each site Sj receives εWi/k elements. If

the site Sj has t
zi

j+1

j ≤ ti+1
max, then it must send a message

in this round, since Wi/k + εWi/k ≥ ti+1
max ≥ t

zi
j+1

j , that is,

its (zi
j + 1)-th threshold is triggered. As argued, there are

≥ k/2 sites with t
zi

j+1

j ≤ ti+1
max, so the communication cost in

this round is at least k/2.
Summing up all rounds, the total communication is at

least Ω(k/ε · log N).

2.2.2 Two-way communication lower bound

Below we prove two randomized lower bounds when two-
way communication is allowed. The first one justifies the
assumption k ≤ 1/ε2, since otherwise, random sampling will
be near-optimal.

Theorem 2.3. Any randomized algorithm for the count-
tracking problem that, at any time, estimates n within error
0.1n with probability at least 0.9 must exchange Ω(k) mes-
sages.

Proof. The hard input distribution is the same as that in
the proof of Theorem 2.2. To prove this lower bound we
are only interested in the number of sites that communicate
with the coordinator at least once. Before any element ar-
rives, we can still assume that each site keeps a triggering
threshold. The thresholds of Sj shall remain the same un-
less it communicates with the coordinator at least once. We
argue that there must be at least k/2 sites whose triggering
threshold is no more than 1, since otherwise if case (a) hap-
pens and the randomly chosen site is one with a triggering
threshold larger than 1, the algorithm will fail, which would
happen with probability at least 1/4. On the other hand,
if case (b) happens, then all the sites with threshold 1 will
have to communicate with the coordinator at least once: ei-
ther their thresholds are triggered by the round-robin arrival
of elements, or they receive a message from the coordinator,

which can possibly change their threshold.

Finally, we show that the upper bound in Theorem 2.1 is
tight. We first introduce the following primitive problem.

Definition 2.1 (1-bit). Let s be either k/2 +
√

k or

k/2 −
√

k, each with probability 1/2. From the k sites, a
subset of s sites picked uniformly at random each have bit
1, while the other k − s sites have bit 0. The goal of the
communication problem is for the coordinator to find out
the value of s with probability at least 0.8.

We will show the following lower bound for the 1-bit prob-
lem.

Lemma 2.2. Any deterministic algorithm that solves 1-bit
has distributional communication complexity Ω(k).

Lemma 2.2 immediately implies the following theorem:

Theorem 2.4. Any randomized algorithm for the count-
tracking problem that, at any time, estimates n within error
εn with probability at least 0.9 must exchange Ω(

√
k/ε·log N)

messages, when k < 1/ε2.

Proof. We will again fix a hard input distribution first and
then focus on the distributional communication complexity
of deterministic algorithms with success probability at most
0.8. Let [m] = {0, 1, . . . , m − 1}. The adversarial input
consists of ℓ = log εN

k
= Ω(log N) rounds. We further divide

each round i ∈ [ℓ] into r = 1/(2ε
√

k) subrounds.
The input at round i ∈ [ℓ] is constructed as follows, at

each subround j ∈ [r], we first choose s to be k/2 +
√

k or

k/2−
√

k with equal probability. Then we choose s sites out
of the k sites uniformly at random and send 2i elements to
each of them (the order does not matter).

It is easy to see that at the end of in each subround in
round i, the total number of items is no more than τi =√

k/ε · 2i. Thus after s · 2i elements have arrived in a sub-
round, the algorithm has to correctly identify the value of s
with probability at least 0.8, since otherwise with probabil-
ity at least 0.2 the estimation of the algorithm will deviate
from the true value by at least

√
k · 2i > ετi, violating the

success guarantee of the algorithm. This is exactly the 1-bit
problem defined above. By Lemma 2.2, the communication
cost of each subround is Ω(k). Summing over all r subrounds
and then all ℓ rounds, we have that the total communication
is at least ℓ · r · Ω(k) ≥ Ω(

√
k/ε · log N).

Now we prove Lemma 2.2.
Proof. (of Lemma 2.2) First of all, observe that whenever the
coordinator communicates with a site, the site can send its
whole input (i.e., its only bit) to the coordinator. After that,
the coordinator knows all the information about that site
and does not need to communicate with it further. Therefore
all that we need to investigate is the number of sites the
coordinator needs to communicate with.

There can be two types of actions in the protocol.

(a) A site initiates a communication with the coordinator
based on the bit it has.

(b) The coordinator, based on all the information it has
gathered so far, asks some site to send its bit.

Note that if a type (b) communication takes place before
a type (a) communication, we can always swap the two,
since this only gives the coordinator more information at
an earlier stage. Thus we can assume that all the type (a)
communications happen before type (b) ones.

In the first phase where all the type (a) communications
happen, let x be the number of sites that send bit 0 to the
coordinator, and y be the number of sites that send bit 1 to
the coordinator. If E[x + y] = Ω(k), then we are done. So
let us assume that E[x + y] = o(k). By Markov inequality
we have that, with probability at least 0.9, x + y = o(k).
After the first phase, the problem becomes that there are
s′ = s − y = s − o(k) sites having bit 1, out of a total
k′ = k − x − y = k − o(k) sites. The coordinator needs
to figure out the exact value of s′ with probability at least
0.8 − (1 − 0.9) = 0.7.

In the second phase where all type (b) communication
happens, from the coordinator’s perspective, all the remain-
ing sites are still symmetric (by the random input we choose),
therefore the best it can do is to probe an arbitrary site
among those that it has not communicated with. This is
still true even after the coordinator has probed some of the
remaining sites. Therefore, the problem boils down to the
following: The coordinator picks z sites out of the remain-
ing k′ sites to communicate and then decides the value of
s′ with success probability at least 0.7. We call this prob-
lem the sampling problem. We can show that to achieve the
success guarantee, z should be at least Ω(k). This result
is perhaps folklore; proofs to more general versions of this
problem can be found in [4] (Chapter 4), and also [21, 25].
We include a simpler proof in the appendix for complete-
ness. With this we conclude the proof of Lemma 2.2.

3. TRACKING DISTRIBUTED FREQUEN-

CIES
In the frequency-tracking problem, A (we omit “(t)”when

the context is clear) is a multiset and the goal is to track the
frequency of any item j within error εn. Let fij denote the

local frequency of element j in Ai, and let fj =
Pk

i=1 fij .

3.1 The algorithm

The algorithm with a fixed p.
As in Section 2.1 we first describe the algorithm with a

fixed parameter p. If each site tracks the local frequencies fij

exactly, we can essentially use the count-tracking algorithm
to track the fj ’s. To achieve small space, we make use of
the following algorithm due to Manku and Motwani [17] at
each site Si: The site maintains a list Li of counters. When
an element j arrives at Si, the site first checks if there is a
counter cij for j in Li. If yes, it increases cij by 1. Otherwise,
the site samples this element with probability p. If it is
sampled, the site inserts a counter cij , initialized to 1, into
Li. It is easy to see that the expected size of Li is O(pni).

Next, we follow a similar strategy as in the count-tracking
algorithm: The site reports the counter cij to the coordina-
tor when it is first added to the counter list with an initial
value of 1. Afterward, for every j that is arriving, the site
always increments cij as before, but only sends the updated
counter to the coordinator with probability p. We use c̄ij to
denote the last updated value of cij .

The tricky part is how the coordinator estimates fij , hence
fj . Fix any time instance. The difference between fij and
ĉij comes from two sources: one is the number of j’s missed
before a copy is sampled, and the other is the number of j’s
that arrive after the last update of cij . It is easy to see that
both errors follow the same distribution as ni − n̄i in the
count-tracking algorithm. Thus it is tempting to modify (1)
as

f̂ij =

c̄ij − 2 + 2/p, if c̄ij exists;
0, else.

(2)

However, this estimator is biased and its bias might be as
large as Θ(εn/

√
k). Summing over k streams, this would ex-

ceed our error guarantee. To see this, consider the fij copies
of j. Effectively, the site samples every copy with probabil-
ity p, while c̄ij − 2 is exactly the number of copies between
the first and the last sampled copy (excluding both). We
define X1 as before

X1 =

t1, if the t1th copy is the first one sampled;
fij + 1/p, if none is sampled.

We define X2 in exactly the same way, except that we ex-
amine these fij copies backward:

X2 =

8

<

:

t2, if the t2th copy is the first one sampled
in the reverse order;

fij + 1/p, if none is sampled.

It is clear that X1 and X2 have the same distribution with
E[X1] = E[X2] = 1/p (by Lemma 2.1), so f̂ij = fij − (X1 +
X2) + 2/p is unbiased. Since c̄ij − 2 = fij − t1 − t2, the
correct unbiased estimator should be

f̂ij =

c̄ij − 2 + 2/p, if c̄ij exists;
−fij , else.

(3)

Compared with the previous wrong estimator (2), the
main difference is how the estimation is done when no copy
of j is sampled. When fij = Θ(εn/

√
k) and p = Θ(1/fij),

this happens with constant probability, which would result
in a bias of Θ(fij) = Θ(εn/

√
k).

However, the correct estimator (3) depends on fij , the
quantity we want to estimate in the first place. The workaround
is to use another unbiased estimator for fij when c̄ij is not
yet available. It turns out that we can just use simple ran-
dom sampling: The site samples every element with prob-
ability p (this is independent of the sampling process that
maintains the list Li), and sends the sampled elements to
the coordinator. Let dij be the number of sampled copies of
j received by the coordinator from site i, the final estimator
for fij is

f̂ ′
ij =

c̄ij − 2 + 2/p, if c̄ij exists;
−dij/p, else.

(4)

Since dij is independent of c̄ij , the estimator is still unbiased.
Below we analyze its variance.

Analysis.
Intuitively, the variance is not affected by using the simple

random sampling estimator dij/p, because it is only used
when c̄ij is not available, which means that fij is likely to
be small, and when fij is small, dij/p actually has a small
variance. When fij is large, dij/p has a large variance, but
we will use it only with small probability. Below we give a
formal proof.

Lemma 3.1. E[f̂ ′
ij] = fij ; Var[f̂ ′

ij] = O(1/p2).

Proof. We first analyze the estimator f̂ij of (3). That

E[f̂ij] = fij follows from the discussion above. Its variance

is Var[f̂ij] = Var[X1 +X2]. Note that X1 and X2 are not in-
dependent, but they both have expectation 1/p and variance
≤ 1/p2. We first rewrite

Var[X1 + X2] = E[X2
1 + X2

2 + 2X1X2] − E[X1 + X2]
2

= Var[X1] + E[X1]
2 + Var[X2] + E[X2]

2

+2E[X1X2] − (E[X1] + E[X2])
2

≤ 4/p2 + 2E[X1X2] − 4/p2 ≤ 2E[X1X2].

Let Et be the event that the tth copy of j is the first being
sampled. We have

E[X1X2]

=

fij
X

t=1

(1 − p)t−1ptE[X2 | Et] + (1 − p)fij (fij + 1/p)2

=

fij
X

t=1

(1 − p)t−1pt

0

@(1 − p)fij−t(fij − t + 1) +

fij−t
X

l=1

(1 − p)l−1pl

1

A

+(1 − p)fij (fij + 1/p)2

≤ 1

p2
+ (1 − p)fij f2

ij +
(1 − p)fij fij

p
.

Let c = fijp. If c ≤ 2, fij ≤ 2/p, and the variance is
O(1/p2). Otherwise

E[X1X2] ≤ 1

p2
+

c2

p2ec
+

c

p2ec
= O(1/p2),

since c2 ≤ ec when c > 2.
Next we analyze the final estimator f̂ ′

ij of (4). First, dij is
the sum of fij Bernoulli random variables with probability
p, so E[dij/p] = fij and Var[dij/p] ≤ fijp/p2 = fij/p. Let
E∗ be the event that ĉij is available, i.e., at least one copy
of j is sampled, and E0 = E∗, then

E[f̂ ′
ij] = E[f̂ij | E∗]Pr[E∗] + E[−dij/p | E0]Pr[E0]

= E[f̂ij | E∗]Pr[E∗] + (−fij)Pr[E0]

= E[f̂ij] = fij .

The variance is

Var[f̂ ′
ij] = E[f̂ ′2

ij] − E[f̂ ′
ij]

2

= E[f̂2
ij | E∗]Pr[E∗] + E[(dij/p)2 | E0]Pr[E0] − f2

ij

= E[f̂2
ij | E∗]Pr[E∗] − f2

ij + E[(dij/p)2]Pr[E0]

= E[f̂2
ij | E∗]Pr[E∗] − f2

ij + (Var[dij/p] + f2
ij)Pr[E0]

Note that

Var[f̂ij] = E[f̂2
ij] − f2

ij

= E[f̂2
ij | E∗]Pr[E∗] + E[f̂2

ij | E0]Pr[E0] − f2
ij

= E[f̂2
ij | E∗]Pr[E∗] + f2

ijPr[E0] − f2
ij ,

so

Var[f̂ ′
ij] = Var[f̂ij] + Var[dij/p]Pr[E0]

≤ Var[f̂ij] +
fij

p
· (1 − p)fij .

Due to the same reason as above, the second term is O(1/p2),
and the proof completes.

Dealing with a decreasing p.
As in the count-tracking algorithm, we divide the whole

tracking period into O(log N) rounds. Within each round,
n stays within a constant factor of n̄, while n̄ remains fixed
for the whole round.

Within a round, we set the parameter p for all sites to be
p = 1/⌊εn̄/

√
k⌋2. When we proceed to a new round, all sites

clear their memory and start a new copy of the algorithm
from scratch with the new p. Given an item j, the coordina-
tor estimates its frequency from each round separately, and
add them up. Since the variance in a round is O(k/p2) and
p increases geometrically over the rounds, the total variance
is asymptotically bounded by the variance of the last round,
i.e., O(1/ε2), as desired.

The space used at some site could still be large, since the
site may receive too many elements in a round. If all the
O(n) elements in a round have gone to the same site, the

site will need to use space O(pn) = O(
√

k/ε). To bound
the space, we restrict the amount of space used by each site.
More precisely, when a site receives more than n̄/k elements,
it sends a message to the coordinator for notification, clears
its memory, and starts a new copy of the algorithm from
scratch. The coordinator will treat the new copy as if it
were a new site, while the original site no longer receives
more elements. Now the space used at each site is at most
pn̄/k = O(1/(ε

√
k)). Since there are at most O(k) such new

“virtual” sites ever created in a round, this does not affect
the variance by more than a constant factor.

It remains to show that the total communication cost
is O(

√
k/ε · log N). From earlier we know that there are

O(log N) rounds; within each round, n̄ is the same and n
stays within Θ(n̄). Focus on one round. For each arriving
element, the site Si updates c̄ij with probability p and also
independently samples it with probability p to maintain dij .

This costs O(n · p) = O(
√

k/ε) communication.

Theorem 3.1. There is an algorithm for the frequency-
tracking problem that, at any time, estimates the frequency
of any element within error εn with probability at least 0.9.
It uses O(1/(ε

√
k)) space at each site and O(

√
k/ε · log N)

communication.

3.2 Space lower bound
It is easy to see that the communication lower bounds

for the count-tracking problem also hold for the frequency-
tracking problem. In this section, we prove the following
space-communication trade-off.

Theorem 3.2. Consider any randomized algorithm for the
frequency-tracking problem that, at any time, estimates the
frequency of any element within error εn with probability
at least 0.9. If the algorithm uses C bits of communica-
tion and uses M bits of space per site, then we must have
C · M = Ω(log N/ε2), assuming k ≤ 1/ε2.

Thus, if the communication cost is C = O(
√

k/ε · log N)

bits, the space required per site is at least Ω(1/(ε
√

k)) bits,
as claimed in Table 1. If we ignore the word/bit difference,
the space bounds are also tight. Interestingly, this lower

bound also shows that the random sampling algorithm [9]
(see Table 1) actually attains the other end of this space-
communication trade-off.
Proof. (of Theorem 3.2) We will use a result in [26] which
states that, under the k-party communication model, there
is an input distribution µk such that, any algorithm that
solves the one-shot version of the problem under µk with
error 2εn with probability 0.9 needs at least c

√
k/ε bits of

communication for some constant c, assuming k ≤ 1/ε2.
Moreover, any algorithm that solves ℓ independent copies of
the one-shot version of the problem needs at least ℓ · c

√
k/ε

bits of communication.
We will consider the problem over ρk sites, for some inte-

ger ρ ≥ 1 to be determined later. We divide the whole track-
ing period into log N rounds. In each round i = 1, . . . , log N ,
we generate an input independently chosen from distribution
µρk to the sites. We pick elements from a different domain
for every round so that we have log N independent instances
of the problem. In round i, for every element e picked from
µρk for any site, we replace it with 2i−1 copies of e. We
arrange the element arrivals in a round so that site S1 gets
all its elements first, then S2 gets all its elements, and so on
so forth. We will only require the continuous tracking algo-
rithm to solve the frequency estimation problem at the end
of each round. Since the last round always contains half of
all the elements that have arrived so far, the algorithm must
solve the problem for the elements in each round, namely,
log N independent instances of the one-shot problem. By
the result in [26], the communication cost to solve all these
instances of the problem is at least c

√
ρk/ε · log N .

Let Ak be a continuous tracking algorithm over k sites
that communicates C bits in total and uses M bits of space
per site. Below we show how to solve the problem over the ρk
sites in each round, by simulating the k-site algorithm Ak.
In each round, we start the simulation with sites S1, . . . , Sk.
Whenever Ak exchanges a message, we do the same. When
S1 has received all its elements, it sends its memory content
to Sk+1, which then takes the role of S1 in the simulation and
continues. Similarly, when S2 has received all its elements, it
sends its memory content to Sk+2, which replaces S2 in the
simulation. In general, when Sj is done with all its elements,
it passes its role to Sj+k. When Sρk is done, the simulation
finishes for this round. Sρk then sends a broadcast message
and we proceed to the next round.

Let us analyze the communication cost of the simulation.
First, we exchange exactly the same messages as Ak does,
which costs C. We also communicate ρ(k−1) memory snap-
shots and a broadcast message in each round, which costs
≤ ρkM log N over all rounds. Thus, we have

C + ρkM log N ≥ c
p

ρk/ε · log N.

Rearranging,

M ≥ c

ε
√

ρk
− C

ρk log N
=

1√
ρk

„

c

ε
− C√

ρk log N

«

.

Thus, if we set
√

ρ =
l

2Cε

c
√

k log N

m

, then

M ≥ c

2ε
√

ρk
= Ω

„

log N

Cε2

«

,

as claimed.

4. TRACKING DISTRIBUTED RANKS
On a stream of n elements, an algorithm that produces

an unbiased estimator for any rank with variance O((εn)2)
was presented in [22], which has been very recently improved
and made to work in a stronger model [1]. It uses O(1/ε ·
log1.5(1/ε)) working space to maintain a rank estimation
summary structure of size O(1/ε). We call this algorithm
A and will use it as a black box in our distributed tracking
algorithm.

The overall algorithm.
As before, with O(k log N) communication, we first track

n̄, a constant factor approximation of the current n. This
also divides the tracking period into O(log N) rounds. The
Θ(n) elements arriving in a round are divided into chunks
of size at most n̄/k, each processed by an instance of al-
gorithm C, described below. A site may receive more than
n̄/k elements. When the (n̄/k + 1)th element arrives, the
site finishes the current instance of C, and starts a new one,
which will process the next n̄/k elements, and so on so forth.

Algorithm C.
Algorithm C reads at most n̄/k elements, and divides them

into blocks of size b = εn̄/
√

k, so there are at most 1

ǫ
√

k

blocks. The algorithm builds a balanced binary tree on the
blocks in the arrival order, and the height of the tree is
h ≤ log 1

ǫ
√

k
. For each node v in the tree, let D(v) be all

the elements contained in the leaves in the subtree rooted at
v. For each D(v), the site starts an instance of A, denoted
as Av , to process its elements as they arrive. We say that
v is active if Av is still accepting elements. For a node v
at level ℓ (the leaves are said to be on level 0), the error

parameter of Av is set to 2−ℓ/
√

h. We say v is full if all the
elements in D(v) have arrived. When v is full, the site sends
the summary computed by Av to the coordinator, and free
the space used by Av . Furthermore, for each element that

is arriving, the site samples it with probability p =
√

k
εn̄

, and
if it is sampled, the site sends it to the coordinator.

Analysis of costs.
We first analyze the various costs of C. At any time there

are at most h active nodes, one at each level, so the space
used by C is at most

h
X

ℓ=0

√
h2ℓ log1.5 1

ε
= O

 √
h

ε
√

k
log1.5 1

ε

!

.

The communication for C includes all the summaries com-
puted, and the elements sampled. For each ℓ, the total size
of the summaries on level ℓ is

O

„

1

ε
√

k
2−ℓ · 2ℓ

√
h

«

= O

 √
h

ε
√

k

!

.

Summing over all h levels, it is h1.5

ε
√

k
. There are at most

2k instances of C in a round, therefore the total commu-
nication cost in a round is O(h1.5

√
k/ε). The number of

sampled elements in a round is O(np) = O(
√

k/ε). Thus,
over all O(log N) rounds, the total communication cost is

O(h1.5
√

k/ε · log N).

Estimation.

It remains to show how the coordinator estimates the rank
of any given element x at any time with variance O((εn)2).
We decompose all n elements that have arrived so far into
smaller subsets, and estimate the rank of x in each of the
subsets. Since all estimators are unbiased, the overall esti-
mator is also unbiased; the variance will be the sum of all
the variances.

We will focus on the current round; all previous rounds
can be handled similarly. Recall that there are O(n̄) ele-
ments arriving in this round and n̄ = Θ(n). Every chunk
of n̄/k elements are processed by one instance of C. Con-
sider any such chunk. Suppose up to now, n′ elements in
this chunk have arrived for some n′ ≤ n̄/k. We write n′

as n′ = q · b + r for some r < b, and decompose these n′

elements into at most h + 1 subsets. The first qb elements
are decomposed into at most h subsets, each of which corre-
sponds to a full node in the binary tree of C. The node has
already sent its summary to the coordinator, which we can
use to estimate the rank. For a node at level ℓ, the variance
is ((2−l/

√
h) · 2lb)2 = b2/h, so the total variance from all h

nodes is b2.
For the last r elements of the chunk that are still being

processed by an active node, the coordinator does not have
any summary for them. But recall that the site always sam-
ples each element with probability p =

√
k/(εn̄) and sends

it to the coordinator if it is sampled. Thus, the rank of
x in these r elements can be estimated by simply counting
the number c of elements sampled that are smaller than x,
and the estimator is c/p. The variance of this estimator is
r/p ≤ b/p = b2. Thus, the variance from any chunk is O(b2).
Since there are at most 2k chunks in the round, the total
variance is O(b2k) = O((εn̄)2) = O((εn)2). As the variances
of the previous rounds are geometrically decreasing, the to-
tal variance from all the rounds is still bounded by O((εn)2),
as desired.

Theorem 4.1. There is an algorithm for the rank-tracking
problem that, at any time, estimate the rank of any ele-
ment within error εn with probability at least 0.9. It uses

O
“

1

ε
√

k
log1.5 1

ε
log0.5 1

ε
√

k

”

space at each site with commu-

nication cost O
“√

k
ε

log N log1.5 1

ǫ
√

k

”

.

5. REFERENCES

[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,
Z. Wei, and K. Yi. Mergeable summaries. In Proc.
ACM Symposium on Principles of Database Systems,
2012.

[2] C. Arackaparambil, J. Brody, and A. Chakrabarti.
Functional monitoring without monotonicity. In Proc.
International Colloquium on Automata, Languages,
and Programming, 2009.

[3] B. Babcock and C. Olston. Distributed top-k
monitoring. In Proc. ACM SIGMOD International
Conference on Management of Data, 2003.

[4] Z. Bar-Yossef. The complexity of massive data set
computations. PhD thesis, University of California at
Berkeley, 2002.

[5] H.-L. Chan, T. W. Lam, L.-K. Lee, and H.-F. Ting.
Continuous monitoring of distributed data streams
over a time-based sliding window. Algorithmica,
62(3–4):1088–1111, 2011.

z(p− α) z(p+ α)x0

ℓ1 ℓ2

N2(z(p+ α), σ2

2
)N1(z(p− α), σ2

1
)

Figure 1: Differentiating two distributions

[6] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In
Proc. ACM SIGMOD International Conference on
Management of Data, 2005.

[7] G. Cormode and M. Hadjieleftheriou. Finding
frequent items in data streams. In Proc. International
Conference on Very Large Data Bases, 2008.

[8] G. Cormode, S. Muthukrishnan, and K. Yi.
Algorithms for distributed functional monitoring.
ACM Transactions on Algorithms, 7(2), Article 21,
2011. Preliminary version in SODA’08.

[9] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang.
Continuous sampling from distributed streams.
Journal of the ACM, 59(2), 2012. Preliminary version
in PODS’10.

[10] W. Feller. An introduction to probability theory and its
applications. Wiley, New York, 1968.

[11] P. B. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In Proc. ACM
Symposium on Parallelism in Algorithms and
Architectures, 2001.

[12] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. ACM
SIGMOD International Conference on Management of
Data, 2001.

[13] Z. Huang, L. Wang, K. Yi, and Y. Liu. Sampling
based algorithms for quantile computation in sensor
networks. In Proc. ACM SIGMOD International
Conference on Management of Data, 2011.

[14] Z. Huang, K. Yi, Y. Liu, and G. Chen. Optimal
sampling algorithms for frequency estimation in
distributed data. In IEEE INFOCOM, 2011.

[15] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of
thresholded counts. In Proc. ACM SIGMOD
International Conference on Management of Data,
2006.

[16] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and
C. Olston. Finding (recently) frequent items in
distributed data streams. In Proc. IEEE International
Conference on Data Engineering, 2005.

[17] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. International
Conference on Very Large Data Bases, 2002.

[18] A. Metwally, D. Agrawal, and A. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM

Transactions on Database Systems, 31(3):1095–1133,
2006.

[19] J. Misra and D. Gries. Finding repeated elements.
Science of Computer Programming, 2:143–152, 1982.

[20] J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
12:315–323, 1980.

[21] B. Patt-Shamir and A. Shafrir. Approximate
distributed top-k queries. Distributed Computing,
21(1):1–22, 2008.

[22] S. Suri, C. Toth, and Y. Zhou. Range counting over
multidimensional data streams. Discrete and
Computational Geometry, 2006.

[23] S. Tirthapura and D. P. Woodruff. Optimal random
sampling from distributed streams revisited. In Proc.
International Symposium on Distributed Computing,
2011.

[24] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its
Applications, 16:264–280, 1971.

[25] D. P. Woodruff. Efficient and Private Distance
Approximation in the Communication and Streaming
Models. PhD thesis, Massachusetts Institute of
Technology, 2007.

[26] D. P. Woodruff and Q. Zhang. Tight bounds for
distributed functional monitoring. In Proc. ACM
Symposium on Theory of Computing, 2012.

[27] A. C. Yao. Probabilistic computations: Towards a
unified measure of complexity. In Proc. IEEE
Symposium on Foundations of Computer Science,
1977.

[28] K. Yi and Q. Zhang. Optimal tracking of distributed
heavy hitters and quantiles. In Proc. ACM Symposium
on Principles of Database Systems, 2009.

APPENDIX

A. LOWER BOUND FOR THE SAMPLING

PROBLEM

Claim A.1. To solve the sampling problem we need to
probe at least Ω(k) sites.

Proof. Suppose that the coordinator only samples z =
o(k) sites. Let X be the number of sites that are sampled
with bit 1. Then X is chosen from the hypergeometric dis-
tribution with probability density function (pdf) Pr[X =

x] =
`

s′

x

´`

k′−s′

z−x

´

/
`

k′

z

´

. The expected value of X is z
k′

· s′,

which is z
k′

“

k
2
− y +

√
k
”

or z
k′

“

k
2
− y −

√
k
”

, depending

on the value of s′. Let p =
`

k
2
− y
´

/k′ = 1
2
± o(1) and

α =
√

k/k′ = 1/
√

k±o(1/
√

k). To avoid tedious calculation,
we assume that X is picked randomly from one of the two
normal distributions N1(µ1, σ

2
1) and N2(µ2, σ

2
2) with equal

probability, where µ1 = z(p − α), µ2 = z(p + α), σ1, σ2 =

Θ(
p

zp(1 − p)) = Θ(
√

z). In Feller [10] it is shown that the
normal distribution approximates the hypergeometric distri-
bution very well when z is large and p ± α are constants in
(0, 1) 6. Now our task is to decide from which of the two dis-
tributions X is drawn based on the value of X with success
probability at least 0.7.

Let f1(x;µ1, σ
2
1) and f2(x;µ2, σ

2
2) be the pdf of the two

normal distributions N1,N2, respectively. It is easy to see
that the best deterministic algorithm of differentiating the
two distributions based on the value of a sample X will do
the following.

• If X > x0, then X is chosen from N2, otherwise X
is chosen from N1, where x0 is the value such that
f1(x0; µ1, σ

2
1) = f2(x0; µ2, σ

2
2) (thus µ1 < x0 < µ2).

Indeed, if X > x0 and the algorithm decides that “X is cho-
sen from N1”, we can always flip this decision and improve
the success probability of the algorithm.

The error comes from two sources: (1) X > x0 but X
is actually drawn from N2; (2) X ≤ x0 but X is actually
drawn from N1. The total error is

1/2 · (Φ(−ℓ1/σ1) + Φ(−ℓ2/σ2)),

where ℓ1 = x0 − µ1 and ℓ2 = µ2 − x0. (Thus ℓ1 + ℓ2 =
µ2 −µ1 = 2αz). Φ(·) is the cumulative distribution function
(cdf) of the normal distribution. See Figure 1.

Finally note that ℓ1/σ1 = O(αz/
√

z) = O(
p

z/k) = o(1)
and ℓ2/σ2 = O(αz/

√
z) = o(1), so Φ(−ℓ1/σ1)+Φ(−ℓ2/σ2) >

0.99. Therefore, the failure probability is at least 0.49, con-
tradicting our success probability guarantee. Thus we must
have z = Ω(k).

6In Feller’s book [10] the following is proved. Let p ∈ (0, 1)
be some constant and q = 1−p. The population size is N and
the sample size is n, so that n < N and Np, Nq are both
integers. The hypergeometric distribution is P (k; n, N) =
`

Np
k

´`

Nq
n−k

´

/
`

N
n

´

for 0 ≤ k ≤ n.

Theorem A.1. [10] If N → ∞, n → ∞ so that n/N →
t ∈ (0, 1) and xk := (k − np)/

√
npq → x, then

p(k; n, N) ∼ e−x2/2(1−t)

p

2πnpq(1 − t)

