
Parallel Algorithms for Sparse Matrix Multiplication and
Join-AggregateQueries

Xiao Hu
∗

Duke University

xh102@cs.duke.edu

Ke Yi
†

HKUST

yike@ust.hk

ABSTRACT
In this paper, we design massively parallel algorithms for sparse ma-

trix multiplication, as well as more general join-aggregate queries,

where the join hypergraph is a tree with arbitrary output attributes.

For each case, we obtain asymptotic improvement over existing

algorithms. In particular, our matrix multiplication algorithm is

shown to be optimal in the semiring model.

CCS CONCEPTS
• Theory of computation → Massively parallel algorithms;
Database query processing and optimization (theory).

KEYWORDS
parallel algorithms; sparse matrix multiplication; join-aggregate

query

ACM Reference Format:
Xiao Hu and Ke Yi. 2020. Parallel Algorithms for Sparse Matrix Multiplica-

tion and Join-Aggregate Queries. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’20),
June 14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3375395.3387657

1 INTRODUCTION
Over the span of half of a century, the running time for multiplying

two U × U matrices has progressively improved from O(U 2.807)

[22] toO(U 2.373) [20]. However, all these fast matrix multiplication

algorithms rely on the algebraic properties of the ring, in particular

the existence of additive inverses.

Consider the multiplication of two matrices (ai j) and (bjk). By
treating each nonzero entry ai j as a tuple (i, j,ai j) (and similarly

for bi j), matrix multiplication can be written as a join-aggregate

query over two relations (formal definition given below). However,

join-aggregate queries posed on a relational database often have

the following additional requirements: (1) The “multiplication” and

“addition” operations over the matrix elements may not conform to

∗
Work done while the author was at HKUST.

†
Ke Yi is supported by HKRGC under grants 16202317, 16201318, and 16201819.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7108-7/20/06. . . $15.00

https://doi.org/10.1145/3375395.3387657

those in a ring. In general, we would like to process such queries

over any semiring [11, 15], which does not have additive inverses.

(2) The matrices, both input and output, are sparse, i.e., the number

of nonzero entries can be much smaller than U 2
. In other words,

denoting the number of nonzero entries in the input and output ma-

trices as N and OUT, respectively, we would like running times that

depend on N and OUT, but notU . In fact, if the matrices are dense,

namely N = Θ(U 2), then the standard O(U 3)-time algorithm is

already optimal under the semiring model [12, 21]. In the semiring

model, the only way to create new semiring elements is by mul-

tiplying or adding existing semiring elements. Thus, as argued in

[12, 21], the algorithmmust compute all theU 3 elementary products,
namely ai jbjk for all 1 ≤ i, j,k ≤ U .

1.1 Join-aggregate queries
We now formally define the class of queries studied in this paper.

A (natural) join is defined as a hypergraph Q = (V, E), where the

verticesV = {x1, . . . , xm } model the attributes and the hyperedges
E = {e1, . . . , en } ⊆ 2

V
model the relations. We restrict our study

to joins defined by an acyclic hypergraph where each ei consists of
two attributes, i.e., Q is a tree.

Let dom(x) be the domain of attribute x ∈ V . An instance of Q
is a set of relations R = {Re : e ∈ E}. Each relation Re consists a

set of tuples, where each tuple is an assignment that assigns a value

from dom(x) to x for every x ∈ e . The full join results of Q on R,

denoted as Q(R), consist of all combinations of tuples, one from

each Re , such that they share common values on their common

attributes.

We consider join-aggregate queries over annotated relations
[11, 15]. Let (R, ⊕, ⊗) be a commutative semiring. Every tuple t
is associated with an annotationw(t) ∈ R. The annotation of a join

result t ∈ Q(R) is

w(t) :=
∏

t ′∈Re ,πe t=t ′,e ∈E

w(t ′),

where the multiplication is done using the ⊗ operator. Let y ⊆ V
be a set of output attributes and ȳ = V−y the non-output attributes.

A join-aggregate query Qy(R) asks us to compute∑̄
y
Q(R) =

(ty,w(ty)) : ty ∈ πyQ(R),w(ty) =
∑

t ∈Q(R):πyt=ty

w(t)

 ,
where the summation is done using the ⊕ operator. In plain lan-

guage, a join-aggregate query (semantically) first computes the

full join results Q(R) and the annotation of each result, which is

the ⊗-aggregate of the tuples comprising the join result. Then it

partitions Q(R) into groups by the attributes in y. Finally, for each

https://doi.org/10.1145/3375395.3387657
https://doi.org/10.1145/3375395.3387657

group, it computes the ⊕-aggregate of the annotations of the join

results in that group.

Join-aggregate queries include many commonly seen database

queries as special cases. For example, if we ignore the annotations,

then it becomes a join-project query πyQ(R), also known as a

conjunctive query. If we take R be the domain of integers and set

w(t) = 1, then it becomes the COUNT(*) GROUP BY y query; in

particular, if y = ∅, the query computes the full join size |Q(R)|. If

we takeV = {A,B,C} with y = {A,C}, and E = {e1 = {A,B}, e2 =

{B,C}}, then it degenerates to matrix multiplication.

We use N =
∑
e ∈E |Re | to denote the input size and OUT =

|πyQ(R)| the output size. Let [n] stand for {1, 2, · · · ,n}. We study

the data complexity of algorithms, i.e., n andm are considered as

constants.

1.2 The Yannakakis algorithm
In the RAM model, there is essentially only one algorithm for com-

puting such queries, known as the Yannakakis algorithm [25] dated

back to 1981, which was originally designed for join-project queries.

It first removes all the dangling tuples, namely tuples that will not

appear in the full join results, inO(N) time via a series of semijoins.

Then, it picks an arbitrary attribute as the root of the query tree Q,

and performs joins and projections in a bottom-up fashion. Specif-

ically, it takes two relation Re and Re ′ such that e is a leaf and e ′

is the parent of e , and replaces Re ′ with πy∪anc(e ′)Re Z Re ′ , where
anc(e ′) are the set of attributes in e ′ that appear in the ancestors of

e ′. Then Re is removed and the step repeats until only one relation

remains. It has been noted that this algorithm can be easily modi-

fied to handle join-aggregate queries, by replacing the projection

πy∪anc(e ′) by an aggregation [15].

Note that when applied to matrix multiplication

∑
B R1(A,B) Z

R2(B,C), this algorithm just computes the join R = R1(A,B) Z
R2(B,C) and then does the aggregation

∑
B R.

The running time of this algorithm (after dangling tuples have

been removed) is proportional to the largest intermediate join size

|Re Z Re ′ |. It is known that if the query is free-connex1, then
the maximum intermediate join size is O(OUT) [3, 15]. For non-

free-connex queries, Yannakakis gave an upper bound of O(N ·
OUT) in his original paper [25]. For matrix multiplication, which

is the simplest non-free-connex query, this has been tightened to

O(N
√

OUT) [2], which is also shown to be optimal in the semiring

model, as there are instances withΩ(N
√

OUT) elementary products.

This bound also extends to star queries (see Section 5 for formal

definition), for which the bound becomes O(N · OUT
1−1/n).

1.3 Massively parallel computation
This paper is concerned with the Massively Parallel Computation
(MPC) model [5, 6, 18, 19]. In the MPC model, there are p servers

connected by a complete communication network. Data is initially

distributed across p servers with each server holding N /p tuples.

Computation proceeds in terms of rounds. In each round, each

server first receives messages from other servers (if there are any),

performs some local computation, and then sends messages to

other servers. The complexity of the algorithm is measured by the

1
In the case of tree queries, being free-connex means that all the output attributes

form a connected subtree in Q.

number of rounds and the load, denoted as L, which is the maximum

message size received by any server in any round. We will only

consider constant-round algorithms. In this case, whether a server

is allowed to keep messages it has received from previous rounds

is irrelevant: if not, it can just keep sending all these messages to

itself over the rounds, increasing the load by a constant factor.

The MPC model can be considered as a simplified version of the

bulk synchronous parallel (BSP) model [24], but it has enjoyed more

popularity in recent years. This is mostly because the BSP model

takes too many measures into consideration, such as communica-

tion costs, local computation time, memory consumption, etc. The

MPC model unifies all these costs with one parameter L, which
makes the model much simpler. Meanwhile, although L is defined

as the maximum incoming message size of a server, it is also closely

related with the local computation time and memory consumption,

which are both increasing functions of L. Thus, L serves as a good

surrogate of these other cost measures. This is also why the MPC

model does not limit the outgoing message size of a server, which

is less relevant to other costs.

We will adopt the mild assumption N ≥ p1+ϵ
where ϵ > 0 is any

small constant. This assumption clearly holds on any reasonable

values of N and p in practice; theoretically, this is the minimum

requirement for the model to be able to compute some almost

trivial functions, like the “or” of N bits, in O(1) rounds [9]. When

N ≥ p1+ϵ
, many basic operations (see Section 2.1) can be performed

inO(1) rounds andO(N /p) load, which is often called “linear load”,

as it is the load needed to shuffle all input data once.

For upper bounds, we assume that every tuple, any semiring

element, as well as any integer ofO(logN) bits, consumes one unit

of communication. For lower bounds, similar to [12], we require

the algorithm to work over any semiring, and assume that the only

way for a server to create new semiring elements is by multiplying

and adding existing semiring elements currently residing on the

same server. We call this model the semiring MPC model.

1.4 Previous MPC algorithms
For a two-way join R1(A,B) Z R2(B,C), there is an optimal MPC al-

gorithm with loadO
(
N
p +

√
OUT

p

)
[5, 13]. Plugging this algorithm

into the Yannakakis algorithm, together with the MPC primitives

for semijoin and aggregation (see Section 2.1), we can run the Yan-

nakakis algorithm to compute join-project or join-aggregate queries

in the MPC model. This is referred to as the distributed Yannakakis
algorithm in [1, 15]. The load of this algorithm isO

(
N
p +

J
p

)
, where

J is the maximum intermediate join size
2
. Combined with the

previously known bounds on J [2, 3, 15, 25], this implies that it

can compute free-connex queries with load O
(
N
p +

OUT

p

)
, matrix

multiplication with load O
(
N
p +

N
√

OUT

p

)
, star queries with load

O
(
N
p +

N ·OUT
1−1/n

p

)
, and general acyclic join-aggregate queries

with load O
(
N
p +

N ·OUT

p

)
. The results are summarized in Table 1.

Interestingly, while the Yannakakis algorithm’s O(N + OUT)

running time for free-connex queries is clearly optimal in the RAM

2
The bounds stated in [1, 15] are worse, as they did not plug in the optimal two-way

join algorithm of [5, 13].

model, its O(Np +
OUT

p) load is not optimal in the MPC model. We

recently designed an algorithm for free-connex queries with load

O(Np +
√
N ·OUT

p) [14], which is also shown to be optimal when

OUT ≤ c · p · N for some sufficiently large constant c > 0.

There are also worst-case optimal MPC algorithms [16, 23] for

computing full queries, i.e., y = V . These algorithms have load

O
(

N
p1/ρ∗

)
, where ρ∗ is the fractional cover number of the join graph

Q. For join-aggregate queries, one can use their algorithms to com-

pute the full join first, and then perform the aggregation. However,

the aggregation step will become the bottleneck with a load of

O(
OUTf
p), where OUTf is the size of the full join results. This ap-

proach is thus no better than the Yannakakis algorithm since we

always have OUTf ≥ J .

1.5 Our results
In this paper, we study non-free-connex tree queries where the

output attributes can be arbitrary. Table 1 summarizes our results,

where the Õ notation hides polylogarithmic factors.

We start with thematrix multiplication problem, i.e.,

∑
B R1(A,B)

Z R2(B,C), which is the simplest non-free-connex query. LetN1,N2

be the sizes of R1,R2 respectively. First, if N1 = 1 (resp. N2 = 1),

the problem can be trivially solved by simply broadcasting the only

tuple in R1 (resp. R2). The load is just O(1). Note that when N1 = 1

or N2 = 1, for each (a, c) ∈ πA,CR1 Z R2, there is only one b such

that (a,b) ∈ R1, (b, c) ∈ R2, so there is no need to add semiring

elements. Thus all query results can be computed locally after the

broadcast.

For N1,N2 ≥ 2, we design an MPC algorithm for matrix multi-

plication with load Õ

(
N1+N2

p +min

{√
N1N2

p ,
N 1/3

1
·N 1/3

2
·OUT

1/3

p2/3

})
,

which simplifies to Õ
(
N
p +min

{
N√
p ,

N 2/3 ·OUT
1/3

p2/3

})
when N1 =

N2 = N . One can verify that this presents an asymptotic improve-

ment over the Yannakakis algorithm for any OUT = ω(1). In fact,

our algorithm performs the same amount of computation as the

Yannakakis algorithm and computes all theO(N
√

OUT) elementary

products, which is unavoidable in the semiring model. The key to

the reduction in load is locality, namely, we arrange these elemen-

tary products to be computed on the servers in such a way that

most of them can be aggregated locally. The standard Yannakakis

algorithm has no locality at all, and all the elementary products are

shuffled around.

Furthermore, we show that this bound is optimal in the semiring

MPC model. Specifically, we show that for any N1,N2 ≥ 2 and any

max{N1,N2} ≤ OUT ≤ N1N2, there is an instance with input size

N1,N2 and output size OUT, on which the load of any algorithm

has to be at least this bound in the semiring MPC model. In fact, the

lower bound holds even if the algorithm is only required to work

over idempotent semirings, i.e., a ⊕ a = a for any element a in the

semiring.

Next, we generalize our matrix multiplication algorithm to line

queries and star queries, defined as follows.

(1) Line query:

∑
A2,A3, · · · ,An R1(A1,A2) Z R2(A2,A3) Z · · · Z

Rn (An,An+1);

(2) Star query:

∑
B R1(A1,B) Z R2(A2,B) Z · · · Z Rn (An,B).

Finally, we give an algorithm that can handle tree queries with

arbitrary output attributes. As seen in Table 1, we have been able

to obtain asymptotic improvement over the Yannakakis algorithm

in each case, although we do not have matching lower bounds.

One major technical difficulty we had to overcome is that the

value of OUT is not readily available. Although it is known that

OUT can be computed for free-connex queries with linear load

[14, 15], computing the query size for non-free-connex queries still

remains an open problem, even in the RAM model. In fact, the only

known method for computing the query size for non-free-connex

queries is to find all the query results, which is exactly the problem

we aim to solve. We get around this chicken-and-egg problem by

two approaches: (1) For matrix multiplication and line queries, we

are able to obtain a constant-factor approximation of OUT with lin-

ear load, which is sufficient for achieving the asymptotic bounds we

claim. (2) For star and tree queries, even a constant-factor approxi-

mation looks difficult, so we try to make the algorithms oblivious
to OUT, i.e., OUT is only used in the analysis but not needed by

the algorithm itself.

2 PRELIMINARIES
2.1 MPC Primitives
We mention the following deterministic primitives in the MPC

model, which can be computed with load O(Np) in O(1) rounds.

Assume N > p1+ϵ
where ϵ > 0 is any small constant.

Sorting [10]. Assume all servers are labeled as 1, 2, · · · ,p. GivenN

elements, redistribute them so that each server has O(Np) elements

in the end, while any element on server i is smaller than or equal

to any element on server j, for any i < j.

Reduce-by-key [13]. Given N pairs in terms of (key, value), com-

pute the “sum” of values for each key, where the “sum” is defined

by any associative operator. Note that an aggregation

∑
y R can be

computed as a reduce-by-key operation.

This primitive will also be frequently used to compute data

statistics, for example the degree information. The degree of value
a ∈ dom(v) in relation Re is defined as the number of tuples in Re
having this value in attribute v , i.e., |σv=aRe |. Each tuple t ∈ Re is

considered to have “key” πv t and “value” 1.

Multi-search [13]. Given N1 elements x1, x2, · · · , xN1
as set X

and N2 elements y1,y2, · · · ,yN2
as set Y , where all elements are

drawn from an ordered domain. Set N = N1 + N2. For each xi , find
its predecessor in Y , i.e., the largest element in Y but smaller than

xi . Note that a semijoin can also be computed by a multi-search.

Remove dangling tuples [14, 25]. For any acyclic join, all dan-

gling tuples, i.e., those that will not participate in the full join results,

can be removed by a series of semijoins. Note that after dangling

tuples are removed, we can determine whether the output of a

query is empty or not.

Parallel-packing [14]. Given N numbers x1, x2, · · · , xN where

0 < xi ≤ 1 for i ∈ [N], group them into m sets Y1,Y2, · · · ,Ym
such that

∑
i ∈Yj xi ≤ 1 for all j, and

∑
i ∈Yj xi ≥

1

2
for all but one j.

Initially, the N numbers are distributed arbitrarily across all servers,

and the algorithm should produce all pairs (i, j) if i ∈ Yj when done.

Note thatm ≤ 1 + 2

∑
i xi .

Query The Yannakakis algorithm New results

Matrix

O
(
N
p +

N ·
√

OUT

p

)
[2, 15]

Õ

(
N1+N2

p +min

{√
N1N2

p ,
N 1/3

1
·N 1/3

2
·OUT

1/3

p2/3

})
Multiplication (1) optimal up to poly-logarithmic factors for N1,N2 ≥ 2;

(2) Õ
(
N
p +min

{
N√
p ,

N 2/3 ·OUT
1/3

p2/3

})
if N1 = N2 = N ;

Star O

(
N
p +

N ·OUT
1− 1

n
p

)
[2, 15]

Õ
(
(N ·OUT

p)2/3 + N ·OUT
1/2

p + N+OUT

p

)
Line

O
(
N
p +

N ·OUT

p

)
[15]

Tree Õ
(
N ·OUT

2/3

p + N+OUT

p

)
Table 1: Summary of results. In the sparse matrix multiplication, N1,N2 are the number of non-zero entries in two input
matrices respectively. Generally, any instance for the join-aggregate query has input size N where there are at most N tuples
in each relation. OUT is the output size. p is the number of servers in the MPC model.

2.2 Estimate OUT

We show how to obtain a constant-factor approximation of OUT

for line queries (including matrix multiplication as a special case) in

O(1) rounds with linear load. The similar idea has been used by [8]

in the RAM model.

We borrow the technique of k minimum values (KMV) [4, 7],

which is more commonly used to estimate the number of distinct

elements in the streaming model. KMV works by applying a hash

function to the input items, and keeping thek minimumhash values,

denoted as v1,v2, · · · ,vk . It has been shown that, with k = O(1

ϵ 2
),

the estimator
k−1

vk
is an (1 + ϵ)-approximation of the number of

distinct items in the data stream, with at least constant probability.

Moreover, given the KMVs of two sets, the KMV of the union of

the two sets can be computed by simply “merging” the two KMVs,

i.e., keeping the k minimum values of the 2k values from the two

KMVs, provided that they use the same hash function.

On a line query, for each a ∈ dom(A1), we will obtain a constant-

factor approximation of OUTa = |πAn+1
R1(a,A2) Z R2(A2,A3) Z

· · · Z Rn (An,An+1)|. Note that OUT =
∑
a∈dom(A1)

OUTa . To do

so, we compute a hash value for each distinct value in dom(An+1).

Then it suffices to compute, for each a ∈ dom(A1), a KMV (with

a constant k) over all distinct values in dom(An+1) that can join

with a. This can be done by calling the reduce-by-key primitive

n times using the merge operation above to compute the “sum”.

More precisely, for i = n,n − 1, . . . , 1, we use reduce-by-key to

compute the KMV for each a ∈ dom(Ai), by merging all the KMVs

for b ∈ dom(Ai+1) such that (a,b) ∈ Ri (Ai ,Ai+1).

The KMV obtained from each a ∈ dom(A1) gives us a constant-

factor approximation of OUTa only with constant probability. To

boost the success probability, we run O(logN) instances of this
algorithm in parallel using independent random hash functions,

and return the median estimator for each OUTa . This boosts the

success probability to 1−1/NO (1)
for each OUTa . By a union bound,

the probability that all estimators are constant-factor approxima-

tions is also 1 − 1/NO (1)
. Then, we also have a constant-factor

approximation of OUT. The load of this algorithm is Õ(Np).

3 MATRIX MULTIPLICATION
In this section, we study the matrix multiplication problem, i.e.,

the query

∑
B R1(A,B) Z R2(B,C). Suppose R1 and R2 have N1,N2

tuples respectively, and the query has output size OUT. As men-

tioned in Section 1.5, the problem is trivial if N1 = 1 or N2 = 1. For

N1,N2 ≥ 2, we show the following result.

Theorem 1. Matrix multiplication can be computed in the MPC
model in O(1) rounds with load w.h.p.3

Õ

(
N1 + N2

p
+min

{√
N1N2

p
,
N

1/3

1
· N

1/3

2
· OUT

1/3

p2/3

})
.

First, note that ifN1/N2 < 1/p orN1/N2 > p, then N1+N2

p asymp-

totically dominates

√
N1N2

p , so the bound simplifies to Õ(N1+N2

p).

For this case, we give a simple algorithm. Assume N1/N2 < 1/p
(the other case is symmetric). We first remove the dangling tuples.

Then sort R2 by attribute C . We note that after dangling tuples are

removed, for any c ∈ dom(C), we have |R2(B, c)| ≤ |πBR1(A,B)| ≤

N1 ≤
N2

p . So after sorting, tuples in R2 with the same value on at-

tribute C must land on the same server or two consecutive servers.

In the latter case, we use another round to move them to the same

server. Next, we broadcast R1 to all servers, and ask each server

to compute the query on its local data. No further aggregation is

needed as tuples from different servers have disjointC values. This

algorithm has a load ofO(N1+
N2

p) = O(
N1+N2

p). Below, we assume

1/p ≤ N1/N2 ≤ p.

3.1 Worst-case optimal algorithm

We first describe an algorithm with load O
(√

N1N2

p

)
. This is actu-

ally worst-case optimal because when |dom(B)| = 1, there areN1N2

elementary products. A server with load L can compute O(L2) of

them in a constant number of rounds, so we have pL2 = Ω(N1N2),

i.e., L = Ω
(√

N1N2

p

)
.

Set L =
√

N1N2

p . We describe an algorithm with loadO(L) below.

Step 1: Compute data statistics. We first compute, for each value

a ∈ dom(A), its degree in R1(A,B), i.e., |R1(a,B)|, as well as the
degree of each c ∈ dom(C) in R2(B,C), using the reduce-by-key

primitive. A value a ∈ dom(A) is heavy if its degree in R1(A,B)

3
The “w.h.p.” means that the load complexity holds with probability at least 1−1/NO (1)

.

In the following results, it can be phased in the same way.

is greater than L, and light otherwise. The set of heavy values in

dom(A) is denoted as

Aheavy = {a ∈ dom(A) : |R1(a,B)| ≥ L},

and the set of light values in dom(A) is Alight = dom(A) − Aheavy
.

Similarly, a value c ∈ dom(C) is heavy if its degree is greater than L
in R2(B,C), and light otherwise. Similarly, the set of heavy values in

dom(C) is denoted asCheavy
andC light

. Observe that |Aheavy | ≤
N1

L
and |Cheavy | ≤

N2

L .

In this way, the original query can be decomposed into four

subqueries: ∑
B

R1(A
X ,B) Z R2(B,C

Y),

where X ,Y can be either heavy or light. Note that results produced

by these subqueries are disjoint and the final aggregated result is

just their union. We handle each subquery separately.

Step 2: Heavy-heavy. For each pair (a, c) with a ∈ Aheavy
and

c ∈ Cheavy
, we allocate

pa,c =

⌈
|R1(a,B)|

L
+
|R2(B, c)|

L

⌉
servers to compute the subquery

∑
B R1(a,B) Z R2(B, c) by using

multi-search and reduce-by-key primitives. The total number of

servers allocated is∑
a,c

pa,c =
N1N2

L2
+

1

L
·
∑
a,c
(|R1(a,B)| + |R2(B, c)|)

≤
N1N2

L2
+

1

L
·
N2

L
· N1 +

1

L
·
N1

L
· N2 = O(p).

Note that all subqueries can be computed in parallel and each server

has a load of O(L).

Step 3. Heavy-light. For each value a ∈ Aheavy
, we allocate

pa =

⌈
|R1(a,B)| + |R2(B,C

light)|

L

⌉
servers to compute the subquery

∑
B R1(a,B) Z R2(B,C

light) by

using multi-search and reduce-by-key primitives. The total number

of servers used is∑
a

pa =
N1

L
+

1

L

∑
a
(|R1(a,B)| + |R2(B,C

light)|)

≤2 ·
N1

L
+

1

L
·
N1

L
· N2 = O(p),

where the last inequality is implied by the fact that
N1

p ≤ L under

the assumption that 1/p ≤ N1/N2 ≤ p.
Note that all the subqueries can be computed in parallel and this

step has a load of O(maxa
|R1(a,B) |+ |R2(B,C light) |

pa) = O(L).

The light-heavy case can be handled symmetrically.

Step 4. Light-light. In this case, we use parallel-packing to divide

Alight
into k = O(N1

L) disjoint groupsA1,A2, · · · ,Ak such that each

group has total degree O(L) in R1(A
light,B). Similarly, we divide

C light
into l = O(N2

L) disjoint groups C1,C2, · · · ,Cl such that each

group has total degree O(L) in R2(B,C
light). Then we arrange all

servers into a ⌈
N1

L ⌉ × ⌈
N2

L ⌉ grid, where each one is associated with

coordinates (i, j) for i ∈ [⌈N1

L ⌉], j ∈ [⌈
N2

L ⌉]. The total number of

servers used is⌈
N1

L

⌉
·

⌈
N2

L

⌉
≤

N1

L
·
N2

L
+
N1

L
+
N2

L
+ 1 = O(p),

where
N1+N2

p ≤ L holds under the assumption that 1/p ≤ N1/N2 ≤

p. The server (i, j) will receive all tuples in σA∈AiR1(A,B) and
σC ∈CjR2(B,C) and then compute the subquery

∑
B σA∈AiR1(A,B) Z

σC ∈CjR2(B,C) locally.
Obviously, the results emitted by different servers are disjoint

and the union is the final aggregate result. In this step, each server

has a load of O(L) as the number of tuples received from both

relations can be bounded by L.

Lemma 1. For any sparse matrix multiplication with input sizes
N1,N2 ≥ 2, there is an algorithm computing it in O(1) rounds with

load O
(
N1+N2

p +

√
N1N2

p

)
.

3.2 Output-sensitive algorithm
In this part, we consider output-sensitive algorithms for computing

sparse matrix multiplication. We first remove all dangling tuples

with linear load. Then we obtain a constant-factor approximation

of OUT as described in Section 2.2. Below, we will not distinguish

between OUT and its constant-factor approximation.

We begin with an observation that, if OUT ≤ N /p, then the

matrix multiplication can be computed in O(1) rounds with load

O
(
N
p

)
. The algorithm, referred to as LinearSparseMM, is very

simple. Note that the degree of any b ∈ dom(B) in either R1 or R2

must be smaller than OUT, hence smaller than N /p. First, sort all
tuples by attribute B. After this step, all tuples with the same value

b will land on the same server (or on two consecutive servers, in

which case we bring them to one server using another round). Then

let each server compute its local aggregate results

∑
B Ri

1
(A,B) Z

Ri
2
(B,C), where Ri

1
(resp. Ri

2
are tuples from R1, (resp. R2) landing on

server i . Note that each local query produces at most OUT ≤ N /p
results. At last, use reduce-by-key on all the local results to obtain

the final aggregated results.

Below,we consider the caseOUT > N /p. SetL =
(
N1 ·N2 ·OUT

p2

)
1/3

+
N1+N2

p .

Step 1. Compute data statistics. Recall that when computing a

constant-factor approximation for OUT, we have also obtained a

constant-factor approximation of OUTa , for each value a ∈ dom(A),
i.e., the number of final aggregate results in which a participates.

A value a ∈ dom(A) is heavy if OUTa ≥
√

N2 ·OUT·L
N1

, and light

otherwise. The set of heavy values in dom(A) is denoted as Aheavy
,

and the set of light values Alight
. Observe that |Aheavy | ≤

√
OUT

L ·√
N1

N2

since the (disjoint) union of results produced by each value

in Aheavy
must be the final aggregate result.

Step 2. Handle heavy rows. We use the Yannakakis algorithm

to compute

∑
B R1(A

heavy,B) Z R2(B,C) with load O(Jp), where

J = |R1(A
heavy,B) Z R2(B,C)|. For this join, J can be bounded

by O

(√
N1N2OUT

L

)
, since each tuple in R2(B,C) can join with at

most O

(√
OUT

L ·

√
N1

N2

)
values in Aheavy

. So this step has a load of

O

(
1

p ·

√
N1N2OUT

L

)
= O(L).

Step 3. Handle light rows and heavy columns. We then divide

Alight
into k1 = O

(√
OUT

L ·

√
N1

N2

)
disjoint groups A1,A2, · · · ,Ak1

such that values in each group appear in O

(√
N2 ·OUT·L

N1

)
final re-

sults. For groupAi , if |σA∈AiR1(A,B)| ≤ L, then |πAσA∈AiR1(A,B) Z
R2(B, c)| ≤ L holds for each value c ∈ dom(C). In this step, we only

tackle the groups with |σA∈AiR1(A,B)| > L. Note that there are at

most O

(
min

{
N1

L ,
√

OUT

L ·

√
N1

N2

})
such groups.

We first estimate for each group Ai , the number of aggregate

results participated by each value c ∈ dom(C) in the subquery

induced by Ai , i.e., |πAσA∈AiR1(A,B) Z R2(B, c)|. We allocate

pi =

⌈
|σA∈AiR1(A,B)| + |R2(B,C)|

L

⌉
servers for each such Ai and run the primitive described in Sec-

tion 2.2. It can be easily checked that each group incurs a load of

O
(
maxi

|σA∈Ai R1(A,B) |+ |R2(B,C) |
pi

)
= O(L). The number of servers

used for computing these statistics is∑
i
pi =

∑
i

(
|σA∈AiR1(A,B)| + |R2(B,C)|

L
+ 1

)
≤
N1

L
+

√
OUT

L
·

√
N1

N2

·
N2

L
+
N1

L
= O(p).

On group Ai , value c ∈ dom(C) is heavy if it appears in more

than L results of the subquery

∑
B σA∈AiR1(A,B) Z R2(B,C), and

light otherwise. The set of heavy values in dom(C), with respect to

Ai , is denoted as

C
heavy

i = {c ∈ dom(C) : |πAR1(A
light,B) Z σC=cR2(B,C)| ≥ L}

and the set of light values isC
light

i = dom(C)−C
heavy

i . Observe that

|C
heavy

i | ≤

√
OUT

L ·

√
N2

N1

. For each value c ∈ C
heavy

i , we allocate

pi ,c =

⌈
|σA∈AiR1(A,B)| + |σC=cR2(B,C)|

L

⌉
servers to compute the subquery

∑
B σA∈AiR1(A,B) Z σC=cR2(B,C)

by multi-search and reduce-by-key primitives. Each server has a

load of O
(
|σA∈Ai R1(A,B) |+ |σC=cR2(B,C) |

pi ,c

)
= O(L).

Note that all the subqueries are computed in parallel and the

total number of servers used is∑
i

∑
c
pi ,c =

∑
i

∑
c
(
|σA∈AiR1(A,B)| + |σC=cR2(B,C)|

L
+ 1)

=
N1

L
·

√
OUT

L
·

√
N2

N1

+
N2

L
·

√
OUT

L
·

√
N1

N2

+

√
OUT

L
·

√
N2

N1

·
N1

L
= 3 ·

√
N1 · N2 · OUT

L3
= O(p).

Step 4. Handle light rows and light columns. Note that on any

group Ai , |
∑
B σA∈AiR1(A,B) Z σC=cR2(B,C)| ≤ L holds for each

value c ∈ C
light

i by definition. For each group Ai , we allocate pi
servers as the same in Step 3 and run the parallel-packing prim-

itive to divide C
light

i into k2 = O

(√
OUT

L ·

√
N2

N1

)
disjoint groups

Ci
1
,Ci

2
, · · · ,Cik2

such that values in each group appear together in

O(L) results of the subquery

∑
B σA∈AiR1(A,B) Z R2(B,C). The

number of servers used for computing these statistics is O(p) fol-
lowing the same argument in Step 3.

Note that each pair of (Ai ,C
i
j) further defines a subquery as∑

B
σA∈AiR1(A,B) Z σC ∈C i

j
R2(B,C).

which derives an instance Ri , j = σA∈AiR1(A,B) ∪ σC ∈C i
j
R2(B,C).

Over all subqueries, the number of (duplicated) input tuples is∑
i , j
|σA∈AiR1(A,B)| + |σC ∈C i

j
R2(B,C)| ≤

√
OUT

L
·
√
N1N2.

Sort input tuples over all instances by (i, j) lexicographically

with loadO

(√
N1N2

p ·

√
OUT

L

)
= O(L). We distinguish the subquery

induced by (Ai ,Cj) into two cases. If all input tuples inRi , j land on a
single server, then let this server compute the

∑
B σA∈AiR1(A,B) Z

σC ∈C i
j
R2(B,C) locally. Otherwise, input tuples in Ri j land on more

than 2 servers. Note that the number of such instances is at most p.
For each subquery defined by (Ai ,C

i
j), we allocate

pi , j =

⌈
|σA∈AiR1(A,B)| + |σC ∈C i

j
R2(B,C)|

L

⌉
servers and invoke LinearSparseMM algorithm to compute the∑
B σA∈AiR1(A,B) Z σC ∈C i

j
R2(B,C). Note that each subquery has

output size smaller than OUT, thus can be computed with load

O
(
|Ri , j |
pi , j + L

)
= O(L). Note that all the subqueries are computed in

parallel and the total number of servers used is

∑
i , j

pi , j =
∑
i , j

(
|σA∈AiR1(A,B)| + |σC ∈C i

j
R2(B,C)|

L
+ 1

)
≤
N1

L
·

√
OUT

L
·

√
N2

N1

+
N2

L
·

√
OUT

L
·

√
N1

N2

+ p = O(p).

Over all steps, this algorithm has a load of O(L).

Lemma 2. For any sparse matrix multiplication with input sizes
N1,N2 ≥ 2 and output size OUT, there is an algorithm computing it

in O(1) rounds with load Õ
(
N1+N2

p +
N 1/3

1
·N 1/3

2
·OUT

1/3

p2/3

)
w.h.p.

Finally, depending on the value of OUT, we choose to run either

the algorithm in Section 3.1 or the one in Section 3.2, thus obtaining

the bound claimed in Theorem 1.

3.3 Lower Bounds
We prove the following two lower bounds, which together show

that the bound in Theorem 1 is optimal. Both lower bounds hold

over idempotent semirings, i.e., semirings with the property that

a ⊕ a = a for any semiring element a.

Theorem 2. For any N1,N2 ≥ 2 and max{N1,N2} ≤ OUT ≤

N1N2, there is an instance R with input sizes Θ(N1),Θ(N2) and out-
put size Θ(OUT), such that any algorithm computing the matrix

multiplication on R in O(1) rounds must incur a load of Ω
(
N1+N2

p

)
in the idempotent semiring MPC model.

Proof. Without loss of generality, assume N2 ≥ N1 ≥ 2. The

hard instance is constructed as follows. Set dom(A) = {a}, dom(B) =

{bi : i ∈ [N1]} and dom(C) = {c j : j ∈ [N2

2
]}. Set the instance as

R1(A,B) = {a} × dom(B) and R2(B,C) = {b1,b2} × dom(C). Note

that the output size is 1× 2×
N2

2
= N2. Then we addO(N1) dummy

tuples to R1 and O(N2) dummy tuples to R2 so that the output size

is Θ(OUT). The initial data distribution is a way such that no two

tuples of R2 with the same value c ∈ dom(C) are on the same server.

By the semiring model requirement, for each c ∈ dom(C), the
two tuples (b1, c), (b2, c) in R2 have to meet on at least one server to

produce the aggregate for (a, c). Under the initial data distribution,
at least N2/2 tuples have to be sent to other servers for computing

the aggregation, which incurs a load of at least N2/2p. So lower

bound of the load is Ω(N2

p) = Ω(N1+N2

p). □

Theorem 3. For any N1,N2 ≥ 2 and max{N1,N2} ≤ OUT ≤

N1N2, there exists an instance R for sparse matrix multiplication
with input sizesΘ(N1),Θ(N2) and output sizeΘ(OUT), such that any
algorithm computing R in O(1) rounds in the idempotent semiring
MPC model must incur a load of

Ω

(
min

{√
N1N2

p
,
N

1/3

1
· N

1/3

2
· OUT

1/3

p2/3

})
.

Proof. First consider the case N2/N1 > OUT. In this case, it

is sufficient to prove an Ω

((
N2

p

)
2/3

)
lower bound, which is at

least as large as the second term in the claimed lower bound. If

N2 < p, this degenerates to the trivial bound Ω(1); otherwise, we

have

(
N2

p

)
2/3
< N2

p ≤
N1+N2

p , and we apply Theorem 2. The case

when N1/N2 > OUT can be argued similarly.

Below, we assume that 1/OUT ≤ N1/N2 ≤ OUT. The hard

instance is constructed as follows. There are

√
N1 ·OUT

N2

,

√
N1N2

OUT
,√

N2 ·OUT

N1

distinct values in dom(A), dom(B), dom(C) respectively.

Note that all three numbers are at least 1 when 1/OUT ≤ N1/N2 ≤

OUT; thus we can ignore rounding issues without affecting the

asymptotic results. Set R1(A,B) = dom(A)×dom(B) and R2(B,C) =
dom(B) × dom(C). In this constructed instance, there are N1,N2

tuples in R1(A,B), R2(B,C), respectively. Every value a ∈ dom(A)
can joinwith every value c ∈ dom(C), so the output size is |dom(A)|·
|dom(C)| = OUT.

There are two types of tuples in the semiring MPC model: (1)

original tuples from R1,R2 (or their copies); and (2) aggregate tu-

ples (or their copies) in the form of (a, c,w,B(ac)) where B(ac) ⊆

dom(B) andw =
∑
b ∈B(ac):(a,b ,c)∈R1ZR2

w(a,b)×w(b, c). Note that
if B(ac) = dom(B), the tuple is a final result. We will lower bound

the load in terms of the number of type (1) and type (2) tuples

received by any server, even assuming B(ac) can be encoded by a

constant-size message.

The idempotent semiring model only allows the following two

operations to produce new tuples:

(i) (a,b,w(a,b)) ⊗ (b, c,w(b, c)) → (a, c,w(a,b) ⊗w(b, c), {b});
(ii) (a, c,w1,B(ac)) ⊕ (a, c,w2,B

′(ac)) → (a, c,w1 ⊕ w2,B(ac) ∪
B′(ac)).

Our hard instance is initially distributed in such a way that

R1 and R2 are on disjoint servers. This means that initially, there

are only type (1) tuples without any communication. We allow

each server to store all tuples it has received from previous rounds,

thus we may assume that they emit the final results only in the

last round. We may assume w.l.o.g. that at the end of each round

(i.e., after local computation and before sending messages to the

next round), a server keeps at most one aggregate tuple for each

(a, c) pair, because if there are two, they can be combined using

operation (ii) to produce a more useful aggregate tuple. We call

such an aggregate tuple a partial result for (a, c) if B(ac) , dom(B).
Each partial result must be later aggregated with another produced

by some other server (otherwise there is no point in producing this

partial result at all), so at least half of all partial results must be

shuffled.

Consider the time point before the last round of shuffling. Let

(a, c,wi ,B
i (ac)) be the aggregate tuple stored on server i for (a, c)

if it exists, and define Bi (ac) = ∅ otherwise. We call an output

pair (a, c) half-complete if | ∪i ∈[p] Bi (ac)| >
1

2
|dom(B)|, otherwise

half-incomplete. Consider the following two cases:

Case 1: More than
OUT

2
pairs are half-incomplete. For each half-

incomplete (a, c) pair, all the original tuples not aggregated so far

must be brought to one server in the last round. There are at least

1

2
|dom(B)| such tuples in σA=aR1 and also

1

2
|dom(B)| in σC=cR2. If

the load is L, a server can load all such tuples for at most
2L

|dom(B) |
differenta’s and 2L

|dom(B) | different c’s. Thus, the server can complete

at most

(
2L

|dom(B) |

)
2

= O
(
L2 ·OUT

N1N2

)
half-incomplete pairs. Over p

servers, we must have p · L
2 ·OUT

N1N2

≥ OUT

2
, thus L = Ω

(√
N1N2

p

)
.

Case 2: More than
OUT

2
pairs are half-complete. Then the total

“work” done so far is

∑
(a,c) | ∪i ∈[p] B

i (ac)| = Ω(OUT · |dom(B)|).
Let xi be the number of partial results generated by server i so far.

As argued above, at least half of the partial results must be shuffled,

so

∑
i xi = O(pL).

Now, let’s consider how much these partial results can con-

tribute to the work done so far. The key is to interpret the work

done as a subset of the full join R1 Z R2, where a full join result

(a,b, c) is “done” if b ∈ ∪i ∈[p]B
i (ac). Note that a server contributes

(a,b, c) to the work done in a round only if it has the original tuples

(a,b,w(a,b)), (b, c,w(b, c)), and it keeps the partial result for (a, c)
at the end of the round. This becomes the triangle join problem,

where the server hasO(L) tuples in R1(A,B),O(L) tuples in R2(B,C),
and xi tuples in an imaginary relation R3(A,C) that consists of all
the (a, c) pairs for which the servers has ever kept a partial result.

By the AGM bound, the total work contributed by the server is

therefore at most O(L ·
√
xi). So, the maximum contribution made

by p servers is characterized by the following linear program.

max

p∑
i=1

L ·
√
xi

s.t. x1 + x2 + · · · + xp ≤ p · L

xi ≥ 0, i = 1, . . .p.

The optimal solution for the LP above is p · L3/2
, when all xi ’s

take the same value L. Thus, we must have

p · L3/2 = Ω(OUT · |dom(B)|) = Ω(
√
N1N2OUT),

i.e., L = Ω

(
N 1/3

1
·N 1/3

2
·OUT

1/3

p2/3

)
.

Taking the minimum of the two cases, we obtain the desired

lower bound. □

Remark. We note that there is an Ω

(
min

{
N
B

√
OUT

M ,
N 2

MB

})
lower bound for this problem in the semiring external memory

model when N1 = N2 = N [21]. Meanwhile, there is an MPC-

to-EM reduction [17], which states that any MPC algorithm run-

ning in r rounds with load L(N ,OUT,p) can be converted to an

external memory algorithm incurring Õ
(
N
B + rp

∗M
B

)
I/Os, where

p∗ = minp {L(N ,OUT,p) ≤ M/r }. Taking M = Θ(B), the external
memory lower bound implies a lower bound for constant-round

matrix multiplication algorithms in the semiring MPC model as

Ω̃
(
min

{
(Np)

2/3 · OUT
1/3, N√p

})
. However, our lower bound holds

for unequal matrix sizes N1,N2 as well. Moreover, since our proof is

conducted in the MPCmodel directly, it avoids the poly-logarithmic

factors introduced during the MPC-to-EM reduction.

4 LINE QUERIES
In this section, we investigate the chain matrix multiplication prob-

lem, which is equivalent to a line query with the two “boundary”

attributes being the output attributes:∑
A2,A3, · · · ,An

R1(A1,A2) Z R2(A2,A3) Z · · · Z Rn (An,An+1).

We will design a recursive algorithm for handling such a line

query over n relations, with the base n = 2 being just matrix multi-

plication. We will assume that all n relations have the same size N ,

but during the recursion, we will actually need the matrix multipli-

cation algorithm for unequal matrix sizes as described in Section 3.

4.1 The algorithm
Wefirst remove all dangling tuples and then obtain a constant-factor

approximation of OUT using the primitive described in Section 2.2.

Step 1: Compute data statistics. We first compute for each value

a ∈ dom(A2) its degree in relation R1(A1,A2) using the reduce-by-

key primitive. The value a ∈ dom(A2) is heavy if its degree in

relation R1(A1,A2) is greater than
√

OUT and light otherwise. The
set of heavy values in dom(A2) is denoted as

A
heavy

2
= {a ∈ dom(A2) : |σA2=aR1(A1,A2)| ≥

√
OUT}

and the set of light values in dom(A2) isA
light

2
= dom(A2) −A

heavy

2
.

The tuples in R1(A1,A2) and R2(A2,A3) are also identified as heavy
or light correspondingly, depending on their values in attribute A2.

In this way, we decompose the original query into the following

two subqueries:

QX =
∑

A2, · · · ,An

R1(A1,A
X
2
) Z R2(A

X
2
,A3) Z · · · Z Rn (An,An+1)

where X can be either heavy or light.

Step 2: Handling Qheavy. We first remove all dangling tuples in

the heavy subquery. On the reduced subquery, our strategy is to

(2.1) compute R(A2,An+1) =∑
A3,A4, · · · ,An

R2(A
heavy

2
,A3) Z R3(A3,A4) Z · · · Z Rn (An,An+1)

using the Yannakakis algorithm; and (2.2) reduce Qheavy to a ma-

trix multiplication as

∑
A2

R1(A1,A
heavy

2
) Z R(A

heavy

2
,An+1) and

compute it by the output-sensitive algorithm in Section 3.2. More

precisely, when using the Yannakakis algorithm in step (2.1), we

compute the query from right to left, i.e., for i = n − 1,n − 2, · · · , 2,

we compute R(Ai ,An+1) =
∑
Ai+1

Ri (Ai ,Ai+1) Z R(Ai+1,An+1).

Step 3: Handling Qlight. In this case, our strategy is to (3.1) com-

pute R(A1,A3) =
∑
A2

R1(A1,A
light

2
) Z R2(A

light

2
,A3) using the Yan-

nakakis algorithm (i.e., just compute the join and then the aggrega-

tion); and (3.2) reduce Qlight to a shorter line query as∑
A3,A4, · · · ,An

R(A1,A3) Z R3(A3,A4) Z · · · Z Rn (An,An+1)

and compute it recursively.

Step 4: Aggregate the two queries. Note that the two queries

Qheavy and Qlight may produce results with common values on

A1,An+1, so finally we need to aggregate all the results byA1,An+1

using reduce-by-key.

4.2 The analysis
To facilitate the induction proof, we will actually prove a slightly

tighter bound of our algorithm, as stated in the following lemma.

Lemma 3. For a length-n line query with N1 = |R1(A1,A2)|, Nn =

|Rn (An,An+1)|, N = maxi ∈{2,3, · · · ,n−1} |Ri (Ai ,Ai+1)| and output
size as OUT, there is an algorithm computing it in O(1) rounds with

load Õ(L) w.h.p., where L = (N ·N1)
1/3 ·OUT

1/2

p2/3 +
(N1Nn)

1/3 ·OUT
1/3

p2/3 +

N 2/3 ·OUT
2/3

p2/3 +
N ·OUT

1/2+N+N1+Nn+OUT

p .

By setting N1 = Nn = N in Lemma 3, we obtain the following

theorem, as claimed in Table 1.

Theorem 4. For a line query with input size N and output size
OUT, there is an algorithm computing it in O(1) rounds with load

O
(
N ·OUT

1/2

p + (N ·OUT

p)2/3 + N+OUT

p

)
.

We prove Lemma 3 in the rest of this section. Note that the base

case n = 2 is just Lemma 2. For a line query with n ≥ 3, we consider

the load of our algorithm in each of the four steps.

Step 1 has linear loadO(N+N1+Nn
p), since it only involves primi-

tives. Step 4 incurs a load ofO(OUT

p) since each subquery produces

at most OUT results, which are the input for the reduce-by-key

primitive. Before analyzing the load complexity for Step 2, we point

out one important property of Qheavy:

Lemma 4. In Qheavy, for any i ≥ 2, each value b ∈ dom(Ai) can
join with at least

√
OUT disjoint values in dom(A1).

Proof. We prove it by induction on i . The lemma holds for i = 2

by the definition of heavy values in attribute A2. Now assume that

the lemma holds for i . Consider an arbitrary value b ∈ dom(Ai+1).

Recall that all dangling tuples have been removed, so there must

exist a tuple (b ′,b) ∈ R(Ai ,Ai+1). By the induction hypothesis, b ′

can join with at least

√
OUT distinct values in attribute A1, thus b

can also join with at least

√
OUT distinct values in attributeA1. □

In Step (2.1), we claim that the size of any intermediate join

R(Ai ,Ai+1) Z R(Ai+1,An+1) during the Yannakakis algorithm is

at most N ·
√

OUT. Consider any i ∈ {2, 3, · · · ,n − 1}. To relate

the intermediate join size with OUT, we introduce an additional

relation R(A1,Ai) =∑
A2, · · · ,Ai−1

R(A1,A
heavy

2
) Z R(A

heavy

2
,A3) Z · · · Z R(Ai−1,Ai).

Note that this relation is only used in the analysis but not computed

by our algorithm. We can bound |R(Ai ,Ai+1) Z R(Ai+1,An+1)| by

N ·
√

OUT since

N · OUT =|R(A1,An+1)| · |R(Ai ,Ai+1)|

≥|R(A1,Ai) Z Ri (Ai ,Ai+1) Z R(Ai+1,An+1)|

≥|R(Ai ,Ai+1) Z R(Ai+1,An+1)| ·min

b
|σAi=bR(A1,Ai)|

≥|R(Ai ,Ai+1) Z R(Ai+1,An+1)| ·
√

OUT,

where the last inequality follows from Lemma 4. So this step has

a load of O
(
N
p +

N ·
√

OUT

p

)
. In Step (2.2), the input relations of

matrix multiplication problem have their sizes bounded by N1 and

N ·
√

OUT respectively. Plugging to Lemma 2, it can be computed

with load O
(
(NN1)

1/3 ·OUT
1/2

p2/3 + N ·
√

OUT

p + OUT

p

)
= O(L).

In Step (3.1), the size of full join R(A1,A
light

2
) Z R(A

light

2
,A3) is

at most N ·
√

OUT, since each tuple in R(A
light

2
,A3) can join with at

most

√
OUT tuples in R(A1,A

light

2
), implied by the definition of light

values in A2. So this step has load O
(
N+N1

p + N ·
√

OUT

p

)
= O(L).

Moreover, the size of R(A1,A3) is also bounded by N ·
√

OUT. For

Step (3.2), we invoke the induction hypothesis with N1 = N ·
√

OUT,

hence bounding its load by (the big-Oh of)

(N · N ·
√

OUT)1/3 · OUT
1/2

p2/3
+
(N ·
√

OUT · Nn)
1/3 · OUT

1/3

p2/3

+
N 2/3 · OUT

2/3

p2/3
+
N + N · OUT

1/2 + Nn + OUT

p
≤ L.

Summing over all steps, we conclude the proof of Lemma 3.

5 STAR QUERIES
In this section, we study the star query∑

B
R1(A1,B) Z R2(A2,B) Z · · · Z Rn (An,B),

which can be considered as another way to generalize the matrix

multiplication problem.

As with the line query, the basic idea of handling a star query is

to recursively reduce n until n = 2. However, an inherent difficulty

for the star query is that it is not known how to compute a constant-

factor approximation of OUT without actually computing all the

query results. One standard technique to repeatedly double a guess

of OUT and try to run the algorithm, until the guess is correct (i.e.,

within a constant factor of the true value). This would work in a

sequential model, since the running times of the successive guesses

will form a geometric series, increasing the total running time

by only a constant factor. However, in the parallel model like the

MPC, although the total load can still be bounded, but the repeated

guesses would lead to O(logN) rounds of computation.

Below, we design a constant-round MPC algorithm whose load

can be bounded by (a function of) OUT. The idea is to make the

algorithm oblivious to the value of OUT, i.e., the value of OUT is

not needed by the algorithm but only used in the analysis.

As before, we first remove all dangling tuples. Then we compute

the query in the following 3 steps.

Step 1: Compute data statistics. We first compute for each value

b ∈ dom(B) its degree in relation Ri (Ai ,B) for i ∈ [n], denoted as

di (b), using reduce-by-key primitive. For each b ∈ dom(B), we com-

pute a permutation ϕb : [n] → [n] such that dϕb (i)(b) ≤ dϕb (j)(b)
for any 1 ≤ i < j ≤ n. Note that we can determine ϕb for all b’s by
sorting all values in dom(B), breaking ties by di (b).

For a permutation ϕ of [n], let Bϕ = {b ∈ dom(B) : ϕb = ϕ}. This
decomposes dom(B) into n! subsets, which leads to n! subqueries,

each defined by a distinct permutation ϕ:

Qϕ =
∑
B

σB∈BϕR1(A1,B) Z R2(A2,B) Z · · · Z Rn (An,B).

We handle each subquery separately by applying the steps below.

Step 2: Reduce to matrix multiplication. Note that we can

allocate p servers for each subquery. As the number of subqueries

is a constant, the number of servers used in this step is O(p).
Consider Qϕ defined by some permutation ϕ. We first compute

the following two intermediate joins by the Yannakakis algorithm:

Rϕ (A
odd,B) =Zi ∈[n]:i is odd σB∈BϕR(Aϕ(i),B)

Rϕ (A
even,B) =Zj ∈[n]:j is even σB∈BϕR(Aϕ(j),B)

where Aodd = {Aϕ(i) : i ∈ [n], i is odd} and Aeven = {Aϕ(j) :

j ∈ [n], j is even} partitions the output attributes {A1,A2, . . . ,An }.
Then, we reduce the subquery Qϕ into a matrix multiplication∑

B
Rϕ (A

odd,B) Z Rϕ (A
even,B),

and compute it by invoking the output-sensitive algorithm in Sec-

tion 3.2.

Now we analyze the load of this step. The key is to bound the

sizes of Rϕ (A
odd,B) and Rϕ (A

even,B). We first state the following

two facts:

Lemma 5. For any b ∈ dom(B),
∏n

j=1
dj (b) ≤ OUT .

This lemma follows immediately from the fact that for each value

b ∈ dom(B), Zi ∈[n] σB=bRi (Ai ,B) is a subset of final output result.

Lemma 6. Let d1 ≤ d2 ≤ · · · ≤ dn be a set of positive integers
with

∏n
i=1

di = λ. Then max{
∏

i ∈I di ,
∏

j ∈J dj } ≤
√
λ where I =

{i ∈ [n − 2] : i is odd} and J = {j ∈ [n − 2] : j is even}.

Proof. If n is odd. It suffices to show

∏
i ∈[n−2]:i is odd di ≤

√
λ

since the other term derived on even-index elements is dominated.

Observe that ∏
i ∈[n−2]:i is odd

di ≤ Nn−1 ·
∏

j ∈[n−2]:j is even

dj

Moreover,

(∏
i ∈[n−2]:i is odd di

)
·

(
Nn−1 ·

∏
j ∈[n−2]:j is even dj

)
=∏n−1

i=1
di ≤ λ, so there must be

∏
i ∈[n−2]:i is odd di ≤

√
λ. The case

with even n can be proved symmetrically. □

Assume n is odd (and case of even n is simpler). We can bound

the size of Rϕ (A
odd,B) as follows (the size of Rϕ (A

even,B) can be

bounded similarly):

|Rϕ (A
odd,B)| =

∑
b ∈Bϕ

∏
i ∈[n]:i is odd

dϕ(i)(b)

≤
©«max

b ∈Bϕ

∏
i ∈[n−2]:i is odd

dϕ(i)(b)
ª®¬ ·

∑
b ∈Bϕ

dϕ(n)(b)

≤ max

b ∈Bϕ

√ ∏
i ∈[n]

dϕ(i)(b) · |R(Aϕ(n),B)| ≤
√

OUT · N ,

where the second inequality is implied by Lemma 6 and the last

one is implied by Lemma 5.

Thus, the load of computing Rϕ (A
odd,B) and Rϕ (A

even,B) is

bounded by O(Np +
N ·
√

OUT

p). Plugging N1 = N2 = N ·
√

OUT

to Lemma 2, the load of computing the matrix multiplication is

O
(
(
N ·
√

OUT

p)2/3 · OUT
1/3 + N ·

√
OUT

p

)
= O

(
(N ·OUT

p)2/3 + N ·
√

OUT

p

)
.

Step 3: Aggregate all subqueries. Finally, as with the line query,

the n! subqueries from the star query may produce results with the

same value on the output attributes, so we need to run the reduce-

by-key primitive to aggregate all the results. As each subquery

produces at most OUT results, the total number of results is still

O(OUT). So this step has a load of O(OUT

p).

Summing up the costs of all the steps above, we obtain the fol-

lowing result.

Theorem 5. For a star query with input size N and output size
OUT, there is an algorithm computing it in O(1) rounds with load

O
(
(N ·OUT

p)2/3 + N ·OUT
1/2

p + N+OUT

p

)
.

6 STAR-LIKE QUERIES
Before tackling general tree queries, in this section we investigate

star-like queries, which can be seen as a combination of line and star

queries. Star-like queries will be the building block of tree queries

studies in Section 7. A star-like query is shown in Figure 1. More

precisely, a star-like query consists of n line queries that share a

common non-output attribute B. We call these line queries the arms
of the query. Let Ti = (Vi , Ei) be the i-th arm. One end of the

arm must be B, while the other end is denoted as Ai , which must

be an output attribute. The remaining attributes are denoted as

Ci1,Ci2, . . . , which are non-output attributes. Note that a star-like

query degenerates to a line query if n = 2, and to a star query if

each arm contains only one relation.

As with star queries, we will design an algorithm that is oblivious

to OUT. We first remove all dangling tuples. Then we carry out the

following steps.

Step 1: Compute data statistics. Consider any i ∈ [n]. In the

algorithm for star queries, we first computed di (b) for each value

b ∈ dom(B), which is the number of values in dom(Ai) that can
join with b. When the arm Ti has more than one relation, we cannot

obtain di (b) accurately, but this can be estimated within a constant

factor by applying the primitive in Section 2.2 to the arm. Below,

we will not distinguish between di (b) and its approximation, which

will not affect our asymptotic analysis.

Similar as star queries, for each b ∈ dom(B), we compute a

permutation ϕb such that dϕb (i)(b) ≤ dϕb (j)(b) for any 1 ≤ i ≤
j ≤ n. Each permutation ϕ defines a subset of dom(B) as Bϕ =
{b ∈ dom(B) : ϕb = ϕ}. Here, we further divide each Bϕ into two

subsets:

Bsmall

ϕ =

{
b ∈ Bϕ :

n−1∏
i=1

dϕ(i)(b) ≤ dϕ(n)(b)

}
B
large

ϕ =

{
b ∈ Bϕ :

n−1∏
i=1

dϕ(i)(b) > dϕ(n)(b)

}
In this way, we can decompose the original query into the fol-

lowing subqueries:

QXϕ =
∑

V−{A1,A2, · · · ,An }

Ze ∈E σB∈BXϕ
R(e)

where ϕ can be any permutation of [n] and X can be either small

or large.

Note that the number of subqueries is 2n!, which is still a constant.

For each subquery, we remove its dangling tuples and apply the

following reduction procedure, each using p servers.

Step 2: ComputeQsmall
ϕ . We reduceQsmall

ϕ to a line query through

the following two steps. An example is illustrated in Figure 1.

Step (2.1): Shrink all but one branch. For each j ∈ {ϕ(1), . . . ,ϕ(n−
1)} with |Ej | > 1, we compute

Rsmall

ϕ (Aj ,B) =
∑

Vj−{Aj ,B }

Ze ∈Ej σB∈Bsmall

ϕ
R(e)

by invoking the Yannakakis algorithm. More specifically, for each

l = 1, 2, · · · ,h−1, the algorithm iteratively computesR(Aj ,Cj ,l+1
) =∑

Cjl
R(Aj ,Cjl) Z R(Cjl ,Cj ,l+1

), and at last computesRsmall

ϕ (Aj ,B) =∑
Cjh

R(Aj ,Cjh) Z σB∈Bsmall

ϕ
R(Cjh,B).

Step (2.2): Reduce to line query. We first compute

Rϕ (A
small,B) =Zj ∈{ϕ(1),ϕ(2), · · · ,ϕ(n−1)} R

small

ϕ (Aj ,B)

where Asmall = {Aj : j ∈ {ϕ(1),ϕ(2), · · · ,ϕ(n − 1)}} using the

Yannakakis algorithm. Regarding Asmall
as a “combined” attribute,

the query now becomes a line query:∑
Vϕ(n)−{Aϕ(n) }

Rϕ (A
small,B) Z

(
Ze ∈Eϕ (n) R(e)

)
,

A1

A2

A3 A4

A1

A3

A4

A2

A5

A5
B

B

A1

A2
A3 A4

A5

B
C22

C21

C51
C11

C41

A1

A2

A3 A4

A5
C51

B A2

A3
A4

A5

B

A1 C51

(3.2)

(3.1)

(2.1)
(2.2)

non-output attribute

output attribute

Figure 1: An illustration of a star-like query (on the left) and how the subquery Qϕ with ϕ = (4, 2, 1, 3, 5) is reduced in Step 2
and Step 3 (on the right). For example on T2,V2 = {A2,C21,C22,B} and E2 = {(A2,C21), (C21,C22), (C22,B)}.

on which we invoke the algorithm in Section 4.1.

Step 3. Compute Qlargeϕ . We reduce Q
large

ϕ to a matrix multipli-

cation through two steps. An example is illustrated in Figure 1.

Step (3.1): Shrink all branches. For each j ∈ [n] with |Ej | > 1,

we compute

R
large

ϕ (Aj ,B) =
∑

Vj−{Aj ,B }

Ze ∈Ej σB∈B large

ϕ
R(e)

using the Yannakakis algorithm, in the same manner as we com-

puted Rsmall

ϕ (Aj ,B) in Step (2.1).

Step (3.2): Reduce to matrix multiplication. Define I = {ϕ(n),
ϕ(n − 3),ϕ(n − 6), · · · ,ϕ(n − 3 · ⌊ n

3
⌋)} and J = [n] − I . We use the

Yannakakis algorithm to compute the following queries:

Rϕ (AI ,B) = Zi ∈I R
large

ϕ (Ai ,B)

Rϕ (A J ,B) = Zj ∈J R
large

ϕ (Aj ,B)

where AI = {Ai : i ∈ I } and A J = {Aj : j ∈ J }. Then we reduce it

to a matrix multiplication problem as

∑
B Rϕ (A

I ,B) Z Rϕ (A
J ,B).

Note that the even-odd strategy for star query would fail here. In

fact, the size of Rϕ (Ai ,B) can be as large as N ·
√

OUT. If applying

the same argument, the size of |Rϕ (A
odd,B)| or |Rϕ (A

even,B)| can
only be bounded by N · OUT. So, we will not obtain any improve-

ment over the standard Yannakakis algorithm. Moreover, for the

reduced matrix multiplication, we propose a more fine-grained way

to handle it, instead of invoking the output-sensitive algorithm in

Section 3.2 directly. The reason will be clearer in the analysis.

Step (3.3): Uniformize matrix multiplications. We first com-

pute for each value b ∈ Bϕ its degree in relation Rϕ (AI ,B), by
using the reduce-by-key primitive. We further divide values in Bϕ
into k = O(logN) disjoint groups B1

ϕ ,B
2

ϕ , · · · ,B
k
ϕ such that

Biϕ = {b ∈ B
large

ϕ : 2
i−1 ≤ |σB=bRϕ (AI ,B)| < 2

i }.

Note that there are at most N distinct values in attribute B, i.e.,∑
ϕ

∑
i |B

i
ϕ | ≤ N .

Each group Biϕ defines a matrix multiplication problem as∑
B

(
σB∈Biϕ

Rϕ (AI ,B)

)
Z

(
σB∈Biϕ

Rϕ (A J ,B)

)
.

For each tuple t ∈ Rϕ (AI ,B) or t ∈ Rϕ (A J ,B), we attach an

index i to it if πBt ∈ Biϕ using the multi-search primitive. Let

N i
ϕ = |σB∈Biϕ

Rϕ (AI ,B)|+ |σB∈Biϕ
Rϕ (A J ,B)|. The statistics ofN

i
ϕ ’s

can be computed using the reduce-by-key primitive.

Step (3.4): Compute all matrix multiplications. Sort all tuples
in Rϕ (AI ,B) and Rϕ (A J ,B) by the attached index.

If all tuples with index i land on a single server, just let the

server locally compute this matrix multiplication induced by Biϕ .

Otherwise, the tuples with index i land on more than 2 servers.

Note that the number of such indexes is at most p. For such an

index i , we allocate

pi =

|Biϕ |

N
· p +

N i
ϕ∑

j N
j
ϕ

· p

servers to compute the matrix multiplication induced by Biϕ . The

total number of servers allocated is

k∑
i=1

pi =
k∑
i=1

©«
|Biϕ |

N
· p +

N i
ϕ∑

j N
j
ϕ

· p + 1

ª®¬ ≤ 3 · p = O(p).

Then, all the matrix multiplications are computed in parallel.

Step 4: Reduce all aggregate results. At last, we use the reduce-
by-key primitive to aggregate the results generated by all the sub-

queries above.

6.1 Analysis
Similarly, we will actually prove a slightly tighter bound of our

algorithm, as stated in the following lemma.

Lemma 7. For a star-like queryQy(R), letN = maxe ∈E:e∩y=∅ |Re |,
N ′ = maxe ∈E:e∩y,∅ |Re |, and OUT be the output size. There is an
algorithm computing it in O(1) rounds with load Õ(L) w.h.p., where

L = (NN ′)1/3 ·OUT
1/2

p2/3 + N ′2/3 ·OUT
1/3

p2/3 + N ·OUT
2/3

p + N+N ′+OUT

p .

We prove the lemma by induction on n. Note that the base case
n = 2 is just Lemma 3. For a star-like query with n > 2, we consider

the load of our algorithm in each of the four steps separately.

Step 1 has linear load, since it only involves primitives. In Step 4,

the input size of reduce-by-key can be bounded by Õ(OUT) since

there are O(logN) subqueries in total and each subquery produces

at most OUT results. So this step has a load of Õ(OUT

p). Before

analysing the cost of Step 2 and Step 3, we mention some important

observations as below.

Lemma 8. For every b ∈ dom(B),
∏n

j=1
dj (b) ≤ OUT .

Lemma 9. For any permutation ϕ of [n], and every b ∈ dom(B),

(1) if b ∈ Bsmall
ϕ , then

∏n−1

i=1
dϕ(i)(b) ≤

√
OUT;

(2) if b ∈ Blargeϕ , then dϕ(i)(b) ≤
√

OUT for any i ∈ [n];

The proof of Lemma 8 directly follows the fact that for each

value b ∈ dom(B), the πA1,A2, · · · ,An Ze ∈Ei σB=bRe is a subset of

final output result, whose size is exactly

∏n
j=1

dj (b). The proof of

Lemma 9 directly follows Lemma 8 and the definition of ϕ.

Lemma 10. In a reduced star-like subquery Qsmall
ϕ , on any Tj =

(Vj , Ej) with j ∈ {ϕ(1),ϕ(2), · · · ,ϕ(n − 1)}, every c ∈ dom(C) for
C ∈ Vj can be joined with at most

√
OUT values in dom(Aj).

Proof. By contradiction, assume there exists some c ∈ dom(C)

that can be joined with more than

√
OUT values in dom(Aj). Con-

sider any value b ∈ Bsmall

ϕ that can be joined with c . Such a value

always exists otherwise c won’t exist in a reduced query. This im-

plies that b can be joined with more than

√
OUT values in dom(Aj),

coming to a contradiction of Lemma 9. □

Lemma 11. Let d1 ≤ d2 ≤ · · · ≤ dn be a set of positive integers
with

∏n
i=1

di = λ. If dn ≤
√
λ, max{

∏
i ∈I di ,

∏
j ∈J dj } ≤ λ2/3

where I = {n,n − 3,n − 6, · · · ,n − 3 · ⌊ n
3
⌋} and J = [n] − I .

Proof. For simplicity, we define the configuration over all pos-

sible inputs as D = {(d1,d2, · · · ,dn) : di ∈ Z
+,

∏n
i=1

di = λ,d1 ≤

d2 ≤ · · · ≤ dn,dn ≤
√
λ}. It suffices to show (1) maxD

∏
i ∈I di ≤

λ2/3
; and (2) maxD

∏
j<I dj ≤ λ2/3

.

For (1), letd∗ = arg maxD

∏
i ∈I di . We first claim thatd∗n+2−3k =

d∗n+1−3k = d
∗
n−3k for any k ∈ [⌊ n

3
⌋]. If there exists some k ∈ [⌊ n

3
⌋]

such that d∗n+2−3k > d∗n−3k , we construct another solution d
′
such

that d ′i = d
∗
i for any i ∈ [n]− {n+2−3k,n+1−3k,n−3k} and d ′j =

(d∗n+2−3kd
∗
n+1−3kd

∗
n−3k)

1/3
for any j ∈ {n+2−3k,n+1−3k,n−3k}.

Then

∏
i ∈I d

∗
i <

∏
i ∈I d

′
i , contradicting to the optimality of d∗.

Let i as the smallest integer such that d∗i > 1. By our observation

above, (n−i)mod 3 = 0.Without loss of generality, assume i = n−3k
for k ∈ [⌊ n

3
⌋]. We next claim that k = 1. If not, let d∗n = z,d∗n−1

=

d∗n−2
= d∗n−3

= y and d∗n+2−3k = d∗n+1−3k = d∗n−3k = x . Since
i < n − 3, x ≤ y ≤ z. We transform it into another solution in the

following way: if xy ≤ z, set x ′ = 1,y′ = xy, z′ = z; otherwise, set

x ′ = 1,y′ = z′ = x3/4 ·y3/4 · z1/4
. In this way, we don’t change any

property of d∗ such that d∗j = 1 holds for any j < n − 3.

We are left with a simpler problem involving only four integers

d∗n,d
∗
n−1
,d∗n−2

,d∗n−3
≥ 1. If d∗n−4

= 1,

∏
i ∈I d

∗
i = d∗n ≤

√
λ; other-

wise,

∏
i ∈I d

∗
i = d

∗
n−4

d∗n ≤ d∗n · (
λ
d∗n
)1/3 = λ1/3 · (d∗n)

2/3 ≤ λ2/3
.

The (2) can be proved similarly. Let d∗ = arg maxD

∏
j ∈J dj . We

can also show that d∗j = 1 for any j < n − 2. Then,

∏
j ∈J d

∗
j =

d∗n−1
d∗n−2

≤ (d∗nd
∗
n−1

d∗n−2
)2/3 ≤ λ2/3

. □

In Step (2.1), the load complexity of computing Rsmall

ϕ (Aj ,B)

for each j ∈ {ϕ(1),ϕ(2), · · · ,ϕ(n − 1)} follows the same analysis.

Consider an arbitrary j ∈ {ϕ(1),ϕ(2), · · · ,ϕ(n − 1)}. The size of

full join R(Aj ,Cjl) Z R(Cjl ,Cj ,l+1
) is bounded by N ·

√
OUT, im-

plied by Lemma 10. Then, the Yannakakis algorithm has a load of

O
(
N ·
√

OUT

p

)
. In Step (2.2), the size of Rϕ (A

small,B) is also bounded

byN ·
√

OUT since there are at mostN distinct values inBϕ and each

one has its degree smaller than

√
OUT in Rϕ (A

small,B), implied by

Lemma 10. By plugging N , N1 = N ·
√

OUT, Nn = N ′ into Lemma 3,

the reduced line query can be computed in O(1) rounds with load

O
(
N 2/3 ·OUT

2/3

p2/3 +
(NN ′)1/3 ·OUT

1/2

p2/3 + N ·OUT
1/2

p + N+N ′+OUT

p

)
= O(L),

which also dominates the load complexity of Step 2.

In Step (3.1), the Yannakakis algorithm has a load ofO
(
N ·
√

OUT

p

)
,

following the similar argument for Step (2.1). With Lemma 11, we

can bound the size of Rϕ (AI ,B) with I = {ϕ(n),ϕ(n − 3),ϕ(n −

6), · · · ,ϕ(n − 3 · ⌊ n
3
⌋)} as follows (the size of Rϕ (A J ,B) can be

bounded similarly):

|Rϕ (AI ,B)| ≤
∑
b ∈Bϕ

∏
j ∈I

dj (b) ≤ |Bϕ | · OUT
2/3 ≤ N · OUT

2/3.

So, the Yannakakis algorithm in Step (3.2) has a load ofO
(
N ·OUT

2/3

p

)
.

Also, the primitives in Step (3.3) and (3.4) incur load O
(
N ·OUT

2/3

p

)
.

With Lemma 8, we observe on every Biϕ that

|σB∈Biϕ
Rϕ (AI ,B)| · |σB∈Biϕ

Rϕ (A J ,B)| ≤ |B
i
ϕ | · 2

i · |Biϕ | ·
OUT

2
i−1
.

Plugging to Lemma 2, computing all matrix multiplications in Step

(3.4) incurs a load of O

(
maxi

(|Biϕ | · |B
i
ϕ | ·OUT)1/3 ·OUT

1/3

p2/3

i

+
N i
ϕ

pi

)
=

O
(
N ·OUT

2/3

p

)
, since

∑
j N

j
ϕ = |Rϕ (AI ,B)| + |Rϕ (A J ,B)| ≤ 2N ·

OUT
2/3

. Thus, Step 3 has a load of O
(
N ·OUT

2/3

p

)
= O(L).

Over all steps, this algorithm has a load of Õ(L). We have com-

pleted the induction proof for Lemma 7.

7 TREE QUERIES
Finally, we are ready to tackle general tree queries with arbitrary

output attributes, by building upon our algorithm for star-like

queries.

As a preprocessing step, we remove all dangling tuples. Then

we reduce the tree by iteratively removing a relation Re if (1) e con-
tains a single attribute; or (2) there is a non-output attribute v that

appears only in e . Let e ′ be any relation such that e∩e ′ , ∅. We can

remove Re by attaching annotations of Re to Re ′ , i.e., for each tuple

t ′ ∈ Re ′ , apply the updatew(t
′) ← w(t ′)·

∑
t ∈Re :πe∩e′t=πe∩e′t ′ w(t),

which can be done by the reduce-by-key and multi-search primi-

tives. All these operations incur linear load. It should be clear that

after all such Re ’s have been removed, every leaf attribute is an

output attribute. Please see Figure 2 for an example.

Next, we break the query at every non-leaf output attribute. This

decomposes the tree into a number of twigs. Observe that in each

twig, all the output attributes are exactly the leaves (see Figure 2).

Note that it is sufficient to show how to compute a twig. After

computing all the twigs, the remaining attributes are all output

attributes, so we can just use the standard Yannakakis algorithm to

compute the full join of all the twigs, which has load O(OUT

p).

7.1 The algorithm
Note that twig queries are generalizations of star-like queries, which

in turn are generalizations of line and star queries. Figure 2 shows

some example of twig queries, among which twig 4 is in a form

more general than star-like queries. Our idea is for tackling such

twig queries is to remove the non-output attributes recursively

until it becomes a star-like query.

For a twig but non-star-like query T = (V, E), we introduce the

notion of skeleton. LetV∗ ⊊ V be the set of attributes appearing

in more than 2 relations. Note thatV∗ ⊆ ȳ. Moreover, |V∗ | ≥ 2;

otherwise, T is a star-like query. Consider the subtree derived by

V∗, denoted as TV∗ , such that v ∈ V or e ∈ E is included by TV∗

if it lies on the path between any pair of B,B′ ∈ V∗. For each leaf

B ∈ V∗, let eB be the edge incident to B in TV∗ . Removing eB will

separate T into two connected subtrees. The one containing B is

exactly a star-like query since only B may appear in more than 2

relations, denoted as TB = (VB , EB). We just replace TB by B. Note
that this procedure can be applied to all leaves in T ∗

V
independently

since the subtrees to be removed have no intersection. The resulted

subtree is the skeleton of T , denoted as TS . Let S ⊆ V be the set of

leaves in TS . Observe that S ∩ ȳ is exactly the set of leaves in TV∗ .

An example is illustrated in Figure 3.

Step 1: Compute data statistics. Consider an attribute B ∈ S∩ ȳ.
We can allocate p servers to each attribute B and compute the

following statistics for each value b ∈ dom(B). The total number of

servers used is at most O(p).
For each value b ∈ dom(B), we first estimate the number of

values in dom(A) forA ∈ VB ∩y that can be joined with b, denoted
asdA(b), which can be done by invoking the algorithm in Section 2.2.

Let x(b) =
∏

A∈VB∩y dA(b), denoting the number of combinations

over attributesVB ∩ y that can be joined with b.
Meanwhile, we hope to estimate the number of combinations

over attributes y −VB that can join with b. This is actually more

general than computing OUT for a star query, which is still un-

known. Below, we describe a procedure UnderEstimateOutTree

(Algorithm 1) to obtain an underestimate for each valueb ∈ dom(B),
which suffices for our needs. For consistency, define x(a) = 1 for

each value a ∈ dom(A) if A ∈ S ∩ y. Note that line 9 of the al-

gorithm can computed by the reduce-by-key primitive. When the

algorithm terminates, the value y(b) is an underestimate for the

number of combinations over attributes y −VB that can join with

b. The relationship on the x(b)’s and y(b)’s is stated by Lemma 12

Lemma 12. For any pair of attributes B ∈ S ∩ ȳ,B′ ∈ S − {B}, if
b ∈ dom(B) can join with b ′ ∈ dom(B′), then y(b) ≥ x(b ′).

Proof. Rename the attributes lying on the path between B′,B
asC1(B

′),C2, · · · ,Ck ,Ck+1
(B) successively. We identify any combi-

nation ((c1(b
′), c2, · · · , ck−1

, ck (b)) ∈ R(C1,C2) Z R(C2,C3) · · · Z

Algorithm 1: EstimateOutTree(B)

1 Reorganize TS to root at B;

2 foreach C ∈ S − {B} do
3 foreach value c ∈ dom(C) do
4 y(c) ← x(c);

5 Mark all vertices in S − {B} as “visited”;

6 while TS contains at least one unvisited non-leaf vertex do
7 Find a unvisited vertex C whose children are all visited;

8 for c ∈ dom(C) do in parallel
9 y(c) ←

∏
C ′:C ′ is a child of C maxc ′:(c ′,c)∈R(C ,C ′) y(c

′);

10 Mark C as “visited”;

R(Ck−1
,Ck), which can always be found since b ′,b can be joined.

We claim that y(ci) ≥ y(c1) holds for any i ∈ [k] in the call of

UnderEstimateOutTree(TS , B). This holds for i = 1 trivially. By

induction, assume y(ci) ≥ y(c1). The invariant of y(ci+1) ≥ y(ci)
always holds in line 9, so y(ci+1) ≥ y(c1). As y(c1) = y(b

′) = x(b ′),
then y(b) ≥ x(b ′) as desired. □

Step 2: Divide and Conquer. Consider any attribute C ∈ S. The
value c ∈ dom(C) is heavy if x(c) > y(c), and light otherwise.
Depending on the values being heavy or light on each attribute

in S ∩ ȳ, we can decompose the original query into O(2 |S∩ȳ |)
subqueries. Note that every value a ∈ dom(A) forA ∈ S∩y is light,

following the fact that x(a) = 1 ≤ y(a). We allocate p servers to

each subquery and apply the following procedure in parallel.

Consider an arbitrary subquery. We remove its dangling tuples

first. For each light non-output attribute B ∈ S ∩ ȳ, we compute

QB =
∑
VB∩ȳ

Ze ∈EB Re

by the Yannakakis algorithm, and materialize the result as a new

relation R(B,VB ∩ y). Computing QB is similar to that of reducing

Qsmall

ϕ to a star-like query in Section 6, and we omit the details

here. Then we replace TB with a new edge (B,VB ∩y) by regarding
VB ∩ y as a “combined” attribute. At last, we run this algorithm

recursively on the residual tree query. An illustration is given in

Figure 4.

The correctness of this step, i.e., T can be reduced to a smaller

query, is implied by Lemma 13. Intuitively, for each subquery there

is at most heavy attribute inS∩ȳ due to the constraint in Lemma 12.

By showing |S ∩ ȳ| ≥ 2, we prove the existence of light attributes.

Lemma 13. For each subquery, after dangling tuples being removed,
at least one attribute in S ∩ ȳ is light.

Proof. We first show that each subquery has at most one heavy

attribute in S ∩ ȳ. By contradiction, assume there exists a pair of

heavy attributes B,B′ ∈ S ∩ ȳ. If this subquery has non-empty

output result, there must exist a pair of values b ∈ dom(B),b ′ ∈
dom(B′) that appears together in an output result. By Lemma 12,

x(b) > y(b) ≥ x(b ′) and x(b ′) > y(b ′) ≥ x(b), coming to a contra-

diction.

Next we show that |S ∩ ȳ| ≥ 2. As T is not a star-like query, at

least two attributes appear in more than 2 relations, i.e., |V∗ | ≥ 2.

1

2 3

4

5

6

non-output attirbuteoutput attirbute

Figure 2: A tree query (on the left), the reduced tree (in the middle) and its twigs (on the right). There are 6 twigs: 1 and 5
contain only one relation whose vertices are output attributes, 2 and 6 are matrix multiplications, 3 is a star-like query and 4
is a twig which will be tackled in Section 7.1.

A1

A2

A3

B1

B2

B1

B2
TB1

TB2

Figure 3: An illustration of twig 4 and its skeleton TS with
S = {A1,A2,A3,B1,B2}, S ∩ y = {A1,A2,A3}, S ∩ ȳ = {B1,B2}.

B1

B2 B2
B2

B1 B1

Figure 4: Tree query 4 after reduction. From left to right are
subqueries with (B1: light, B2: heavy), (B1: heavy, B2: light),
(B1:light, B2: light).

The derived subtreeTV∗ contains at least two leaves, i.e., |S∩ȳ| ≥ 2.

These two arguments together will prove the existence of light

attribute as desired. □

Step 3: Reduce all aggregate results. In the last step, we use

reduce-by-key to aggregate the results generated by all subqueries.

7.2 The analysis
For the load analysis, we will actually prove a slightly tighter bound

of our algorithm, as stated in the following lemma.

Lemma 14. For a twig query Qy(R), let N = maxe ∈E:e∩y=∅ |Re |,
N ′ = maxe ∈E:e∩y,∅ |Re |, andOUT be the output size. Our algorithm
can compute it in O(1) rounds with load Õ(L) w.h.p., where L =
(NN ′)1/3 ·OUT

1/2

p2/3 + N ′2/3 ·OUT
1/3

p2/3 + N ·OUT
2/3

p + N+N ′+OUT

p .

We prove the lemma by induction on n. The base case when T is

a relation or a star-like query is Lemma 7. For a general twig query,

we analyze the load of our algorithm in each step above.

Step 1 has linear load of O
(
N+N ′
p

)
since it only involves prim-

itives. Step 3 incurs a load of O
(

OUT

p

)
since there are O(1) sub-

queries in total and each has at most OUT results. Before analyzing

Step 2, we first mention an important property, as stated Lemma 15.

Lemma 15. For any subquery, after dangling tuples being removed,
if B ∈ S is light, then x(b) ≤

√
OUT for each value b ∈ dom(B).

Proof. For each b ∈ dom(B), x(b) · y(b) ≤ OUT since πy Ze ∈E
σB=bRe is a subset of final result. By the definition of light values,

i.e., x(b) ≤ y(b), we have x(b) ≤
√

OUT. □

Consider an arbitrary subquery in Step 2.With Lemma 15, we can

bound the size of R(B,VB ∩y) by N ·
√

OUT for each light attribute

B ∈ S∩ ȳ, since there are at most N values in dom(B) and each one

can be joined with at most

√
OUT distinct combinations overVB∩y.

So the Yannakakis algorithm has a load of O
(
N+N ′
p + N ·

√
OUT

p

)
=

O(L). On the residual query, by plugging N ,max{N ′,N ·
√

OUT}

to hypothesis induction, it can be easily checked that its load is still

bounded by O(L).
This completes the induction proof for Lemma 14. By setting

N ′ = N , we obtain the following result.

Theorem 6. For an arbitrary tree join-aggregate query with input
size N and output size OUT, there is an algorithm computing it in

O(1) rounds with load Õ
(
N ·OUT

2/3

p + N+OUT

p

)
w.h.p.

8 OPEN PROBLEMS
While our matrix multiplication algorithm is optimal, we do not

have any lower bounds for more general queries. The major diffi-

culty in proving lower bounds for queries that involve more than

two relations is that it is not clear which “elementary products”

must be computed. For these queries, one can use the distributive

law of the semiring to save computation and communication costs,

as our algorithms have done. In fact, it is due to the same reason

that there is no lower bound for such queries even in the (sequen-

tial) RAM model. Note that the distributive law does not help with

matrix multiplication, and one can argue that all the elementary

products must be computed.

Other open problems include join-aggregate and join-project

queries over relations of arity more than two, or when the query is

cyclic.

REFERENCES
[1] F. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman. GYM: A multiround

join algorithm in MapReduce. In Proc. International Conference on Database
Theory, 2017.

[2] R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications.

In Proceedings of the 12th International Conference on Database Theory, pages
121–126. ACM, 2009.

[3] N. Bakibayev, T. Kocisky, D. Olteanu, and J. Zavodny. Aggregation and ordering

in factorised databases. In Proc. International Conference on Very Large Data Bases,
2013.

[4] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting

distinct elements in a data stream. Randomization and Approximation Techniques
in Computer Science, pages 952–952, 2002.

[5] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In Proc.
ACM Symposium on Principles of Database Systems, 2014.

[6] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query

processing. Journal of the ACM (JACM), 64(6):40, 2017.
[7] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On synopses

for distinct-value estimation under multiset operations. In Proc. ACM SIGMOD
International Conference on Management of Data, 2007.

[8] E. Cohen. Estimating the size of the transitive closure in linear time. In Proceedings
35th Annual Symposium on Foundations of Computer Science, pages 190–200. IEEE,
1994.

[9] M. T. Goodrich. Communication-efficient parallel sorting. SIAM Journal on
Computing, 29(2):416–432, 1999.

[10] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, searching and simulation

in the mapreduce framework. In Proc. International Symposium on Algorithms
and Computation, 2011.

[11] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proc.
ACM Symposium on Principles of Database Systems, 2007.

[12] J.-W. Hong and H.-T. Kung. I/O complexity: The red-blue pebble game. In

Proceedings of the thirteenth annual ACM symposium on Theory of computing,
pages 326–333. ACM, 1981.

[13] X. Hu, Y. Tao, and K. Yi. Output-optimal parallel algorithms for similarity joins.

In Proc. ACM Symposium on Principles of Database Systems, 2017.
[14] X. Hu and K. Yi. Instance and output optimal parallel algorithms for acyclic joins.

In Proc. ACM Symposium on Principles of Database Systems, 2019.
[15] M. R. Joglekar, R. Puttagunta, and C. Ré. AJAR: Aggregations and joins over

annotated relations. In Proc. ACM Symposium on Principles of Database Systems,
2016.

[16] B. Ketsman and D. Suciu. A worst-case optimal multi-round algorithm for parallel

computation of conjunctive queries. In Proc. ACM Symposium on Principles of
Database Systems, 2017.

[17] P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for parallel

query processing. In Proc. International Conference on Database Theory, 2016.
[18] P. Koutris, S. Salihoglu, and D. Suciu. Algorithmic Aspects of Parallel Data Pro-

cessing. Now Publishers, 2018.

[19] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In Proc. ACM
Symposium on Principles of Database Systems, 2011.

[20] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of
the 39th international symposium on symbolic and algebraic computation, pages
296–303. ACM, 2014.

[21] R. Pagh and M. Stöckel. The input/output complexity of sparse matrix multipli-

cation. In Proc. European Symposium on Algorithms, 2014.
[22] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
[23] Y. Tao. A simple parallel algorithm for natural joins on binary relations. In Proc.

International Conference on Database Theory, 2020.
[24] L. G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103–111, 1990.

[25] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. International
Conference on Very Large Data Bases, pages 82–94, 1981.

	Abstract
	1 Introduction
	1.1 Join-aggregate queries
	1.2 The Yannakakis algorithm
	1.3 Massively parallel computation
	1.4 Previous MPC algorithms
	1.5 Our results

	2 Preliminaries
	2.1 MPC Primitives
	2.2 Estimate OUT

	3 Matrix Multiplication
	3.1 Worst-case optimal algorithm
	3.2 Output-sensitive algorithm
	3.3 Lower Bounds

	4 Line Queries
	4.1 The algorithm
	4.2 The analysis

	5 Star Queries
	6 Star-like Queries
	6.1 Analysis

	7 Tree Queries
	7.1 The algorithm
	7.2 The analysis

	8 Open Problems
	References

