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Abstract
Suppose we are given a set of objects that cover a region and a
duration associated with each object. Viewing the objects as jobs,
can we schedule their beginning times to maximize the length of
time that the original region remains covered? We call this problem
the SENSOR COVER PROBLEM. It arises in the context of covering
a region with sensors. For example, suppose you wish to monitor
activity along a fence (interval) by sensors placed at various fixed
locations. Each sensor has a range (also an interval) and limited
battery life. The problem is then to schedule when to turn on the
sensors so that the fence is fully monitored for as long as possible.

This one-dimensional problem involves intervals on the real
line. Associating a duration to each yields a set of rectangles
in space and time, each specified by a pair of fixed horizontal
endpoints and a height. The objective is to assign a bottom
position to each rectangle (by moving them up or down) so as
to maximize the height at which the spanning interval is fully
covered. We call this one-dimensional problem RESTRICTED
STRIP COVERING. If we replace the covering constraint by a
packing constraint (rectangles may not overlap, and the goal is to
minimize the highest point covered), then the problem becomes
identical to DYNAMIC STORAGE ALLOCATION, a well-studied
scheduling problem, which is in turn a restricted case of the well
known problem STRIP PACKING.

We present a collection of algorithms for RESTRICTED STRIP
COVERING. We show that the problem is NP-hard and present an
O(log log log n)-approximation algorithm. We also present better
approximation or exact algorithms for some special cases, includ-
ing when all intervals have equal width. For the general SEN-
SOR COVER PROBLEM, we distinguish between cases in which
elements have uniform or variable durations. The results de-
pend on the structure of the region to be covered: We give a
polynomial-time, exact algorithm for the uniform-duration case
of RESTRICTED STRIP COVERING but prove that the uniform-
duration case for higher-dimensional regions is NP-hard. We give
some more specific results for two-dimensional regions. Finally, we
consider regions that are arbitrary sets, and we present an O(log n)-
approximation algorithm for the most general case.

1 Introduction
Sensors are small, low-cost devices that can be placed in a
region to monitor local conditions. Distributed sensor net-
works have become increasingly more popular as advances
in MEMS and fabrication allow for such systems that can
perform sensing and communication. How sensors commu-
nicate is a well-studied problem. Our main interest is: Once
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a sensor network has been established, how can we maxi-
mize the lifetime of the network? It is clear that the limited
battery capacities of sensors is a key constraint in maximiz-
ing the lifetime of a network. Additionally, research shows
that partitioning the sensors into covers and iterating through
them in a round-robin fashion increases the lifetime of the
network [1, 4, 9, 10].
Definitions. Let S be a set of n sensors. Each sensor s ∈ S
can be viewed as a point in some space with an associated
region R(s) of coverage. For every point x ∈ R(s), s is live
at x. Let U be the region to be covered by S. U is covered
by some R ⊆ S if U ⊆ ⋃

s∈R R(s). We call R a feasible
cover. Every sensor s ∈ S can be active for a finite duration
d(s). Let dmin = mins∈S d(s), and dmax = maxs∈S d(s).

PROBLEM 1.1. (SENSOR COVER) Compute a schedule S
of maximum duration T , in which each sensor s ∈ S is
assigned a start time t(s) ≥ 0, such that any x ∈ U is
covered by some active sensor at all times 0 ≤ t < T . That
is, for all x ∈ U and 0 ≤ t < T , there is some s ∈ S with
x ∈ R(s) and t(s) ≤ t < t(s) + d(s).

A sensor is redundant in a schedule S if it can be
removed without decreasing the duration of S. A schedule
with no redundant sensors is minimal. It suffices to consider
only minimal schedules, which may not utilize all sensors.
As a convention, we set t(s) = ∞ if s is unused.

Prior work on the SENSOR COVER problem has focused
solely on the case where the regions R(·) are arbitrary
subsets of U and the durations are all identical. This
assumption yields a packing constraint, and the problem
reduces to partitioning the set of sensors into a maximum
number of valid covers. This problem is known as SET
COVER PACKING and is ln n-hard to approximate, with a
matching upper bound [6].

In practice, these assumptions appear overly constrain-
ing. Sensors will have arbitrary durations and typically de-
fine geometric regions of coverage: intervals, rectangles,
disks, etc. In this paper, we consider such variations. In the
RESTRICTED STRIP COVER problem, the R(·)’s are one-
dimensional intervals, and the problem is equivalent to slid-
ing axis-parallel rectangles vertically to cover a rectangular
region of maximum height. In the CUBE COVER problem,
the R(·)’s are axis-parallel rectangles, and the problem is
akin to sliding cubes vertically in the z-dimension. We also



Table 1: Summary of results.
Shape of sensor Uniform duration Variable duration

Intervals exact in P NP-hard, O(log log log n)-approx.,
(2 + ε)-approx. for equal-width

Convex with NP-hard, O(log(ndmax/L))-approx.; NP-hard, O(log n)-approx.small cuttings O(log(Lmax/L))-approx. when congruent & fat

Arbitrary sets log n-hard to approx., log n-hard to approx.,
O(log n)-approx. [6] O(log n)-approx.

consider SENSOR COVER, when the R(·)’s are arbitrary sub-
sets of a set U of size O(n), with varying durations (in con-
trast to SET COVER PACKING).

In general, a schedule may activate and deactivate a
sensor more than once. We call this a preemptive schedule. A
non-preemptive schedule is a schedule in which each sensor
is activated at most once. In this paper we only consider the
non-preemptive problem. We have some preliminary results
for the preemptive case, but more research is needed to gain
a better understanding of the differences.

Our results. We show that most variants of SENSOR COVER
are NP-hard, and we study approximation algorithms. For
any point x ∈ U , let L(x) =

∑

s∈S,s live at x d(s) be the
load at x . Define the overall load L = minx L(x); let
Lmax = maxx L(x). We write LX (rsp., LX(x)) for the
load of any subset X of sensors (rsp., at x). OPT denotes
the duration of an optimal schedule; a trivial upper bound is
OPT ≤ L. All our approximation ratios are with respect to
L. That OPT ≤ L allows the assumption that dmax ≤ L.

Table 1 summarizes our results. Notably, for RE-
STRICTED STRIP COVER, we give an O(log log log n)-
approximation algorithm for the general case and O(1)-
approximations for some special cases, including a (2 + ε)-
approximation when all intervals have equal width. For
CUBE COVER, we give approximations that extend to any
convex shape with small cuttings: rectangles, disks, ellipses,
etc. We discuss RESTRICTED STRIP COVER in Section 2,
CUBE COVER in Section 3, and the general SENSOR COVER
problem in Section 4.

Related Work. SET COVER PACKING was studied by
Feige et al. [6]. They considered the DOMATIC NUMBER
problem, where the goal is to maximize the number of
disjoint dominating sets on the set of vertices of a graph. A
dominating set in a graph G = (V, E) is a set V ′ ⊂ V of
vertices such that every v ∈ V is either contained in V ′ or
has a neighbor in V ′. Feige et al. show that the DOMATIC
NUMBER problem is hard to approximate within a factor of
(1 − ε) ln |V | for ε > 0, by first showing the hardness of
approximation of the SET COVER PACKING problem. Note
that the SET COVER PACKING problem is a combinatorial
version of our problem, with each subset being a region
of unit duration. Feige et al. also give a randomized ln n-
approximation algorithm, which they derandomize. Their

work showed the first maximization problem proved to be
approximable within polylogarithmic factors but no better.

The practical motivations for studying this problem have
inspired the development of numerous heuristics. Slijepcevic
and Potkonjak [10] introduce the SET K-COVER problem,
where they are given a set of subsets of a base set and an
integer k and ask if it is possible to construct at least k
disjoint set covers. They prove that SET K-COVER is NP-
complete, which is implied by Feige et al.’s result [6], and
present a heuristic for constructing disjoint set covers.

Perillo and Heinzelman [9] study a variation of this
problem, where they want to maximize the lifetime of a
multi-mode sensor network. They compute all possible fea-
sible covers and then translate their problem instance into
a graph. Each sensor and feasible cover becomes a node.
Sensors are connected to a feasible cover if they are con-
tained in that feasible cover. They use linear programming
to model additional energy constraints and solve a maxi-
mum flow problem on this graph. Their solution, while opti-
mal, can be exponential in the size of the problem instance.
Dasika et al. [4] also compute all possible feasible covers
and develop heuristics for switching between these covers in
order to maximize the lifetime of their sensor network.

Abrams, Goel, and Plotkin [1] study a variation of the
problem where they are given a collection of subsets of a
base set and a positive integer k ≥ 2. Their goal is to par-
tition the subsets into k covers, where the area of coverage,
defined as the cardinality of a set, is maximized across all
k covers. They give three approximation algorithms for this
problem: a randomized algorithm, a distributed greedy algo-
rithm, and a centralized greedy algorithm. Their random-
ized algorithm partitions sensors within 1 − 1

e of the op-
timal solution. Their distributed greedy algorithm gives a
1
2 -approximation ratio. Their centralized greedy algorithm
achieves an approximation factor of 1 − 1

e . They also prove
a 15

16 -hardness result for their problem.
We are unaware of previous work on the RESTRICTED

STRIP COVER problem. Some of the closely related prob-
lems are well studied, however. If we replace the covering
constraint by a packing constraint (rectangles may not over-
lap, and the goal is to minimize the height of the highest
point covered), then the problem becomes DYNAMIC STOR-
AGE ALLOCATION [7, Problem SR2], for which there is a



(2 + ε)-approximation [3]. If we further allow rectangles to
move both vertically and horizontally, then the problem be-
comes STRIP PACKING, which has a (1 + ε)-approximation
up to an additive term [8].

2 Restricted Strip Cover
Consider an instance S of RESTRICTED STRIP COVER
(RSC). For ease of presentation, we define R(s) as a semi-
closed interval [`(s), r(s)) for each s ∈ S; the width of s is
r(s) − `(s). We assume w.l.o.g. that all interval coordinates
are integers in [0, 2n − 1] and that U = [0, 2n − 1),
because there are at most 2n distinct interval endpoints.
It is convenient to view scheduled sensors as semi-closed
rectangles in the plane, with intervals along the x-axis and
durations along the y-axis. Thus a valid schedule S of
duration T is one in which any point (x, y) in the sub-
plane U × [0, T ) is covered by some sensor s; i.e., `(s) ≤
x < r(s) and t(s) ≤ y < t(s) + d(s). The problem
is equivalent to sliding axis-parallel rectangles vertically to
cover a rectangular region of maximum height. Therefore,
in this section we use the terms “sensor” and “rectangle”
interchangeably. We say two or more rectangles overlap if
they cover some common point. When discussing multiple
schedules, we write tS(s) to denote the start time of s in
some schedule S.

We assume all durations are positive integers. Let S be
some schedule of S. Define level j of S to be the horizontal
slice of sensors that cover points in the y-range [j − 1, j). A
gap is a point p such that no sensor covers p. For i ∈ U ,
define M(S, i) to be the greatest y-coordinate j such that no
gap exists below j at i; i.e., M(S, i) = max{j : ∀j ′ <
j, ∃s ∈ S, s covers (i, j′)}. Then the duration of S is
M(S) = mini M(S, i).

Our main results are an O(log log log n)-approximation
for arbitrary intervals and a (2 + ε)-approximation for inter-
vals whose x-projections are non-nested, which includes the
case of uniform width. We use three main components:

1. a simple, exact algorithm if all sensors have the same
duration (Section 2.1);

2. an exact, dynamic programming algorithm, which runs
in poly(n) time if L = O(log n/ log log n) and yields
a PTAS when L = O(dmin log n/ log log n) (Sec-
tion 2.2);

3. (1 + ε)-approximations when L = Ω(dmax log n ·
min{1/ε, log(dmax/dmin)}/ε4) (Section 2.3).

2.1 Uniform-Duration Sensors If all sensors have the
same duration, a simple greedy algorithm gives an exact
solution of duration L. Define Si = {s ∈ S : s is live at i}.
Assume by scaling that all sensors have unit duration. We
proceed left-to-right, starting at i = 0 and constructing a

schedule S while maintaining the following invariants after
scheduling sensors in Si: (i) no sensors overlap at any x-
coordinate ≥ i, and (ii) M(S, i) = L.

When i = 0, select any L sensors that are live at 0,
and schedule them without overlap, establishing the initial
invariants. Assuming the invariants are true at i, schedule
Si+1 as follows. If there are no gaps at i+1, we are done, as
the invariants extend to i + 1. Otherwise, assume there are
k > 0 unit-duration gaps at i + 1. At least k sensors in Si+1

must be unscheduled, which can be used to fill the gaps.

2.2 A Dynamic Programming Solution for Small L We
give a dynamic program to determine if there is a schedule
S such that M(S) = T for a fixed T . The dynamic program
is similar to that of Buchsbaum et al. [3], but we need a new
analysis, as their analysis would yield an nO(n) time bound
here. Below we ignore portions of sensors that extend above
level T in any schedule.

Define S≤i =
⋃

0≤k≤i Sk. Consider some schedules
Si−1 of Si−1 and Si of Si such that M(Si−1, i − 1) =
M(Si, i) = T . We say that Si−1 and Si are compatible if
(i) for all s ∈ Si−1 ∩ Si, tSi−1

(s) = tSi
(s); and (ii) for

all j ∈ [0, T ), (i, j) is covered by Si−1 or Si. The first
condition stipulates that any sensor in both schedules must
have the same start time in each; the second requires a sensor
in Si to be scheduled to cover each level at which coverage
stops at i − 1 in Si−1. For each i, we populate an array
Ci indexed by possible schedules of Si. For any Si, define
Ci[Si] = 1 if there is a schedule S of S≤i that respects Si and
has M(S, x) = T for 0 ≤ x ≤ i; and Ci[Si] = 0 otherwise.
Then Ci[Si] = 1 if and only if M(Si, i) = T and there exists
some schedule Si−1 of Si−1 such that Ci−1[Si−1] = 1 and
Si−1 is compatible with Si. For i = 0, C0[S0] = 1 for
precisely those schedules S0 of S0 that have M(S0, 0) =
T . The dynamic program then populates the arrays Ci in
increasing order of i, by checking all schedules of Si for
each i. Ultimately we check if there is some schedule S2n−1

of S2n−1 such that C2n−1[S2n−1] = 1.
First Analysis. For a schedule Si of Si, denote by ∂(Si)
the vertical boundaries of the union of the rectangles of Si.
If Si is part of a minimal schedule S of duration T , then
any rectangle of Si must cover some point on ∂(Si) that
is covered by no other rectangles in Si. Thus |Si| ≤ 2T ,
because ∂(Si) has total length 2T .

Because there are at most 2T sensors per schedule,
there are at most

(

n
2T

)

T 2T possible schedules of Si. Each
schedule of Si must be checked for compatibility against
each schedule of Si−1, and checking compatibility of a
pair of schedules takes O(T ) time. Hence the time to
run the whole dynamic program is 2n

((

n
2T

)

T 2T
)2

O(T ) =

(nT )O(T ) = (nL)O(L). To determine OPT, we run the
dynamic program for each of the L possible values of T ,
which does not affect the overall asymptotics.



Partitioning the Dynamic Program. It suffices to run the
dynamic program only on x-coordinates with relatively few
live sensors. Let X = {i : |Si| < 5T}. We claim that S
has a schedule of duration T iff S has a schedule S such that
M(S, i) ≥ T for any i ∈ X . We prove the “if” part; the
“only if” part is clear.

Assume that there is a minimal schedule S of duration T
that only covers X . We show how to schedule the sensors not
used in S to cover all x-coordinates. Consider any maximal
interval X̄ of x-coordinates not in X . At most 4T sensors
from S are live at any i ∈ X̄, because any such sensor
is also live at either min(X̄) − 1 or max(X̄) + 1, and at
most 2T are live at either one. By construction, there are
at least 5T sensors live at any i ∈ X̄, so there are at least
5T − 4T = T sensors live at i that are not used by S and
hence are available, which suffice to cover all the levels at i.
If such a sensor s should also be live at another i′ ∈ X̄ (or
another i′ in another X̄ ′), it reduces by one both the number
of potential uncovered levels and the number of available
sensors live at i′, so enough sensors will remain at i′.

Therefore we need only run the dynamic program on the
x-coordinates in X . This takes only 2n·T O(T ) time, because
there are fewer than 5T sensors live at any i ∈ X .

THEOREM 2.1. RSC can be solved in time 2n · LO(L).

COROLLARY 2.1. RSC can be solved in poly(n) time if
L < c · log n/ log log n for any constant c.

Using a standard trick, a PTAS follows directly by
appropriately truncating durations.

COROLLARY 2.2. There is a PTAS for RSC if L < c ·
dmin log n/ log log n for any constant c.

2.3 Algorithms for Small Durations We now have algo-
rithms for the cases of uniform duration and large durations
(relative to load). Here we consider the case when all du-
rations are small relative to load. To do so, we develop a
grouping technique, which builds on the boxing technique of
Buchsbaum et al. [3]. Although we follow the rough out-
line of their technique, the covering (as opposed to packing)
nature of our problem necessitates new ideas.

The basic idea of grouping is to group shorter sensors
into longer, virtual sensors until all the sensors have equal
duration, at which point the greedy algorithm is invoked.
Ensuring that the load does not decrease too much during
the process is the key to our algorithms.
Grouping Sensors. A grouping is a partition of a set Y
of sensors into a set G of groups, each of which is then
replaced by a rectangle that can be covered by the sensors
in the group. The duration of a group is that of the rectangle
that replaces it. These rectangles form a modified instance.
LG (rsp., LG(i)) is defined to be the load of the groups (rsp.,

at i). Note that LG(i) ≤ LY (i), since portions of the sensors
in a group that are overlapped or outside the rectangle are
not counted in LG(i). We give polynomial-time procedures
to group a set Y of sensors of unit duration into G such that
LG(i) is not much smaller than LY (i) for any i.

First, we give a grouping of a set of sensors that are all
live at a fixed x-coordinate. The following adapts Lemma
2.1 of Buchsbaum et al. [3], and the proof is similar, although
simpler; details are in Appendix A.1.

LEMMA 2.1. Given a set Y of unit-duration sensors, all live
at some fixed x-coordinate x0, an integer group-duration
parameter D, and a sufficiently small positive ε, there is a
set G of groups, each of duration D, such that for any i,
LG(i) > LY (i)/(1 + ε) − 4Dd1/εe.

We now partition the input so that we can apply Lemma
2.1 individually to the parts.

DEFINITION 2.1. A γ-grouping is a partition of sensors into
a set of groups such that: (1) In each group, there is an
anchor (x-coordinate) i at which all sensors in the group are
live; and (2) for any x-coordinate i, the set of sensors live at
i are drawn from no more than γ groups.

Notes. Sensors in a group may share many anchors in
common; the anchor of the group is one distinguished from
this set. Not all sensors live at an anchor will be in its group.
Also, the existence of a γ-grouping is a purely combinatorial
property of a family of ranges, like the canonical subsets
used in range searching [2].

LEMMA 2.2. Given a set Z of unit-duration sensors that
admits a γ-grouping, an integer group-duration parameter
D, and a sufficiently small positive ε, there is a set G of
groups, each of duration D, such that at any x-coordinate
i, LG(i) > LZ(i)/(1 + ε) − O(γD/ε).

Proof: Let G be a γ-grouping of Z. Each group in
G possesses an anchor and thus satisfies the premises of
Lemma 2.1. Apply Lemma 2.1 to each group of G. Let
V be the set of anchors, and let Zv denote the set of all the
sensors in the group that has v as an anchor.

Consider any x-coordinate i. By Lemma 2.1 and the fact
that the Zv form a partition, LG(i) >

∑

v∈V (LZv
(i)/(1 +

ε) − 4Dd1/εe). By the γ-grouping property, there are only
γ relevant terms in the summation, so LG(i) > LZ(i)/(1 +
ε) − 4γDd1/εe. 2

LEMMA 2.3. Any set of intervals has an O(log n)-grouping.

Proof: Build an interval tree T on the intervals. For
each node v of T , form group Zv containing the intervals
associated with v. Clearly, the x-coordinate of the dividing
line corresponding to v is a valid anchor of the group Zv.
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Figure 1: A bad example for grouping.

T has depth O(log n). For nodes u, w at the same level
of T , sets Zu and Zv are disjoint. Thus, the intervals live at
any x-coordinate are distributed among O(log n) groups. 2

Remark. This bound is tight in general. Consider any
grouping of the example in Figure 1. Let U be [0, 1]. We
show there must be an x-coordinate i such that the sensors
live at i belong to Ω(log n) groups. Initially, i might lie
anywhere in U . Sensor A is assigned to some group; assume
w.l.o.g. that the anchor of this group lies in the left half of A,
i.e., [0, 0.5). Restrict the range of candidate x-coordinates
for i to [0.5, 1]. Note that all groups involving intervals in
this range (like B) must be different from A’s group. Repeat
this process with B. As the range of candidate x-coordinates
for i thereby decreases, we maintain an increasing set of
intervals that all must belong to different groups. The
process terminates after Ω(log n) steps.

More structure on the intervals allows for better group-
ings. Consider families of non-nested intervals, in which no
interval properly contains another. Uniform-width intervals
are a special case.

LEMMA 2.4. Collections of non-nested intervals admit 2-
groupings.

Proof: In non-decreasing order by left endpoint, greedily add
intervals into the first group as long as they all share some x-
coordinate. When no further progress can be made, create a
new group and continue.

Consider three groups A, B, C created in consecutive
order. Let sA, sB , and sC be the first intervals picked in
each group. By assumption, all intervals in A are live at the
right endpoint of sA. If sA and sB are live at some common
x-coordinate, then sB is also live at the right endpoint of sA,
which is not possible, since sB started a new group.

Thus, sA, sB and sC are mutually disjoint. Since no
interval of C has its left endpoint to the left of that of sC , no
interval of A can be live at an x-coordinate of an interval of
C, or sB would be nested. Hence, all intervals active at any
x-coordinate between the left endpoints of sB and sC must
be from A or B. 2

The Algorithm. Henceforth, we assume that the input
admits a γ-grouping. By Lemma 2.3, γ = O(log n). Let ε be
a sufficiently small error parameter, and let D = dmaxd1/εe.

THEOREM 2.2. For any sufficiently small positive ε, Al-
gorithm 1 runs in poly(n, 1/ε) time and gives a schedule

Algorithm 1 Approximation algorithm via grouping
(1) Truncate each sensor of duration d to d(1+ε)ke, where
(1 + ε)k ≤ d < (1 + ε)k+1 for some integer k. Let X be
the set of truncated sensors.
(2) For each d = d(1 + ε)ke, k = blog1+ε dminc, . . . ,
dlog1+ε dmax − 1e, do the following. Let Xd denote the
set of truncated sensors of duration d. Scale each sensor in
Xd down by a factor of d, apply Lemma 2.2 with group-
duration parameter dD/de and the given ε, and then scale
the obtained groups back up by d.
(3) Let G be the set of rectangles obtained from Step (2).
Truncate them so that they all have duration exactly D.
Call the resulting set of rectangles G′.
(4) Apply the greedy algorithm to G′.

of the RSC problem with duration at least L/(1 + ε) −
O
(

γdmax log(dmax/dmin)/ε3
)

.

Proof: We will show that truncating and grouping do not
decrease the load at any i excessively.

By Lemma 2.2, Step 2 produces a grouping Gd of Xd of
duration dD/ded such that at any i, LGd

(i) > LXd
(i)/(1 +

ε) − O(γD/ε). Summing over all d, we have

LG(i) >
1

1 + ε
LX(i) − O

(

γD log(dmax/dmin)

ε log(1 + ε)

)

=
1

1 + ε
LX(i) − O

(

γdmax log(dmax/dmin)

ε3

)

.

Truncating the sensors in Step (1) decreases their dura-
tions by a factor of at most 1 + ε, so LX(i) ≥ 1

1+εL(i).
Truncating the groups in Step (3) also decreases their du-
rations by a factor of at most dD/ded

D ≤ D+d
D ≤ 1 + ε.

Since 1
(1+ε)3 ≥ 1

1+7ε , we have LG′(i) > L(i)/(1 +

7ε) − O
(

γdmax log(dmax/dmin)/ε3
)

. Finally, applying the
greedy algorithm in Step (4) yields a schedule of duration
mini LG′(i) > L/(1+7ε)−O(γdmax log(dmax/dmin)/ε3).
Replacing ε with ε/7 gives the desired result. 2

By bootstrapping Steps (1)–(3) of Algorithm 1, we can
replace the O(log(dmax/dmin)) factor with O(1/ε), yielding
the following result, the proof of which is in Appendix A.2.

THEOREM 2.3. For any sufficiently small positive ε, there
is an algorithm that runs in poly(n, 1/ε) time and gives a
schedule to the RSC problem with duration at least L/(1 +
ε) − O

(

γdmax/ε4
)

.

COROLLARY 2.3. There is a constant c, such that for any
small enough positive real ε, the algorithm gives a schedule
of duration at least L/(1 + ε) for any L ≥ γcdmax/ε5.

2.4 Putting the Pieces Together Theorem 2.3 yields a
good approximation only when dmax is small. On the other



hand, Corollary 2.2 yields a good approximation when dmin

is large. We need the following technical lemma.

LEMMA 2.5. For any partition {R1, . . . ,Rk} of S and any
x-coordinate i, some Rj has load at least L/k at i; define
m(i) to be any such j.

Proof: By contradiction, if there were some i such that
LRj

(i) < L/k for 1 ≤ j ≤ k, then LS(i) < L. Set
m(i) = argmaxj{LRj

(i)}. 2

Consider the case when γ = O(1). Fix a parameter
β, and partition S into two subsets: R0 consisting of all
sensors with duration at least βL (the large sensors), and R1

containing the remaining (small) sensors. Invoking Lemma
2.5, for each j, we use Rj to cover all the x-coordinates
i where m(i) = j. Then by setting β = ε′5/(γc): for
R0, Corollary 2.2 yields a solution of duration at least
L/(2(1+ ε′)); and for R1, Corollary 2.3 yields a solution of
duration at least L/(2(1+ε′)). Combining the two solutions,
we obtain a solution of duration L/(2+2ε′). Setting ε = ε′/2
gives us our first result:

THEOREM 2.4. There exists a (2 + ε)-approximation for
RSC for inputs that admit O(1)-groupings.

COROLLARY 2.4. If all sensors have equal width, we can
obtain a (2 + ε)-approximation for RSC.

Proof: This follows from the above and Lemma 2.4. 2

If γ is an increasing function of n, we must introduce
a middle layer in the decomposition of sensors. Place all
sensors of duration at least h = L log log n/ logn into set
R0. Fix a parameter `, and for 1 ≤ i ≤ `, place all sensors
of duration between h/2i and h/2i−1 into set Ri, truncating
all their durations to h/2i; this at worst doubles the overall
approximation ratio. Place all sensors of duration at most
h/2` in R`+1.

We call R0 the large subset; Ri, 1 ≤ i ≤ `, the middle
subsets; and R`+1 the small subset. Invoking Lemma 2.5,
for each j, we use Rj to cover all the x-coordinates i where
m(i) = j. For the large subset, we use Corollary 2.2 to find a
schedule of duration at least L/((1+ε)(`+2)). For a middle
subset Rj , j ≥ 1, because all its sensors have the same
duration, we can use the greedy algorithm to find a schedule
of duration at least L/(`+2). For the small subset R`+1, we
use Theorem 2.3 with ε = 1. Since the sensors in R`+1

have maximum duration h/2` = L log log n/(2` log n),
Theorem 2.3 yields a schedule of duration at least

L

2(` + 2)
− O

(

γ
L log log n

2` log n

)

.

If γ = O(log n/ log log n), then setting ` = O(1) suffices
to make the term L

2(`+2) dominate, yielding a constant-
factor approximation. For arbitrary intervals, we know from
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Figure 2: [3] A set of sensors (in the form (`(·), r(·), d(·)))
A = (0, 1, 3), B = (0, 3, 1), C = (1, 2, 2), D = (1, 4, 1),
E = (2, 3, 1), F = (2, 5, 1), G = (3, 4, 2), and H =
(4, 5, 3). The shaded region is a gap. In this example, L = 4
but OPT = 3, which can be realized by sliding G down so
that t(G) = 1.

Lemma 2.3 that γ = O(log n), requiring ` ≥ 3 log log log n,
thereby yielding an O(log log log n)-approximation.

THEOREM 2.5. There exists a polynomial-time constant-
factor approximation for the RSC-problem on collections
of intervals that admit O(log n/ log log n)-groupings. For
general collections of intervals, there exists a polynomial-
time O(log log log n)-approximation algorithm.

2.5 Hardness To prove that RSC with variable durations
is NP-hard, we exploit an identity to DYNAMIC STORAGE
ALLOCATION in a special case. An instance of DSA is
like one of RSC, except that the instance load is defined
as the maximum load at any x-coordinate, and the goal is
to schedule the sensors (jobs, in DSA parlance) without
overlap to minimize the makespan. If the load is equal for
all x-coordinates, then OPT = L for either problem implies
a schedule that is a solid rectangle of height OPT = L.

Stockmeyer proves that determining if there exists a
solution to DSA of a given makespan is NP-complete [7,
Problem SR2]. In fact, he proves that given a DSA instance
with uniform load, determining if OPT = L is NP-complete,
even if durations are restricted to the set {1, 2}, and by the
above identity, the same is true for RSC.

To establish a gap between OPT and L, consider the
example in Figure 2, in which L = 4 but OPT = 3. Scaling
shows that no approximation algorithm can guarantee a ratio
of better than 4/3 with respect to L.

3 Cube Cover
3.1 Hardness Results When the R(·)’s are axis-aligned
rectangles and U is a two-dimensional region, the problem
is NP-hard even when the sensors have uniform duration,
in contrast to the uniform-duration case for RSC. We use a
reduction from an instance of NAE-3SAT with n variables
and m clauses to an instance of CUBE COVER.



An instance I of NAE-3SAT is a set U of variables and
a collection C = {C1, C2, ..., Cm} of clauses over U , such
that |Ci| = 3 for each i. The problem is to determine if there
a truth assignment for U such that each clause in C has at
least one true literal and at least one false literal [7]. A key
property is that if X is a satisfying assignment for an instance
I of NAE-3SAT, X̄ is also a satisfying assignment of I .

Given I , we construct an associated graph G(I), with
vertices for each variable and each clause. We draw an edge
between a clause vertex and a variable vertex if the variable
appears in the clause. The graph is drawn on a planar
grid within a bounding box U . From G(I), we construct
an instance S(I) of CUBE COVER that has a schedule of
duration 2 if I is satisfiable but only 1 if I is unsatisfiable.
Details will appear in the full paper.

The construction eliminates the possibility of a PTAS as
well. Assume we have a PTAS P for CUBE COVER. On
input (S(I), ε), where ε > 0 and S(I) is an instance of
CUBE COVER induced by the above construction, P would
output a solution with duration T , where T ≥ (1−ε) ·OPT .
Setting ε = 0.25, T ≥ 1.5 when OPT = 2, and 0.75 ≤ T ≤
1 when OPT = 1. Thus we can use P to solve NAE-3SAT.

THEOREM 3.1. CUBE COVER is NP-hard and does not
admit a PTAS, even with uniform duration.

3.2 Rectangles With Uniform Duration We consider ap-
proximation algorithms if all sensors have unit duration and
scale to get the uniform-duration results in Table 1. First we
prove a technical lemma, which actually holds for arbitrary
sets.

LEMMA 3.1. Let U be an m-element set. For s ∈ S, R(s)
is an arbitrary subset of U with unit duration. There exists
some constant c large enough, such that if L > c ln m,
then in polynomial time we can find a subset R ⊆ S and
a schedule of R with duration at least L/ lnm so that the
remaining load LS\R ≥ L/2.

Proof: We take covers from S one by one. Let Li be the
load of the remaining sensors after taking the ith cover. For
the (i + 1)th cover X , we take each remaining sensor into
X with probability p = c ln m/Li. Then we check if (1)
X is a valid cover, and (2) Li+1 > Li − 1

2 ln m. For any
x ∈ U , the probability that x is not covered is at most
(1 − p)Li < m−c, so (1) occurs with probability at least
1−m1−c (probability of union of events). For any x ∈ U , the
probability that Li(x) ≤ Li− 1

2 ln m is at most m−(2c−1)2/8c

(Chernoff bound), so (2) occurs with probability at least
1−m1−(2c−1)2/8c. Thus we can choose c large enough that
both (1) and (2) occur with high probability (e.g., > 1/2).
We repeatedly take X until this happens and then proceed
to the next cover. We repeat this procedure until Li+1 drops
below L/2, and the lemma follows. 2

The basic idea of our algorithms is the following. Take
a partition of U with a small number of cells, and then crop
R(·) so that each sensor fully covers a number of cells but
is completely disjoint from the rest. We ensure that the load
does not decrease by more than a constant factor and then
apply Lemma 3.1.

THEOREM 3.2. If each sensor s ∈ S has unit duration,
then there is a polynomial-time O(log(n/L))-approximation
algorithm for CUBE COVER.

Proof: We assume L > c ln n for some large constant c;
otherwise we just take one cover, and the theorem follows. It
is well known that sets of rectangles in the plane admit (1/r)-
cuttings: there exists a subset R ⊂ S of r log r rectangles
such that in the partition AR determined by the rectangles
of R, each face is intersected by the boundaries of at most
cn/r rectangles of S [5]. We choose r = d2cn/Le, so
cn/r ≤ L/2.

Let f be a face of AR, and let Sf ⊆ S denote the
subset of rectangles that fully contain f . Since the load
at every point in f is at least L and only L/2 rectangles
partially cover f , we derive |Sf | ≥ L/2. Now replace each
rectangle R(s) by a cropped region that consists of all faces
of AR that s fully covers. This yields an instance of SENSOR
COVER, with a universe of size r2 log2 r and load L′ ≥ L/2.
Applying Lemma 3.1 yields the desired result. 2

When all the R(·)’s have the same size, a more careful
cropping scheme yields an improved bound.

THEOREM 3.3. If each sensor s ∈ S has unit duration
and each R(s) is a unit square, then there is a polynomial-
time O(log(Lmax/L))-approximation algorithm for CUBE
COVER.

Proof: We assume L > c ln Lmax for some large constant
c; otherwise we just take one cover, and the theorem follows.
We draw a unit-coordinate grid Γ inside U . There are only
O(n/L) cells in Γ. For a cell γ ∈ Γ, let S(γ) ⊆ S
denote the set of squares of S that intersect γ. Let nmax =
maxγ |S(γ)|. Packing arguments imply nmax ≤ 4Lmax.

Two cells in Γ are independent if they are at least two
grid cells apart from each other in both dimensions. It
is easy to see that we can partition Γ into 9 independent
sets Γ1, . . . , Γ9, where all cells in any one set are mutu-
ally independent. In the following, we will show how to
make Ω(L/ ln(nmax/L)) covers for Γ1, such that the re-
maining load is at least L/8. Then we repeat the pro-
cess for Γ2, . . . , Γ9, and ultimately we derive a schedule
that covers all cells with duration Ω(L/ ln(nmax/L)) =
Ω(L/ ln(Lmax/L)).

By the definition of independence, we can isolate the
cells in Γ1 and need only show that for any γ ∈ Γ1,
we can make Ω(L/ ln(nmax/L)) covers from S(γ) without



decreasing the load of any of its neighboring 8 cells by
more than a factor of 8. The load of S(γ) inside γ is
at least L, so following the approach used in the proof of
Theorem 3.2, we build a partition A in γ and its neighboring
cells such that each face of A intersects the boundaries of at
most L/2 squares from S(γ). A has size r2 log2 r, where
r = d2cnmax/Le. We further partition the faces of A that
intersect the boundary of γ, such that each face of A is either
inside γ or outside. This at most doubles the size of A.
Let F be the set of faces of A that are fully covered by at
least L/4 sensors from S(γ). F includes all faces inside γ
and some faces outside. For any face not in F , the load of
S \ S(γ) must be at least L − L/2 − L/4 = L/4, so we
can ignore it. Consider the faces in F . Crop the squares of
S(γ) according to F as in the proof of Theorem 3.2. After
cropping, by construction the load at each face of F remains
at least L/4. Apply Lemma 3.1 with U = F and S(γ),
which yields Ω(L/ ln(nmax/L)) covers while the remaining
sensors have load at least L/8 for any face of A. 2

Remark. These results extend to convex shapes that admit
small cuttings: disks, ellipses, etc.

4 Sensor Cover
Now consider the general SENSOR COVER problem, in
which each R(·) is an arbitrary subset of a finite set U
of size |U | = O(n). We show that a random schedule
of the sensors yields an O(log n)-approximation with high
probability. This result extends that of Feige et al. [6], which
deals with the unit-duration case.

Let T = cL/ lnn, where c is some constant to be
determined later. We show that if we choose the start time
of each sensor randomly between 0 and T , then we will
have a valid schedule with high probability. In order to
avoid fringe effects, we must choose positions near 0 or
T judiciously. More precisely, for a sensor s of duration
d(s) < T , we choose its start time t(s) uniformly at random
between −d(s) and T ; if t(s) < 0, we reset it to 0. If
d(s) ≥ T , we simply set t(s) = 0. Divide T evenly into
2n time intervals [t0 = 0, t1], [t1, t2], . . . , [t2n−1, t2n = T ],
each of length T/2n. If d(s) ≥ T/n, then for any x ∈ R(s)
and in any time interval, x is covered by s with probability
at least (d(s) − T/2n)/(T + d(s)) ≥ 1

4 · d(s)/T .
Consider any x ∈ U , and let {s1, . . . , sk} be the set of

sensors live at x with durations at least T/n. We know that
∑k

i=1 d(si) ≥ L − T/n · n ≥ L/2. In any time interval
[ti, ti+1], the probability that x is not covered is at most

k
∏

i=1

(

1 − d(si)

4T

)

≤
k
∏

i=1

exp

(

−d(si)

4T

)

≤ exp

(

− L

8T

)

= exp

(

− lnn

8c

)

= n− 1

8c .

There are O(n2) different (x, [ti, ti+1]) pairs, so the proba-

bility that some x ∈ U is not covered at some time is at most
O(n2) · n− 1

8c = O
(

n2− 1

8c

)

. With c < 1/16, we obtain a
valid schedule with high probability.

The algorithm can be de-randomized using the method
of conditional probability. We omit the details.

SET COVER PACKING reduces to SENSOR COVER.
Given an optimal schedule for an instance of SENSOR
COVER, we can “snap” each starting time t(s) to the inte-
ger dt(s)e without introducing gaps or decreasing the total
duration. Hence, the lower bound of Feige et al. [6] applies.

THEOREM 4.1. There exists a polynomial-time O(log n)-
approximation algorithm for the SENSOR COVER problem.
This bound is tight up to constant factors.

5 Open Problems
Ideally we would like to prove stronger hardness results or
find better approximation algorithms in order to narrow the
gap between our lower and upper bounds. In fact, we have
not ruled out the possibility of a PTAS for the RESTRICTED
STRIP COVER problem, although it cannot be in terms of
L. It would be interesting to see if other techniques for
geometric optimization problems could be applied to our
problem as well.

We are also interested in understanding preemptive
schedules better. For RESTRICTED STRIP COVER, a sim-
ple algorithm based on maximum flow yields an optimal
preemptive schedule in polynomial time. In higher dimen-
sions, however, it is not fully understood in which situations
non-preemptive schedules are sub-optimal when compared
with the best preemptive schedules. For example, using es-
sentially the same argument as in the NP-hardness proof for
CUBE COVER, we can show that its preemptive variant re-
mains NP-hard. In general, we would like to uncover the
relationship between the load of the problem instance, the
duration of the optimal preemptive schedule, and the dura-
tion of the optimal non-preemptive schedule.
Acknowledgements. We thank Nikhil Bansal for pointing
us to the paper by Kenyon and Remila [8] and Piotr Indyk
for fruitful discussions.
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A Details for Section 2
A.1 Proof of Lemma 2.1 Given a set Y of unit-duration
sensors, all live at some fixed x-coordinate x0, an integer
group-duration parameter D, and a sufficiently small positive
ε, there is a set G of groups, each of duration D, such that
for any i, LG(i) > LY (i)/(1 + ε) − 4Dd1/εe.

Proof: It is convenient to view a sensor s as a point
(`(s), r(s)) in the plane. Note that all sensors live at x0 are
inside the rectangle Rx0

= {(x, y) : x ≤ x0 ≤ y}. (See
Figure 3.) First we partition the sensors of Y into strips by
repeating the following as long as sensors remain.

(1) Create a vertical strip containing the at most Dd1/εe
sensors that remain with the smallest `(·) values.

(2) Create a horizontal strip containing the at most
Dd1/εe sensors that remain with the largest r(·) values.

Now for every vertical strip of Y , take the sensors in
order of decreasing r(·) value in groups of size D. (We may
discard the last < D sensors in the last strip.) Similarly, for
every horizontal strip, take the sensors in order of increasing
`(·) value in groups of size D. (We may discard the last
< D sensors in the last strip.) Replace each group X
with a larger rectangle sX with `(sX) = maxs∈X `(s),
r(sX ) = mins∈X r(s), and d(sX) =

∑

s∈X d(s) = D.
Consider any i ≤ x0 (the case i > x0 is symmetric),

and examine Figure 3(c). All sensors live at i are inside the
rectangle Ri = {(x, y) : x ≤ i ≤ y}. Assume that the line
x = i intersects k horizontal strips; then Ri entirely contains
at least k − 1 vertical strips, so LY (i) ≥ (k − 1)Dd1/εe.
For any group completely inside Ri, it contributes D to both
LY (i) and LG(i); for any group completely outside Ri, it
does not contribute anything to either LY (i) or LG(i). So

only the groups in the k horizontal strips and the single
vertical strip intersected by the line x = i contribute to the
difference, that is, LY (i) − LG(i) < kD + Dd1/εe + D,
where the last term accounts for the fewer than D sensors
that we did not group in the last strip. Therefore,

LG(i) > LY (i) − (k − 1)D − (2 + d1/εe)D
≥ (1 − ε)LY (i) − 2Dd1/εe

≥ 1

1 + 2ε
LY (i) − 2Dd1/εe,

for any ε ≤ 1/2. Replacing ε with ε/2 gives the desired
result. 2

A.2 Proof of Theorem 2.3 For any sufficiently small pos-
itive ε, there is an algorithm that runs in poly(n, 1/ε) time
and gives a schedule to the RSC problem with duration at
least L/(1 + ε) − O

(

γdmax/ε4
)

.
Proof: We are going to apply Steps (1)–(3) of Algorithm
1 repeatedly, grouping the smaller sensors so as to increase
dmin until log(dmax/dmin) becomes small enough that we
can apply Theorem 2.2 to the resulting rectangles.

For ease of presentation, we assume that 1/ε is an
integer. Let r denote the ratio dmax/dmin. Assume first
that log r ≥ 1/ε, and set µ = ε/ log r and D = dµ4dmaxe.
Apply Steps (1)–(3) of Algorithm 1 to Ss, the set of sensors
of duration at most d′

max = dµDe, with group duration D
and error parameter µ. This yields a set of rectangles Gs of
duration D such that for any i and some constant c1

LGs
(i) >

1

1 + µ
LSs

(i) − O

(

γd′max log(d′max/dmin)

µ3

)

>
1

1 + µ
LSs

(i) − O(γµ2dmax log(µ5r))

>
1

1 + µ
LSs

(i) − c1γε2dmax

log r
.

Now consider Gs as a set of sensors and the new
problem instance S ′ = Gs ∪ (S \ Ss). Its load at i is

LS′(i) >
L(i)

1 + µ
− c1γε2dmax

log r
.

Moreover, the new minimum duration of this problem in-
stance is at least d′

max, and the maximum duration remains
dmax, so the new ratio is r′ ≤ dmax

d′

max

≤ 1
µ5 = log5 r

ε5 ≤ log10 r,
since log r ≥ 1/ε. For ε sufficiently small, we have r′ ≤ √

r;
hence log r′ ≤ 1

2 log r.
Iterate the above procedure, each time using new error

parameter µ′ = ε/ log r′, until it yields a problem instance
S∗ with minimum duration d∗

min for which r∗ = dmax/d∗min

is such that log r∗ < 1/ε. Let r0, . . . , rk = r∗ be the
sequence of ratios and L0(i) = L(i), L1(i), . . . , Lk(i) =
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Figure 3: [3] (a) Four sensors. (b) The sensors of (a) viewed as (x, y) points. (c) Grouping a set of sensors with D = 2
and ε = 1/2. The rectangle Rx0

contains the set Y of sensors. The sensors are first partitioned into alternating vertical and
horizontal strips of Dd1/εe = 4 each. Within each strip, the sensors are grouped (dotted lines) into groups of D = 2. The
groups that intersect the line x = i are shaded.

L∗(i) be the sequence of loads. For some constant c2

L∗(i) >
1

1 + ε/ log rk−1
Lk−1(i) −

c1γε2dmax

log rk−1

>
1

1 + ε/ log rk−1
×

(

1

1 + ε/ log rk−2
Lk−2(i) −

c1γε2dmax

log rk−2

)

−

c1γε2dmax

log rk−1

...

>

(

k−1
∏

i=0

(

1 +
ε

log ri

)

)−1

L(i) −

k−1
∑

i=0

(

1

log ri

)

c1γε2dmax

≥ 1

1 + c2ε/ log r∗
L(i) − 2

log r∗
c1γε2dmax

> L(i)/(1 + 2c2ε
2) − 4c1γε3dmax.

Let L∗ = minp LS∗(i). Finally, apply Theorem 2.2 to
S∗, which yields a schedule of duration at least

1

1 + ε
L∗−O

(

γdmax log r∗

ε3

)

≥ 1

1 + c4ε
L−O

(

γdmax

ε4

)

,

for some constant c4. Replacing ε with ε/c4 gives the desired
result. 2


