
Finding Frequent Items in Probabilistic Data

Qin Zhang1∗ Feifei Li2 † Ke Yi1‡
1Dept Computer Science and Engineering

Hong Kong University of Science & Technology
Clear Water Bay, Hong Kong

{qinzhang, yike}@cse.ust.hk

2Dept Computer Science
Florida State University
Tallahassee, FL, USA

lifeifei@cs.fsu.edu

ABSTRACT
Computing statistical information on probabilistic data has
attracted a lot of attention recently, as the data generated
from a wide range of data sources are inherently fuzzy or
uncertain. In this paper, we study an important statisti-
cal query on probabilistic data: finding the frequent items.
One straightforward approach to identify the frequent items
in a probabilistic data set is to simply compute the expected
frequency of an item and decide if it exceeds a certain frac-
tion of the expected size of the whole data set. However,
this simple definition misses important information about
the internal structure of the probabilistic data and the in-
terplay among all the uncertain entities. Thus, we propose
a new definition based on the possible world semantics that
has been widely adopted for many query types in uncertain
data management, trying to find all the items that are likely
to be frequent in a randomly generated possible world. Our
approach naturally leads to the study of ranking frequent
items based on confidence as well.

Finding likely frequent items in probabilistic data turns
out to be much more difficult. We first propose exact algo-
rithms for offline data with either quadratic or cubic time.
Next, we design novel sampling-based algorithms for stream-
ing data to find all approximately likely frequent items with
theoretically guaranteed high probability and accuracy. Our
sampling schemes consume sublinear memory and exhibit
excellent scalability. Finally, we verify the effectiveness and
efficiency of our algorithms using both real and synthetic
data sets with extensive experimental evaluations.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems. Subject: Query processing

∗Supported by Hong Kong CERG Grant 613507.
†Supported in part by the Startup Grant from the Computer
Science Department, Florida State University.
‡Supported in part by Hong Kong Direct Allocation Grant
(DAG07/08).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

General Terms
Algorithms

Keywords
Heavy Hitters, Probabilistic Data, Uncertain Databases, X-
relation Model.

1. INTRODUCTION
An important problem in many data management sys-

tems is to identify frequent items. People are interested in
tracking these items for a number of reasons. For example,
in network traffic monitoring, frequent packets consuming
most of the bandwidth should be efficiently reported for ac-
counting purposes [17]; in other applications, frequent items
are essential for answering the popular iceberg queries [18,
22] and association rule mining [3]. Frequent items in a
large data set are commonly referred to as heavy hitters.
More precisely, the heavy hitters in a data set are those
items whose relative frequency exceeds a specified thresh-
old, i.e., for a parameter φ, an item t is the φ-heavy hitter

of a multiset W if

mW
t > φ · |W |, (1)

where mW
t is the multiplicity of t in W .

Due to its importance in a wide range of applications, the
topic of finding heavy hitters has been extensively explored
[11, 12, 15, 25, 27, 28, 30, 31]. If we have Ω(n) memory,
where n is the number of distinct items in the data set,
the problem of finding φ-heavy hitters is trivially solved by
keeping a counter for each distinct item that ever appears
in the data set. So most of the existing works focus on
algorithms using sublinear memory to find ǫ-approximate
φ-heavy hitters in one pass. More precisely, if an item is a
φ-heavy hitter, then the algorithm will return it; if an item
is not a (φ − ǫ)-heavy hitter, then the algorithm must not
return it; for the rest of the items, the algorithm may or may
not return them. Among all the techniques proposed, the
Space-Saving algorithm [32] delivers the best performance.
It uses O(1/ǫ) space and spends O(1) time to process each
item.

However, little is known on finding frequent items in prob-
abilistic data, which is an emerging area that has attracted
a lot of attention recently, due to the observation that the
data generated from many applications is inherently fuzzy
or uncertain. For example, in data integration [8, 21, 23],
data items in the output could have varied degrees of con-
fidence, depending on how well the underlying tuples from

different sources match with each other. In applications that
handle measurement data, e.g., sensor readings, the data is
inherently noisy, and ought to be represented by a probabil-
ity distribution rather than a single deterministic value [9,
16]. Statistical information, such as the heavy hitters, plays
a crucial role in the context of uncertain data management,
as probabilistic data essentially represents a distribution of
an exponential number of data set instances, and it is very
important to be able to extract meaningful statistical in-
formation from all these instances. For example, it would
be nice if we can find frequent items efficiently from sensor
readings. Not surprisingly, people have already started to
focus attention on tackling these problems [10, 24].

Probabilistic data models. A number of probabilistic
data models have been proposed in the literature [2, 7, 13,
26, 36, 37], ranging from the basic model where each tuple
appears with a certain probability independently, to power-
ful models that are complete, i.e., models that can represent
any probability distribution of the data instances. How-
ever, complete models have exponential complexity and are
hence infeasible to handle efficiently. Alternatively, exten-
sions to the basic model are introduced to expand its ex-
pressiveness while keeping the computation tractable. The
x-relation model has been proposed in the TRIO [2] sys-
tem, in which an uncertain database D consists of a number
of x-tuples. Each x-tuple T includes a number of items as
its alternatives, associated with probabilities, representing a
discrete probability distribution of these alternatives being
selected. Independence is still assumed among the x-tuples.
The probability of the an item t is denoted as p(t). Thus,
an x-tuple T is a set of a bounded number of items, sub-
ject to the constraint that

P

t∈T p(t) ≤ 1. Without loss of
generality, we assume that all items take values from the
integer domain [n] = {1, . . . , n}. Following the popular pos-

sible worlds semantics, D is instantiated into a possible world

with mutual independence of the x-tuples. More precisely,
let T1, . . . , Tm be the x-tuples of D, and let W be any subset
of the tuples appearing in D, the probability of W occurring
is Pr[W] =

Qm
j=1 pW (Tj) with:

pW (T) =

8

<

:

p(t), if T ∩ W = {t};
1 −

P

t∈T p(t), if T ∩ W = ∅;
0, otherwise.

If Pr[W] > 0, we say W is a possible world, and we de-
note by W the set of all possible worlds. Please refer to
Figure 1 for an example. In summary, items from the same
x-tuple are mutually excluded and items from different x-
tuples are independently selected. This model has been fre-
quently used in the literature [2, 7, 24, 34] as it is a reason-
able approximation of the uncertain nature of the data.

In addition to the offline data, data streams are now gath-
ered in a variety of applications such as network traffic, sen-
sor readings, etc. These data streams often have an uncer-
tain nature, so it is worth studying probabilistic data under
the streaming setting. It is fairly easy to extend the x-
relation model to data streams. We generally assume that
each element in the data stream is an x-tuple, representing
a discrete probability distribution of possible items this ele-
ment might be. The basic probabilistic data model, being a
special case of the x-relation model, can be extended in the
same way. In fact, these probabilistic data stream models
have been adopted in several recent works [10, 24].

x-tuples
T1 {(t1, p(t1)), (t2, p(t2)), (t3, p(t3))}
T2 {(t4, p(t4)), (t5, p(t5))}

i W Pr[W]
1 ∅ (1 − p(t1) − p(t2) − p(t3))(1 − p(t4) − p(t5))
2 {t1} p(t1)(1 − p(t4) − p(t5))
3 {t2} p(t2)(1 − p(t4) − p(t5))
4 {t3} p(t3)(1 − p(t4) − p(t5))
5 {t4} (1 − p(t1) − p(t2) − p(t3))p(t4)
6 {t5} (1 − p(t1) − p(t2) − p(t3))p(t5)
7 {t1t4} p(t1)p(t4)
8 {t2t4} p(t2)p(t4)
9 {t3t4} p(t3)p(t4)
10 {t1t5} p(t1)p(t5)
11 {t2t5} p(t2)p(t5)
12 {t3t5} p(t3)p(t5)

Figure 1: Uncertain database and possible worlds.
We use a pair (t, p(t)) to represent an item t with
probability p(t).

Novel query processing techniques for various query types
have flourished in uncertain databases. Among them, rank-
ing queries [34, 39] and queries gathering statistical informa-
tion [10, 24] are areas of particular interests since they help
discover knowledge to reflect what is more likely to happen
in real world and it is possible to concisely represent results
of such queries. In this paper, we study one statistical query
of particular importance: finding frequent items on uncer-
tain data. We also study the ranking of frequent items on
uncertain data based on confidence.

Heavy hitters in probabilistic data. When extending
the interpretation of heavy hitters to probabilistic data, a
natural way is to replace mW

t and |W | in (1) with their
expected values, leading to the following definition.

Definition 1 (Expected heavy hitters) Given an uncer-
tain database D with W as its space of all possible worlds,
an item t is a φ-expected heavy hitter (Ehh) of D if its ex-
pected multiplicity exceeds φ times the expected size of D,
that is,

X

W∈W

mW
t Pr[W] > φ ·

X

W∈W

|W |Pr[W]. (2)

In fact, this definition has been adopted in the pioneer
work of [10]. By the linearity of expectation, it does not
take long to realize that the Ehh problem is equivalent to the
weighted (deterministic) heavy hitter problem, by treating
p(t) as the weight of t. As a result, the problem is again
trivial if we have Ω(n) memory. If not, as noted in [10],
many previous approximate heavy hitter algorithms can be
modified to support the weighted version of the problem.

Indeed, if the multiplicity of an individual item is consid-
ered as a statistical aggregate, then the definition of Ehh

makes perfect sense. However, if we consider finding the
heavy hitters as a query evaluated on the data set, then this
definition becomes problematic. First, relying on the expec-
tations over all possible worlds usually does not reflect the
intricate characteristics in an uncertain database. For ex-
ample, consider the following two uncertain databases D1 =
{{(1, 0.4), (2, 0.6)}, {(3, 0.5)}} and D2 = {{(1, 0.4)}, {(2, 0.6)},
{(3, 0.5)}}. In D1, item 1 and item 2 are mutually exclu-
sive, they cannot both appear in a possible world. While
in D2, they are independent and it is possible for them to

appear together. However, in the eyes of Ehh, D1 and D2

are identical. Second, since Ehh is only concerned with the
expected frequency of an item and ignores all other charac-
teristics of the distribution of the possible worlds, in some
situations it may miss important features in the underlying
probability space the uncertain data model is representing,
as illustrated by the following two simple examples.

Example 1 Consider the following uncertain database D1 =
{{(1, 0.9), (2, 0.1)}, {(3, 1)}} consisting of 2 x-tuples. Sup-
pose we are interested in 0.5-heavy hitters. According to
the definition, 1 is not a 0.5-expected heavy hitter. How-
ever, 1 in fact has a 90% chance of being a 0.5-heavy hitter;
such a feature is not captured by the definition of expected
heavy hitters.

Example 2 On the other hand, consider the following un-
certain database D2 = {{(1, 0.5)}, {(2, 0.5)}}. Suppose we
are still interested in 0.5-heavy hitters. We notice that 1 is a
0.5-expected heavy hitter, but only has 50% chance of being
a 0.5-heavy hitter.

Thus a more rigorous approach of extending the heavy hit-
ter definition to probabilistic data is to follow the possible

world semantics [14]. Under this framework, the problem
of finding all heavy hitters is treated as a query, and we
are interested in evaluating this query on all possible worlds
and computing for each possible set of items, its probability
of being the query result. As there could be exponentially
many possible results, a compact representation, called the
probabilistic ranking [14], is typically returned to the user.
Here, instead of computing the probability for each possible
set of heavy hitters, we for each individual item compute its
probability of belonging to the answer to the heavy hitter
query evaluated on any possible world. Still, this probabilis-
tic ranking contains one entry for each item in D, so usually
we only return all items with probability above a certain
threshold τ . Intuitively speaking, we would like to identify
all items that are likely to be frequent items in a possible
world randomly instantiated from D.

Definition 2 (Probabilistic heavy hitters) Given an un-
certain database D with W as its space of all possible worlds,
an item t is a (φ, τ)-probabilistic heavy hitter (Phh) of D if

X

W∈W,mW
t >φ|W |

Pr[W] > τ. (3)

The definition of Phh treats the set of heavy hitters holis-
tically. Whether an item is a heavy hitter in a particular
possible world W does not only depend on its own frequency,
but also other items’ combined frequency. Unlike the Ehh

definition which simply relies on individual items’ expected
frequencies, the Phh definition captures the intricate inter-
play between the uncertain items in a randomly generated
possible world represented by the probabilistic data model.

Henceforth we use R to denote a random possible world
instantiated from D. Now both mR

t and |R| are random
variables, and we can conveniently rewrite (2) and (3) as

E[mR
t] > φ · E[|R|] and, (4)

Pr[mR
t > φ|R|] > τ, (5)

respectively. Furthermore, in addition to returning a col-
lection of probabilistic heavy hitters, we would also like to
return the value of Pr[mR

t > φ|R|] for each returned item,
which represents the confidence of the item being a true
result. By sorting these confidences, we can also consider
top-k queries, that is, to find the k items with the largest
confidence of being a heavy hitter.

Our contributions. The problem of finding the Phh’s is
much more difficult than finding the Ehh’s. It is not even
clear how to do this efficiently even when there is sufficient
memory. The problem is even more challenging under the
streaming setting, when there is limited memory and the
data items arrive at a fast rate. In this paper, we tackle
these challenges by 1) formalizing the Phh model and point-
ing out its superiority against the Ehh model; 2) giving low
degree polynomial-time algorithms for computing the exact
Phh’s for offline data; 3) designing both space and time-
efficient algorithms to compute the approximate Phh’s for
streaming data, with theoretically guaranteed accuracy and
space/time bounds; 4) establishing a tradeoff between the
accuracy and the per-tuple processing time of the proposed
approximation algorithms for Phh; 5) formalizing the top-k
query for ranking frequent items in uncertain data and giv-
ing a method to answer such queries efficiently with provable
guarantees; and 6) showing that these algorithms are simple
to implement and perform well in practice through extensive
experimental evaluations on both real and synthetic data.

2. EXACT ALGORITHMS: OFFLINE DATA
In this section, we propose algorithms to find all proba-

bilistic heavy hitters exactly according to (5) for offline data
assuming there is sufficient memory.

2.1 Algorithms for a Single Item
We first give algorithms for computing the confidence of a

given single item t being a heavy hitter, i.e., Pr[mR
t > φ|R|].

The algorithms are based on dynamic programming and run
in polynomial time.

The basic model. We start by considering the basic prob-
abilistic model, in which each tuple appears independently
with a certain probability. This corresponds to a degener-
ated case of the x-relation model, where every x-tuple con-
tains only one alternative (thus one item). In this scenario,
we can compute Pr[mR

t > φ|R|] in O(m2) time, where m is
the number of x-tuples in the uncertain database D.

To perform the dynamic programming, we create a two
dimensional table Bt[i, j] for item t, where the value of the
cell indexed by [i, j] denotes the probability that “item t
appears i times in the first j x-tuples of D”. Let (wj , pj) be
the (only) alternative of the j-th x-tuple, where wj is the
item and pj is the probability that wj appears. We have the
following induction step, for i ≥ 1, j ≥ 1.

Bt[i, j] =



Bt[i, j − 1], if wj 6= t;
Bt[i, j − 1](1 − pj) + Bt[i − 1, j − 1]pj , if wj = t.

The base cases are: Bt[0, 0] = 1, Bt[i, 0] = 0 (i ≥ 1), and

Bt[0, j] =



Bt[0, j − 1], if wj 6= t, j ≥ 1;
Bt[0, j − 1](1 − pj), if wj = t, j ≥ 1.

Next, we create a similar table B t̄[i, j], where t̄ stands for
the set of all items other than t, and the cell indexed by
[i, j] denotes the probability of “items other than t appear
i times in the first j x-tuples of D”. Filling up all the cells
in Bt and B t̄ takes O(m2) time, as there are O(m2) cells in

total, and computing each Bt[i, j] or B t̄[i, j] takes constant
time.

After populating these two tables, Pr[mR
t > φ|R|] can be

calculated as

Pr[mR
t > φ|R|] =

m
X

i=1

Bt[i, m]

0

B

@

⌊ 1−φ
φ

⌋i
X

j=1

B t̄[j, m]

1

C

A
. (6)

Note that we do not need to compute the inner sum
P⌊ 1−φ

φ
⌋i

j=1 B t̄[j, m] of (6) from scratch for each i. As i in-
creases, this sum can be computed incrementally, taking
O(m) time in total. However, constructing the two tables

Bt and B t̄ is the dominating term in the running time of
the algorithm.

Lemma 1 Under the basic probabilistic data model, our al-

gorithm spends O(m2) time to compute Pr[mR
t > φ|R|] for

a single item t.

The general x-relation model. For the case where each
x-tuple may contain multiple alternatives, our approach is
an extension of the algorithm for the basic case. For a partic-
ular item t, we start by rewriting each x-tuple in the offline
data in the form of {(t, pk(t)), (t̄, pk(t̄)}, where pk(t) denotes
the probability to choose t in the k-th x-tuple, t̄ stands the
set of all items other than t in that x-tuple and pk(t̄) is the
sum of the probability of items in t̄, i.e., pk(t̄) is the proba-
bility that t is not chosen in the k-th x-tuple. For instance,
for an x-tuple T = {(1, 0.2), (2, 0.3), (3, 0.2)}, if t = 1, then
we rewrite it as T ′ = {(1, 0.2), (1̄, 0.5)}. It is possible that
item t does not appear in some x-tuples, or t is the only item
in an x-tuple. We set pk(t) = 0 and pk(t̄) = 0 respectively
in these two cases.

Next, we create a three dimensional table At[i, j, k] (0 ≤
i ≤ m, 0 ≤ j ≤ m, 0 ≤ k ≤ m) for the item t to run the
dynamic program. The cell At[i, j, k] denotes the probability
that “item t appears i times and items other than t appear
j times in the first k x-tuples of D”. The induction steps as
well as the base cases for DP are defined as follows.

At[i, j, k] =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

At[i − 1, j, k − 1]pk(t) + At[i, j − 1, k − 1]pk(t̄)
+ At[i, j, k − 1](1 − pk(t) − pk(t̄)),
if i ≥ 1, j ≥ 1, k ≥ 1;

At[0, j, k − 1](1 − pk(t) − pk(t̄))
+At[0, j − 1, k − 1]pk(t̄), if i = 0, j ≥ 1, k ≥ 1;

At[i, 0, k − 1](1 − pk(t) − pk(t̄))
+At[i − 1, 0, k − 1]pk(t), if i ≥ 1, j = 0, k ≥ 1;

Πk
l=1(1 − pl(t) − pl(t̄)), if i = 0, j = 0, k ≥ 1;

1, if i = 0, j = 0, k = 0;

0, if i ≥ 0, j ≥ 1, k = 0 or i ≥ 1, j ≥ 0, k = 0.

After the whole table of At is calculated, we can obtain
the probability Pr[mR

t > φ|R|] by simply summing up the
values of all entries At[i, j, m] with i > ⌊ φ

1−φ
⌋j. Therefore

we can determine whether item t is a probabilistic heavy
hitter in time O(m3).

Lemma 2 Under the general x-relation probabilistic data

model, our algorithm spends O(m3) time to compute Pr[mR
t >

φ|R|] for a single item t.

A naive approach to find all the (φ, τ)-probabilistic heavy
hitters is to repeat using Lemma 1 or Lemma 2 for each
individual item, and then checking if Pr[mR

t > φ|R|] > τ ,
resulting in prohibitively high running times of O(nm2) or
O(nm3) respectively (recall that n is the number of unique
items in the data set). In the next subsection, we prove
a pruning lemma that dramatically reduces the number of
items for which we need to run the dynamic program.

2.2 The Pruning Lemma
The following lemma gives an upper bound on Pr[mR

t >
φ|R|] depending on E[mR

t]/E[|R|], which effectively prunes
many items that cannot be (φ, τ)-probabilistic heavy hitters,
thereby dramatically speeding up the algorithm.

Lemma 3 For any item t,

Pr[mR
t > φ|R|] <

E[mR
t]

φ(1 − c)E[|R|]
+ e−

c2

2
E[|R|],

where 0 < c < 1 is an arbitrary constant.

Proof. We decompose the event (mR
t > φ|R|) into two

disjoint events (mR
t > φ|R|) ∩ (|R| ≥ (1 − c)E[|R|]) and

(mR
t > φ|R|) ∩ (|R| < (1− c)E[|R|]), and bound their prob-

abilities respectively.
First,

Pr
h

(mR
t > φ|R|) ∩ (|R| ≥ (1 − c)E[|R|])

i

≤ Pr[mR
t ≥ φ(1 − c)E[|R|]]

≤
E[mR

t]

φ(1 − c)E[|R|]
. (Markov inequality)

Next,

Pr
h

(mR
t > φ|R|) ∩ (|R| < (1 − c)E[|R|])

i

< Pr[|R| < (1 − c)E[|R|]]

≤ e−
c2

2
E[|R|]. (Chernoff inequality)

Summing up the two terms above yields the lemma.

To simplify the expression, we choose c = 1/2 in Lemma 3.

For E[|R|] large enough, we have e−E[|R|]/8 ≤ 1/E[|R|].
Therefore, Lemma 3 becomes

Pr[mR
t > φ|R|] <

3

φ
·
E[mR

t]

E[|R|]
,

which implies that

E[mR
t]

E[|R|]
<

φτ

3
⇒ Pr[mR

t > φ|R|] < τ,

that is, a (φ, τ)-probabilistic heavy hitter is necessarily a
φτ
3

-expected heavy hitter, while there are at most 3
φτ

such

items. Thus, we can first compute E[mR
t] for all items t

(summing up items’ probability for those equal to t) as well
as E[|R|] (summing up all items’ probability) by a single scan

and locate all the φτ
3

-expected heavy hitters (we call them
candidates). Next, we run the dynamic program to compute
the exact Pr[mR

t > φ|R|] for each of these candidates t.
Finally, the straightforward implementation requires stor-

ing either a two or three dimensional table for the dynamic
programming, leading to an O(m2) or O(m3) memory con-
sumption. However, note that we only care about obtaining
Bt[i, m] for i ∈ [0, m] or At[i, j, m] for i, j ∈ [0, m], i.e.,
the intermediate entries Bt[i, j] for j < m or At[i, j, k] for
k < m need not be stored. Furthermore, at each step j or k
in the dynamic programming, only Bt[i, j − 1] and Bt[i, j]
for i ∈ [0, m] or At[i, j, k − 1] and At[i, j, k] for i, j ∈ [0, m]
are required. Hence, we could effectively reduce the memory
usage to O(m) and O(m2) respectively.

Theorem 1 For an offline uncertain data set D, all the φ-

probabilistic heavy hitters can be found by our algorithms in

O(1
φτ

m2) time and O(m) space for the basic probabilistic

data model, or O(1
φτ

m3) time and O(m2) space for the x-

relation model.

3. APPROXIMATE ALGORITHMS FOR
STREAMING DATA

As we have seen in the previous section, computing the
Phh’s is much more difficult than computing the Ehh’s for
offline data. Under the streaming setting with limited mem-
ory, the problem becomes even more challenging. We know
that even for Ehh, if we do not have Ω(n) memory, then we
can only settle for approximate heavy hitters, that is, for
an error term ǫ, an item is an Ehh if E[mR

t] > φ · E[|R|],
not an Ehh if E[mR

t] < (φ − ǫ) · E[|R|], while the decisions
for the other items are arbitrary. As observed in [10], the
Space-Saving algorithm [32] can be modified to find all these
approximate Ehh’s with O(1/ǫ) memory and O(log(1/ǫ))
processing time per element in the stream.

Lemma 4 ([10, 32]) The modified space-saving algorithm

finds all the approximate Ehh’s in a data stream using O(1/ǫ)
memory and O(log(1/ǫ)) processing time per element.

In order to distinguish the two versions of Space-Saving al-
gorithm in the rest of the paper, we call the modified one
the weighted version and the original one the unweighted
version. Recall that the unweighted space-saving algorithm
finds (φ − ǫ)-heavy hitters for deterministic stream with
O(1/ǫ) memory and O(1) precessing time per tuple [32].

To find all the Phh’s, we need to compute the probability
that an item is a heavy hitter. However, since it is difficult
to calculate Pr[mR

t > φ|R|] or Pr[mR
t > (φ − ǫ)|R|] exactly,

we have to introduce another level of approximation on τ .
More precisely, we say that an item t is an approximate Phh

if Pr[mR
t > φ|R|] > τ , and not an approximate Phh if

Pr[mR
t > (φ − ǫ)|R|] < (1 − θ)τ,

for some small θ. For the other items, the decisions are
arbitrary. In other words, if we relax the requirement on
φ by ǫ (which increases the probability of an item being
a heavy hitter), the item still has some small gap θτ to
the required probability τ , then it should not be treated as
an approximate Phh. In the sequel we will drop the word
“approximate” when there is no confusion.

Below we first give a basic sampling algorithm to compute
the Phh’s. It has the desired sublinear memory consump-
tion, but suffers from a large processing time. Then we
further improve its running time so that high-speed data
streams can be processed in real time.

3.1 Basic Sampling Algorithm
We will use the unweighted space-saving algorithm [32] as

a subroutine in our basic sampling algorithm to find heavy
hitters in each possible world. An important property of the
Space-Saving algorithm is that it will only overestimate the
frequency of an item by at most ǫm, but never underestimate
it. This property is important for our analysis.

The algorithm. Our general framework follows from the
seminar work of Alon et. al. [4]. We keep l = 2 ln(1/δ′)
groups of possible worlds, say, G1, G2, . . . , Gl, where δ′ is
a parameter concerning the possible error of the algorithm.
For each group Gi, we create k = 8

θ2τ
possible worlds, say

Wi1, Wi2, . . . , Wik. Each possible world will be a sample
randomly generated from the probabilistic data stream. We
will maintain all these possible worlds in parallel, that is,
when an x-tuple T arrives, for each possible world Wij , 1 ≤
i ≤ l, 1 ≤ j ≤ k, we sample one item from T and include
it to Wij independently. More precisely, if T contains only
one alternative t, then we add it to Wij with probability
p(t); if T contains multiple alternatives, then we randomly
choose one item from these alternatives according to their
probabilities and add it to Wij .

For each possible world sample Wij , we run the Space-
Saving algorithm to find all of its approximate heavy hitters.
For each item t, let Xt

ij = 1 if t is a heavy hitter in the pos-
sible world Wij in group Gi, as decided by the Space-Saving

algorithm, and Xt
ij = 0 otherwise. Let Y t

i = 1
k

Pk
j=1 Xt

ij ,
and

Y t = Median{Y t
1 , Y t

2 , . . . Y t
l }.

If Y t > τ , we assert that item t is a (φ, τ)-probabilistic
heavy hitter. If Y t < (1 − θ)τ , we assert that item t is
not a probabilistic heavy hitter. Conclusions in cases where
(1 − θ)τ ≤ Y t ≤ τ could be arbitrary.

Analysis. We will prove that our algorithm finds all ap-
proximate (φ, τ)-probabilistic heavy hitters with with high
probability. First we show that for any item t, our algorithm
mistakenly classifies it with probability at most δ′.

Lemma 5 For any item t, if Pr[mR
t > φ|R|] > τ , then

Y t ≥ (1 − θ)τ with probability at least 1 − δ′. If Pr[mR
t >

(φ − ǫ)|R|] < (1 − θ)τ , then Y t < τ with probability at least

1 − δ′.

Proof. Let µ = µt
ij = E[Xt

ij] for 1 ≤ i ≤ l, 1 ≤ j ≤ k.

We have the property that µ ≥ Pr[mR
t > φ|R|] if we use the

Space-Saving algorithm to find the heavy hitters for each
possible world Wij , since Space-Saving only overestimates
the frequency of a particular item.

Note that each Xt
ij is a Bernoulli variable with mean µ and

variance µ− µ2. So, for each random variable Y t
i , 1 ≤ i ≤ l,

we have

E[Y t
i] =

1

k

k
X

j=1

E[Xt
ij] = µ, and,

Var[Y t
i] =

1

k2
Var

"

k
X

j=1

Xt
ij

#

=
1

k
Var[Xt

ij] =
1

k
(µ − µ2).

(7)
Thus, by Chebyshev’s inequality, we have

Pr[|Y t
i − µ| > θµ] ≤

Var[Y t
i]

θ2µ2
<

1

kθ2µ
. (8)

We prove the two assertions in the lemma separately.
First, if Pr[mR

t > φ|R|] > τ , or µ > τ , plugging this fact
and k = 8

θ2τ
to inequality (8), we get

Pr[|Y t
i − µ| > θµ] ≤

1
8

θ2τ
θ2µ

≤
1

8
.

Let It
i be the indicator variable such that

It
i =



1, if |Y t
i − µ| > θµ;

0, if |Y t
i − µ| ≤ θµ.

Let It =
Pl

i=1 It
i , thus we have E[It] ≤ l

8
. If the final

value Y t deviates by more than θµ from µ, there must be
more than l

2
of the Y t

i ’s that deviate more than θµ from µ

since Y t is the median of all Y t
i s. According to the Chernoff

inequality, we have

Pr

»

It ≥
l

2

–

= Pr

»

It −
l

8
≥ 3 ·

l

8

–

≤ e−
32·l/8

2 < δ′.

Therefore with probability at least 1 − δ′, |Y t − µ| ≤ θµ.
Together with µ > τ , we have Y t ≥ (1−θ)τ with probability
at least 1 − δ′.

We prove the second assertion in the lemma in a similar
fashion. Suppose that Pr[mR

t > (φ− ǫ)|R|] < (1− θ)τ , that
is, µ < (1 − θ)τ , by Chebyshev’s inequality,

Pr[|Y t
i − µ| > θτ] ≤

Var[Y t
i]

θ2τ 2
≤

µ

kθ2τ 2
<

1

8
. (9)

Then we use the Chernoff inequality to prove that Pr[Y t <
τ] ≥ 1 − δ′, in the same way as above.

According to Lemma 5, we conclude that our algorithm
is correct with probability at least 1 − δ′ for any particular
item t. In order to guarantee that our algorithm is correct
for all items simultaneously with probability 1 − δ, we need
to set δ′ = δ/n using the union bound. Here the pruning
lemma (Lemma 3) comes in again to help lower the space
and time bounds.

Lemma 3 and the discussion that follows tell us that there
are at most 3

φτ
items who have a chance of being probabilis-

tic heavy hitters, and we can find all such candidates by
running a weighted version of Space-Saving to find all the
`

φτ
3

´

-expected heavy hitters. Note that, however, the actual
number of candidates we find might be a little more than
φτ
3

since the Space-Saving algorithm for Ehh will introduce

some errors. Nevertheless, if we use ǫ′ = φτ
12

in Space-Saving,

the number of candidates found will be bounded by 4
φτ

.
By this observation, we could run the weighted Space-

Saving to find all the candidate probabilistic heavy hitters
in parallel. At the end we only check those candidate items
t whether Y t is greater than τ (or smaller than (1 − θ)τ).
Those non-candidates are discarded directly. Consequently,
we only need to guarantee that our sampling algorithm is
correct on these at most 4

φτ
candidates. So if we choose

δ′ = φτ
4

δ, the overall error would be bounded by δ. We have

the following theorem. Notice that both time and space are
independent on n.

Theorem 2 The basic sampling algorithm finds all approxi-

mate (φ, τ)-probabilistic heavy hitters with probability at least

1− δ, using O(1
ǫθ2τ

log(1
δφτ

)) memory and O(1
θ2τ

log(1
δφτ

)+

log(1/ǫ)) processing time for each x-tuple.

Note that the extra term O(log(1/ǫ)) in the processing
time for each x-tuple comes from the weighted Space-Saving
algorithm.

3.2 Improved Sampling Algorithm
The basic sampling algorithm above requires considerable

time to process each tuple. For each incoming x-tuple T , we
have to repeat sampling for O(1

θ2τ
log(1

δφτ
)) times, one for

each possible world Wij maintained. This limits our capabil-
ity to process high-speed streaming data in real time when
θ is small. In this subsection, we give an improved sampling
algorithm that dramatically reduces the expected process-
ing time. The worst case memory consumption remains the
same, however in practice it also reduces significantly as ev-
ident by our experimental study, see Figure 3(b).

The improvement is based on the following two observa-
tions. First, if we reduce the sampling rate for all items in
the probabilistic data stream by the same factor, then the
sample possible world obtained is a “scaled-down” version
of the original possible world, and the original heavy hitters
are still very likely to be the heavy hitters in the scaled-
down world. Second, in order for the analysis of the basic
sampling algorithm to go through, all we need is to ensure
that in each group Gi, the k sample possible worlds Wij are
pairwise independent, such that the inequalities (8), (9) con-
tinue to hold; we don’t require those samplings to be totally
independent. Below we first give our improved algorithm,
then prove its correctness by formalizing these observations.

The improved sampling algorithm. Our general idea is
trying to reduce the sampling times for each x-tuple in each
group such that, for a particular group Gi, 1 ≤ i ≤ l, when
a new x-tuple T comes, only a small number of possible
worlds in Gi will get an item from T . We call a possible
world getting an item from T a lucky possible world. There
are several conditions we have to meet.

1. There should be only a small number (constant if pos-
sible) of lucky possible worlds in each group Gi.

2. We have to find all the lucky possible worlds quickly
(in constant time if possible), otherwise there would
be no improvement in running time compared with
the basic sampling algorithm.

3. We have to make sure that the samplings for the pos-
sible worlds in group Gi are pairwise independent so
that the inequalities (8), (9) continue to hold.

4. The modification will not affect the precision of the
basic sampling algorithm too much.

For each x-tuple T , our improved sampling algorithm con-
sists of two steps. In the first step, we choose zero, one, or
all k possible worlds from each group Gi as the lucky possi-
ble worlds. In the second step, for each lucky possible world
Wij , we sample an item t from T according to its proba-
bility p(t) and add it to Wij . The second step is the same

as before, so we only describe below how the first step is
performed.

For each group Gi, let Ii1, . . . , Iik be the indicator random
variables of the possible worlds being lucky, i.e., Iij = 1 if
Wij is a lucky possible world and Iij = 0 otherwise. Of
course we cannot afford to explicitly generate these Iij ’s, so
as to meet condition 2 above. Instead, we give a fast scheme
that finds all the j’s such that Iij = 1.

Scheme 1 Improved sampling scheme

• With probability 1/k2, set Iij = 1 for all 1 ≤ j ≤ k.

• With prob. (k − 1)/k2, set Iij = 0 for all 1 ≤ j ≤ k.

• Otherwise, select j∗ uniformly at random from {1, . . . , k}
and set Iij∗ = 1 and Iij = 0 for all j 6= j∗.

Analysis. We will prove that our scheme meets all the four
criteria above.

Lemma 6 The expected number of lucky worlds per group

is O(1), and it takes O(1) time to identify them.

Proof. Since

E[Iij] = 1 ·
1

k2
+

1

k
·

„

1 −
1

k2
−

k − 1

k2

«

=
1

k
,

the expected number of lucky worlds per group is E[
Pk

j=1 Iij] =
1.

Since we only care about those Iij ’s where Iij = 1, the
expected running time to find them is also O(1).

Lemma 7 For any fixed i, the random variables Iij (1 ≤
j ≤ k) generated this way are pairwise independent.

Proof. Following the definition of pairwise independence,
we prove that for all x, y ∈ {0, 1}, and j 6= j′, 1 ≤ j, j′ ≤ k,

Pr[Iij = x ∧ Iij′ = y] = Pr[Iij = x] Pr[Iij′ = y].

First, Pr[Iij = 1] = E[Iij] = 1/k and Pr[Iij = 0] =
1 − 1/k, for all j.

For the case x = y = 1, we know that Pr[Iij = 1 ∧ Iij′ =
1] = 1/k2 since both possible Wij and Wij′ are lucky only
when all the possible worlds in group Gi are lucky. Therefore
Pr[Iij = 1 ∧ Iij′ = 1] = Pr[Iij = 1]Pr[Iij′ = 1].

For the case x = y = 0, we have

Pr[Iij = 0 ∧ Iij′ = 0] =
k − 1

k2
+

„

1 −
1

k

«

k − 2

k

=
k2 − 2k + 1

k2

= Pr[Iij = 0]Pr[Iij′ = 0].

For the case x = 1, y = 0, we have

Pr[Iij = 1 ∧ Iij′ = 0] =

„

1 −
1

k

«

1

k

= Pr[Iij = 1]Pr[Iij′ = 0].

The case x = 0, y = 1 is symmetric to the case above.

It remains to show that the improved sampling algorithm
still finds all the Phh’s with high probability. We make
the following observation concerning the difference between

Algorithm 1: Finding Probabilistic Heavy Hitter in
Data Streams

l = O(ln(1/φτδ)); /* number of groups of possible1

worlds */

k = O(1
θ2τ

); /* number of possible worlds in each2

group */

let PHH the set of probabilistic heavy hitters found by3

the algorithm as the output;
let SSunwei denotes the unweighted version of the4

Space-Saving algorithm and SSwei the weighted version.
for i = 1, . . . , l do5

for j = 1, . . . , k do6

allocate an array of 1/ǫ cells for each possible7

world Wij for algorithm SSij
unwei

(φ, ǫ);

allocate an array of 1/ǫ cells for the (global) algorithm8

SSwei(
φτ
3

, ǫ);
for each x-tuple T do9

for all tuples (t, p(t)) in T do10

feed item t together with its confidence p(t) to11

SSwei(
φτ
3

, ǫ);

for i = 1, . . . , l do12

toss an unbiased coin whose value is uniformly13

distributed over the range {1, 2, . . . , k2} and let
r be the result.
if r = 1 then14

include all j (1 ≤ j ≤ k) to Si;15

else if 2 ≤ r ≤ k then16

let Si to be empty set;17

else if (k − 1) ∗ j + 2 ≤ r ≤ (k − 1) ∗ (j + 1) + 118

for some j ∈ {1, 2, . . . , k} then
include j to Si;19

for all j ∈ Si do20

randomly choose one tuple containing item t21

from T with probability p(t);
feed item t into SSij

unwei
(φ, ǫ);22

/* final checking step */

let C be the set of candidate probabilistic heavy hitter23

computed by algorithm SSwei(
φτ
3

; ǫ);
for i = 1, . . . , l do24

for j = 1, . . . , k do25

if t is a heavy hitter in the possible world Wij by26

SSij
unwei

(φ, ǫ) then
let xt

ij = 1;27

else28

let xt
ij = 0;29

let yt
i = 1

k

Pk
j=1 xt

ij ;30

for all t ∈ C do31

let yt = Median{yt
1, y

t
2, . . . y

t
l};32

if yt > τ then include t to PHH;33

the improved sampling algorithm and the basic sampling
algorithm. In the improved algorithm, each possible world
Wij can be seen as being sampled from a modified data
stream D′ in which each probability p(t) is decreased by
a factor of k, since Pr[Iij = 1] = 1/k. Now, we need to
show that this modification does not affect too much the
probability of an item t becoming a heavy hitter in Wij .

More precisely, we need to show that if t is a Phh in D,
then it still has a high probability to be a Phh in D′; and if
t is not a Phh in D, then with high probability, it is not a
Phh in D′, either.

Formally, let R′ be a random possible world generated

from the modified uncertain data stream D′, and let mR′

t be
the multiplicity of item t in R′, then we have the following
result.

Lemma 8 For any 0 < ζ < 1, with probability at least 1 −

8e−
ζ2

3
·φτ

4
·
E[|R|]

k , we have

1. If Pr[mR
t > φ|R|] > τ , then Pr[mR′

t > (1−4ζ)φ|R′|] >
τ .

2. If Pr[mR
t > (φ − ǫ)|R|] < (1 − θ)τ , then Pr[mR′

t >
(1 + 5ζ)(φ − ǫ)|R′|] < (1 − θ)τ .

Proof. By the pruning lemma (Lemma 3) and the dis-
cussion that follows, we only have to consider items with
E[mR

t]

E[|R|]
≥ φτ

4
. Let µ1 = E[|R|] and µ2 = E[mR

t]. Applying

the Chernoff inequality on both R and mR
t , we have

Pr [||R| − µ1| ≥ ζµ1] < 2e−ζ2µ1/3,

and

Pr[|mR
t − µ2| ≥ ζµ2] < 2e−ζ2µ2/3.

So, by the union bound, with probability at least 1−4e−ζ2µ1/3,

(1 − ζ)µ2

(1 + ζ)µ1
≤

mR
t

|R|
≤

(1 + ζ)µ2

(1 − ζ)µ1
. (10)

Similarly, let µ3 = E[|R′|] and µ4 = E[mR′

t] and apply

the Chernoff inequality on R′ and mR′

t , we obtain that with

probability at least 1 − 4e−ζ2µ3/3,

(1 − ζ)µ4

(1 + ζ)µ3
≤

mR′

t

|R′|
≤

(1 + ζ)µ4

(1 − ζ)µ3
. (11)

Since µ2/µ1 = µ4/µ3 and min{µi : i = 1, 2, 3, 4} ≥ φτ
4

·
(µ1/k), by (10) and (11), we conclude that with probability

at least 1 − 8e−
ζ2

3
· φτ

4
·

µ1
k ,

(1 − 4ζ)
mR

t

|R|
≤

mR′

t

|R′|
≤ (1 + 5ζ)

mR
t

|R|
,

which implies the two statements in the lemma.

Note that the success probability in Lemma 8 approaches
1 exponentially fast as E[|R|], the expected size of the data
stream, increases. Moreover, our analysis in the proof is
very loose, and the actual error probability, as we verified
empirically in Section 5, is in fact much smaller than the
bound given in the lemma.

By Lemma 8, if we can decide whether Pr[mR′

t > (1 −

4ζ)φ|R′|] > τ or Pr[mR′

t > (1 + 5ζ)(φ − ǫ)|R′|] < (1 − θ)τ
for all items t, we can guarantee that the algorithm does
not have false positive. We still need to argue that all items
returned are indeed heavy hitters. The key point here is that
by setting ζ small enough, say ζ = ǫ/10, there is a gap of
ǫ/10 between (1+5ζ)(φ− ǫ) = (φ− 2

5
ǫ) and (φ− 1

2
ǫ), which

means that the two conditions in lemma 8 are disjoint.

More precisely, by setting ζ = ǫ/10, it suffices to decide
whether

Pr[mR′

t > (φ −
2

5
ǫ)|R′|] > τ or, (12)

Pr[mR′

t > (φ −
1

2
ǫ)|R′|] < (1 − θ)τ. (13)

If an item satisfies (13), then it must not comply with (12),
hence cannot be a Phh; if an item satisfies (12), then it
must not comply with (13), hence cannot be a non-Phh.
Also, since our algorithm is allowed to either return or not
return those items which are neither Phh nor non-Phh, the
correctness of the algorithm is guaranteed. Furthermore, by
properly setting the parameters in the unweighted Space-
Saving algorithm, i.e., setting φ′ = φ − 2

5
ǫ and ǫ′ = 1

10
ǫ, we

can correctly determine whether (12) or (13) holds for each
item.

The overall improved sampling algorithm is detailed in
Algorithm 1. The following theorem summarizes its space
and processing time bounds.

Theorem 3 The improved sampling algorithm correctly finds

all the approximate (φ, τ)-probabilistic heavy hitters in a data

stream with high probability, using O(1
ǫ

1
θ2τ

log(1
δφτ

)) mem-

ory and O(log(1
δφτ

) + log(1/ǫ)) expected processing time for

each x-tuple.

3.3 Generalized Sampling Algorithm
Our empirical study (Section 5.2) shows that, as expected,

the improved sampling algorithm is order-of-magnitude faster
than the basic sampling scheme. However, on the other
hand, its accuracy is also lower than that of the basic scheme,
especially on small data sets, due to the reduced sampling
rate in each possible world. In the following, we present a
generalized scheme to trade processing time for better ac-
curacy, so that the accuracy of the improved scheme ap-
proaches that of the basic scheme, while still being highly
efficient.

Our tradeoff scheme is a generalization of the improved
sampling scheme presented in Section 3.2. Instead of choos-
ing 1 lucky possible worlds (in expectation) in each group
for each incoming x-tuple, we pick roughly s (more precisely,
s + o(s)) lucky possible worlds at a time. Note that when
s = 1, it is equivalent to the improved sampling scheme
shown in section 3.2, and when s = k, it is the same as the
basic sampling scheme shown in Section 3.1. The flexibility
of choosing s between 1 and k provides us with the ability to
control the tradeoff between accuracy and processing time.

More precisely, for each group, we repeatedly perform
Scheme 1 for s times, and declare a possible world to be
lucky if it is lucky in at least one of the s trials of Scheme 1.

We briefly show that this generalized sampling scheme
also meets the four criteria specified before, that is, (1) the
expected number of lucky possible worlds is O(s); (2) the
O(s) lucky possible worlds could be quickly found, in time
O(s); and (3) the whole sampling scheme is pairwise inde-
pendent; (4) the modification will not affect the precision
of the algorithm too much. The proofs are similar as those
shown in section 3.2.

As before, let Iij = 1 if Wij is lucky, and 0 otherwise. Let
Iℓ

ij = 1 if Wij is lucky in the ℓ-th trial of Scheme 1. We have

Iij = max1≤ℓ≤s Iℓ
ij .

First, since Pr[Iℓ
ij = 1] = 1/k,

Pr[Iij = 1] = 1 −

„

1 −
1

k

«s

=
s

k
+ o

„

1

k

«

,

thus the expected number of lucky possible worlds per group
is E[

Pk
j=1 Iij] = O(s). The second criterion is met since we

only need to generate a random number s times for each
x-tuple. Third, to show that Iij (1 ≤ j ≤ k) are pairwise
independent, we observe that for any j 6= j′, all the 2s ran-
dom variables, Iℓ

ij , I
ℓ
ij′ , ℓ = 1, . . . , s, are mutually indepen-

dent. Finally, we could use a similar argument as lemma 8 to
show that the modification has little impact on the precision
of the whole algorithm.

4. TOP-K QUERIES
We can easily adapt our algorithms to answer top-k queries,

returning the k items with the largest confidence of being
heavy hitters. The confidence of an item t is simply Pr[mR

t >
φ|R|] and we denote this confidence as ρ(t). Let tk be the
item with the k-th largest ρ(t). Ideally, we would want to
return and only return those items t with ρ(t) ≥ ρ(tk). One
can achieve this by our exact algorithms in Section 2. As
exact computation is quite expensive, if approximation is
allowed, we can adapt our sampling algorithms to answer
top-k queries efficiently. Since our algorithm provides an
approximate confidence Y t for ρ(t), we can simply output
the k items with the top k largest Y t’s. We show that this
solution guarantees:

• All items t with ρ(t) > (1 + θ)ρ(tk) will be returned.

• For an item t, consider the uncertain data set D′ after
adding ǫm x-tuples {(t, 1)} into D. If in D′, we still

have Pr[mR′

t > φ|R′|] < (1 − θ)ρ(tk), where R′ is a
random possible world instantiated from D′, then t
will not be returned.

The above two approximation guarantees follow directly
from our approximation algorithms and the definition of ap-
proximate probabilistic heavy hitters.

5. EXPERIMENTS
We have implemented the proposed algorithms, including

the Space-Saving algorithm, and studied their efficiency and
effectiveness using both real and synthetic data sets. The
experimental evaluation is designed to investigate a num-
ber of key issues: the efficiency of the exact algorithms, the
approximation quality and scalability of both the basic and
improved, one-pass sampling algorithms, the tradeoff be-
tween efficiency and effectiveness when comparing the ba-
sic sampling algorithm and the improved algorithm (and its
generalization), and finally the impact of various character-
istics in the uncertain data such as the skewness of popu-
larity distribution, the number of unique items, the number
of x-tuples and the correlation between item popularity and
probability. All algorithms are implemented using C++ un-
der Linux. The experiments are performed in a Linux box
with a P4 2.8GHz CPU and 2 GB of memory.

Data sets. We used two real data sets and a number of syn-
thetic data sets. The first real data set is obtained from the
MystiQ project (www.cs.washington.edu/homes/suciu/project-
mystiq.html). It contains probabilistic movie records reflect-
ing the matching probability as a result of data integration

data n freq distr prob distr & correlation
movie 112 not skew not skew, correlated
wcday46 2931 skew skew, not correlated
zipfu1.60 1840 skew uniform, not correlated

Table 1: The data sets (first 100, 000 xtuples).

from multiple sources. This data set, referred to as movie,
does not have a skewed popularity distribution. It has a to-
tal of approximately 100, 000 x-tuples, most of which have
only one alternative, but some have a few. The second real
data set is obtained from the 1998 World Cup web server
request traces, available at the Internet Traffic Archive. In
particular we used the trace from day 46 (referred to as wc-

day46). Each record in the trace represents an entry in the
access log of the world cup web server. Specifically, it con-
tains a time stamp, an object id (the particular web page
being requested), a status code, etc. The status code indi-
cates the response from the server to the client chosen from
38 unique values. We first computed the distribution of the
status code of all records, and converts the status field to
a probability according to this distribution. We then group
records whose time stamps are close into an x-tuple. This
data set has a considerable skewed popularity distribution.
Since most of requests are served successfully and the sta-
tus code is 200, it also has a very skewed distribution on the
items’ probability. The wcday46 data set contains roughly
half a million x-tuples.

We also generated synthetic data sets with various data
characteristics. Specifically, we generated data sets following
Zipfian distributions with the adjustable skewness parame-
ter a ranging from 1.1 (least skewed) to 1.9 (most skewed).
The probability of items follows various distributions and it
was generated to be strongly, or totally not, or negatively
correlated with the item’s popularity. Strongly correlated
probability means that if the item is highly popular, then
its probability will be higher as well. The item popularity
distribution, probability distribution and the parameter a
are combined to name a synthetic data set, e.g., zipfu1.60.
As a final remark, the number of unique items, n, plays an
important role for the cost of various algorithms and they
are summarized in Table 1 for the first 100, 000 x-tuples.

5.1 Exact Algorithms
The exact algorithms perform as indicated in our analysis,

either with quadratic, or cubic time complexity depending
on x-tuples have single item or multiple items. To produce
data sets with single-item x-tuples, for each of the data sets
described above, we simply retain only the first item in each
x-tuple. The running time is shown in Figure 2(a) and 2(b),
respectively. Clearly, the exact algorithms are costly and do
not scale when data sets increase, although they are able
to return exact results. The wcday46 data set is the most
expensive due to high number of unique items. We also
observe that the pruning lemma indeed dramatically reduces
the cost. Figure 2(d) further illustrates the effectiveness of
the pruning lemma, where for skewed data sets, more than
90% of the items are pruned. Obviously, the higher φ and
τ are, the more items will be pruned. We also reported in
Figure 2(c) the memory usage of the two exact algorithms,
clearly demonstrating either a linear or quadratic trend.

5.2 Approximation algorithms: streaming data
Motivated by the high costs of the exact algorithms, as

well as the need to handle streaming data, we have designed

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

m: num of xtuples

ru
nn

in
g

tim
e

in
 s

ec
on

ds

movie
wcday46
zipfu1.60

with pruning no pruning

(a) single item.

0 500 1000 1500 2000
0

1

2

3

4

5

6
x 10

4

m: num of xtuples

ru
nn

in
g

tim
e

in
 s

ec
on

ds
 x

 1
04

movie
wcday46
zipfu1.60

with pruning no pruning

(b) multiple items.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

m: num of xtuples

m
em

or
y

us
ag

e
in

 M
B

single item per xtuple
multiple items per xtuple

(c) memory usage.

0

0.01

0.02

0.03

00.20.40.60.81
0

0.2

0.4

0.6

0.8

1

φτ

fr
ac

tio
n

pr
un

ed

movie
zipfu1.60
wcday46

(d) pruning power.

Figure 2: Exact algorithms: running time and memory usage analysis, φ = 0.01, τ = 0.5.

 improved basic

movie 3.03
� � � � �

 5.5*10-3

wcday46 9.83
� � � � �

 2.7
� � � � �

zipfu1.60 4.05
� � � � �

 9.8
� � � � �

time in seconds

(a) update cost per x-tuple.

10000 30000 50000 70000 90000
0

20

40

60

80

100

120

m: num of xtuples

m
em

eo
ry

 u
sa

ge
 in

 M
B

movie
wcday46
zipfu1.60

improved scheme basic scheme

(b) memory usage.

10000 30000 50000 70000 90000
0

0.2

0.4

0.6

0.8

1

m: num of xtuples

re
ca

ll

movie
wcday46
zipfu1.60

improved scheme basic scheme

(c) recall.

10000 30000 50000 70000 90000
0

0.2

0.4

0.6

0.8

1

m: num of xtuples

pr
ec

is
io

n

movie
wcday46
zipfu1.60

improved scheme basic scheme

(d) precision.

Figure 3: Approximate, streaming algorithms: φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05, ǫ = 0.001.

one-pass approximation algorithms. Experimental results
show that the basic sampling scheme has excellent accu-
racy. Its processing time is much lower than the exact algo-
rithm, but is still too costly to operate under a high-speed
streaming environment. The improved sampling scheme has
excellent low cost, and very good approximation quality for
relatively large m. Finally, our generalized algorithm gives a
simple, adjustable tradeoff between the basic and improved
scheme. In the following, we present the detailed experi-
mental results. Unless specified otherwise, the default val-
ues for various parameters are set as follows: m = 100, 000,
φ = 0.01, τ = 0.8, δ = 0.05, θ = 0.05 and ǫ = 0.001. To
measure the approximation quality, we adopt the common
recall (returned number of true Phh/ total number of true
Phh) and precision (returned number of true Phh/total re-
turned number of Phh) metrics.

Basic scheme vs. improved scheme. We first compare
the processing time of the basic scheme and the improved
scheme. Note that the update cost per x-tuple does not
depend on the size of the data set, so we report the aver-
age processing time for each x-tuple on three data sets in
Figure 3(a). It shows that the improved scheme is 2 orders
of magnitude faster, which makes it able to handle close
to 10, 000 x-tuples per second. Also, the number of unique
items in a data set does impact the update cost a bit due
to the difference in updating an existing item or inserting a
new item (possibly with a replacement) in the Space-Saving
algorithm. The memory usage (Figure 3(b)) for the ba-
sic scheme initially increases with m and eventually levels
off when all the 1/ǫ cells in each sample possible world are
filled up. Similar argument goes for the improved scheme.
However, the worlds are filled up much more slower in this
case. The savings in both the update cost and memory us-
age of the improved scheme could be attributed to the fact
that on expectation only one world in each group is updated
for every x-tuple, whereas the basic scheme has to update
all worlds. As a result, the improved scheme only consumes
less than few megabytes of memory. Finally, basic scheme
exhibits excellent approximation quality in terms of both

recall (Figure 3(c)) and precision (Figure 3(d)) even with
small m, whereas the improved scheme does require m to
be sufficiently large to be accurate. Figure 3(c) and 3(d)
indicate that after m = 50, 000 it becomes very close to the
basic scheme.

Next we investigate the effects of various parameters on
the algorithms’ efficiency and approximation quality, start-
ing with δ and θ. Recall that δ bounds the overall failure
probability of the approximation and θ bounds the error
of approximation. For conciseness, only results from the
zipfu1.60 data set is reported, reason being that it repre-
sents an “average” of the three data sets on various key
characteristics (see Table 1). It is clear from the theoretical
analysis that the smaller δ and θ get, the more expensive
the algorithms become. This has been reflected from Figure
4(a) and 4(b). In all cases, the improved scheme is very in-
sensitive to such changes and much cheaper than the basic
scheme. In terms of recall (Figure 4(c)), for a relative large
m (100, 000 in this case) both schemes find all true Phh

insensitively for reasonable values of δ and θ. Finally, the
improved scheme in general performs better with smaller θ
and δ in terms of precision and it is more sensitive to the
change of θ, as evident in Figure 4(d).

Continuing with φ and τ , the results are reported in Fig-
ure 5. As expected, smaller φ and τ values lead to increase
in update cost and memory usage, as shown in Figure 5(a)
and 5(b), and the improved scheme is very insensitive to
such changes. Finally, Figure 5(c) and 5(d) for extremely
large value of τ the recall of the improved scheme drops;
while for combination of extremely large φ and small τ val-
ues the precision of the improved scheme drops. For both
cases, the basic scheme retains high approximation quality.

Finally, we investigate how the correlation between the
item’s popularity and its probability impact our approxi-
mation algorithms. To manifest such effects, we generated
data sets that are strongly, or not-correlated, or negatively
correlated between the two, using the zipfu1.60 data set as
the basis (note that for strongly and negatively correlated
data sets, the probability distribution will no longer be uni-
form). For brevity we only report the results on varying θ

0.02
0.04

0.06
0.08

0.1

0.02
0.04

0.06
0.08

0.1
0

0.01

0.02

0.03

0.04

δθ

up
da

te
 c

os
t p

er
 x

tu
pe

 (
se

cs
)

basic
improved

<0.000047

(a) update cost.

0.02

0.04

0.06

0.08

0.1

0.02
0.04

0.06
0.08

0.1
0

100

200

300

δ
θ

m
em

or
y

us
ag

e
in

 M
B

basic
improved

(b) memory usage.

0.02
0.04

0.06
0.08

0.1

0.020.040.060.080.1
0.8

0.85

0.9

0.95

1

re
ca

ll

θ δ

basic, improved

(c) recall.

0

0.1

0.03

0.07

0.02
0.04

0.06
0.08

0.1
0.8

0.85

0.9

0.95

1

δθ

pr
ec

is
io

n

basic
improved

(d) precision.

Figure 4: Varying δ and θ: zipfu1.60, m = 100000, φ = 0.01, τ = 0.8, ǫ = 0.001.

0.005
0.01

0.015
0.02

0.30.50.70.91
0

0.01

0.02

0.03

0.04

φτ

up
da

te
 c

os
t p

er
 x

tu
pl

e
(s

ec
s)

basic
improved

<0.000047

(a) update cost.

0.005

0.01

0.015

0.02

0.2
0.4

0.6
0.8

1
0

50

100

150

200

250

300

φτ

m
em

or
y

us
ag

e
in

 M
B basic

improved

(b) memory usage.

0.005

0.01

0.015

0.02

0.20.40.60.81
0.8

0.85

0.9

0.95

1

φτ

re
ca

ll

basic
improved

(c) recall.

0.005

0.01

0.015

0.02

0.2
0.4

0.6
0.8

1
0.5

0.6

0.7

0.8

0.9

1

φτ

pr
ec

is
io

n

basic
improved

(d) precision.

Figure 5: Varying φ and τ : zipfu1.60, m = 100000, δ = 0.05, θ = 0.05, ǫ = 0.001.

in Figure 6. Interestingly, we learn that the degree of cor-
relation has opposing effects on update cost and memory
usage. Figure 6(a) shows that positive correlation increases
the update cost while negative correlation reduces it. This
is due to the fact that the higher probabilities for more fre-
quent items lead to higher effective sample rates in the pos-
itive correlation case, whereas in the negatively correlation
case, we have the opposite. In terms of memory usage, Fig-
ure 6(b) shows the reverse effect. This is explained by the
fact that lower probabilities for infrequent items in the pos-
itive correlation case effectively reduce the unique number
of items sampled. Finally, for the improved scheme Figure
6(c) shows that positive correlation increases the approx-
imation quality on recall and negative correlation tampers
it. The impact on precision is not obvious as reflected in Fig-
ure 6(d). This is due to the fact that negative correlation
increases the chances that the approximate algorithm may
miss some boundary Phh (hence reduce the recall). How-
ever, it will increase the chance that it misses some falsely
identified boundary non-Phh as well (hence the precision is
not impacted). It should be highlighted that a high degree
of negative correlation is generated to demonstrate its effect
and the basic scheme retains high approximation quality.

Generalized scheme: tradeoff between cost and ac-
curacy. The above experimental results show that the basic
scheme and the improved scheme are actually the two ex-
tremes in the tradeoff between processing time and accuracy.
Especially for small m, the basic scheme has better accuracy
but also high cost, while the improved scheme has low pro-
cessing cost but the accuracy is not satisfactory. Our gen-
eralized scheme thus provides a smooth transition between
the two extremes, and we would like to see how much pro-
cessing time we exactly need to sacrifice in order to boost
the accuracy.

We performed experiments with different s, which con-
trols the number of the possible worlds updated for each
x-tuple (recall that in the generalized scheme, we update
s + o(s) out of k worlds in each group Gi). Figure 7 shows
the performance of the generalized algorithm as a function

of s/k, namely the fraction of possible worlds updated on
each x-tuple. This set of experiments gives very encourag-
ing results: both the recall and precision of the generalized
algorithm approach 1 very quickly as s increases, while the
update cost and memory usage only increase linearly in s.
For s/k as small as 0.05, its accuracy is already very close
to perfect, keeping in mind that s/k = 0.05 corresponds to
a 20-fold speedup from the basic scheme.

Further issues. We can also easily adapt our algorithms
for top-k query processing. As the analysis in Section 4
points out, the cost stays the same and in practice the ap-
proximation quality is good as well. Another factor in the
cost of approximation algorithms is the number of xtuples
having multiple items and how many items it may have.
Note that they do not affect the approximation quality and
only has a small impact to the cost (assuming that the num-
ber of items an xtuple may take is a constant). This study is
omitted for brevity. Our experimental study suggests that
for typical values of φ and τ , setting δ and θ with values
ranging between [0.05, 0.1] are good enough. The value of ǫ
bounds the approximation error of item frequency at each
world and a value in [0.001, 0.05] is sufficient for typical φ
values. Lastly, as Figure 7 has revealed, the generalized
scheme is preferred over the basic and improved schemes
with a small s (≤ 0.1k, k is fixed given θ and τ).

6. RELATED WORK
Many efforts have been devoted to modeling and process-

ing uncertain data and a complete survey of this area is be-
yond the scope of this paper. Nevertheless, TRIO [2, 7, 36],
MayBMS [5, 6] and Probabilistic Databases [13] are promis-
ing systems that are currently under developing. General
query processing techniques have been extensively studied
under the possible worlds semantics [9, 13, 19, 37], and im-
portant query types with specific query semantics are ex-
plored in more depths, such as top-k queries [34, 39] and
skyline queries [33]. It is interesting to observe that many
problems in traditional deterministic data management be-
come much more challenging and require special treatment

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−5

10
−4

10
−3

10
−2

10
−1

θ

up
da

te
 c

os
t p

er
 x

tu
pl

e
(s

ec
s)

+cor
no−cor
−cor

improved basic

(a) update cost.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

0

10
1

10
2

10
3

θ

m
em

or
y

us
ag

e
in

 M
B

+cor
no−cor
−cor

improved basic

(b) memory usage.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

θ

re
ca

ll

+cor
no−cor
−cor

improved basic

(c) recall.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

θ

pr
ec

is
io

n

+cor
no−cor
−cor

improved basic

(d) precision.

Figure 6: Popularity-probability correlation, varying θ: m = 100000, δ = 0.05, φ = 0.01, τ = 0.8, ǫ = 0.001.

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5
x 10

−3

s/k: fraction of worlds updated

ru
nn

in
g

tim
e

(s
ec

sx
10

−
3)

m=5000
m=10000

(a) update cost.

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7

8

s/k: fraction of worlds updated

m
em

or
y

us
ag

e
in

 M
B

m=5000
m=10000

(b) memory usage.

0 0.02 0.04 0.06 0.08 0.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s/k: fraction of worlds updated

re
ca

ll

m=5000
m=10000

(c) recall.

0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

s/k: fraction of worlds updated

pr
ec

is
io

n

m=5000
m=10000

(d) precision.

Figure 7: Generalized scheme: tradeoff in cost/accuracy, varying s, δ = 0.05, θ = 0.05, φ = 0.01, τ = 0.8, ǫ = 0.001.

under the uncertain data model. Examples include our work
on heavy hitters, indexing techniques [38, 40, 29], view man-
agement [35], and many more.

The most relevant works to this paper are [10, 24], where
the authors study the problem of estimating various sta-
tistical aggregates on probabilistic streams, and in particu-
lar, Ehh has been discussed in [10] on probabilistic streams.
Our work formalizes the concept of probabilistic heavy hit-
ters with confidence, rather than relying on the expectation
over all possible worlds, and proposes efficient algorithms in
the more general x-relation model for both the offline and
streaming case, hence is fundamentally different from [10].

Another set of related work is the study of heavy hit-
ters in deterministic data management. Lossy counting [31]
and majority counting [27], together with [12, 25], for data
streams are among the first in the literature, followed by the
improvement in [32]. The solutions to our problem in the
streaming case could be viewed as non-trivial extensions to
these techniques under the new model. Many other works
exist for deterministic heavy hitters with different twists,
e.g., heavy hitters in multidimensional data [11], and con-
sidering the distributed environment [30], etc. The idea of
using sampling to obtain approximate query results could
be traced back to [20].

Finally, items from an x-tuple in the x-relation model
could be viewed as a simplified representation of correlations
in uncertain data, where the correlations only include mu-
tual exclusion. More advanced models must be used for com-
plex correlations. Recent works based on graphical proba-
bilistic models and Bayesian networks have shown promising
results in both offline [37] and streaming data [26].

7. REPEATABILITY ASSESSMENT RESULT
Most of experimental results (Figures 2, 3a, 3b, 4a, 4b,

5, 6 7) have been verified by the experiment repeatability
committee.

8. CONCLUSION
This is the first work with a comprehensive study of find-

ing frequent items in probabilistic data. We formalize the
notion of probabilistic heavy hitters following the commonly
adopted possible world query semantics in uncertain databases.
Efficient algorithms with theoretical guarantees have been
presented for both offline and streaming data, under the
widely adopted x-relation model. Future work includes han-
dling distributed data, and more interestingly, supporting
other uncertain data models [36], for example graphical prob-
abilistic models [37]. Our study also opens the door for ex-
ploring frequent item sets and association rule mining in the
context of uncertain data mining [1].

9. ACKNOWLEDGMENT
We thank the anonymous reviewers for the insightful com-

ments.

10. REFERENCES
[1] C. Aggarwal. On density based transforms for

uncertain data mining. In ICDE, 2007.

[2] P. Agrawal, O. Benjelloun, A. Das Sarma,
C. Hayworth, S. Nabar, T. Sugihara, and J. Widom.
Trio: A system for data, uncertainty, and lineage. In
VLDB, 2006.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, 1994.

[4] N. Alon, Y. Matias, and M. Szegedy. The Space
Complexity of Approximating the Frequency
Moments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

[5] L. Antova, C. Koch, and D. Olteanu. 10106

worlds and
beyond: Efficient representation and processing of
incomplete information. In ICDE, 2007.

[6] L. Antova, C. Koch, and D. Olteanu. From complete
to incomplete information and back. In SIGMOD,
2007.

[7] O. Benjelloun, A. D. Sarma, A. Halevy, and
J. Widom. ULDBs: databases with uncertainty and
lineage. In VLDB, 2006.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In SIGMOD, 2003.

[9] R. Cheng, D. Kalashnikov, and S. Prabhakar.
Evaluating probabilistic queries over imprecise data.
In SIGMOD, 2003.

[10] G. Cormode and M. Garofalakis. Sketching
probabilistic data streams. In SIGMOD, 2007.

[11] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Diamond in the rough: finding
hierarchical heavy hitters in multi-dimensional data.
In SIGMOD, 2004.

[12] G. Cormode and S. Muthukrishnan. What’s hot and
what’s not: tracking most frequent items dynamically.
In PODS, 2003.

[13] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[14] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB Journal,
16(4):523–544, 2007.

[15] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Frequency estimation of internet packet streams with
limited space. In ESA, 2002.

[16] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In VLDB, 2004.

[17] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In SIGCOMM, 2002.

[18] M. Fang, N. Shivakumar, H. Garcia-Molina,
R. Motwani, and J. D. Ullman. Computing iceberg
queries efficiently. In VLDB, 1998.

[19] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer:
efficient management of inconsistent databases. In
SIGMOD, 2005.

[20] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In SIGMOD, 1998.

[21] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: the teenage year. In VLDB, 2006.

[22] J. Han, J. Pei, G. Dong, and K. Wang. Efficient
computation of iceberg cubes with complex measures.
In SIGMOD, 2001.

[23] M. A. Hernandez and S. J. Stolfo. Real-world data is
dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1):9–37,
1998.

[24] T. S. Jayram, A. McGregor, S. Muthukrishnan, and
E. Vee. Estimating statistical aggregates on
probabilistic data streams. In PODS, 2007.

[25] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou.
Dynamically maintaining frequent items over a data
stream. In CIKM, 2003.

[26] B. Kanagal and A. Deshpande. Online filtering,
smoothing and probabilistic modeling of streaming
data. In ICDE, 2008.

[27] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A
simple algorithm for finding frequent elements in
streams and bags. ACM Trans. Database Syst., 28(1),
2003.

[28] L. K. Lee and H. F. Ting. A simpler and more efficient
deterministic scheme for finding frequent items over
sliding windows. In PODS, 2006.

[29] V. Ljosa and A. Singh. APLA: Indexing arbitrary
probability distributions. In ICDE, 2007.

[30] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and
C. Olston. Finding (recently) frequent items in
distributed data streams. In ICDE, 2005.

[31] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, 2002.

[32] A. Metwally, D. Agrawal, and A. E. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM Trans.

Database Syst., 31(3):1095–1133, 2006.

[33] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In VLDB, 2007.

[34] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probalistic databases. In ICDE, 2007.

[35] C. Re and D. Suciu. Materialized views in
probabilistic databases for information exchange and
query optimization. In VLDB, 2007.

[36] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[37] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE,
2007.

[38] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and
S. Hambrusch. Indexing uncertain categorical data. In
ICDE, 2007.

[39] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k
query processing in uncertain databases. In ICDE,
2007.

[40] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In
VLDB, 2005.

