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ABSTRACT
Nearest neighbor (NN) search in high dimensional space is an im-
portant problem in many applications. Ideally, a practical solu-
tion (i) should be implementable in a relational database, and (ii)
its query cost should growsub-linearlywith the dataset size, re-
gardless of the data and query distributions. Despite the bulk of
NN literature, no solution fulfills both requirements, exceptlocal-
ity sensitive hashing(LSH). The existing LSH implementations are
either rigorous or adhoc.Rigorous-LSHensures good quality of
query results, but requires expensive space and query cost. Al-
thoughadhoc-LSHis more efficient, it abandons quality control,
i.e., the neighbor it outputs can bearbitrarily bad. As a result,
currently no method is able to ensure both quality and efficiency
simultaneously in practice.

Motivated by this, we propose a new access method called
the locality sensitive B-tree(LSB-tree) that enables fast high-
dimensional NN search with excellent quality. The combination
of several LSB-trees leads to a structure called theLSB-forestthat
ensures the same result quality asrigorous-LSH, but reduces its
space and query cost dramatically. The LSB-forest also outper-
formsadhoc-LSH, even though the latter has no quality guarantee.
Besides its appealing theoretical properties, the LSB-tree itself also
serves as an effective index that consumes linear space, and sup-
ports efficient updates. Our extensive experiments confirm that the
LSB-tree is faster than (i) the state of the art of exact NN search
by two orders of magnitude, and (ii) the best (linear-space) method
of approximate retrieval byan order of magnitude, and at the same
time, returns neighbors with much better quality.
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1. INTRODUCTION
Nearest neighbor(NN) search is a classic problem with tremen-

dous impacts on artificial intelligence, pattern recognition, infor-
mation retrieval, and so on. LetD be a set of points ind-
dimensional space. Given a query pointq, its NN is the point
o∗ ∈ D closest toq. Formally, there is no other pointo ∈ D
satisfying‖o, q‖ < ‖o∗, q‖, where‖, ‖ denotes the distance of two
points.

In this paper, we considerhigh-dimensionalNN search. Some
studies argue [9] that high-dimensional NN queries may not be
meaningful. On the other hand, there is also evidence [6] that
such an argument is based on restrictive assumptions. Intuitively, a
meaningful query is one where the query pointq is much closer to
its NN than to most data points. This is true in many applications
involving high-dimensional data, as supported by a large body of
recent works [1, 3, 14, 15, 16, 18, 21, 22, 23, 25, 26, 31, 33, 34].

Sequential scantrivially solves a NN query by examining the
entire datasetD, but its cost grows linearly with the cardinality of
D. Ideally, a practical solution should satisfy two requirements: (i)
it can be implemented in a relational database, and (ii) its query
cost should increasesub-linearlywith the cardinality forall data
and query distributions. Despite the bulk of NN literature (see Sec-
tion 7), with a single exception to be explained shortly, all the exist-
ing solutions violate at least one of the above requirements. Specif-
ically, the majority of them (e.g., those based on new indexes [2,
22, 23, 25, 32]) demand non-relational features, and thus cannot
be incorporated in a commercial system. There also exist relational
solutions (such asiDistance[27] andMedRank[16]), which are ex-
perimentally shown to perform well for some datasets and queries.
The drawback of these solutions is that they may incur expensive
query cost on other datasets.

Locality sensitive hashing(LSH) is the only known solution that
fulfills both requirements (i) and (ii). It supportsc-approximate NN
search. Formally, a pointo is a c-approximate NN ofq if its dis-
tance toq is at mostc times the distance fromq to its exact NN
o∗, namely,‖o, q‖ ≤ c‖o∗, q‖, wherec ≥ 1 is theapproximation
ratio. It is widely recognized that approximate NNs already fulfill
the needs of many applications [1, 2, 3, 15, 18, 21, 23, 25, 26, 30,
31, 33, 34]. LSH is originally proposed as a theoretical method
[26] with attractive asymptotical space and query performance. As
elaborated in Section 3, its practical implementation can be either
rigorous or adhoc. Specifically,rigorous-LSHensures good qual-



ity of query results, but requires expensive space and query cost.
Although adhoc-LSHis more efficient, it abandons quality con-
trol, i.e., the neighbor it outputs can bearbitrarily bad. In other
words, no LSH implementation is able to ensure both quality and
efficiency simultaneously, which is a serious problem severely lim-
iting the applicability of LSH.

Motivated by this, we propose an access method calledlocality
sensitive B-tree(LSB-tree) that enables fast high-dimensional NN
search with excellent quality. The combination of several LSB-
trees leads to a structure called theLSB-forestthat combines the
advantages of bothrigorous-andadhoc-LSH, without sharing their
shortcomings. Specifically, the LSB-forest has the following fea-
tures. First, its space consumption is the same asadhoc-LSH, and
significantly lower thanrigorous-LSH, typically by a factor over an
order of magnitude. Second, it retains the approximation guaran-
tee ofrigorous-LSH(recall thatadhoc-LSHhas no such guarantee).
Third, its query cost is substantially lower thanadhoc-LSH, and as
an immediate corollary, sub-linear to the dataset size. Finally, the
LSB-forest adopts purely relational technology, and hence, can be
easily incorporated in a commercial system.

All LSH implementations require duplicating the database mul-
tiple times, and therefore, entail large space consumption and up-
date overhead. Many applications prefer an index that consumes
only linear space, and supports insertions/deletions efficiently. The
LSB-tree itself meets all these requirements, by storing every data
point once in a conventional B-tree. Based on real datasets, we
experimentally compare the LSB-tree to the best existing (linear-
space) methodsiDistance [27] and MedRank[16] for exact and
approximate NN search, respectively. Our results reveal that the
LSB-tree outperformsiDistanceby two orders of magnitude, well
confirming the advantage of approximate retrieval. Compared to
MedRank, our technique is consistently superior in both query effi-
ciency and result quality. Specifically, the LSB-tree is faster byan
order of magnitude, and at the same time, returns neighbors with
much better quality.

The rest of the paper is organized as follows. Section 2 presents
the problem settings and our objectives. Section 3 points out the de-
fects of the existing LSH-based techniques. Section 4 explains the
construction and query algorithms of the LSB-tree, and Section 5
establishes its performance guarantees. Section 6 extends the LSB-
tree to provide additional tradeoffs between space/query cost and
the quality of query results. Section 7 reviews the previous work
on nearest neighbor search. Section 8 contains an extensive exper-
imental evaluation. Finally, Section 9 concludes the paper with a
summary of our findings.

2. PROBLEM SETTINGS
Without loss of generality, we assume that each dimension has

a range[0, t], wheret is an integer. Following the LSH literature
[15, 21, 26], in analyzing the quality of query results, we assume
that all coordinates are integers, so that we can put a lower bound
of 1 on the distance between two different points. In fact, this is
not a harsh assumption because, with proper scaling, we can con-
vert the real numbers in most applications to integers. In any case,
this assumption is needed only in theoretical analysis; neither the
proposed structure nor our query algorithms rely on it.

We consider that distances are measured by`p norm, which has
extensive applications in machine learning, physics, statistics, fi-
nance, and many other disciplines. Moreover, as`p norm general-
izes or approximates several other metrics, our technique is directly
applicable to those metrics as well. For example, in case all dimen-
sions are binary (i.e., having onlyt = 2 distinct values),̀ 1 norm
is exactly Hamming distance, which is widely employed in text

retrieval, time-series databases, etc. Hence, our technique can be
immediately applied in those applications, too.

We studyc-approximate NN queries, wherec is a positive in-
teger. As mentioned in Section 1, given a pointq, such a query
returns a pointo in the datasetD, such that the distance‖o, q‖ be-
tweeno andq is at mostc times the distance betweenq and its real
NN o∗. We assume thatq is not inD. Otherwise, the NN problem
becomes a lookup query, which can be easily solved by standard
hashing.

We consider that the datasetD resides in external memory where
each page hasB words. Furthermore, we follow the convention
that every integer is represented with one word. Since a point hasd
coordinates, the entireD occupies totallydn/B pages, wheren is
the cardinality ofD. In other words, all algorithms, which do not
have provable sub-linear cost growth withn, incur I/O complexity
Ω(dn/B). We aim at designing arelational solution beating this
complexity.

Finally, to simplify the resulting bounds, we assume that the di-
mensionalityd is at leastlog(n/B) (all the logarithms, unless ex-
plicitly stated, have base 2). This is reasonable because, for prac-
tical values ofn andB, log(n/B) seldom exceeds 20, whereas
d = 20 is barely “high-dimensional".

3. THE PRELIMINARIES
Our solutions leverage LSH as the building brick. In Sections 3.1

and 3.2, we discuss the drawbacks of the existing LSH implementa-
tions, and further motivate our methods. In Section 3.3, we present
the technical details of LSH that are necessary for our discussion.

3.1 Rigorous-LSH and ball cover
As a matter of fact, LSH does not solvec-approximate NN

queries directly. Instead, it is designed [26] for a different prob-
lem calledc-approximate ball cover(BC). LetD be a set of points
in d-dimensional space. Denote byB(q, r) a ball that centers at the
query pointq and has radiusr. A c-approximate BC query returns
the following results:

(1) If B(q, r) covers at least one point inD, return a point whose
distance toq is at mostcr.

(2) If B(q, cr) covers no point inD, return nothing.

(3) Otherwise, the result is undefined.

Figure 1: Illustration of ball cover queries

Figure 1 shows an example whereD has two pointso1 and
o2. Consider first the 2-approximate BC queryq1 (the left black
point). The two circles centering atq1 represent ballsB(q1, r) and
B(q1, 2r) respectively. SinceB(q1, r) covers a data pointo1, the
query will have to return a point, but it can be eithero1 or o2, as
both of them fall inB(q1, 2r). Now, consider the 2-approximate
BC queryq2. SinceB(q2, 2r) does not cover any data point, the
query must return empty.

Interestingly, an approximate NN query can be reduced to a num-
ber of approximate BC queries with different radiir [23, 26]. The



rationale is that:if ball B(q, r) is empty butB(q, cr) is not, then
any point inB(q, cr) is a c-approximate NN ofq. Consider the
query pointq in Figure 2. Here, ballB(q, r) is empty, butB(q, cr)
is not. It follows that the NN ofq must have a distance betweenr
andcr to q. Hence, any point inB(q, cr) (i.e., eithero1 or o2) is a
c-approximate NN ofq.

Figure 2: The rationale of the reduction from nearest neighbor
to ball cover queries

Based on this idea, Indyk and Motwani [26] propose a struc-
ture that supportsc-approximate BC queries atr = 1, c, c2, c3,
..., x respectively, wherex is the smallest power ofc that is larger
than or equal totd (recall thatt is the greatest coordinate on each
dimension). They give an algorithm [26] to guarantee an approxi-
mation ratio ofc2 for NN search (in other words, we need a struc-
ture for

√
c-approximate BC queries to supportc-approximate NN

retrieval). Their method, which we callrigorous-LSH, consumes
O((logc t + logc d) · (dn/B)1+1/c) space, and answers a query
in O((logc t + logc d) · (dn/B)1/c) I/Os. Note thatt can be a
large value, thus making the space and query cost potentially very
expensive. Our LSB-tree will eliminate the factorlogc t + logc d
completely.

Finally, it is worth mentioning that there exist complicated NN-
to-BC reductions [23, 26] with better complexities. However, those
reductions are highly theoretical, and are difficult to implement in
relational databases.

3.2 Adhoc-LSH
Although rigorous-LSH is theoretically sound, its space and

query cost is prohibitively expensive in practice. The root of
the problem is that it must support BC queries at too many (i.e.,
logc t + logc d) radii. Gionis et al. [21] remedy this drawback with
a heuristic approach, which we refer to asadhoc-LSH. Given a
NN queryq, they return directly the output ofthe BC query that
is at locationq and has radiusrm, whererm is a “magic" radius
pre-determined by the system. Since only one radius needs to be
supported,adhoc-LSHimprovesrigorous-LSHby requiring only
O((dn/B)1+1/c) space andO((dn/B)1/c) query time.

Unfortunately, the cost saving ofadhoc-LSHtrades away the
quality control on query results. To illustrate, consider Figure 3a,
where the datasetD has 7 pointso1, o2, ...,o7, and the black point
is a NN queryq. Suppose thatadhoc-LSHis set to support 2-
approximate BC queries at radiusrm. Thus, it answers the NN
queryq by finding a data point that satisfies the 2-approximate BC
query located atq with radiusrm. The two circles in Figure 3a rep-
resentB(q, rm) andB(q, 2rm) respectively. AsB(q, rm) covers
some data ofD, (by the definition stated in the previous subsection)
the BC queryq may returnanyof the 7 data points inB(q, 2rm).
It is clear that no bounded approximation ratio can be ensured, as
the real NNo1 of q can bearbitrarily close toq.

The above problem is caused by an excessively largerm. Con-
versely, ifrm is too small,adhoc-LSHmay not return any result at

(a)rm too large (b)rm too small

Figure 3: Drawbacks of adhoc-LSH

all. To see this, consider Figure 3b. Again, the white points consti-
tute the datasetD, and the two circles areB(q, rm) andB(q, 2rm).
As B(q, 2rm) is empty, the 2-approximate BC queryq must not re-
turn anything. As a result,adhoc-LSHreports nothing too, and is
said to havemissedthe query [21].

Adhoc-LSHperforms well ifrm is roughly equivalent to the dis-
tance betweenq and its exact NN, which is whyadhoc-LSHcan
be effective when given the rightrm [21]. Unfortunately, finding
such anrm is non-trivial. Even worse, suchrm may not exist at
all; namely, anrm good for some queries may be bad for others.
Figure 4 presents a dataset with two clusters whose densities are
drastically different. Apparently, if a NN queryq falls in cluster 1,
the distance fromq to its NN is significantly smaller than ifq falls
in cluster 2. Hence, it is impossible to choose anrm that closely
captures the NN distances of all queries. Note that clusters with
different densities are common in real datasets [11].

Figure 4: No goodrm exists if clusters have different densities

Recently, Lv et al. [33] present a variation ofadhoc-LSHwith
less space consumption. This variation, however, suffers from the
same drawback (i.e., no quality control) asadhoc-LSH, and entails
higher query cost thanadhoc-LSH.

In summary, currently a practitioner, who wants to apply LSH,
faces a dilemma between space/query efficiency and approximation
guarantee. If the quality of the retrieved neighbor is crucial (as in
security systems such as finger-print verification), a huge amount
of space is needed, and large query cost must be paid. On the other
hand, to meet a tight space budget or stringent query time require-
ment, one would have to sacrifice the quality guarantee of LSH,
which somewhat ironically is exactly the main strength of LSH.

3.3 Details of hash functions
Let h(o) be a hash function that maps ad-dimensional pointo

to a one-dimensional value. It islocality sensitiveif the chance of
mapping two pointso1, o2 to the same value grows as their distance
‖o1, o2‖ decreases. Formally:

DEFINITION 1 (LSH). Given a distancer, approximation ra-
tio c, probability valuesp1 andp2 such thatp1 > p2, a hash func-
tion h(.) is (r, cr, p1, p2) locality sensitiveif it satisfies both con-
ditions below:



1. If ‖o1, o2‖ ≤ r, thenPr[h(o1) = h(o2)] ≥ p1;

2. If ‖o1, o2‖ > cr, thenPr[h(o1) = h(o2)] ≤ p2.

LSH functions are known for many distance metrics. For`p

norm, a popular LSH function is defined as follows [15]:

h(o) =

⌊

~a · ~o + b

w

⌋

. (1)

Here, ~o represents thed-dimensional vector representation of a
point o; ~a is anotherd-dimensional vector where each component
is drawn independently from a so-calledp-stabledistribution [15];
~a ·~o denotes the dot product of these two vectors.w is a sufficiently
large constant, and finally,b is uniformly drawn from[0, w).

Equation 1 has a simple geometric interpretation. To illustrate,
let us considerp = 2, i.e., `p is Euclidean distance. In this case,
a 2-stable distribution can be just a normal distribution (mean 0,
variance 1), and it suffices to setw = 16 [15]. Assuming dimen-
sionalityd = 2, Figure 5 shows the line that crosses the origin, and
its slope coincides with the direction of~a. For convenience, assume
that~a has a unit norm, so that the dot product~a · ~o is the projection
of point o onto line~a, namely, pointA in the figure. The effect of
~a · ~o + b is to shiftA by a distanceb (along the line) to a pointB.
Finally, imagine we partition the line into intervals with lengthw;
then, the hash valueh(o) is the ID of the interval coveringB.

Figure 5: Geometric interpretation of LSH

The intuition behind such a hash function is that, if two points
are close to each other, then with high probability their shifted pro-
jections (on line~a) will fall in the same interval. On the other hand,
two faraway points are very likely to be projected into different in-
tervals. The following is proved in [15]:

LEMMA 1 (PROVED IN [15]). Equation 1 is(1, c, p1, p2) lo-
cality sensitive, wherep1 and p2 are two constants satisfying
ln 1/p1

ln 1/p2

≤ 1

c
.

4. LSB-TREE
This section includes everything that a practitioner needs to

know to apply LSB-trees. Specifically, Section 4.1 explains how to
build a LSB-tree, and Section 4.2 gives its NN algorithm. We will
leave all the theoretical analysis to Section 5, including its space,
query performance, and quality guarantee. For simplicity, we will
assumè2 norm but the extension to arbitrary`p norms is straight-
forward.

4.1 Building a LSB-tree
The construction of a LSB-tree is very simple. Given ad-

dimensional datasetD, we first convert each pointo ∈ D to anm-
dimensional pointG(o), and then, obtain theZ-order valuez(o) of

G(o). Note thatz(o) is just a simple number. Hence, we can index
all the resulting Z-order values with a conventional B-tree, which
is the LSB-tree. The coordinates ofo are stored along with its leaf
entry. Next, we clarify the details of each step.

From o to G(o). We set the dimensionalitym of G(o) as

m = log1/p2
(dn/B) (2)

wherep2 is the constant given in Lemma 1 underc = 2, n is the
size of datasetD, andB is the page size. As explained in Section 5,
this choice ofm makes it rather unlikely for two far-away points
o1, o2 to haveG(o1), G(o2) that are similar on allm dimensions.
Note that, the choice ofc = 2 is not compulsory, and our technique
can be adapted to any integerc ≥ 2, as discussed in Section 6.

The derivation ofG(o) is based on afamilyof hash functions:

H(o) = ~a · ~o + b∗. (3)

Here,~a is ad-dimensional vector where each component is drawn
independently from the normal distribution (mean 0 and variance
1). Valueb∗ is uniformly distributed in[0, 2fw2), wherew is any
constant at least 16, and

f = dlog2 d + log2 te. (4)

Recall thatt is the largest coordinate on each dimension. Note that
while~a andw are the same as in Equation 1,b∗ is different, which
is an important design underlying the efficiency of the LSB-tree (as
elaborated in Section 5 with Lemma 2).

We randomly selectm functionsH1(.), ...,Hm(.) independently
from the family described by Equation 3. Then,G(o) is them-
dimensional vector:

G(o) = 〈H1(o), H2(o), ..., Hm(o)〉. (5)

From G(o) to z(o). Let U be the axis length of them-
dimensional spaceG(o) falls in. As explained shortly, we will
choose a value ofU such thatU/w is a power of 2. Computation
of a Z-order curve requires a hyper-grid partitioning the space. We
impose a grid where each cell is a hyper-square with side lengthw;
therefore, there areU/w cells per dimension, and totally(U/w)m

cells in the whole grid. Given the grid, calculating the Z-order
valuez(o) of G(o) is a standard process well-known in the litera-
ture [20]. Letu = log2(U/w). Eachz(o) is thus a binary string
with um bits.

Example. To illustrate the conversion, assume that the datasetD
consists of 4 two-dimensional pointso1, o2, ..., o4 as shown in
Figure 6a. Suppose that we selectm = 2 hash functionsH1(.) and
H2(.). Let~a1 (~a2) be the “~a-vector" in functionH1(.) (H2(.)). For
simplicity, assume that both~a1 and~a2 have norm 1. In Figure 6a,
we slightly abuse notations by also using~a1 (~a2) to denote the line
that passes the origin, and coincides with the direction of vector~a1

(~a2).
Let us takeo1 as an example. The first step of our conversion is

to obtainG(o1), which is a 2-dimensional vector with components
H1(o1) andH2(o2). The value ofH1(o1) can be understood in
the same way as explained in Figure 5. Specifically, first projecto1

onto line~a1, and then move the projected pointA (along the line)
by a distanceb∗1 to a pointB. H1(o1) is the distance fromB to
the origin1. H2(o2) is computed similarly on line~a2 (note that the
shifting distance isb∗2).

1Precisely speaking, it is|H1(o1)| that is equal to the distance.
H1(o1) itself can be either positive or negative, depending on
which side of the originB lies on.
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Figure 6: Illustration of data conversion

TreatingH1(o1) andH2(o2) as coordinates, in the second step,
we regardG(o1) as a point in a data space as shown in Figure 6b,
and derivez(o1) as the Z-order value of pointG(o1) in this space.
In Figure 6b, the Z-order calculation is based on a8 × 8 grid. As
G(o1) falls in a cell whose (binary) horizontal and vertical labels
are 010 and 110respectively,z(o1) equals 011100 (in general, a
Z-order value interleaves the bits of the two labels, starting from
the most significant bits [20]).

Choice ofU . In practice,U can be any value makingU/w a suf-
ficiently large power of 2. For theoretical reasoning, next we pro-
vide a specific choice forU . BesidesU/w being a power of 2, our
choice fulfills another two conditions: (i)U/w ≥ 2f , wheref is
given in Equation 4, and (ii)|Hi(o)| is confined to at mostU/2 for
anyi ∈ [1, m].

In the form of Equation 3, for eachi ∈ [1, m], write Hi(o) =
~ai · ~o + b∗i . Denote by‖~ai‖1 the`1 norm2 of ~ai. Remember thato
distributes in space[0, t]d, wheret is the largest coordinate on each
dimension. Hence,|Hi(.)| is bounded by

Hmax =
m

max
i=1

(‖~ai‖1 · t + b∗i ). (6)

We thus determineU by settingU/w to the smallest power of 2
that bounds both2f and2Hmax/w from above.

2Given ad-dimensional vector~a = 〈a[1], a[2], ..., a[d]〉, ‖~a‖1 =
∑d

i=1
|a[i]|.

4.2 Nearest neighbor algorithm
In practice, a single LSB-tree already produces query results

with very good quality, as demonstrated in our experiments. To el-
evate the quality to a theoretical level, we may independently build
a numberl of trees. We choose

l =
√

dn/B. (7)

which, as analyzed in Section 5, ensures a high chance for nearby
pointso1, o2 to have close Z-order values in at least one tree.

Denote thel trees asT1, T2, ..., Tl respectively, and call them
collectively as aLSB-forest. Usezj(o) to represent the Z-order
value ofo in treeTj (1 ≤ j ≤ l). Without ambiguity, we also
let zj(o) refer to the leaf entry ofo in Tj . Remember that the
coordinates ofo are stored in the leaf entry.

Given a NN queryq, we first get its Z-order valuezj(q) in
each treeTj (1 ≤ j ≤ l). As with the Z-order values of
data points,zj(q) is a binary string withum bits. We denote
by LLCP (zj(o), zj(q)) the length of the longest common prefix
(LLCP) of zj(o) andzj(q). For example, supposezj(o) = 100101
andzj(q) = 100001; thenLLCP (zj(o), zj(q)) = 3. Whenq is
clear from the context, we may refer toLLCP (zj(o), zj(q)) sim-
ply as theLLCP ofzj(o).

Figure 7 presents our nearest neighbor algorithm at a high level.
The main idea is to visit the leaf entries of alll trees in descending
order of their LLCPs, until either enough points have been seen, or
we have found a point that is close enough. Next, we explain the
details of lines 2 and 3.

Algorithm NN
1. repeat
2. pick, from all the treesT1, ...,Tl, the leaf entry with

the next greatest LLCP
3. until conditionE1 or E2 holds
4. return the nearest point found so far

Figure 7: The NN algorithm

Finding the next greatest LLCP. This can be done by a syn-
chronous bi-directional expansion at the leaf levels of all trees.
Specifically, recall that we have obtained the Z-order valuezj(q) in
each treeTj (1 ≤ j ≤ l). SearchTj to locate the leaf entryej` with
the lowest Z-order value at leastzj(q). Leteja be the leaf entry im-
mediately precedingej`. To illustrate, Figure 8 gives an example
where each Z-order value hasum = 6 bits, andl = 3 LSB-trees
are used. The values ofz1(q), z2(q), andz3(q) are given next to
the corresponding trees. In, for instance,T1, z1(o1) = 011100 is
the lowest among all the Z-order values at leastz1(q) = 001110.
Hence,e1` is z1(o1), ande1a is the entryz1(o3) = 001100 pre-
cedingz1(o1).

T1 z1 q

e1e1

011100 110010001100000100

T2 z2 q

e2e2

110001 110100011110010001

T3 z3 q

e3e3

101100 101110100111011110

z2(o3)= z2(o2)=z2(o4)=z2(o1)=

z3(o4)= z3(o1)=z3(o3)=z3(o2)=

z1(o1)= z1(o4)=z1(o3)=z1(o2)=

Figure 8: Bi-directional expansion (um = 6, l = 3)



The leaf entry with the greatest LLCP must be in the setS =
{e1`, e1a, ..., el`, ela}. Let e ∈ S be this entry. To deter-
mine the leaf entry with the next greatest LLCP, we movee away
from q by one position in the corresponding tree, and then re-
peat the process. For example, in Figure 8, the leaf entry with
the maximum LLCP ise2a (whose LLCP is 5, as it shares the
same first 5 bits withz2(q)). Thus, we shifte2a to its left, i.e.,
to z2(o1) = 010001. The entry with the next largest LLCP can be
found again in{e1`, e1a, ..., e3`, e3a}.

Terminating condition. Algorithm NN terminates when one of
two eventsE1 andE2 happens. The first event is:

E1: the total number of leaf entries accessed from alll LSB-trees
has reached4Bl/d.

EventE2 is based on the LLCP of the leaf entry just retrieved from
line 2. Denote the LLCP byv, which bounds from above the LLCP
of all the leaf entries that have not been processed.

E2: the nearest point found so far (from all the leaf entries already
inspected) has distance toq at most2u−bv/mc+1.

Let us use again Figure 8 to illustrate algorithmNN. Assume
that the dataset consists of pointso1, o2, ..., o4 in Figure 6a, and
the query is the black pointq. Notice that the Z-order values in tree
T1 are obtained according to the transformation in Figure 6b with
u = 3 andm = 2. Suppose that‖o3, q‖ = 3 and‖o4, q‖ = 5.

As explained earlier, entryz2(o4) in Figure 8 has the largest
LLCP v = 5, and thus, is processed first.NN obtains the ob-
ject o4 associated withz2(o4), and calculates its distance toq.
Since‖o4, q‖ = 5 > 2u−bv/mc+1 = 4, conditionE2 does not
hold. AssumingE1 is also violated (i.e., let4Bl/d > 1), the
algorithm processes the entry with the next largest LLCP, which
is z1(o3) in Figure 8 whose LLCPv = 4. In this entry, NN
finds o3 which replaceso4 as the nearest point so far. As now
‖o3, q‖ = 3 ≤ 2u−bv/mc+1 = 4, E2 holds, andNN terminates by
returningo3.

Retrieving k neighbors. A direct extension of NN search isk
nearest neighbor(kNN) retrieval, which aims at finding thek
points in the datasetD nearest to a query pointq. Algorithm NN
can be easily adapted to answerkNN queries. Specifically, it suf-
fices to modifyE2 to “q is within distance2u−bv/mc+1 to thek
nearest points found so far". Also, apparently line 4 should return
thek nearest points.

kNN search with a single tree.Maintaining a forest ofl LSB-trees
incurs large space consumption and update overhead. In practice,
we may prefer an index that has linear space and supports fast data
insertions/deletions. In this case, we can build only one LSB-tree,
and use it to processkNN queries. Accordingly, we slightly mod-
ify the algorithmNN by simply ignoring eventE1 in the terminat-
ing condition (as this event is designed specifically for queryingl
trees). ConditionE2, however, is retained. As a tradeoff for effi-
ciency, querying only a single tree loses the theoretical guarantees
of the LSB-forest (as established in the next section). Neverthe-
less, this approach is expected to return neighbors with high qual-
ity, because the converted Z-order values adequately preserve the
proximity of the data points in the original data space.

5. THEORETICAL ANALYSIS
We now proceed to study the theoretical characteristics of the

LSB-tree. Denote byR the originald-dimensional space of the

datasetD. Namely,R = [0, t]d, wheret is the maximum coordi-
nate on each axis. Recall that, to construct a LSB-tree, we convert
each pointo ∈ D to anm-dimensional pointG(o) as in Equation 5.
Denote byG the space whereG(o) is distributed. By the way we
selectU in Section 4.1,G = [−U/2, U/2]m.

5.1 Quality guarantee
We begin with an observation on the basic LSH in Equation 1:

OBSERVATION 1. Given any integerx ≥ 1, define hash func-
tion

h′(o) =

⌊

~a · ~o + bwx

w

⌋

(8)

where ~a, b, and w are the same as in Equation 1.h′(.) is
(1, c, p1, p2) locality sensitive, andln 1/p1

ln 1/p2

≤ 1/c.

PROOF. (Sketch) Due to the space constraint, we point out only
the most important fact behind the correctness. Imagine a line that
has been partitioned into consecutive intervals of lengthw. Let A,
B be two points on this line with distancey ≤ w. Shift both points
towards right by a distance uniformly drawn from[0, w2x), where
x is any integer. After this,A andB fall in the same interval with
probability1 − y/w. This probability does not depend onx.

For anys ∈ [0, f ] with f given in Equation 4, define:

H∗(o, s) =

⌊

~a · ~o + b∗

2sw

⌋

(9)

where~a, b∗ andw follow those in Equation 3. We have:

LEMMA 2. H∗(o, s) is (2s, 2s+1, p1, p2) locality sensitive,
wherep1 andp2 satisfy ln 1/p1

ln 1/p2

≤ 1/2.

PROOF. Create another spaceR′ by dividing all coordinates of
R by 2s. It is easy to see that the distance of two points inR is 2s

times the distance of their converted points inR
′. Consider

h′′(o′) =

⌊

~a · ~o′ + (b∗/2fw)(2f−sw)

w

⌋

(10)

whereo′ is a point inR
′. As b∗/(2fw) is uniformly distributed in

[0, w], by Observation 1,h′′(.) is (1, 2, p1, p2) locality sensitive in
R

′ with (ln 1/p1)/(ln 1/p2) ≤ 1/2. Let o be the corresponding
point of o′ in R. Clearly,~a · ~o′ = (~a · ~o)/2s. Hence,h′′(o′) =
Hs(o, s). The lemma thus holds.

As shown in Equation 5,G(o) is composed of hash values
H1(o), ..., Hm(o). In the way we obtainH∗(o, s) (Equation 9)
from H(o) (Equation 3), letH∗

i (o, s) be the hash function corre-
sponding toHi(o) (1 ≤ i ≤ m). Also remember thatz(o) is
the Z-order value ofG(o) in spaceG, and functionLLCP (., .)
returns the length of the longest common prefix of two Z-order val-
ues. Now we prove a crucial lemma that is the key to the design of
the LSB-tree.

LEMMA 3. Let o1, o2 be two arbitrary points in spaceR. A
values satisfiess ≥ u−bLLCP (z(o1), z(o2))/mc if and only if
H∗

i (o1, s) = H∗
i (o2, s) for all i ∈ [1, m].

PROOF. Recall that, for Z-order value calculation, we impose
onG a grid with2u cells (each with side lengthw) per dimension.
Refer to the entireG as a level-u tile. In general, a level-s (2 ≤
s ≤ u) tile defines2m level-(s− 1) tiles, by cutting the level-s tile



in half on every dimension. Thus, each cell in the grid partitioning
G is a level-0 tile.

As a property of the Z-order curve,G(o1) andG(o2) belong to a
level-s tile, if and only if their Z-order values share at leastm(u−s)
most significant bits [20], namely,LLCP (z(o1), z(o2)) ≥ m(u−
s). On the other hand, note that a level-s tile is a hyper-square with
side length2sw. This means thatG(o1) andG(o2) belong to a
level-s tile, if and only ifH∗

i (o1, s) = H∗
i (o2, s) for all i ∈ [1, m].

Thus, the lemma follows.

Lemmas 2 and 3 allow us to rephrase the probabilistic guarantees
of LSH using LLCP.

COROLLARY 1. Let r be any power of 2 at most2f . Given a
query pointq and a data pointo, we have:

1. If ‖q, o‖ ≤ r, thenLLCP (z(q), z(o)) ≥ m(u − log2 r)
with probability at leastpm

1 .

2. If ‖q, o‖ > 2r, thenLLCP (z(q), z(o)) ≥ m(u − log2 r)
with probability at mostpm

2 .

Furthermore,ln 1/p1

ln 1/p2

≤ 1/2.

The above result holds for any LSB-tree. Recall that, for NN
search, we need a forest ofl treesT1, ..., Tl built independently.
Next, we will explain an imperative property guaranteed by these
trees. Letq be the query point, andr be any power of 2 up to2f

such that there is a pointo∗ in the ballB(q, r). Consider eventsP1

andP2:

P1: LLCP (zj(q), zj(o
∗)) ≥ m(u − log2 r) in at least one tree

Tj (1 ≤ j ≤ `).

P2: There are less than4Bl/d leaf entrieszj(o) from all treesTj

(1 ≤ j ≤ l) such that (i)LLCP (zj(q), zj(o)) ≥ m(u −
log2 r), and (ii)o is outsideB(q, 2r).

The property guaranteed by thel trees is:

LEMMA 4. P1 andP2 hold at the same time with at least con-
stant probability.

PROOF. Equipped with Corollary 1, this proof is analogous to
the standard proof [21] of the correctness of LSH.

Now we establish an approximation ratio of 4 for algorithmNN.
In the next section, we will extend the LSB-tree to achieve better
approximation ratios.

THEOREM 1. AlgorithmNN returns a 4-approximate NN with
at least constant probability.

PROOF. Let o∗ be the NN of queryq, andr∗ = ‖o∗, q‖. Let
r be the smallest power of 2 boundingr∗ from above. Obviously
r < 2r∗ andr ≤ 2f (notice thatr∗ is at mosttd ≤ 2f under any
`p norm). If whenNN finishes, it has already foundo∗ in any tree,
apparently it will returno∗ which is optimal. Next, we assumeNN
has not seeno∗ at termination.

We will show that when bothP1 andP2 are true, the output
of NN is definitely 4-approximate. Denote byj∗ the j stated in
P1. Recall thatNN may terminate due to the occurrence of either
eventE1 or E2. If it is due to E2, and given the fact thatNN
visits leaf entries in descending order of their LLCP, the LLCPv
of the last fetched leaf entry is at leastLLCP (zj∗(q), zj∗(o∗)) ≥
m(u − log2 r). It follows thatbv/mc ≥ u − log2 r. E2 ensures
that we return a pointo with ‖o, q‖ ≤ 2r < 4r∗.

In case the termination is due toE1, by P2, we know thatNN
has seen at least one pointo inside B(q, 2r). Hence, the point
returned has distance toq at most2r < 4r∗. Finally, Lemma 4
indicates thatP1 andP2 are true with at least constant probability,
thus completing the proof.

Also, the proof of Theorem 1 actually shows:

COROLLARY 2. Let r∗ be the distance fromq to its real NN.
With at least constant probability,NN returns a point within dis-
tance2r to q, wherer is the lowest power of 2 boundingr∗ from
above.

As a standard trick in probabilistic algorithms, by repeating our
solution a constantO(log 1/p) number of times, we boost the suc-
cess probability of algorithmNN from constant to at least1−p, for
any arbitrarily lowp > 0.

5.2 Space and query time

THEOREM 2. We can build a forest ofl LSB-trees that con-
sume totallyO((dn/B)1.5) space. Given these trees, algorithmNN
answers a 4-approximate NN query inO(E

√

dn/B) I/Os, where
E is the height of a LSB-tree.

PROOF. Each leaf entry of a LSB-tree stores a Z-order value
z(o) and the coordinates ofo. z(o) hasum bits whereu = O(f) =
O(log2 d + log2 t) andm = O(log(dn/B)). As log2 d + log2 t
bits fit in 2 words,z(o) occupiesO(log(dn/B)) words. It takesd
words to store the coordinates ofo. Hence, overall a leaf entry is
O(d) words long. Hence, a LSB-tree consumesO((dn/B)) pages,
andl =

√

dn/B of them require totallyO((dn/B)1.5) space.
Algorithm NN (i) first accesses a single path in each LSB-tree,

and then (ii) fetches at most4Bl/d leaf entries. The cost of (i) is
bounded byO(lE). As a leaf entry consumesO(d) words,4Bl/d
of them occupy at mostO(l) pages.

By implementing each LSB-tree as astring B-tree [19], the
heightE is bounded byO(logB(n/B)), resulting in query com-
plexity O(logB(n/B) ·

√

dn/B).

5.3 Comparison with rigorous-LSH
As discussed in Section 3, for 4-approximate NN search,

rigorous-LSHconsumesO((log2 d+log2 t)(dn/B)1.5) space, and
answers a query inO((log2 d + log2 t)

√

dn/B) I/Os. Comparing
these complexities with those in Theorem 2, it is clear that the LSB-
forest improvesrigorous-LSHsignificantly in the following ways.

First, the performance of the LSB-forest is not sensitive tot, the
greatest coordinate of a dimension. This is a crucial improvement
becauset can be very large in practice. As a result,rigorous-LSH
is suitable only when data are confined to a relatively small space.
The LSB-forest enjoys much higher applicability by retaining the
same efficiency regardless of the size of the data space.

Second, the space consumption of a LSB-forest is lower than that
of rigorous-LSHby a factor oflog2 d+ log2 t. For practical values
of d and t (e.g.,d = 50 and t = 10000), the space of a LSB-
forest is lower than that ofrigorous-LSHby more thanan order
of magnitude. Furthermore, note that the LSB-forest is as space
efficient asadhoc-LSH, even though the latter does not guarantee
the quality of query results at all.

Third, the LSB-forest promises higher query efficiency than
rigorous-LSH. As mentioned earlier, the heightE can be strictly
confined toO(logB(n/B)) by resorting to the string B-tree. Even
if we simply implement a LSB-tree as a normal B-tree, the height



Algorithm NN2 (r)
1. o = the output of algorithmNN onF
2. o′ = the output of algorithmNN onF ′

3. return the point betweeno ando′ closer toq

Figure 9: The 3-approximate algorithm

E never grows beyond 6 in our experiments. This is expected to be
much smaller thanlog2 d + log2 t, rendering the query complexity
of the LSB-forest considerably lower than that ofrigorous-LSH.

In summary, the LSB-forest outperformsrigorous-LSHsignif-
icantly in applicability, space and query efficiency. It therefore
eliminates the reason for resorting to the theoretically vulnera-
ble approach ofadhoc-LSH. Finally, remember that the LSB-tree
achieves all of its nice characteristics by leveraging purely rela-
tional techniques.

6. EXTENSIONS
This section presents several interesting extensions to the LSB-

tree, which are easy to implement in a relational database, and ex-
tend the functionality of the LSB-tree significantly.

Supporting ball cover. A LSB-forest, which is a collection
of l LSB-trees as defined in Section 4.2, is able to support 2-
approximate BC queries whose radiusr is any power of 2. Specif-
ically, given such a queryq, we run algorithmNN (Figure 7) using
the query point. Leto by the output ofNN. If ‖o, q‖ ≤ 2r, we
returno as the result of the BC queryq. Otherwise, we return noth-
ing. By an argument similar to the proof of Theorem 1, it is easy to
prove that the above strategy succeeds with high probability.

(2 + ε)-approximate nearest neighbors. A LSB-forest en-
sures an approximation ratio of 4 (Theorem 1). Next we will
improve the ratio to 3 with only 2 LSB-forests. As shown ear-
lier, a LSB-forest can answer 2-approximate BC queries with any
r = 1, 2, 22, ..., 2f wheref is given in Equation 4. We build
another LSB-forest to handle 2-approximate BC queries with any
r = 1.5, 1.5× 2, 1.5× 22, ..., 1.5× 2f . For this purpose, we only
need to create another datasetD′ from D, by dividing all coordi-
nates inD by 1.5. Then, a LSB-forest onD′ is exactly what we
need, noticing that the distance of two points inD′ is 1.5 times
smaller than that of their original points inD. Denote byF andF ′

the LSB-forest onD andD′ respectively.
Given a NN queryq, we answer it using simple the algorithm in

Figure 9.

THEOREM 3. Algorithm NN2 returns a 3-approximate NN
with at least constant probability.

PROOF. Let R be thed-dimensional space of datasetD, and
R

′ the space ofD′. Denote byr∗ the distance betweenq and its
real NN o∗. Apparently,r∗ must fall in either(2x, 1.5 × 2x] or
(1.5 × 2x, 2x+1] for somex ∈ [0, f ]. Refer to these possibilities
as Case 1 and 2, respectively.

For Case 1, the distancer∗′ betweenq and o∗ in spaceR
′ is

between(2x/1.5, 2x]. Hence, by Corollary 2, with at least constant
probability the distance betweeno′ andq in R

′ is at most2x+1,
whereo′ is the point output at line 2 ofNN2. It thus follows thato′

is within distance1.5 × 2x+1 ≤ 3r∗ in R. Similarly, for Case 2,
we can show thato (output at line 1) is a 3-approximate NN with
at least constant probability.

The above idea can be easily extended to(2 + ε)-approximate
NN search for anyε ∈ (0, 2]. Specifically, we can maintainb2/εc
LSB-forests, such that thei-th forest (0 ≤ i < b2/εc) supports
2-approximate BC queries atr = (1 + α), 2(1 + α), 22(1 +
α), ..., 2f (1 + α), whereα = iε/2. Given a queryq, we run
algorithmNN on all the forests, and return the nearest point found.
By an argument similar to proving Theorem 3, we have:

THEOREM 4. For anyε ∈ (0, 2], we can buildb2/εc LSB-
forests that consume totallyO( 1

ε
(dn/B)1.5) space, and answer a

(2 + ε)-approximate NN query inO( 1

ε
E

√

dn/B) I/Os, whereE
is the height of a LSB-tree.

By further generalizing the idea, we can achieve the approxima-
tion ratio c + ε for any integerc ≥ 3 with space and query time
that monotonically decrease asc increases. This provides a grace-
ful tradeoff between quality and efficiency. We leave the details to
the full paper.

7. RELATED WORK
NN search is well understood in low dimensional space [24, 35].

This problem, however, becomes much more difficult in high di-
mensional space. Many algorithms (e.g., those based on data or
space partitioning indexes [20]) that perform nicely on low dimen-
sional data, deteriorate rapidly as the dimensionality increases [10,
36], and are eventually outperformed even by sequential scan.

Research on high-dimensional NN search can be divided intoex-
act andapproximateretrieval. In the exact category, Lin et al. [32]
propose theTV-treewhich improves conventional R-trees [5] by
creating MBRs only in selected subspaces. Weber et al. [36] de-
sign theVA-file, which compresses the dataset to minimize the cost
of sequential scan. Also based on the idea of compression, Berch-
told et al. [7] develop theIQ-tree, combining features of the R-tree
and VA-file. Chaudhuri and Gravano [12] perform NN search by
converting it to range queries. In [8] Berchtold et al. provide a solu-
tion leveraging high-dimensional Voronoi diagrams, whereas Korn
et al. [28] tackle the problem by utilizing the fractal dimensionality
of the dataset. Koudas et al. [29] give a bitmap-based approach.
The state of the art is due to Jagadish et al. [27]. They develop the
iDistance technique that converts high-dimensional points to 1D
values, which are indexed using a B-tree for NN processing. We
will compare our solution toiDistanceexperimentally.

In exact search, a majority of the query cost is spent onverify-
ing a point as a real NN [6, 14]. Approximate retrieval improves
efficiency by relaxing the precision of verification. Goldstein and
Ramakrishnan [22] leverage the knowledge of the query distribu-
tion to balance the efficiency and result quality. Ferhatosmanoglu
et al. [18] find NNs by examining only the interesting subspaces.
Chen and Lin [13] combine sampling with a reduction [12] to range
search. Li et al. [31] first partition the dataset into clusters, and
then prunes the irrelevant clusters according to their radii. Houle
and Sakuma [25] developSASHwhich is designed for memory-
resident data, but is not suitable for disk-oriented data due to severe
I/O thrashing. Fagin et al. [16] develop theMedRanktechnique
that converts the dataset to several sorted lists by projecting the
data onto different vectors. To answer a query,MedRanktraverses
these lists in a way similar to thethresholdalgorithm [17] for top-k
search. We will also evaluateMedRankin the experiments.

None of the aforementioned solutions ensures sub-linear growth
of query cost in the worst case. How to achieve this has been
carefully studied in the theory community (see, for example, [23,
30] and the references therein). Almost all the results there, how-
ever, are excessively complex for practical implementation, except



LSH. This technique is invented by Indyk and Motwani [26] for
in-memory data. Gionis et al. [21] adapt it to external memory,
but as discussed in Section 3.2, their method loses the guarantee
on the approximation ratio. The locality-sensitive hash functions
for lp norms are discovered by Datar et al. [15]. Bawa et al. [4]
propose a method to tune the parameters of LSH automatically.
Their method, however, no longer ensures the same query perfor-
mance as LSH unless the adopted hash function has a so-called
“(ε, f(ε)) property" [4]. Unfortunately, no existing hash function
for `p norms is known to possess this property. LSH has also re-
ceived other theoretical improvements [1, 34] which cannot be im-
plemented in relational databases. Furthermore, several heuristic
variations of LSH have also been suggested. For example, Lv et al.
[33] reduce space consumption by probing more data in answering
a query, while recently Athitsos et al. [3] introduce the notion of
distance-based hashing. The solutions of [3, 33] guarantee neither
sub-linear cost nor good approximation ratios.

8. EXPERIMENTS
Next we experimentally evaluate the performance of the LSB-

tree, using the existing methods as benchmarks. Section 8.1 de-
scribes the datasets and queries. Section 8.2 lists the techniques
to be evaluated, and Section 8.3 elaborates the assessment metrics.
Section 8.4 demonstrates the superiority of the LSB-forest over al-
ternative LSH implementations. Finally, Section 8.5 verifies that
the LSB-tree significantly outperforms the state of the art in both
exact and approximate NN search.

8.1 Data and queries
We experiment with both synthetic and real datasets. Synthetic

data are generated according to avardendistribution to be clarified
shortly. As for real data, we deploy datasetscolor andmnist, which
are used in the papers [16, 27] that develop the best linear-space
method for exact and approximate NN retrieval, respectively. Each
workloadcontains 50 queries that follow the same distribution as
the underlying dataset. All data and queries are normalized such
that each dimension has domain[0, 10000]. The distance metric is
Euclidean distance. The details ofvarden, color, andmnistare as
follows.

Varden. This distribution contains two clusters with drastically dif-
ferent densities. The sparse cluster has 10 points, whereas all the
other points belong to the dense cluster. Furthermore, the dense
cluster has the shape of a ring, whose radius is comparable to the
average mutual distance of the points in the sparse cluster. The two
clusters are well separated. Figure 10 illustrates the idea with a
2D example. We vary the cardinality of avardendataset from 10k
to 100k, and its dimensionality from 25 to 100. In the sequel, we
will denote ad-dimensionalvardendataset with cardinalityn by
varden-nd. The corresponding workload of avardendataset has
10 and 40 query points that fall in the areas of the sparse and dense
clusters, respectively. No query point coincides with any data point.

Figure 10: The varden distribution

Color. This is a 32-dimensional dataset3 with 68,040 points, where
each point describes the color histogram of an image in the Corel
collection [27]. We randomly remove 50 points to form a query set.
As a result, ourcolor dataset has cardinality 67,990.

Mnist. The originalmnistdataset4 is a set of 60,000 points. Each
point is 784-dimensional, capturing the pixel values of a28 × 28
image. Since, however, most pixels are insignificant, we reduce
dimensionality by taking the 50 dimensions with the largest vari-
ances. Themnistcollection also contains a test set of 10,000 points
[16], among which we randomly pick 50 to form our workload.
Obviously, each query point is also projected onto the same 50 di-
mensions output by dimensionality reduction.

8.2 Methods

Sequential scan (SeqScan). The brute-force approach is included
because it is known to be a strong competitor in high dimensional
NN retrieval. Furthermore, the relative performance with respect to
SeqScanserves as a reliable way to compare against methods that
are reported elsewhere but not in our experiments.

LSB-forest. As discussed in Section 4.2, this method keepsl LSB-
trees, and applies algorithmNN in exactly the way given in Figure 7
for query processing.

LSB-noE2. Same asLSB-forestexcept that it disables the termi-
nating conditionE2 in algorithmNN. In other words,LSB-noE2

terminates on conditionE1 only.

LSB-tree. This method deploys a single LSB-tree (as opposed tol
in LSB-forest), and hence, requires only linear space and can be up-
dated efficiently. As mentioned at the end of Section 4.1, it disables
conditionE1, and terminates onE2 only.

Rigorous- [26] and adhoc-LSH [21]. These are the existing
LSH-implementations as reviewed in Sections 3.1 and 3.2, respec-
tively. Recall that both methods are designed forc-approximate
BC search. We setc to 2 because a LSB-forest also guarantees the
same approximation ratio as mentioned in Section 6.Adhoc-LSH
requires a set ofl hash tables to enable BC queries at a magic ra-
dius (to be tuned experimentally later), wherel is the same as in
Equation 7.Rigorous-LSHcan be regarded as combining multiple
versions ofadhoc-LSH, one for every radius supported.

iDistance [27]. The state of the art for exact NN search. As men-
tioned in Section 7, it indexes a dataset using a single B-tree after
converting all points to 1D values. As withLSB-tree, it consumes
linear space and supports data insertions and deletions efficiently.

MedRank [16]. The best linear-space method for approximate NN
search. Given a dataset,MedRankcreatesM sorted lists, such that
every data point has an entry in each list. Each entry has the form
(id, key), whereid uniquely identifies a point, andkey is its sorting
key (a point has various keys in different lists). Each list is indexed
by a B-tree on the keys. Point coordinates are stored in a separate
hash table to facilitate probing byid. The numberM of lists equals
log n (following Theorem 4 in [16]), wheren is the dataset cardi-
nality. It should be noted thatMedRankis not friendly to updates,
because a single point insertion/deletion requires updating all the
log n lists.

3http://kdd.ics.uci.edu/databases/CorelFeatures/.
4http://yann.lecun.com/exdb/mnist.
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Figure 11: Magic radius tuning for adhoc-LSH (varden-10k50d)

8.3 Assessment metrics
We compare alternative techniques by their quality of results (for

approximate solutions), query cost, and space consumption. For
query cost, we measure the number of I/Os. CPU time is ignored
because it is significantly dominated by I/O overhead for all meth-
ods. The page size is fixed to 4,096 bytes.

We evaluate the quality of akNN result by how many times far-
ther a reported neighbor is than the real NN. Formally, leto1, o2,
..., ok be thek neighbors that a method retrieves for a queryq, in
ascending order of their distances toq. Let o∗1, o∗2 ..., o∗k be the ac-
tual first, second, ...,k-th NNs ofq, respectively. For anyi ∈ [1, k],
we define therank-i (approximation) ratio, denoted byRi(q), as

Ri(q) = ‖oi, q‖/‖o∗i , q‖. (11)

The overall (approximation) ratio is the mean of the ratios of all
ranks, namely,(

∑k
i=1

Ri(q))/k. When a query result is exact, all
ratios are 1.

Given a workloadW , define itsaverage overall ratioas the mean
of the overall ratios of all queries inW . This metric reflects the
general quality of allk neighbors, and is used in most experiments.
In some cases, we may need to scrutinize the quality of neighbors
at individual ranks. For this purpose, we will inspect theaverage
rank-i ratio (1 ≤ i ≤ k), which is the mean of the rank-i ratios of
all queries inW , namely,(

∑

∀q∈W Ri(q))/|W |.

8.4 Behavior of LSH implementations
This section explores the properties ofLSB-forest, LSB-noE2,

rigorous-LSH, andadhoc-LSH. Since their theoretical guarantees
hold on k = 1 only, we focus on single NN search, where the
overall ratio of a query is identical to its rank-1 ratio. We deploy
vardendata, as it allows us to examine different dimensionalities
and cardinalities. Unless otherwise stated, avardendataset has
default cardinalityn = 10k and dimensionalityd = 50.

Recall thatadhoc-LSHanswers a NN query by processing in-
stead a BC query with a magic radiusrm. As argued in Section 3.2,
there may not exist anrm that can ensure the quality of all NN
queries. To demonstrate this, Figure 11a shows the average over-
all ratio of adhoc-LSHas rm varies from22 to 222. For small
rm, the ratio is∞, implying at least one query in the workload
whichadhoc-LSH missed, namely, returning nothing at all. The ra-
tio improves suddenly to 66 whenrm reaches214, and stabilizes as
rm grows further. It is thus clear that, given anyrm, the result of
adhoc-LSHis at least 66 times worse than the real NN on average!

As discussed in Section 3.2, ifrm is considerably smaller than
the NN-distance of a query,adhoc-LSHmay return an empty result.

d 25 50 75 100

rigorous-LSH 1
adhoc-LSH 43 66.4 87 104.2
LSB-forest 1.02 1.02 1.02 1.01
LSB-noE2 1

(a) Average overall ratio vs. dimensionalityd (n = 50k)

n 10k 25k 50k 75k 100k

rigorous-LSH 1
adhoc-LSH 66.4 68.1 70.3 76.5 87.1
LSB-forest 1.02 1.02 1.03 1.02 1.02
LSB-noE2 1

(b) Average overall ratio vs. cardinalityn (d = 50)

Table 1: Result quality on varden data
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Figure 12: Query efficiency onvarden data

Conversely, ifrm is considerably larger,adhoc-LSHmay output a
point that is much worse than the real NN. Next, we will experi-
mentally confirm these findings. Recall that a workload forvarden
has queries in both the sparse and dense clusters. Let us call the
former (latter)sparse(dense) queries. We observe that the average
NN distance of a sparse (dense) query is around 12,000 (15). The
phenomenon in Figure 11a occurs becausevalues ofrm good for
sparse queries are bad for dense queries, and vice versa. To sup-
port the claim, Figure 11b plots the average overall ratios of sparse
and dense queries separately. Forrm ≤ 213 = 8,192, it is much
lower than the NN-distances of sparse queries, for whichadhoc-
LSH returns nothing (hence, thesparsecurve in Figure 11b stays
at∞ for all rm ≤ 213). Starting atrm = 212, on the other hand,
adhoc-LSHoften returns very bad results for dense queries. Since
the situation gets worse for largerrm, thedensecurve Figure 11b
increases continuously since212. In all the following experiments,
we fix rm to the optimal value214.

The next experiment compares the result quality ofrigorous-
LSH, adhoc-LSH, LSB-forest, andLSB-noE2. Table 1a (1b) shows
their average overall ratios under different dimensionalities (cardi-
nalities). Bothrigorous-LSHandLSB-noE2 achieve perfect qual-
ity, namely, they successfully return exactly the real NN for all
queries.LSB-forestincurs slightly higher error because it accesses
fewer points thanLSB-noE2, and thus, has a lower chance of en-
countering the real NN.Adhoc-LSHis by far the worst method, and
its effectiveness deteriorates rapidly as the dimensionality or cardi-
nality increases.

To evaluate the query efficiency of the four methods. Figure 12a
(12b) plots their I/O cost as a function of dimensionalityd (car-



d 25 50 75 100

rigorous-LSH 894 1,670 2,587 3,420
adhoc-LSH 55 106 167 223
LSB-forest 55 106 167 223

(a) Space vs. dimensionalityd (n = 50k)

n 10k 25k 50k 75k 100k

rigorous-LSH 1,670 7,206 20,695 43,578 66,676
adhoc-LSH 106 460 1,323 2,785 4,262
LSB-forest 106 460 1,323 2,785 4,262

(b) Space vs. cardinalityn (d = 50)

Table 2: Space consumption onvarden data in mega bytes

dinality n). LSB-forestconsiderably outperforms its competitors
in all cases. Notice that whileLSB-noE2 is slightly more costly
thanadhoc-LSH, LSB-forestentails only a fraction of the overhead
of adhoc-LSH. This phenomenon reveals the importance of having
terminating conditionE2 in the NN algorithm. Rigorous-LSHis
much more expensive than the other approaches, which is consis-
tent with its vast asymptotical complexity.

Tables 2a and 2b show the space consumption (in mega bytes)
of each solution as a function ofd andn, respectively.LSB-noE2

is not included because it differs fromLSB-forestonly in the query
algorithm, and thus, has the same space cost asLSB-forest. Fur-
thermore,adhoc-LSHalso occupies as much space asLSB-forest,
because a hash table of the former stores the same information as
a LSB-tree of the latter. As predicted by their space complexities,
rigorous-LSHrequires more space thanLSB-forestby a factor of
log d + log t, wheret (the largest coordinate on each dimension)
equals 10,000 in our experiments.

It is evident from the above discussion thatLSB-forestis overall
the best technique. Specifically, it retains the query accuracy of
rigorous-LSH, consumes the same space asadhoc-LSH, and incurs
significantly smaller query cost than both.

8.5 Practical comparison
Having verified the correctness of our theoretical analysis, in

the sequel we assess the practical performance ofSeqScan, LSB-
tree, LSB-forest, adhoc-LSH, MedRank, andiDistance. Rigorous-
LSHandLSB-noE2 are omitted because the former incurs gigantic
space/query cost, and the latter is merely an auxiliary method for
demonstrating the importance of conditionE2. Remember thatSe-
qScanandiDistancereturn exact NNs, whereas the other methods
are approximate.

Only real datasetcolor or mnist is adopted in the subsequent
evaluation. The workload oncolor (mnist) has an average NN dis-
tance of 833 (11,422). We set the magic radius ofadhoc-LSHto
the smallest power of 2 that bounds the average NN distance from
above, namely, 1,024 and 16,384 forcolor andmnist, respectively.
The numberk of retrieved neighbors will vary from 1 to 100. A
buffer of 50 pages is allowed for all methods.

Let us start with query efficiency. Figure 13a (13b) illustrates the
average cost of akNN query on datasetcolor (mnist) as a function
of k. LSB-treeis by far the fastest method, and outperforms all
the other approaches by a factor at least an order of magnitude.
In particular, onmnist, LSB-treeeven achieves a speedup of two
orders of magnitude overiDistance(the state of the art of exact NN
search), justifying the advantages of approximate retrieval.LSB-
forest is also much faster thaniDistance, MedRank, and adhoc-
LSH, especially in returning a large number of neighbors.

The next experiment inspects the result quality of the approxi-
mate techniques. Focusing oncolor (mnist), Figure 14a (14b) plots
the average overall ratios ofMedRank, LSB-forest, andLSB-treeas

LSB-forest LSB-tree
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Figure 13: Efficiency ofkNN search

a function ofk. Sinceadhoc-LSHmaymissa query (i.e., unable to
returnk neighbors), we present its results as a table in Figure 14c,
where each cell contains two numbers. Specifically, the number in
the bracket indicates how many queries are missed (out of 50), and
the number outside is the average overall ratio of the queries that
are answered properly. No ratio is reported ifadhoc-LSHmisses
more than 30 queries.

LSB-forestincurs low error in all cases (maximum ratio below
1.5), owing to its nice theoretical properties.LSB-treealso has good
precision (maximum ratio 2), indicating that the proposed conver-
sion (from ad-dimensional point to a Z-order value) adequately
preserves the spatial proximity of data points.MedRank, in con-
trast, exhibits much worse precision than the proposed solutions.
In particular, observe thatMedRankis not effective in the impor-
tant case of single NN search (k = 1), for which its average overall
ratio can be over 4.5. Finally,adhoc-LSHis clearly unreliable due
to the large number of queries it misses.

The average overall ratio reflects the general quality of allk
neighbors reported. It does not, however, indicate how good the
neighbors are at individual ranks. To find out, we setk to 10, and
measure the average rank-i ratios at eachi ∈ [1, 10]. Figures 15a
and 15b demonstrate the results oncolor andmnist, respectively
(adhoc-LSHis not included because it misses many queries). Ap-
parently, bothLSB-forestandLSB-treeprovide results that are sig-
nificantly better thanMedRankat all ranks. Observe that the qual-
ity of MedRankdeteriorates considerably at high ranks, whereas
our solutions return fairly good neighbors even at the greatest rank.
Note that the results in Figure 15 should not be confused with those
of Figure 14. For example, the average rank-1 ratio (ofk = 10) is
different from the overall average ratio ofk = 15.

Table 3 compares the space consumption of different methods.
LSB-treerequires a little more space thaniDistanceandMedRank,
but this is well justified by its excellent query efficiency and accu-
racy. Remember that bothLSB-treeandiDistancesupport efficient
data insertions/deletions, because they require updating only a sin-
gle B-tree.MedRank, however, entails expensive update overhead
because, as mentioned in Section 8.2, inserting/deleting a single
point demands modifyinglog n B-trees, wheren is the dataset car-

5The average rank-1 ratio is lower because processing a query with
k = 10 needs to access more data than a query withk = 1, and
therefore, has a better chance of encountering the nearest neighbor.
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k 1 10 20 40 60 80 100

color 1.2 (0) 1.3 (30) - (42) - (46) - (46) - (47) - (48)
mnist 1.2 (0) 1.3 (13) 1.3 (19) 1.4 (28) - (37) - (39) - (41)

(c) Results ofadhoc-LSH(in each cell, the number inside the
bracket is the number of missed queries, and the number outside is

the average overall ratio of the queries answered properly)

Figure 14: Average overall ratio vs.k
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Figure 15: Average ratios at individual ranks for 10NN queries

dinality.

iDistance MedRank adhoc-LSH LSB-forest LSB-tree

color 14 17 1,503 1,503 32
mnist 18 19 1,746 1,746 32

Table 3: Space consumption on real data in mega bytes

Recall thatLSB-forestutilizes a large numberl of LSB-trees,
where the numberl equals 47 and 55 forcolor andmnist, respec-
tively. LSB-treerepresents the other extreme that uses only a single
tree. Next, we explore the compromise of these two extremes, by
using multiple, but less thanl, trees. The query algorithm is the
same as the one adopted byLSB-tree. In general, leveragingx
trees increases the query, space, and update cost by a factor ofx.
The benefit, however, is that a largerx also improves the quality of
results. To explore this tradeoff, Figure 16 shows the average over-
all ratio of 10NN queries on the two real datasets, whenx grows
from 1 to the correspondingl of LSB-forest. Interestingly, the pre-
cision improves dramatically with just a small number of trees. In
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Figure 16: Benefits of using multiple LSB-trees (k = 10)

other words, we can obtain much better results without increasing
the space or query overhead considerably, which is especially ap-
pealing for datasets that are not updated frequently.

In summary, the exact solutioniDistanceis not adequate due to
its costly query time.Adhoc-LSHis not reliable because it fails
to report enough neighbors for many queries. Furthermore, it also
entails large query overhead.MedRankis even more expensive than
adhoc-LSH, and is not friendly to updates. On the other hand,LSB-
forestguarantees high quality of results, and sub-linear query cost
for any data/query distribution. Overall the best solution is theLSB-
tree, which demands only linear space, permits fast updates, offers
very good results, and is extremely efficient in query processing.

9. CONCLUSIONS
Nearest neighbor search in high dimensional space finds numer-

ous applications in a large number of disciplines. This paper devel-
ops an access method called the LSB-tree that enables efficient ap-
proximate NN queries with excellent result quality. This structure
carries both theoretical and practical significance. In theory, it dra-
matically improves the (asymptotical and actual) space and query
efficiency of the previous LSH implementations, without compro-
mising the result quality. In practice, it is faster than the state of the
art of exact NN retrieval by two orders of magnitude. Compared to
the best existing approach for approximate NN queries, our tech-
nique requires only a fraction of its query overhead, and produces
results of considerably better quality. Furthermore, the LSB-tree
consumes space linear to the dataset cardinality, supports updates
efficiently, and can be easily incorporated in relational databases.
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