
Two-Level Sampling for Join Size Estimation

Yu Chen
Hong Kong University of Science and

Technology
ychenbh@cse.ust.hk

Ke Yi
∗

Hong Kong University of Science and
Technology

yike@cse.ust.hk

ABSTRACT
Join size estimation is a critical step in query optimization,
and has been extensively studied in the literature. Among
the many techniques, sampling based approaches are partic-
ularly appealing, due to their ability to handle arbitrary se-
lection predicates. In this paper, we propose a new sampling
algorithm for join size estimation, called two-level sampling,
which combines the advantages of three previous sampling
methods while making further improvements. Both ana-
lytical and empirical comparisons show that the new algo-
rithm outperforms all the previous algorithms on a variety
of joins, including primary key-foreign key joins, many-to-
many joins, and multi-table joins. The new sampling algo-
rithm is also very easy to implement, requiring just one pass
over the data. It only relies on some basic statistical infor-
mation about the data, such as the `k-norms and the heavy
hitters.

Keywords
Joins; sampling

1. INTRODUCTION
Join size estimation is a critical step in query optimiza-

tion, as the intermediate result size is a dominating factor
for the cost of a query plan, including CPU time, I/O cost,
as well as communication cost in a distributed query pro-
cessing engine. To be able to estimate join sizes quickly at
query time, database systems reply on various statistics and
small synopses collected from the base tables a priori. A
major challenge here is that join queries often come with
ad hoc selection predicates that are only known at query
time, thus there is no way to take the predicates into ac-
count when the statistics are collected. To make things con-
crete, consider the (natural) join between two tables Cus-

tomers(CustomerID, Name, State) and Orders(OrderID,

∗This work is supported by HKRGC under grants GRF-
16211614 and GRF-16200415.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14–19, 2017, Chicago, IL, USA.
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035921

CustomerID, Quantity, Price, Comment). While it is easy
to infer that the two tables will join on the attribute Cus-

tomerID beforehand (e.g., by looking for the foreign key con-
straint), which subset of customers and/or orders the query
wants to perform the join on can only be known at runtime.
The selection predicates can take a variety of forms, such as
equality constraints, range constraints, complex conditions
such as“Comment LIKE ‘%complain%’”, or even user-defined
functions.

1.1 Related Work
There are three main approaches to the join size estima-

tion problem in the literature.
Sketching based solutions [19, 3, 6, 8, 20] build a sketch

for each table on the join attribute, while ignoring all the
other attributes. Sketches give very accurate estimates on
the join size without selection predicates, but the quality
deteriorates rapidly when predicates are present. The way
to handle a predicate, e.g., on the State attribute, is to turn
the problem into a 3-table join, where the third table has a
single column State containing all the values satisfying the
predicate. Note that the third table is only imaginary, and
its sketch is built at query time, as it depends on the pred-
icate. However, as shown in [21], this makes the estimation
drastically worse. Adding a second predicate, thus turning
the problem into a 4-table join, makes the estimation com-
pletely useless (50 times off the true join size as reported in
[21]). Moreover, building a sketch on the imaginary table
only works when the attribute has a small domain so that
we can enumerate all possible values satisfying the predi-
cate to build the imaginary table. If the attribute has a
large domain, then the predicate must be a range constraint
so as to allow the use of range-summable hash functions [18].
It cannot handle predicates that cannot be expressed as a
range condition, such as “Comment LIKE ‘%complain%’” or
user-defined functions.

The second approach is to build a synopsis on the data
in the multidimensional array defined by all the attributes,
by adopting signal-processing techniques, such as wavelets,
to do a lossy compression of the data [4]. However, this ap-
proach has the following drawbacks: (1) Similar to sketch-
ing based solutions, the predicate can only be equality or a
range constraint as the compression is based on a hierarchi-
cal decomposition of the multi-dimensional space. (2) The
effectiveness of compression can be very low on sparse data,
which is particularly the case when attributes have large do-
mains or the dimensionality is high (the experiments in [4]
only used 4 dimensions with each dimension having a do-
main size at most 64). It is not clear how this approach

Table 1: Notations
Notation Definition
A, B set of all tuples in two tables

A(v), B(v) set of tuples with join value v
av, bv number of tuples with join value v
a, b the frequency vector a = (a1, a2, . . . , au), b = (b1, b2, . . . , bu)

SA, SB set of all sampled tuples (excluding the sentry)
SA(v), SB(v) set of all sampled tuples with join value v (excluding the sentry)
sA(v), sB(v) sentry of v
AcA , BcB set of tuples in A that satisfy cA or cB , respectively

J join size of A and B
Jv join size A(v) and B(v)

AcA(v), BcB (v) set of tuples with join value v that satisfy cA or cB , respectively
acAv , bcBv number of tuples in A(v) that satisfy cA or cB , respectively

ScAA (v), ScBB (v) set of sampled tuples with join value v that satisfy cA or cB , respectively
(excluding the sentry)

pv first level sampling probability for join value v
q second level sampling probability

would work at all if the attribute is real numbers (stored
using finite precision) or strings, which have a very large
domain.

The third approach, random sampling, is “insensitive” to
the domain size, the form of the predicates, and how many
of them there are. We can simply apply the predicates on
the sample, and then perform join size estimation using only
those tuples in the sample that satisfy the predicates. This
work also studies the sampling approach to join size esti-
mation. For a sampling based approach, one can consider
collecting samples in an offline stage versus drawing sample
online after a query is given. This paper focuses on the for-
mer, while Quickr [13] is a good example of the latter. The
two approaches can be complementary to each other. The
offline approach has very small overhead at query time, as
estimation is done only on the sample. But it may suffer
from large errors on highly selective queries, as few sampled
tuples may satisfy the predicates. On the other hand, the
online approach is more effective with selective predicates, as
it can focus the sampling only on those tuples that pass the
predicates. However, it incurs a higher cost at query time
to retrieve tuples from the base tables, which may reside on
disks on even on remote machines.

Before reviewing the existing sampling algorithms, we first
formally define the problem.

1.2 Problem Definition
The most part of the paper considers the join between two

relationsA andB; extensions to multiway joins are discussed
in Section 4. Let cA and cB be the selection predicates on A
and B, respectively, and let AcA and BcB be the subsets of
tuples in each relation satisfying the predicates. The goal is
to estimate the join size |AcA 1 BcB | at query time by using
samples SA and SB gathered from A and B a priori without
knowing the predicates cA, cB beforehand. The notations
used in this paper are listed in Table 1.

Assume that the join attribute1 between the two tables
take values from the domain [u] = {1, 2, . . . , u}. For each
v ∈ [u], define A(v) (resp. B(v)) as the set of tuples with join

1We assume that the join attribute name is given before-
hand, which can often be inferred from the foreign key con-
straints.

value v in A (resp. B), and let av = |A(v)| and bv = |B(v)|.
We call a = (a1, a2, . . . , au) and b = (b1, b2, . . . , bu) the fre-
quency vector of A and B. As will be clear later, our sam-
pling algorithm does not rely on the domain being integers
from 1 to u at all. It will work as long as a hash function can
be defined. This essentially covers all data types including
strings and user-defined types. The vector representation
offers some notational convenience. For instance, the join
size is simply the inner product: J = |A 1 B| = a · b. We
also make heavy use of the `k-norms, which is defined as
‖a‖k = (

∑
v∈[u] a

k
v)1/k. In particular, ‖a‖0 is the number of

distinct values (on the join attribute) in A, ‖a‖1 is simply
the size of A, and ‖a‖22 is the self-join size of A.

Two types of joins are of particular importance. The first
is where the join attribute is a primary key (PK) in one
table and a foreign key (FK) in the other, such as “Cust-
merID” in the earlier example. For PK-FK joins, one of a
and b is an all-1 vector. The second type is the more gen-
eral many-many joins where both av and bv can be large.
Consider for example the “follows” relation in Twitter: Fol-
lows(Follower, Followee). A join between this table and
its (logical) copy can find us all the 2-hop “follows” rela-
tionships. As more complex graph pattern queries make use
of these intermediate results, their accurate estimation is
critical in choosing the optimal execution plan. It is worth
mentioning that some recent theoretical developments have
suggested that in some cases, none of the pairwise join plans
is optimal due to unavoidable large intermediate result size,
and new join algorithms have been proposed [5]. However,
these new algorithms are not always better (they are only
optimal in the worst case), thus it is important to be able
to determine at run time if this is the case.

1.3 Previous Sampling Algorithms

Independent Bernoulli sampling.
The simplest sampling algorithm is independent Bernoulli

sampling, that is, each tuple is sampled independently with
probability p. To estimate the join size J = |A 1 B|, we
simply compute the join size of the sample and scale it up

by 1/p2, i.e., ĴBer = |SA1SB |
p2

. This is unbiased because each

pair of joined tuples appear in the join of the sample iff both
tuples are sampled.

The variance is [21]:

Var[ĴBer] =
∑
v

avbv

[(
1

p2
− 1

)
+ (av − 1)

(
1

p
− 1

)
+(bv − 1)

(
1

p
− 1

)]
Selection predicates can be easily handled by applying the

predicates on the sample before making the estimation.
The Aqua system [1] does independent Bernoulli sampling

only on the largest fact table, then take all the joining tuples
from other tables. It thus only works for PK-FK joins and
all such PK-FK relationships must form a directed acyclic
graph. In addition, since the tuples sampled from a PK table
depend on those sampled in a FK table, the tables have to
be sampled sequentially. On the other hand, all the other
sampling algorithms covered in this paper, including ours,
sample all tables in parallel.

Correlated sampling.
Independent sampling essentially ignores the join relation-

ship between the two tables. To address this drawback, cor-
related sampling [21] uses hash function to generate corre-
lated samples. Let h : [u] → [0, 1] be a random hash func-
tion. It takes every tuple with join attribute value v into
the sample if h(v) < p. Since every pair of joined tuples
share the same join attribute value, with probability p, both
tuples appear in the sample, and with probability 1−p, nei-
ther is sampled. Thus, the unbiased estimator for join size

is ĴCor = |SA1SB |
p

.

The variance for correlated sampling is [21]:

Var[ĴCor] =

(
1

p
− 1

)∑
v

a2vb
2
v.

Note that both sampling algorithms have the same (ex-
pected) sample size p(‖a‖1 + ‖b‖1). However, there is no

definitive relationship between Var[ĴBer] and Var[ĴCor]. In
one extreme case (Figure 1(a)), when the join is a one-to-
one mapping between the two tables, independent Bernoulli
sampling has a variance of (roughly) ‖a‖1/p2, while the vari-
ance of correlated sampling is ‖a‖1/p. This is because in-
dependent sampling has trouble matching the tuples, while
correlated sampling makes sure that any pair of matched tu-
ples are always sampled together. In the other extreme case
(Figure 1(b)), when all tuples share the same join value, i.e.,
the join becomes a Cartesian product of the two tables, cor-
related sampling either samples all data (with probability
p) or samples nothing, resulting in a variance of ‖a‖21‖b‖21/p.
While in this case, independent Bernoulli sampling has vari-
ance ‖a‖1‖b‖1/p2, which is always smaller than the former,
since we must have p ≥ 1/(‖a‖1 + ‖b‖1) for the sampling
to make sense. In the earlier studies on correlated sampling
[21], experiments were only performed on PK-FK key joins,
which is more towards the first extreme case, thereby draw-
ing the conclusion that correlated sampling is better than
independent Bernoulli sampling. However, in our experi-
ments on many-to-many joins on Twitter data, independent
Bernoulli sampling actually performs much better than cor-
related sampling, due to many high-degree tuples, which
push the problem more towards the second extreme case.

v

v

(a) (b)

A B A B

Figure 1: Two extreme cases: (a) correlated sam-
pling is better; (b) independent Bernoulli sampling
is better.

End-biased sampling.
End-biased sampling [10] is similar to correlated sampling,

also using a hash function h to perform the sampling. It
can be seen as the “frequency-aware” version of correlated
sampling. It uses the frequency information, i.e., the fre-
quency vectors a and b, to favor join values that are heavy.
It adopts the natural choice that the sampling probability
of a join value v should be linearly proportional to its fre-
quency. More precisely, let KA and KB be two parameters
set by the user. Each tuple in A with join value v is sampled
if h(v) < av

KA
, and each tuple in B with join attribute v is

sampled if h(v) < bv
KB

. Note that a pair of joined tuples are

sampled with probability pmin(v) = min(av
KA

, bv
KB

, 1), so the

join size estimator is the same as that for correlated sampling

by just replacing p with pmin(v), i.e., Ĵ =
∑
v
|SA(v)1SB(v)|

pmin(v)
.

And the variance is

Var[Ĵend] =
∑
v

(
1

pmin(v)
− 1

)
a2vb

2
v.

Index-assisted sampling.
There are also many sampling algorithms that rely on in-

dexes, including adaptive sampling [16], bifocal sampling
[11], and wander join [15]. The use of indexes allows the
sampling to be much focused, retrieving only tuples that
are relevant to the query. However, indexes are not always
available; even if they are, doing repeated index lookups can
be expensive when the index does not fit into memory.

All sampling algorithms examined in this paper, includ-
ing ours, perform the sampling by only making one pass over
the data, while only relying on some basic statistics of the
data. In fact, these sampling methods are complementary to
index-assisted sampling for dealing with very large data set:
We can first use these one-pass algorithms to draw a sam-
ple that fits into memory, build indexes on the sample, and
then run index-assisted sampling algorithms on the sample.
In essence, these one-pass sampling algorithms aim at reduc-
ing the space complexity (original data is not needed when
making estimation), while index-assisted sampling aims at
reducing the running time of the estimation by making a
guided search in a potentially large space.

1.4 Our Contributions
Our new sampling algorithm, called two-level sampling,

actually builds upon the three sampling algorithms described
above, by combining their advantages in the “right” way.
The observation starts exactly from the two extreme cases
in Figure 1. We notice that correlated sampling is good

at identifying tuples from the two tables sharing the same
join value, but when dealing with tuples sharing the same
join attribute from the same table, it is just “all or noth-
ing”. On the other hand, independent Bernoulli sampling
handles tuples from the same table well, but fails to capture
the correlation across the tables. In our two-level sampling
algorithm, we sample the join values in a correlated way,
and use independent Bernoulli to sample tuples sharing the
same join values. When the frequencies av, bv’s are available
or approximately available, we adopt the idea of end-biased
sampling to adjust sampling probabilities to favor more fre-
quent join values. But interestingly enough, our analysis
shows that the natural choice of setting the sampling proba-
bility linear in the frequency is actually not optimal. There
is a more delicate relationship between the optimal sampling
probability and the frequency.

We describe the algorithm more formally in Section 2, and
show how to implement the algorithm in one pass over the
data. We show that, for both PK-FK joins and many-to-
many joins, two-level sampling achieves a smaller variance
than all three sampling algorithms above. The compari-
son is done both analytically and empirically, using TPC-H
benchmark data and Twitter data.

We also extend the basic two-level sampling algorithm in
the following aspects.

1. An important requirement of estimation techniques is
that, in addition to the estimate itself, the estimation
procedure should also return a confidence interval, so
as to give users an idea how accurate the estimate is.
In Section 3, we give methods to compute the confi-
dence interval, and validate their effectiveness by ex-
periments.

2. Note that the join size is the same as applying a COUNT

aggregation on the join results. In Appendix B, we
extend the two-level sampling algorithm to estimate
other aggregates such as SUM and AVG. Thus, the al-
gorithm can be used in a general-purpose database
system for approximate query processing by sampling,
such as BlinkDB [2], which currently does not support
joins.

3. In Section 4, we extend the algorithm to two most
common multi-table joins: chain joins and star joins.

Finally, experimental results are presented in Section 5
before concluding the paper.

2. TWO-LEVEL SAMPLING

2.1 Sampling Algorithm
Let h : [u] → [0, 1] be a random hash function. Let pv

be the level-one sampling probability for join value v. If
the join value frequencies are available (or approximately
available), pv could be a function of av and bv; otherwise,
the pv’s can only be equal, which is simply written as p.
The level-two sampling probability, q, will always be the
same for all tuples. Later we will discuss how to set pv and
q appropriately.

Let A(v) be all the tuples in A with join value v. If h(v) <
pv, one tuple in A(v) is chosen uniformly at random. This
tuple is called the sentry of v in A, denoted as sA(v). The
rationale here is that, if v is sampled, at least one tuple

with this join value should be sampled so as to join with the
tuples from the other table. Then, each of the other tuples
in A(v) are sampled independently with probability q. We
use SA(v) to denote the set of tuples sampled, excluding the
sentry. Set SA =

⋃
v SA(v). We exclude the sentries from

SA just for notional convenience; in practice, the sentries are
stored together with SA, but with a special bit indicating its
sentry status.

Exactly the same is done on table B. Correspondingly,
sB(v) is the sentry for join value v in B(v), and SB =⋃
v SB(v) consists all the tuples sampled from B, exclud-

ing the sentries.
The sampling process can be easily performed in one pass

over the data, as described in the algorithm below.

Two-level sampling(A)

1 for every tuple t in A do
2 if h(t.v) < pv then
3 if v has never been sampled then
4 sA(v)← t
5 cv ← 1

6 else
7 cv ← cv + 1

8 set sA(v)← t with probability 1
cv

9 Sample t with probability q into SA(t.v)

10 Exclude sA(v) from SA(v) for each v

Note that line 3–8 essentially uses reservoir sampling [22]
to pick the sentry for each value v. The counter cv records
the number of tuples with join value v that have been seen,
so as to sample the sentry with the correct probability.

We also note that this sampling algorithm is “embarrass-
ingly parallel”. The table can be arbitrarily partitioned and
we can run the algorithm on each partition. The tuples sam-
pled in level two can be trivially combined. For each join
value v, each partition will return a sentry. To combine them
into one, we just need choose one randomly, using probabil-
ities proportional to apv, where apv denotes the frequency of
join value v in partition p. Note that apv can be easily com-
puted as the sentry is sampled from each partition p.

2.2 The Estimator
Let Jv = avbv. As long as we have an unbiased estimator

Ĵv for Jv, the join size can be estimated as Ĵ2lvl =
∑
v Ĵv.

An unbiased estimator for Jv is

Ĵv =

1
pv

(
|SA(v)|

q
+ 1
)(
|SB(v)|

q
+ 1
)
,

if v is sampled for A and B;
0, otherwise.

We give the proof of unbiasedness in Appendix A.1. In-

tuitively, the “1” stands for the sentry, and |SA(v)|
q

estimates

av−1, as every tuple (excluding the sentry) is sampled with
probability q. But this is all conditioned upon v being sam-
pled in the first level, which happens with probability pv, so
we scale up the whole thing up by 1/pv.

The derivation of the variance is a bit more involved than
that for independent Bernoulli and correlated sampling, due
to the two-step sampling process. The basic idea is to ex-
press the sampling process by two random variables, one

indicating whether v is sampled at all while the other cap-
turing |SA(v)| and |SB(v)|. Note that conditioned upon v
being sampled in the first level, |SA(v)| and |SB(v)| follow
a binomial distribution. Then we can use the law of total
variance to combine the variances of the two levels. The
detailed derivation is given in Appendix A.2, which yields

Var[Ĵ2lvl] =
∑

v:avbv 6=0

Var[Ĵv] =
∑

v:avbv 6=0

(
1

pv
σ2
1(v) + σ2

2(v)

)
,

(1)
where

σ2
1(v) =

(
1

q2
− 1

)
(av − 1)(bv − 1)

+

(
1

q
− 1

)
(bv − 1)(a2v − av + 1)

+

(
1

q
− 1

)
(av − 1)(b2v − bv + 1),

and

σ2
2(v) =

(
1

pv
− 1

)
a2vb

2
v.

When selection predicates cA and cB are present, we sim-
ply apply the predicate on the sample before making the
estimation. More precisely, let ScAA (v) and ScBB (v) be the
set of sampled tuples in SA(v) and SB(v) satisfying the re-
spective predicates. Let IcAA (v) (resp. IcBB (v)) be 1 if the
sentry sA(v) (resp. sB(v)) satisfies cA (resp. cB) and 0 oth-

erwise. The estimator is still Ĵ2lvl =
∑
v Ĵv, but Ĵv now

becomes:

Ĵv =

1
pv

(
|ScA

A
(v)|
q

+ IcAA (v)

)(
|ScB

B
(v)|
q

+ IcBB (v)

)
,

if v is sampled for A and B;
0, otherwise.

We prove that this estimator is unbiased Appendix A.3.
The variance retains the same form as in (1), but σ2

1(v)
and σ2

2(v) now become

σ2
1(v) =

(
1

q2
− 1

)
(acAv −

acAv
av

)(bcBv −
bcBv
bv

)+(
1

q
− 1

)
(bcBv −

bcBv
bv

)

(
(acAv)2 − acAv +

acAv
av

)
+(

1

q
− 1

)
(acAv −

acAv
av

)

(
(bcBv)2 − bcBv +

bcBv
bv

)
,

and

σ2
2(v) =

(
1

pv
− 1

)
(acAv)2(bcBv)2,

where acAv = |AcA(v)|, bcBv = |BcB (v)|. The detailed deriva-
tion can be found in Appendix A.4. Since acAv ≤ av, b

cB
v ≤

bv, it is obvious that the variance can only become smaller
under selection predicates. As pointed out in [21], this is a
major advantage of sampling based approaches.

In the rest of this section, we discuss how to set the pa-
rameters pv and q, depending on the join type and whether
frequency information is available. We also make analytical
comparisons with previous sampling algorithms, identifying
the quantitative improvement offered by two-level sampling.
We realize that this is essentially an optimization problem

where the goal is to minimize Var[Ĵ2lvl] under a given sample

size constraint. However, Var[Ĵ2lvl] is different for different
predicates, and what is worse, the acAv , bcBv ’s are not known
until query time, while we need to do the sampling before-
hand. Therefore, we decide to set the sampling parameters
to minimize Var[Ĵ2lvl] without predicates. Essentially, we
optimize for the worst case; when predicates are present,
the variance can only be smaller.

2.3 PK-FK Joins, Frequencies Unknown
Without loss of generality, assume that the join attribute

is a primary key in B and a foreign key in A, so bv = 1 for all
v. When the frequencies are unknown, we set all the pv to p.
Note that the objective that we want to minimize, Var[Ĵ2lvl],
is a function of the av’s and bv’s, as well as p and q. But
it turns out to minimize Var[Ĵ2lvl], we do not need to know
all the frequencies, but only some aggregate statistics of the
frequency vector. Specifically, we assume that we know the
distinct count of a, i.e., ‖a‖0, and an AMS sketch [9] of a
so that we know ‖a‖2 (approximately). If we are deprived
of even these basic statistics, then the problem is hopeless
since we know nothing about the data at all.

Let n be the desired sample size. With pv = p and bv =

1 for all v, Var[Ĵ2lvl] simplifies to
∑
v

1
p

(
1
q
(av − 1) + a2v

)
.

Thus, the problem becomes the following optimization prob-
lem.

minimize
∑
v

1

p

(
1

q
(av − 1) + a2v

)
s.t. p · (q(‖a‖1 − ‖a‖0) + ‖a‖0) + p‖b‖1 = n

p, q ∈ [0, 1]

This problem can be solved optimally, with the following
solution (details given in Appendix A.5).

q =

n−‖a‖0−‖b‖1
‖a‖1−‖a‖0

, if
√

‖a‖0+‖b‖1
‖a‖22−‖a‖1+‖a‖0

< n−‖a‖0−‖b‖1
‖a‖1−‖a‖0

;

1, if
√

‖a‖0+‖b‖1
‖a‖22−‖a‖1+‖a‖0

> 1;√
‖a‖0+‖b‖1

‖a‖22−‖a‖1+‖a‖0
, otherwise,

and

p =
n

‖b‖1 + ‖a‖0 + q(‖a‖1 − ‖a‖0)
.

Observe that two-level sampling degenerates into corre-
lated sampling when q = 1, so two-level sampling can never
be worse than correlated sampling. Meanwhile, whenever
the optimal value of q is less than 1, the reason must be
that it can achieve a smaller variance. This in turn means
that as long as ‖a‖22 > ‖a‖1 + ‖b‖1, two-level sampling is
strictly better than correlated sampling. This condition is
easily met for PK-FK joins, e.g., when each primary key is
joined with at least 2 foreign keys. Note that if each primary
key is joined with only one foreign key, the problem simply
becomes the extreme case in Figure 1(a), which is also the
best case for correlated sampling.

Next we examine, quantitatively, how much two-level sam-
pling can be better than correlated sampling. As the choice
of p and q depends on the desired sample size n, we consider
the following two cases.

Let τ = ‖a‖0 + ‖b‖1 + (‖a‖1 − ‖a‖0) ·
√

‖a‖0+‖b‖1
‖a‖22−‖a‖1+‖a‖0

.

When n < τ , the variance for two-level sampling is:

Var(Ĵ2lvl) =

1

n

(√
‖a‖0 + ‖b‖1

‖a‖22 − ‖a‖1 + ‖a‖0
(‖a‖1 − ‖a‖0) + ‖a‖0 + ‖b‖1

)
·

(√
‖a‖22 − ‖a‖1 + ‖a‖0
‖a‖0 + ‖b‖1

(‖a‖1 − ‖a‖0) + ‖a‖22

)
− ‖a‖22

≈
(‖a‖1 +

√
‖a‖22‖b‖1)2

n
.

When n > τ , the variance for two-level sampling is

Var(Ĵ2lvl) =
(‖a‖1 − ‖a‖0)2

n− ‖a‖0 − ‖b‖1

≤ (‖a‖1 − ‖a‖0)

√
‖a‖22 − ‖a‖1 + ‖a‖0
‖a‖0 + ‖b‖1

.

For correlated sampling, we must set p = n
‖a‖1+‖b‖1

. Its

variance is thus

Var(ĴCor) =

(
‖a‖1 + ‖b‖1

n
− 1

)
‖a‖22 ≈

‖a‖1 + ‖b‖1
n

‖a‖22.

Therefore, when n < τ ,

Var(Ĵ2lvl)

Var(ĴCor)
≈
‖a‖1 ·

(
‖a‖1
‖a‖22

+ 2
√
‖b‖1
‖a‖22

)
+ ‖b‖1

‖a‖1 + ‖b‖1
≈ ‖b‖1‖a‖1

+

√
‖b‖1
‖a‖22

.

When n > τ ,

Var(Ĵ2lvl)

Var(ĴCor)
<

n

‖a‖1 + ‖b‖1
‖a‖1√
‖a‖22‖b‖1

<
n

‖a‖1 + ‖b‖1
.

For PK-FK joins, we usually have ‖a‖22 � ‖a‖1 � ‖b‖1,
and of course ‖a‖1 + ‖b‖1 � n for the sampling to make
sense. In Section 5, we validate these findings empirically
using TPC-H benchmark data.

For independent Bernoulli sampling, we must set q =
n

‖a‖1+‖b‖1
. Its variance is thus

Var(ĴBer) =‖a‖1
(
‖a‖1 + ‖b‖1

n

)2

+ (‖a‖22 − ‖a‖1)
‖a‖1 + ‖b‖1

n
− ‖a‖22

≈‖a‖1
(
‖a‖1 + ‖b‖1

n

)2

+ ‖a‖22
(
‖a‖1 + ‖b‖1

n

)
,

which is always larger than that of correlated sampling,
therefore must also be larger than that of two-level sam-
pling.

Note that in [21], it was observed empirically that corre-
lated sampling is always better than independent Bernoulli;
our analysis thus serves as the theoretical justification of this
fact.

2.4 Many-Many Joins, Frequencies Unknown
For many-many joins, we need to solve the following op-

timization problem, where Var[Ĵ2lvl] is defined as in (1) and
cannot be simplified.

minimize Var[Ĵ2lvl]

s.t. p(‖a‖0 + ‖b‖0 + q(‖a‖1 − ‖a‖0) + q(‖b‖1 − ‖b‖0))

= n

p, q ∈ [0, 1].

Taking derivative of the objective function and equating
it to zero, we have

(‖a‖1 + ‖b‖1 − ‖a‖0 − ‖b‖0) · c1q3

− ((‖a‖1 + ‖b‖1 − ‖a‖0 − ‖b‖0)c2 + (‖a‖0 + ‖b‖0)c3) · q
− (‖a‖0 + ‖b‖0)c2 = 0,

(2)
where

c1 =
∑
v

a2vb
2
v − c2 − c3,

c2 =
∑
v

(av − 1)(bv − 1),

c3 =
∑
v

(bv − 1)(a2v − av + 1) + (av − 1)(b2v − bv + 1).

Note that these quantities can all be expressed in terms of∑
v a

i
vb
j
v for i, j = 0, 1, 2, and each of these terms can be

approximately computed by the AMS sketch of the data [9].
Therefore, we can solve (2) for the optimal solution of p and
q. The exact formula, though, is very complicated (it is a
cubic equation) and thus omitted. In addition, we need to

take the constraint q ∈ [n−‖a‖0−‖b‖0
‖a‖1+‖b‖1−‖a‖0−‖b‖0

, 1] into consid-

eration, comparing the roots of (2) with the boundaries of
this constraint.

Next, we compare the variance of two-level sampling with
that of correlated sampling. However, using the complicated
cubic roots of (2) is almost impossible for a clean compar-
ison, so we assume av � 1, bv � 1, and simplify the opti-
mization problem by dropping some lower terms. Specifi-
cally, we simplify the objective function to

q · (c2
q2

+
c3
q

+ c1), (3)

where c1 ≈ 〈a, a, b, b〉, c2 ≈ 〈a, b〉, c3 ≈ 〈a, a, b〉 + 〈a, b, b〉.
Here we generalize the inner product notation to multiple
vectors as 〈x, y, z〉 =

∑
i xiyizi.

(3) is minimized when q =
√

c2
c1

=
√
‖a◦b‖1
‖a◦b‖22

. Plugging into

the variance of two-level sampling and correlated sampling,
we obtain

Var(Ĵ2lvl)

Var(ĴCor)
≈
c3 +

√
c1c2

c1
.

For av � 1, bv � 1, we have c1 � c3 � c2, so we conclude
that two-level sampling is always better than correlated sam-
pling for many-many joins.

However, there is no definitive comparison between two-
level sampling with independent Bernoulli for many-many
joins. In fact, according to our experimental results on Twit-
ter data, independent Bernoulli remains the best algorithm
for many-many joins when the frequencies are unknown.

2.5 Frequencies Known
Next, we examine how to make use the frequency infor-

mation to improve the accuracy of sampling. We will first
assume that the frequency vectors a and b are known in their
entirety, and then discuss how to adapt the algorithm if only
the heavy hitters are known.

Intuitively, the level-one sampling probability pv should be
a monotonically increasing function of av and bv. Indeed,
end-biased sampling [10] adopts the natural choice of a linear
function. The level-two sampling probability q, on the other
hand, is applied to each individual tuple, so we see no reason
why this should be different for different tuples.

Let n be the desired sample size. Then the problem be-
comes minimizing Var[Ĵ2lvl] as defined in (1), subject to the
following constraint:∑

v:avbv 6=0

pv(2 + q(av + bv − 2)) = n. (4)

Note that we do not sample v if avbv = 0.
We first rewrite (1) as

Var[Ĵ2lvl] =
∑
v

1

pv

(
σ2
1(v) + a2vb

2
v

)
−
∑
v

a2vb
2
v.

The second term does not depend on pv or q, so we just need
to minimize the first term. Plugging in (4), we rewrite the
first term as

1

n

(∑
v

pv(2 + q(av + bv − 2))

)(∑
v

1

pv

(
σ2
1(v) + a2vb

2
v

))
.

(5)
Applying the Cauchy-Schwarz inequality, we have

(5) ≥ 1

n
·

(∑
v

√
(σ2

1(v) + a2vb2v) · (2 + q(av + bv − 2))

)2

.

(6)
The equality holds when

pv = C ·

√
σ2
1(v) + a2vb2v

2 + q(av + bv − 2)
, (7)

where C is a scaling constant. This also minimizes Var[Ĵ2lvl].
Interestingly, this suggests that the optimal sampling prob-

ability pv is not necessarily a linear function of the frequency
of v. Consider for example the following two cases: For PK-
FK joins, bv = 1, then pv is roughly proportional to

√
av.

For many-to-many joins with av = bv, pv is roughly pro-
portional to a1.5v . Neither is a linear function of av. In the
former case, the contribution of a join value v to the join
size is linear in av, while this is a2v in the latter case. So,
high-frequency join values are more important in the latter
case than in the former case, which is intuitively the reason
why the sampling probability pv should take functions of
different growth rates in different cases.

There is still an unknown parameter q, which can be found
by minimizing (6). This is a complex algebraic function of
q, consisting of as many terms as the number of distinct join
values. But later we show how to simplify this by using only
the heavy hitters information about the join values.

Finally, we plug (7) and the optimal value of q into (4) to
solve for C, which gives us the pv’s. Note that the optimal
values of some pv’s may be larger than 1. For such v, we
reduce pv to 1, and increase the corresponding q so that
pv(2 + q(av + bv − 2)) remains the same, so as to keep the
desired sample size.

When only heavy hitters are available.
The above procedure assumes that all the av’s and bv’s

are available. We observe that the small av’s and bv’s have

very little impact when solving the optimization problem for
the optimal parameters. Therefore, in practice, we only use
the frequency information of the top-k most frequent join
values when solving the optimization problem. For every
infrequent join value v, we simply set

av =
‖a‖1 −

∑k
i=1 ai

‖a‖0 − k
,

where a1, . . . , ak are the frequencies of the top-k most fre-
quent join values. Even for the top-k frequent values, we do
not need to know their exact frequencies. Instead, there are
many efficient one-pass algorithms [17, 7] that we can use for
finding the heavy hitters and their approximate frequencies.
The same is done on table B.

Since we use the same frequency for all the infrequent join
values, their corresponding terms in (6) are the same, thus
can be combined into one, reducing the number of terms to
at most 2k + 1. Then we can efficiently minimize (6) using
numerical methods. Similarly, the equation involving the
scaling constant C also has at most 2k+ 1 terms, so can be
solved easily.

Although the actual frequencies of the infrequent join val-
ues do not affect the optimal values of q and C significantly,
they may affect the individual pv’s a lot. Therefore, we use
av = ak and bv = bk to first compute an upper bound on its
actual pv, denoted p̄v, and use p̄v to do the sampling. Then,
for each infrequent join value sampled, we keep a counter to
compute its actual av, bv, which can then be used to com-
pute the actual pv. Finally, we delete from the sample any
join value v with h(v) > pv.

3. CONFIDENCE INTERVALS
For any sampling method to be useful in practice, there

must be a way to tell how accurate the result is. This is
commonly expressed as a confidence interval, i.e., for a given
confidence level 1 − δ, the algorithm should return an esti-
mator Ĵ as well as an ε, such that

Pr[Ĵ − ε ≤ J ≤ Ĵ + ε] ≥ 1− δ,

where J is the true join size. Here, ε is also called the half-
width of the confidence interval. The challenge is that the
algorithm needs to compute ε also from the sample, without
looking at the raw data.

3.1 Correlated Sampling
We start from the simpler case, correlated sampling, which

a special case of two-level sampling with pv = p for all v and
q = 1. Observe that the estimator is the sum of indepen-
dent Bernoulli random variables, one for each v, that equals
avbv/pv with probability pv and 0 otherwise. According to
central limit theorem2, we have

ĴCor − J
Var[ĴCor]

d−→ N(0, 1),

where N(0, 1) denotes the normal distribution with mean 0

and variance 1, and
d−→ means “converge in distribution”.

2The standard central limit theorem also requires the ran-
dom variables to be identically distributed, but the theorem
actually applies to non-identical distributions as well, pro-
vided that each of them has bounded variance.

Thus it is sufficient to have an estimate for Var[ĴCor] =(
1
q
− 1
)∑

v a
2
vb

2
v. Since correlated sampling samples all the

av tuples in A and the bv tuples from B with probability p,
and nothing otherwise, Var[ĴCor] can be easily estimated as

V̂ar[ĴCor] =

(
1

q
− 1

)
1

q

∑
v

|SA(v)|2|SB(v)|2. (8)

When there are selection predicates, we simply replace
SA(v) and SB(v) with ScAA (v) and ScBB (v), respectively. Plug-

ging the estimated Var[ĴCor] into (8), the half width of the
confidence interval (with confidence level 1− δ) can be com-

puted as ε = zδ/2

√
V̂ar[ĴCor], where zδ/2 = Φ−1(δ/2) and

Φ(·) is the cdf of the normal distribution.

3.2 Two-Level Sampling
The estimator of two-level sampling is also the sum of

independent random variables (though not Bernoulli), so
we can still use the central limit theorem, and the prob-
lem reduces to estimating Var[Ĵ2lvl]. However, the form of

Var[Ĵ2lvl], as show in (1), is more complicated.

Expanding (1), we see that each term of Var[Ĵ2lvl] is of
the form

f(pv, q)ga(v)gb(v), (9)

where f(pv, q) is a a function of pv and q, which are known,

and ga(v) is one of acAv , (acAv)2, or a
cA
v
av

, gb(v) is one of

bcBv , (bcBv)2, or b
cB
v
bv

. Below, conditioned upon v being sam-

pled, we derive independent unbiased estimators ĝa(v), ĝb(v)
for ga(v), gb(v). Since v is sampled with probability pv, an
unbiased estimator for (9) is thus{

1
pv
f(pv, q)ĝa(v)ĝb(v), if v is sampled;

0, otherwise.
(10)

We just describe how to estimate ga(v); gb(v) can be es-

timated the same way. An unbiased estimator for a
cA
v
av

is

IcAA (v). Recall that IcAA (v) is 1 if the sentry sA(v) satisfies
the predicate cA, and 0 otherwise. Since we choose the sen-
try uniformly at random from the av tuples in A(v), we have

E[IcAA (v)] = Pr[sA(v) satisfies cA] = a
cA
v
av

.

An unbiased estimator for acAv is

âcAv =
|ScAA (v)|

q
+ IcAA (v).

An unbiased estimator for (acAv)2 is

(̂acAv)2 =

(
ScAA (v)

q
+ IcAA (v)

)2

+

(
1− 1

q

)
|ScAA (v)|

q
.

We prove the unbiasedness of these estimators in Appendix
A.7.

By linearity of expectation, summing up (10) over all v

gives us an unbiased estimator of Var[Ĵ2lvl]. Then the half-

width of the confidence interval is ε = zδ/2

√
V̂ar[Ĵ2lvl].

4. MULTI-TABLE JOINS
In this section, we extend two-level sampling to two most

common multi-table joins, chain joins and star joins. Un-
fortunately, it is still not clear how it can be applied to an
arbitrary multi-table join.

4.1 Chain Join
For concreteness, we describe how two-level sampling is

applied on a three-table chain join

A 1A.PK=B.FK B 1B.PK=C.FK C,

where A’s primary key joins a foreign key in B, and B’s
primary key joins a foreign key in C. This is very com-
mon in relational database schemas. For example, in the
TPC-H benchmark, customer joins orders on c_custkey =

o_custkey, while orders joins lineitem on o_orderkey =

l_orderkey. Extension to 4 or more tables is straightfor-
ward.

The idea is to use only the first level of sampling on A
and B, while use two levels on C. More precisely, we make
use of two independent random hash functions h1 and h2.
Tuples in A are sampled into SA if h1(u) < p where u is
the join value of A (i.e., its primary key). Tuples in B are
sampled into SB if h1(u) < p and h2(v) < p, where u is its
join value with A (i.e., the foreign key in B) and v is its join
value with C (i.e., primary key of B). For each join value v
in C, if h2(v) < p, a sentry sC(v) is sampled uniformly at
random from C(v), the set of tuples in C sharing the join
value v, while each of the other tuples in C(v) is sampled
with probability q.

The unbiased estimator for join size J , when each table
may have a selection predicate, is

Ĵ =
∑
u,v

Ĵu,v,

where Ĵu,v is defined as:

Ĵu,v =

1
p2
· |ScAA (u)| · |ScBB (u, v)| ·

(
|ScC

C
(v)|
q

+ IcCC (v)

)
,

if h1(u) < p and h2(v) < p;
0, otherwise.

Here, ScAA (u) denotes the set of tuples in A with join value
u that satisfy the predicate cA, ScBB (u, v) denotes the set of
tuples in B with join value u, v (i.e., its foreign key equals
u and primary key equals v) that satisfy the predicate cB .
ScCC (v) denotes the set of tuples in C with join value v that
satisfy the predicate cC ; IcAC (v) is 1 if sC(v) satisfies cC , and
0 otherwise.

Finding the optimal values of p and q for a multi-table join
is a very complicated optimization problem. Observing that
in practice, we usually have |A| � |B| � |C| for chain joins,
so the problem is largely dominated by B and C. Thus, as
a simple heuristic, we set the values of p and q by simply
considering the join between B and C, using the formula
derived in Section 2.3.

4.2 Star Join
A star join is performed on a large fact table and several

dimension tables. Each dimension table has a primary key
that joins a foreign key in the fact table. Again, we describe
the sampling algorithm on the following three-table star join;
extension to more than 3 tables is straightforward.

A 1A.PK=B.FKA B 1B.FKC=C.PK C.

In the star join above, B is the fact table, while A and
C are dimension tables. Still using the TPC-H benchmark
example, B can be lineitem, while A and C are part and

supplier, respectively, joining on p_partkey = l_partkey

and s_suppkey = l_suppkey.
The idea is to use one level of sampling on A and C while

use two levels on B. Similar to chain joins, we make use of
two independent random hash functions h1 and h2. Tuples
in A are sampled into SA if h1(u) < p where u is the join
value of A (i.e., its primary key). In the same way, tuples
in C are sampled into SC if h1(v) < p where v is the join
value of C. Treatment of B is sightly different, as it has
two join attributes, both of which are foreign keys. The
idea is to consider each combination of u, v and perform the
second level sampling for each combination. More precisely,
let B(u, v) be the set of tuples in B with its FKA value
equal to u and FKC value equal to v, a sentry sB(u, v)
is sampled uniformly from B(u, v); then each of the other
tuples in B(u, v) is sampled with probability q.

The unbiased estimator for join size J is

Ĵ =
∑
u,v

Ĵu,v,

where Ĵu,v is defined as:

Ĵu,v =

1
p2
· |ScAA (u)| ·

(
|ScB

B
(v)|
q

+ IcBB (v)

)
· |ScCC (v)|,

if h1(u) < p and h2(v) < p;
0, otherwise.

To find the optimal values of p and q, we imagine the
star join as a two table PK-FK join, by combining all the
dimension tables into one large dimension table, and then
use the formula derived in Section 2.3.

5. EXPERIMENTS
We have experimentally compared the estimation accu-

racy of four sampling algorithms: independent Bernoulli,
correlated sampling, end-biased sampling and two-level sam-
pling on a variety of joins, under the same sample size con-
straint. For two-level sampling, the experiments included
its two versions, when the frequency information is either
unknown or known; for the latter case, we only use the top-
10,000 most frequent join values as described in Section 2.5.
Note that end-biased sampling also requires the frequency
information, and we in fact give it the information in full.

For each experiment, we repeat the sampling procedure
500 times and measure the relative error from the true join
size. In the figures below, we report both the median error
and the 90%-quantile error.

5.1 PK-FK Joins
For PK-FK joins, we used the TPC-H data with a scale

factor of 10. We used the join between lineitem and sup-

plier on l_suppkey = s_suppkey. Here is the basic sta-
tistical information about the two tables: ‖a‖1 = 5.9 ×
107, ‖a‖0 = ‖b‖1 = 105, ‖a‖22 = 3.6× 1010.

Figure 2 shows the relative error of the sampling algo-
rithms for different sampling sizes, which vary from 0.01%
to 3% of the raw data. Note that TPC-H data is quite uni-
form, so all the av’s are similar. This means that end-biased
sampling essentially degenerates into correlated sampling,
while frequency information is not useful for two-level sam-
pling, either. So the results of these two frequency-aware
sampling algorithms are not shown in the figure.

Figure 2: PK-FK join on TPC-H data.

These experimental results validate our analytical com-

parison in Section 2.3: The analysis shows that Var[Ĵ2lvl]

Var[ĴCor]
≈

‖b‖1
‖a‖1

+
√
‖b‖1
‖a‖22

≈ 10−2. Note that the variance is the square

of the error, so we expect a 10-fold reduction in terms of the
error. Our experimental results largely confirm this predic-
tion, with some small discrepancy due to some lower order
terms being omitted in the analysis. We also see that corre-
lated sampling performs better than independent Bernoulli,
which agrees with the previous experimental results [21], and
also validates our analysis in Section 2.3.

In addition, we see that the gap between the median er-
ror and the 90%-quantile error is quite small for two-level
sampling, which means that it is more robust than the other
sampling methods. This is not surprising, since by the cen-
tral limit theorem, the errors follows a normal distribution,
so this gap also depends on the variance of the estimators.

Selection predicates.
Next, we add predicates to the join with varying selec-

tivities. Specifically, we added a predicate discount < x

and varied x to control the selectivity, which is defined as
the percentage of tuples satisfying the predicate. We also
tried using two predicates discount < x and shipdate < y

together.
The experimental results are shown in Figures 3 and 4.

We see that as the predicates become more selective, i.e.,
less tuples are selected, the errors of all sampling schemes
increase . This is because the number of sampled tuples that
pass the predicates decrease, reducing the effective sample
size. The experimental results suggest that Bernoulli sam-
pling suffers more from selective predicates than the other
sampling schemes.

Data skew.
The default TPC-H data is quite uniform. To see how the

sampling algorithms deal with data skew, we regenerated the
lineitem table following the Zipf distribution. This results
in a few large suppliers with many lineitems, and a long
tail of small suppliers. The skewness is controlled by the
Zipf parameter α, which we vary from 0 (no skew) to 2
(highly skewed). Note that a high skewness leads to a larger

Figure 3: PK-FK join on TPC-H data with one
predicate

Figure 4: PK-FK join on TPC-H data with two
predicates

‖a‖22, and two-level sampling (even if frequency information
is unknown) should perform better on more skewed data.

The results are shown in Figure 5 over a varying α, while
the sample size is fixed at 0.1% of raw data. From the re-
sults we see the following trends: (1) As predicted by our
analysis, the gap between two-level sampling and the other
sampling algorithms becomes larger as skewness increases.
(2) All sampling algorithms, except the frequency-aware ver-
sion of two-level sampling, suffer from high skewness. This
suggests that frequency information (at least the heavy hit-
ters) is very important in controlling the error of the estima-
tion. (3) Somehow counter-intuitively, end-biased sampling
also performs badly on skewed data. In fact, the same phe-
nomenon was also observed in previous experimental studies
[21]. The explanation is that, end-biased sampling uses a
sampling probability proportional the frequency to sample
the heavy hitters. This reduces their variances linearly, but
the sample size allocated to the heavy hitters also grows lin-
early. As the error is the square root of the variance, this
actually results in a worse net effect.

Confidence intervals.
Next, we validate our method for computing the confi-

dence intervals. For this purpose, we run the two-level sam-
pling algorithm 500 times, each time computing a confidence
interval with various confidence levels, and then see how

Figure 5: PK-FK join on skewed TPC-H data

Sample size
Confidence level 0.1% 0.3% 1%

80% 93.2% 90.8% 80%
90% 97.4% 96.2% 90%
95% 99.4% 99% 96.4%
98% 100% 99.6% 98.6%
99% 100% 99.6% 99.4%

99.8% 100% 99.8% 99.8%

Table 2: Percentages of runs in which true join size
falls inside confidence interval.

many times the true join size indeed falls inside the confi-
dence interval. The results are shown in Table 2. Note that
ideally (i.e., if the estimator’s distribution follows exactly
the normal distribution), we would expect to see the per-
centage of runs in which the true join size falls inside the
confidence interval to match the given confidence level. Em-
pirically, we see that for relatively large sample size, say 1%,
the two percentages are almost equal, suggesting that the
central limit theorem applies quite well. For smaller sample
sizes, it seems that the actual distribution of the estimator
is more concentrated than the normal distribution, so that
the actual percentage of the confidence intervals containing
the true join size is larger than the given confidence level.
This means that when sample size is small, there is more
leeway in the confidence intervals computed based on the
central limit theorem.

5.2 Many-Many Joins
For many-many joins, we first used the TPC-H data to

perform the join between lineitem and partsupp on l_suppkey

= ps_suppkey. As this is a uniform data set, we did not
include the two frequency-aware sampling algorithms. The
results on the other sampling algorithms are shown in Figure
6. We note that the previous study [21] did not perform ex-
periments on many-many joins, thus drawing the conclusion
that correlated sampling is always better than independent
Bernoulli. However, as we see from Figure 6, it is the other
way around on many-many joins. Two-level sampling, which
combines the advantages of both independent Bernoulli and
correlated sampling, performs better than both.

To see how the sampling algorithms perform on skewed
data, we used the Twitter data set, obtained from [14]. It
describes the follower-followee relationship among Twitter

Figure 6: Many-many join on TPC-H data

Figure 7: Many-many join on Twitter Data

users. The table has 1.4 × 109 tuples involving 4.2 × 107

users. It features a highly skewed distribution, where a few
users have many followers and followees, with a long tail of
users with smaller degrees. We join the table with a logical
copy of itself, to find all the 2-hop “follows” relationships,
i.e., person1 → person2 → person3. Note that estimat-
ing the size of such joins is crucial in choosing the best query
plan for more complex graph pattern joins, such as triangle
joins. Figure 7 shows the results on this join. Correlated
sampling and end-biased sampling perform very badly that
their errors are beyond the scope of the plot. The relative
error for correlated sampling is more than 1000 times that
of two-level sampling, and the relative error for end-biased
sampling is around 400 times that of two-level sampling.
We already saw earlier that they perform badly on PK-FK
joins when data is skewed in one table (there is no skew
in the PK table by definition), while the join on the Twit-
ter data is between two highly skewed tables, which explains
why their errors are off the chart. Two-level sampling, when
frequency information is unknown, also performs badly. So
the only competitive algorithms in this case are independent
Bernoulli and two-level sampling (frequency aware). Be-
tween the two, two-level sampling outperforms independent
Bernoulli by roughly a factor of 3.

5.3 Multi-Table Joins
Finally, we conducted experiments on chain and star joins

using TPC-H data. First, we used the 3-table chain join

Figure 8: 3-table chain join on TPC-H data

Figure 9: 3-table star join on TPC-H data

customer ./ orders ./ lineitem, where the first two rela-
tions join on custkey while the latter two join on orderkey.
Figure 8 shows the results for chain join. The trends are
similar to those observed earlier on PK-FK joins in Figure
2, because a chain join can be seen as a generalization of a
PK-FK join. However, compared with Figure 2, both cor-
related sampling and two-level sampling now suffer from a
very small sample size, since it is more difficult to sample
joined tuples from three tables at the same time.

For star joins, where we used lineitem as the fact table,
and used part and supplier as the dimension tables. The
joining attributes are partkey and suppkey, respectively.
The results on this join is shown in Figure 9. Again, qual-
itatively the trends are similar to those on PK-FK joins in
Figure 2. However, the gap between correlated sampling and
two-level sampling has narrowed, since the having a second
dimension table effectively introduces more join values as
each combination of the dimensions defines a “join value”.
This in turn reduces the `2-norm of the fact table, which de-
termines the relative advantage of two-level sampling over
correlated sampling.

5.4 Performance
Eventually, the sampling will be used by the query opti-

mizer for estimating intermediate join sizes at query time,
before the query is actually executed. Thus it has to be very
lightweight. To this end, we have run experiments measur-
ing the running time of the join size estimation algorithm.

Data set Query % runs leading to optimal plan
Bernoulli Correlated Two-Level

TPC-H data lineitem ./ orders ./ supplier 53% 73% 85%
Twitter triangle query 62% 41% 86%

Table 3: Join size estimation for query optimization

Figure 10: Join size estimation times on different
queries
The experiments were conducted on a machine with an In-
tel i7-4770 processor and 32 GB of main memory. Note that
even on the largest data set (24GB Twitter data), the largest
sample has size 720MB and comfortably fits in memory.

All sampling schemes operate in two s to estimate a join
size: (1) scan through the sample and find all tuples sat-
isfying the predicates; and (2) join the tuples and scale up
the join size. The only difference among different sampling
schemes is the scaling up formula, so the query times of dif-
ferent sampling schemes are almost identical. Thus we just
report the running times of two-level sampling below.

Figure 10 shows the query time of two-level sampling for
different queries over different sample sizes. It is clear that
the query time has a linear dependency on the sample size
(queries on the Twitter data is slower because the base data
size is larger, so the absolute sample size is also larger). This
is because step (1) is clearly linear; and step (2) is also linear
as we can store the tuples in the join key order so that we
can run sort-merge join in linear time. Also, even for many-
many joins, we do not have to actually enumerate all join
results in order to compute the join size. Our scaling up
formula just needs the number of tuples in the sample for
each join key value. The figure shows that for most cases,
the query time is on the order of milliseconds. It can get
larger for larger sample size, but our previous experiments
already show that a sample size of 0.1% already provides
enough accuracy for most cases.

To put these numbers into context, we also ran the same
queries (in full, without indexes) in Oracle Database 12c.
For the PK-FK query, the time is 150 seconds; for the many-
many join on the Twitter data, it takes more than 10 hours.
It means that the milliseconds spent in join size estimation
are really negligible in the overall query time, and may be
well worthy.

5.5 Applicability and Coverage
Although it is still not clear how two-level sampling can

be applied to an arbitrary join, the current set of joins sup-
ported (two-table joins, chain joins, and star joins) already

provide good coverage. To quantify this, we examined all
the 22 queries in the TPC-H benchmark. Among them, 11
of them involve joins with 3 or more tables, for which the
join order optimization problem arises. For each such query,
we enumerated all its join plans, and checked whether ev-
ery intermediate join size of each plan can be estimated by
two-level sampling. Meanwhile, we note that the TPC-H
benchmark data has two tiny dimension tables nation and
region. We can sample all their tuples such that any in-
termediate join involving these tiny tables can be estimated
without extra error. Then, it turns out that two-level sam-
pling can cover nearly all the 11 queries of interest. The
only exception is Q5, which has 2 join plans (out of a total
of 8) containing intermediate joins that cannot be estimated
by two-level sampling.

Finally, to see the potential impact on query optimiza-
tion, we ran experiments to test the ability of these sam-
pling methods to find the optimal join plan for a given query.
Here, we made the simplifying assumption that the cost of
a join plan depends solely on the intermediate join sizes; in
practice, many other factors should be taken into account,
such as the availability of indexes, which tables are cached
in memory and which are on disk, what join algorithms can
be used, etc, which are beyond the scope of this work. We
chose two typical queries. The first is a 3-table PK-FK join
lineitem ./ orders ./ supplier on the TPC-H benchmark
data, which has 2 join plans. The second is a many-to-
many triangle self-join on the Twitter data, which has 3
join plans. To make the costs of these 3 plans different,
we used an asymmetric triangle join: person1 → person2,
person2 → person3, person1 → person3. We repeat each
query 500 times and see how many times the estimates of
for the intermediate join sizes lead to the optimal plan being
selected. The results in Table 3 again confirm our previous
analysis: Correlated sampling performs better on PK-FK
joins, while Bernoulli sampling works better on many-to-
many joins. Two-level sampling, combining the benefits of
both worlds, performs the best in either case.

6. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we have introduced a new sampling al-

gorithm for join size estimation called two-level sampling,
which combines the advantages of previous sampling algo-
rithms and outperforms them on a variety of joins. One im-
portant direction for future work is to integrate it into large-
scale distributed query processing engines. Recent studies
[5] on complex join processing have suggested that the in-
termediate result size plays a critical role in determining the
best join algorithm to use, especially in a distributed en-
vironment. Therefore, it would be very interesting to see
how the proposed algorithm can contribute to large-scale
distributed query processing engines.

7. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. Join synopses for approximate query

answering. In ACM SIGMOD Record, volume 28,
pages 275–286. ACM, 1999.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 29–42. ACM,
2013.

[3] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.
Tracking join and self-join sizes in limited storage. In
Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’99, pages 10–20, New
York, NY, USA, 1999. ACM.

[4] K. Chakrabarti, M. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using
wavelets. The VLDB Journal, 10(2-3):199–223, 2001.

[5] S. Chu, M. Balazinska, and D. Suciu. From theory to
practice: Efficient join query evaluation in a parallel
database system. In Proc. ACM SIGMOD
International Conference on Management of Data,
2015.

[6] G. Cormode and M. Garofalakis. Sketching streams
through the net: Distributed approximate query
tracking. In Proc. International Conference on Very
Large Data Bases, 2005.

[7] G. Cormode and M. Hadjieleftheriou. Finding
frequent items in data streams. In Proc. International
Conference on Very Large Data Bases, 2008.

[8] G. Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data
streams. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data,
pages 61–72. ACM, 2002.

[10] C. Estan and J. F. Naughton. End-biased samples for
join cardinality estimation. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International
Conference on, pages 20–20. IEEE, 2006.

[11] S. Ganguly, P. B. Gibbons, Y. Matias, and
A. Silberschatz. Bifocal sampling for skew-resistant
join size estimation. In ACM SIGMOD Record,
volume 25, pages 271–281. ACM, 1996.

[12] P. J. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In Proc. Ninth Intl.
Conf. Scientific and Statistical Database Management,
1997.

[13] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma,
R. Grandl, S. Chaudhuri, and B. Ding. Quickr: Lazily
approximating complex ad-hoc queries in big data
clusters. In Proc. ACM SIGMOD International
Conference on Management of Data, 2016.

[14] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW,
2010.

[15] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join:
Online aggregation via random walks. In Proc. ACM
SIGMOD International Conference on Management of
Data, 2016.

[16] R. J. Lipton and J. F. Naughton. Query size
estimation by adaptive sampling. In Proc. ACM
Symposium on Principles of Database Systems, 1990.

[17] A. Metwally, D. Agrawal, and A. Abbadi. An
integrated efficient solution for computing frequent
and top-k elements in data streams. ACM
Transactions on Database Systems, 31(3):1095–1133,
2006.

[18] F. Rusu and A. Dobra. Pseudo-random number
generation for sketch-based estimations. ACM
Transactions on Database Systems, 32(2), Article 11,
2007.

[19] F. Rusu and A. Dobra. Sketches for size of join
estimation. ACM Transactions on Database Systems,
33:1–46, 2008.

[20] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation.

[21] D. Vengerov, A. C. Menck, M. Zait, and S. P.
Chakkappen. Join size estimation subject to filter
conditions. Proceedings of the VLDB Endowment,
8(12):1530–1541, 2015.

[22] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

APPENDIX
A. DETAILED ANALYSES

A.1 Proof of Unbiasedness of Ĵ
Proof. For each v such that avbv 6= 0, we have:

E[Ĵv] =p · E[Ĵv | h(v) < p]

=E
[(
|SA(v)|

q
+ 1

)
·
(
|SB(v)|

q
+ 1

)
| h(v) < p

]
=

(
q(av − 1)

q
+ 1

)
·
(
q(bv − 1)

q
+ 1

)
= avbv.

For each v such that avbv = 0, we have E[Ĵv] = 0 = avbv.
It follows that:

E[Ĵ] =
∑
v

avbv = |A 1 B|.

A.2 Proof of Variance of Ĵ
Proof. For each v such that avbv = 0, we know that

Var[Ĵv] = 0.

For each v such that avbv 6= 0, we define Xv = pq2 · Ĵv
and define Yv = (|SA(v)|+ q) · (|SB(v)|+ q). We have that:

Xv =

{
Yv, if h(v) ≤ p,
0, otherwise.

(11)

Note that Xv equals Yv with probability p and 0 otherwise.
And we now have Var[Ĵ] =

∑
v Var[Ĵv] =

∑
v:avbv 6=0 Var[Ĵv] =∑

v:avbv 6=0 Var(Xv)/p2q4.

By Law of Total Variance, Var[Xv] = EYv [Var(Xv | Yv)]+
VarYv [E[Xv | Yv]].

We have

EYv [Var[Xv | Yv]] = EYv [p(1−p)Y 2
v] = p(1−p)(Var[Yv]+E2[Yv]),

and

VarYv [E[Xv | Yv]] = VarYv [pYv] = p2Var[Yv].

It follows that

Var[Xv] = pVar[Yv] + p(1− p)E2[Yv].

We have

E[Yv] = E [(|SA(v)|+ q) · (|SB(v)|+ q)] = q2avbv,

and

Var[Yv] =E
[
(|SA(v)|+ q)2

]
· E
[
(|SB(v)|+ q)2

]
−

E2 [(|SA(v)|+ q)] · E2 [(|SB(v)|+ q)] .

Since |SA(v)| ∼ Binomial(av−1, q) and |SB(v)| ∼ Binomial(bv−
1, q), we have

E[|SB(v)|] = q(av − 1),

E[|SB(v)|2] = q2(av − 1)2 + (av − 1)q(1− q).

It follows that

Var[Ĵ] =
∑

v:avbv 6=0

Var[Ĵv] =
∑

v:avbv 6=0

1

p
σ2
1(v) + σ2

2(v),

where σ2
1(v) and σ2

2(v) are as claimed in the lemma.

A.3 Proof of Unbiasedness with Selection Pred-
icates

For each v such that acAv bcBv = 0, we have E[Ĵv] = 0 =
acAv bcBv .

For each v such that acAv bcBv 6= 0, conditioned on h(v) < p
we have that:

E
[
|ScAA (v)|

q
| h(v) < p

]
=E

[
|ScAA (v)|

q
| IcAA (v) = 0

]
· Pr[IcAA (v) = 0]

+ E
[
|ScAA (v)|
pA

| IcAA (v) = 1

]
· Pr[IcAA (v) = 1]

=
acAv
av

(av − 1),

E[IcAA] =
acAv
av

,

E[Ĵv] =p · E[Ĵv | h(v) < p]

=p · E
[
|ScAA (v)|

q
+ IcAA (v) | h(v) < p

]
· E
[
|ScBB (v)|

q
+ IcBB (v) | h(v) < p

]
= acAv bcBv .

It follows that Ĵ is an unbiased estimator.

E[Ĵ] =
∑
v

acAv bcBv = |A 1cA,cB B|.

A.4 Proof of Variance with Selection Predi-
cates

Proof. For each v such that acAv bcBv = 0, we know that
Var[Ĵv] = 0. For each v such that acAv bcBv 6= 0, we define

Xv = pq2 · Ĵv and define Yv = (ScAA (v)+qIcAA (v)) · (ScBB (v)+
qIcBB (v)):

Xv =

{
Yv, if h(v) ≤ p;
0, otherwise.

Note that Xv equals Yv with probability p and 0 otherwise.
And we now have Var[Ĵ] =

∑
v Var[Ĵv] =

∑
v:avbv 6=0 Var[Ĵv] =∑

v:avbv 6=0 Var[Xv]/p2q2q2 as Ĵv’s are pair-wise independent.

By Law of Total Variance, Var[Xv] = EYv [Var(Xv | Yv)]+
VarYv [E[Xv | Yv]].

We have:

EYv [Var[Xv | Yv]] = EYv [p(1−p)Y 2
v] = p(1−p)(Var[Yv]+E2[Yv]),

and

VarYv [E[Xv | Yv]] = VarYv [pYv] = p2Var[Yv].

It follows that:

Var[Xv] = pVar[Yv] + p(1− p)E2[Yv].

Var[Yv] =Var[(ScAA (v) + qIcAA (v)) · (ScBB (v) + qIcBB (v))]

=E[(ScAA (v) + qIcAA (v))2]E[ScBB (v) + qIcBB (v))2]

− E2[(ScAA (v) + qIcAA (v))]E2[ScBB (v) + qIcBB (v))]

We have that:

E[(ScAA (v) + qIcAA (v))2] = q

(
acAv −

acAv
av

)
+

q2
(

(acAv)2 − acAv +
acAv
av

)
,

(12)

and

E[(ScBB (v)+qIcBB (v))2] = q

(
bcBv −

bcBv
bv

)
+q2

(
(bcBv)2 − bcBv +

bcBv
bv

)
.

It follows that:

Var[Ĵ] =
∑

v:avbv 6=0

Var[Ĵv] =
∑

v:avbv 6=0

1

p
σ2
1(v) + σ2

2(v).

A.5 Optimal Parameters

minimize
∑
v

1

p

(
1

q
(av − 1) + a2v

)
s.t. nA + nB = n

nA = p · (q(‖a‖1 − ‖a‖0) + ‖a‖0)

nB = p‖b‖1
p, q ∈ [0, 1]

We have that∑
v

1

p

(
1

q
(av − 1) + a2v

)
=

(
1

q
(‖a‖1 − ‖a‖0) + ‖a‖22 − ‖a‖1 + ‖a‖0

)
· (‖b‖1 + ‖a‖0 + q(‖a‖1 − ‖a‖0))

=
1

q
(‖a‖1 − ‖a‖0) · (‖b‖1 + ‖a‖0) + ‖a‖22(‖a‖1 − ‖a‖0)q + c

According to Cauthy–Schwarz Inequality, it is minimized

when q =
√

‖a‖0+‖b‖1
‖a‖22−‖a‖1+‖a‖0

. Considering that p, q ∈ [0, 1],

we have q ∈
[
n−‖a‖0−‖b‖1
‖a‖1−‖a‖0

, 1
]
. Hence, the optimal parame-

ters are

q =

n−‖a‖0−‖b‖1
‖a‖1−‖a‖0

if
√

‖a‖0+‖b‖1
‖a‖22−‖a‖1+‖a‖0

< n−‖a‖0−‖b‖1
‖a‖1−‖a‖0

;

1, if
√

‖a‖0+‖b‖1
‖a‖22−‖a‖1+‖a‖0

> 1;√
‖a‖0+‖b‖1

‖a‖22−‖a‖1+‖a‖0
otherwise,

and

p =
n

‖b‖1 + ‖a‖0 + q(‖a‖1 − ‖a‖0)
.

A.6 Proof of Unbiasedness of ψ̂
Proof. For each v such that h(v) < p, we have

E[ψ̂v] = pE[ψ̂v | h(v) < p] = p
1

avbv
E

[∑
i,j

Xi,j | ta, tb are sentries.

]
where

Xi,j =

{
f(ti,tj)

pipj
with probability pipj ;

0, otherwise.

, where ti(resp. tj) denotes the i-th (resp. j-th) tuple in
A(v)(resp. B(v)) and pi (resp. pj) is the sampling proba-
bility for ti (resp. tj) in second level. More precisely, the
sampling probability is 1 for sentry and is q for other tuples
in second level.

E[ψ̂v] = pE

[∑
i,j

Xi,j | ta, tb are sentries.

]
= p

∑
i,j

E[Xi,j | ta, tb are sentries.]

= p
∑
i,j

f(ti, tj) = pf(A(v), B(v)).

It follows that E[ψ̂] = f(A,B).

A.7 Proof of Unbiasedness of V̂ar[Ĵ2lvl]

Proof. We only need to proof the unbiasedness of âcAv

and (̂acAv)2 conditioned on v is sampled. Note that the fol-
lowing proof are under the condition that v is sampled.

The unbiasedness of âcAv has been proved in Appendix
A.3.

For the unbiasedness of (̂acAv)2, we have (acAv)2 =

1

q2

(
E[(ScAA (v) + qIcAA (v))2]− q

(
acAv −

acAv
av

)
+ q2

(
acAv −

acAv
av

))
,

according to Equation 12.

And we have shown that E
[
|ScA

A
(v)|
q

| h(v) < p

]
= acAv −

a
cA
v
av

in Appendix A.3.
Recall that

(̂acAv)2 =

(
ScAA (v)

q
+ IcAA (v)

)2

+

(
1− 1

q

)
|ScAA (v)|

q
.

According to the linearity of expectation and the upper

three equations, we finally have E[(̂acAv)2] = (acAv)2.

E[(ScAA (v)+qIcAA (v))2] = q

(
acAv −

acAv
av

)
+q2

(
(acAv)2 − acAv +

acAv
av

)
,

(13)

A.8 Proof of Variance of ψ̂
Proof. Because h is pair-wise independent, we have Var[ψ̂] =∑
v:avbv 6=0 Var[ψ̂v]. Now we only need to focus on v with

avbv 6= 0 and h(v) < p. As defined before, let Xv =∑
i,j Xi,j and we know that

ψ̂v =

{
Xv, h(v) < p
0, otherwise.

By law of Total Variance, we have Var[ψ̂v] = 1
p
Var[Xv] +

(1
p
− 1)E2[Xv].

By law of Total Variance, we have:

Var[Xv] =E [Var[Xv | ta, tb are sentries.]]

+ Var[E[Xv | ta, tb are sentries.]]

=E[Var[Xv | ta, tb are sentries.]]

=
1

avbv

∑
ta∈A(v),tb∈B(v)

Var[Xv | ta, tb are sentries.]

(14)

Define Yv as Xv | {ta, tb are sentries.} and define Yi,j as
Xi,j | {ta, tb are sentries.}.

Var[Yv] =Var

 ∑
ti∈A(v),tj∈B(v)

Yi,j

=

∑
ti∈A(v),tj∈B(v)

Var[Yi,j]+

∑
ti∈A(v),tj ,tk∈B(v),tk 6=tj

Cov(Yi,j , Yi,k)

+
∑

ti,tk∈A(v),tk 6=ti,tj∈B(v),

Cov(Yi,j , Yk,j).

We know that

Var[Yi,j] =

(
1

pipj
− 1

)
f2(ti, tj),

Cov(Yi,j , Yi,k) =

(
1

pi
− 1

)
f(ti, tj)f(ti, tk),

Cov(Yi,j , Yk,j) =

(
1

pj
− 1

)
f(ti, tj)f(tk, tj).

It follows that

Var[Xv | ta, tb are sentries.]

=

(
1

q2
− 1

) ∑
ti∈A(v)\{ta},tj∈B(v)\{tb}

f2(ti, tj)+

(
1

q
− 1

) ∑
ti∈A(v)\{ta}

f2(ti, tb) +

(
1

q
− 1

) ∑
tj∈B(v)\{tb}

f2(ta, tj)+

∑
ti∈A(v),tj∈B(v)\{tb}

(
1

q
− 1

)
f(ti, tj)f(ti, B(v) \ {tj})+

∑
ti∈A(v)\{ta},tj∈B(v)

(
1

q
− 1

)
f(ti, tj)f(A(v) \ {ti}, tj)

(15)
By using Equation 14 and 15, we can derive Equation 16.

B. HANDLING OTHER AGGREGATES
In this section, we show how two-level sampling can be

extended to handle more general aggregation queries over
joins. An example is the following query on the TPC-H
benchmark data, which finds the total revenue of all orders
in a certain period from a certain supplier.

SELECT SUM(l_extendedprice * (1 - l_discount))

FROM orders, lineitem

WHERE l_orderkey = o_orderkey

AND o_orderdate >= ‘2016-06-01’

AND o_orderdate <= ‘2016-06-20’

AND l_suppkey = 3

B.1 Estimating SUM
When the aggregate is SUM, the problem can be more gen-

erally defined as follows. Let f(ta, tb) be a real-valued func-
tion defined on a tuple ta ∈ A and a tuple tb ∈ B. We
wish to estimate ψ =

∑
ta∈A,tb∈B

f(ta, tb) using the sample.
Note that since we allow a general f , we no longer need to

consider the selection predicates explicitly, because we can
simply define f(ta, tb) = 0 if ta or tb does not satisfy their
respective predicates.

For the ease of presentation, we introduce the notation
f(X,Y) =

∑
ta∈X,tb∈Y

f(ta, tb), thus our target is just ψ =

f(A,B). We also write f({t}, Y) simply as f(t, Y), and
f(X, {t}) as f(X, t).

An unbiased estimator for the SUM is

ψ̂ =
∑
v

1

pv
ψ̂v,

where ψ̂v is defined as:

ψ̂v =

1
q2
f(SA(v), SB(v)) + 1

q
f(SA(v), sB(v))

+ 1
q
f(sA(v), SB(v)) + f(sA(v), sB(v)),

if v is sampled,
0, otherwise.

We show that ψ̂ is unbiased Appendix A.6.
Its variance is:

Var[ψ̂] =
∑

v:avbv 6=0

Var[ψ̂v] =
∑

v:avbv 6=0

1

pv
σ2
1(v) + σ2

2(v), (16)

where

avbvσ
2
1(v) =(

1

q2
− 2

q
+ 1

)
(av − 1)(bv − 1)

∑
ta∈A(v),tb∈B(v)

f(ta, tb)
2

+

(
1

q
− 1

)
bv(av − 1)

∑
ta∈A(v)

f(ta, B(v))2

+

(
1

q
− 1

)
av(bv − 1)

∑
tb∈B(v)

f(A(v), tb)
2,

and σ2
2(v) =

(
1
p
− 1
)
f(A(v), B(v))2.

We give the detailed derivation of the variance in Ap-
pendix A.8. Note that when setting all f(ta, tb) = 1, i.e.,
the SUM degenerates into COUNT, and the formula of the vari-
ance becomes exactly the same as (1).

B.2 Estimating AVG
We can estimate the AVG simply using the estimator of the

SUM divided by the estimator of the COUNT:

µ̂ =
ψ̂

Ĵ
.

This estimator is not unbiased, but it converges to the true
AVG almost surely as J →∞.

Other aggregates that can be expressed using SUM and
COUNT can also be handled. For example, STDDEV can be com-
puted using the SUM of squares a given attribute, together
with COUNT and AVG. Confidence intervals can be computed
using the delta method, similar as in [12]. We omit the
details.

