
Algorithms for Distributed Functional Monitoring
Graham Cormode

AT&T Labs
Florham Park, NJ

graham@research.att.com

S. Muthukrishnan

Google Inc.
New York, NY

muthu@google.com

Ke Yi∗

Hong Kong U.S.T.
Kowloon, Hong Kong

yike@cse.ust.hk

Abstract
We study what we call functional monitoring problems. We
have k players each tracking their inputs, say player i tracking a
multiset Ai(t) up until time t, and communicating with a central
coordinator. The coordinator’s task is to monitor a given function f
computed over the union of the inputs ∪iAi(t), continuously at all
times t. The goal is to minimize the number of bits communicated
between the players and the coordinator. A simple example is when
f is the sum, and the coordinator is required to alert when the sum
of a distributed set of values exceeds a given threshold τ . Of interest
is the approximate version where the coordinator outputs 1 if f ≥ τ
and 0 if f ≤ (1 − ε)τ . This defines the (k, f, τ, ε) distributed,
functional monitoring problem.

Functional monitoring problems are fundamental in dis-
tributed systems, in particular sensor networks, where we must min-
imize communication; they also connect to problems in communi-
cation complexity, communication theory, and signal processing.
Yet few formal bounds are known for functional monitoring.

We give upper and lower bounds for the (k, f, τ, ε) problem
for some of the basic f ’s. In particular, we study frequency
moments (F0, F1, F2). For F0 and F1, we obtain continuously
monitoring algorithms with costs almost the same as their one-shot
computation algorithms. However, for F2 the monitoring problem
seems much harder. We give a carefully constructed multi-round
algorithm that uses “sketch summaries” at multiple levels of detail
and solves the (k, F2, τ, ε) problem with communication Õ(k2/ε+
(
√

k/ε)3). Since frequency moment estimation is central to other
problems, our results have immediate applications to histograms,
wavelet computations, and others. Our algorithmic techniques are
likely to be useful for other functional monitoring problems as well.

1 Introduction
We introduce distributed, functional monitoring with a basic
problem, SUM. Suppose we have two observers, Alice
and Bob, who each see arrivals of items over time. At
time t, Alice has set A(t) of items and Bob has set B(t)
of items. Both Alice and Bob have an individual two-
way communication channel with Carole so that Carole can
monitor C(t) = |A(t)| + |B(t)|. Our goal is to minimize
the total number of communication with Carole; Alice and
Bob do not communicate with each other, but up to factor

∗Supported in part by Hong Kong Direct Allocation Grant (DAG07/08).

of 2, that is not a limitation. Formally, let bA(t) be the total
number of bits sent between Alice and Carole up to time
t and let bB(t) be the same for Bob. We wish to design
a communication protocol that minimizes b(t) = bA(t) +
bB(t) at time t while guaranteeing that Carole continually
has the correct value of C(t). As stated, it is easy to see
that all Alice or Bob can do is to send a bit whenever they
each see a new item, and hence, b(t) = |A(t)| + |B(t)|
trivially. Of more interest is a relaxed version of the problem
where, given ε, Carole’s new task is to output 0 whenever
C(t) ≤ (1 − ε)τ and must output 1 when C(t) > τ for a
threshold τ . Now the problem is nontrivial. For example,
here are some (randomized) communication procedures:

• [COIN TOSS] Alice and Bob each flip a coin (possibly
biased) upon the arrival of an item and send Carole one
bit whenever the coin turns up heads.

• [GLOBAL] Alice and Bob know a rough estimate of
∆ = τ − C(t′) from some prior time t′, and each
send a bit whenever the number of items they have
received exceeds ∆/2. Carole updates Alice and Bob
with estimates when she gets a bit update and the new
value of ∆ is computed and used.

• [LOCAL] Alice and Bob each create a model for arrival
times of items and communicate the model parameters
to Carole; they send bits to summarize differences
when their current data significantly differs from their
models. If the sources are compressible, this can yield
savings.

What is the (expected) performance of these procedures, and
what is the optimal bound on (expected) b(t)?

We study such functional monitoring problems more
generally in which (a) there are k ≥ 2 sites, (b) we wish
to monitor C(t) = f(A1(t) ∪ · · · ∪ Ak(t)) where Ai(t)
is the multiset of items collected at site i by time t, and f
is a monotonically nondecreasing function in time. There
are two variants: threshold monitoring (determining when
C(t) exceeds a threshold τ ) and value monitoring (provid-
ing a good approximation to C(t) at all times t). Value



monitoring directly solves threshold monitoring, and run-
ning O( 1

ε logT ) instances of a threshold monitoring algo-
rithm for thresholds τ = 1, (1 + ε), (1 + ε)2, . . . , T solves
value monitoring with relative error 1 + ε. So the two vari-
ants differ by at most a factor of O( 1

ε logT ). In many appli-
cations, the threshold version is more important, and so we
focus on this case, and we call them (k, f, τ, ε) distributed,
functional monitoring problems. Our interests in these prob-
lems come from both applied and foundational concerns.

Applied motivations. (k, f, τ, ε) functional monitoring
problems arise immediately in a number of distributed mon-
itoring systems, both traditional and modern.

In traditional sensor systems such as smart homes and
elsewhere, security sensors are carefully laid out and config-
ured, and there is a convenient power source. The straight-
forward way to monitor a phenomenon is to take measure-
ments every few time instants, send them to a central site,
and use back-end systems to analyze the entire data trace.
In contrast, more interestingly, modern sensor networks are
more ad hoc and mobile: they are distributed arbitrarily and
work with battery power [17, 19]. They have to conserve
their power for long use between charging periods. Fur-
ther, these sensors have some memory and computing power.
Hence the sensors can perform local computations and be
more careful in usage of radio for communication, since ra-
dio use is the biggest source of battery drain. In this scenario,
collecting all the data from sensors to correctly calculate f
in the back-end is wasteful, and a direct approach is to de-
sign protocols which will trigger an alarm when a threshold
is exceeded, and the emphasis is on minimizing the com-
munication during the battery lifetime. This is modeled by
(k, f, τ, ε) functional monitoring problems.

In this context, variations of (k, f, τ, ε) functional mon-
itoring have been proposed as “reactive monitoring” (in net-
working [11]) and “distributed triggers” (in databases [16]).
Prior work has considered many different functions f [2,
5, 7, 8, 10, 11, 14, 16, 22], and typically presents algo-
rithms (often variants of GLOBAL or LOCAL described ear-
lier) with correctness guarantees, but no nontrivial commu-
nication bounds. Some of the above work takes a distributed
streaming approach where in addition to optimizing the bits
communicated, the algorithms also optimize the space and
time requirements of each of the sensors.

Foundational motivations. There are a number of research
areas in computing, communication and signal processing
that are related to the class of problems we study here.

In communication theory, there is the problem of col-
lecting signals from multiple sources. The problem is typ-
ically formulated as that of collecting the entire set of sig-
nals and focus on using the fewest bits that captures the (un-
known) complexity of the stochastic sources. An example is
the classical Slepian-Wolf result that shows that two sources

can encode with total cost proportional to the joint entropy
without explicit coordination [9]. Extending these results to
approximating some function f on the joint sources is an
(untapped!) challenge. Further, our study is combinatorial,
focusing on worst case signals.

In signal processing, the emerging area of compressed
sensing [12] redefines the problem of signal acquisition as
that of acquiring not the entire signal, but only the infor-
mation needed to reconstruct the few salient coefficients us-
ing a suitable dictionary. These results can be extended to
(k, f, τ, ε) problems where f yields the salient coefficients
needed to reconstruct the entire signal [21]. Further, [21] ex-
tended compressed sensing to functional compressed sensing
where we need to only acquire information to evaluate spe-
cific functions of the input signal. Except for preliminary
results in [21] for quantiles, virtually no results are known
for (k, f, τ, ε) problems. Some initial work in this direction
uses graph coloring on the characteristic graph of the func-
tion f [13].

In computer science, there are communication complex-
ity bounds [24] that minimize the bits needed to compute a
given function f of inputs at any particular time over k par-
ties. But they do not minimize the bits needed over the entire
time, continuously. We call them one-shot problems. The
central issue in the continuous problems that we study here
is how often and when to repeat parts of such protocols over
time to minimize the overall number of bits.

The streaming model [1] has received much attention
in recent years. There are many functions f that can be
computed up to 1 ± ε accuracy in streaming model, using
poly(1/ε, logn) space: this includes streaming algorithms
for problems such as estimating frequency moments, cluster-
ing, heavy hitters, and so on [20]. There have been several
works in the database community that consider the stream-
ing model under the distributed setting, which is essentially
the same as the model we study here. Subsequently several
functional monitoring problems have been considered in this
distributed streaming model [5, 6, 8, 18], but the devised so-
lutions typically are heuristics-based, the worst-case bounds
are usually large and far from optimal. In this paper, we
give much improved upper bounds for some basic functional
monitoring problems, as well as the first lower bounds for
these problems.

Our main results and overview. In this paper, we focus
on the frequency moments, i.e., Fp =

∑

im
p
i where mi

is the frequency of item i from all sites. Estimating the
frequency moments has become the keystone problem in
streaming algorithms since the seminal paper of Alon et
al. [1]. In particular, the first three frequency moments
(p = 0, 1, 2) have received the most attention. F1 is the
simple SUM problem above, F0 corresponds to the number
of distinct elements, and F2 has found many applications
such as surprise index, join sizes, etc.



Continuous One-shot
Moment Lower bound Upper bound Lower bound Upper bound
F0, randomized Ω(k) Õ( k

ε2
) Ω(k) Õ( k

ε2
)

F1, deterministic Ω(k log 1

εk
) O(k log 1

ε
) Ω(k log 1

εk
) O(k log 1

ε
)

F1, randomized Ω(min{k, 1

ε
}) O(min{k log 1

ε
, 1

ε2
log 1

δ
}) Ω(k) O(k log 1

ε
√

k
)

F2, randomized Ω(k) Õ(k2/ε + (
√

k/ε)3) Ω(k) Õ( k

ε2
)

Table 1: Summary of the communication complexity for one-shot and continuous threshold monitoring of different frequency moments.
The “randomized” bounds are expected communication bounds for randomized algorithms with failure probability δ < 1/2.

• For the (k, F1, τ, ε) problem, we show deterministic
bounds of O(k log 1/ε) and Ω(k log 1

εk )1; and random-
ized bounds of Ω(min{k, 1

ε}) and O( 1
ε2 log 1

δ ), inde-
pendent of k, where δ is the algorithm’s probability
of failure. Hence, randomization can give significant
asymptotic improvement, and curiously, k is not an in-
herent factor. These bounds improve the previous result
of O(k/ε log τ/k) in [18].

• For the (k, F0, τ, ε) problem, we give a (randomized)
upper bound of2 Õ(k/ε2), which improves upon the
previous result of O(k2/ε3 logn log 1

δ ) in [7]. We also
give a lower bound of Ω(k).

• Our main results are for the (k, F2, τ, ε) problem: we
present an upper bound of Õ(k2/ε+(

√
k/ε)3) improv-

ing the previous result of Õ(k2/ε4) [5]. We also give
an Ω(k) lower bound. The algorithm is a sophisticated
variation of GLOBAL above, with multiple rounds, us-
ing different “sketch summaries” at multiple levels of
accuracy.

Table 1 summarizes our results. For comparison, we
also include the one-shot costs: observe that for F0 and F1,
the cost of continuous monitoring is no higher than the one-
shot computation and close to the lower bounds; only for F2

is there a clear gap to address.
In addition to the specific results above which are in-

teresting in their own right, they also imply communication-
efficient solution to (k, f, τ, ε) problems for a number of oth-
ers f ’s including histograms, wavelets, clustering, geometric
problems, and others. In addition, we believe that the algo-
rithmic approaches behind both the results above will prove
to be useful for other (k, f, τ, ε) problems.

In this paper, we are mainly interested in the commu-
nication cost of the algorithms, and our lower bounds hold
even assuming that the remote sites have infinite computing
power. Nevertheless, all our algorithms can be implemented
with low memory and computing costs at the remote sites
and the coordinator.

1We use the notation log x = max{log2 x, 1} throughout the paper.
2The Õ notation suppresses logarithmic factors in n, k,m, τ, 1/ε, 1/δ.

2 Problem Formulation
Let A = (a1, . . . , am) be a sequence of elements, where
ai ∈ {1, . . . , n}. Let mi = |{j : aj = i}| be the number of
occurrences of i in A, and define the p-th frequency moment
ofA as Fp(A) =

∑n
i=1m

p
i for each p ≥ 0. In the distributed

setting, the sequence A is observed in order by k ≥ 2
remote sites S1, . . . , Sk collectively, i.e., the element ai is
observed by exactly one of the sites at time instance i. There
is a designated coordinator that is responsible for deciding
if Fp(A) ≥ τ for some given threshold τ . Determining
this at a single time instant t yields the class of one-shot
queries, but here we are more interested in continuous-
monitoring (k, f, τ, ε) queries, where the coordinator must
correctly answer over the collection of elements observed
thus far (A(t)), for all time instants t.

We focus on the approximate version of these problems.
For some parameter 0 < ε ≤ 1/4, the coordinator should
output 1 to raise an alert if Fp(A(t)) ≥ τ ; output 0 if
Fp(A(t)) ≤ (1 − ε)τ ; and is allowed either answer in-
between. Since the frequency moments never decrease as
elements are received, the continuous-monitoring problem
can also be interpreted as the problem of deciding a time
instance t, at which point we raise an alarm, such that t1 ≤
t ≤ t2, where t1 = arg mint{Fp(A(t)) > (1 − ε)τ} and
t2 = argmint{Fp(A(t)) ≥ τ}. The continuous algorithm
terminates when such a t is determined.

We assume that the remote sites know the values of τ ,
ε, and n in advance, but not m. The cost of an algorithm is
measured by the number of bits that are communicated. We
assume that the threshold τ is sufficiently large to simplify
analysis and the bounds. Dealing with small τ ’s is mainly
technical: we just need to carefully choose when to use the
naı̈ve algorithm that simply sends every single element to the
coordinator.

The following simple observation implies that the
continuous-monitoring problem is almost always as hard as
the corresponding one-shot problem.

PROPOSITION 2.1. For any monotone function f , an algo-
rithm for (k, f, τ, ε) functional monitoring that communi-
cates g(k, n,m, τ, ε) bits implies a one-shot algorithm that
communicates g(k, n,m, τ, ε) +O(k) bits.

Proof : The site S1 first starts running the continuous-



monitoring algorithm on its local stream, while the rest
pretend that none of their elements have arrived. When S1

finishes, it sends a special message to the coordinator, which
then signals S2 to start. We continue this process until all k
sites have finished, or an alarm is raised (output changes to
1) in the middle of the process. �

3 General Algorithm for Fp, p ≥ 1

We first present a general algorithm based on each site
monitoring only local updates. This gives initial upper
bounds, which we improve for specific cases in subsequent
sections.

The algorithm proceeds in multiple rounds, based on
the generalized GLOBAL idea. Let ui be the frequency
vector (m1, . . . ,mn) at the beginning of round i. In round
i, every site keeps a copy of ui and a threshold ti. Let
vij be the frequency vector of recent updates received at
site j during round i. Whenever the impact of vij causes
the Fp moment locally to increase by more than ti (or
multiples thereof), the site informs the coordinator. After
the coordinator has received more than k such indications, it
ends the round, collects information about all k vectors vij

from sites, computes a new global state ui+1 and distributes
it to all sites.

More precisely, we proceed as follows. Define the round
threshold ti = 1

2 (τ−‖ui‖p
p)k

−p, chosen to divide the current
“slack” uniformly between sites. Each site j receives a set of
updates during round i, which we represent as a vector vij .
During round i, whenever b‖ui + vij‖p

p/tic increases, site j
sends a bit to indicate this (if this quantity increases by more
than one, the site sends one bit for each increase). After
the coordinator has received k bits in total, it ends round
i and collects vij (or some compact summary of vij ) from
each site. It computes ui+1 = ui +

∑k
j=1 vij , and hence

ti+1, and sends these to all sites, beginning round i+ 1. The
coordinator changes its output to 1 when ‖ui‖p

p ≥ (1−ε/2)τ ,
and the algorithm terminates.

THEOREM 3.1. At the end of round i, we have ‖ui‖p
p +

kti ≤ ‖ui+1‖p
p ≤ 2kpti + ‖ui‖p

p. There can be at most
O(kp−1 log 1

ε ) rounds.

Proof : We first define the function ψ(x, y) = ‖x + y‖p
p −

‖x‖p
p. ψ is convex in both its arguments for all p ≥ 1, in

the range where x and y are non-negative (have no negative
components). The left hand side is straightforward: each site
sends an indication whenever its local Fp moment increases
by ti, i.e. we monitor ψ(ui, vij). Observe that providing all
vectors are non-negative, we have that ψ(ui,

∑k
j=1 vij) ≥

∑k
j=1 ψ(ui, vij) (this can be seen by analyzing each dimen-

sion of each vector in turn). Thus, we have that

‖ui+1‖p
p − ‖ui‖p

p = ‖ui +

k
∑

j=1

vij‖p
p − ‖ui‖p

p ≥ kti.

For the right hand side, we have (by Jensen’s inequality on
the second argument of ψ, and monotonicity on the first
argument):

‖ui +

k
∑

j=1

vij‖p
p − ‖ui‖p

p = ψ(ui,

k
∑

j=1

vij)

≤ 1

k

k
∑

j=1

ψ(kui, kvij) = kp−1
k
∑

j=1

ψ(ui, vij)

= kp−1
k
∑

j=1

(‖ui + vij‖p
p − ‖ui‖p

p) < 2kpti.

The last bound follows by observing that we see k messages
from sites whenever ‖ui + vij‖p

p − ‖ui‖p
p increases by ti, so

the largest this can be is 2kti (kti from changes that have
been notified, and up to ti at each of k − 1 sites apart from
the one that triggers the end of the round).

By our choice of ti, we ensure that this upper bound
on the current global value of Fp never exceeds τ during a
round, and we terminate the procedure as soon as it exceeds
(1− ε/2)τ . Analyzing the number of rounds, from the lower
bound above, we have

ti+1 =
1

2
(τ − ‖ui+1‖p

p)k
−p ≤ 1

2
(τ − ‖ui‖p

p − kti)k
−p

=
1

2
(2kp−1 − 1)tik

1−p

So ti+1/ti ≤ 1 − k1−p/2 ≤ (1 − k1−p/2)it0. Since
t0 = τk−p/2, and we terminate when ti < ετk−p/4, it is
clear that there can be at mostO(kp−1 log 1/ε) rounds before
this occurs. �

We now consider various special cases of (k, Fp, τ, ε)
monitoring depending on the choice of p:

Case 1: p = 1. For the case p = 1, the above immediate
implies a bound of O(k log 1/ε) messages of counts being
exchanged. In fact, we can give a tighter bound: the
coordinator can omit the step of collecting the current vij ’s
from each site, and instead just sends a message to advance
to the next stage. The value of ti is computed simply as
2−1−iτ/k, and the coordinator has to send only a constant
number of bits to each site to signal the end of round i.
Thus, we obtain a bound of O(k log 1/ε) bits, compared to
the O(k/ε log τ/k) scheme presented in [18].

Case 2: p = 2. When p = 2, in order to concisely
convey information about the vectors vij we make use of
sketch summaries of vectors [1]. These sketches have the
property that (with probability at least 1 − δ) they allow F2

of the summarized vector to be estimated with relative error
ε, in O( 1

ε2 log τ log 1
δ ) bits. We can apply these sketches in

the above protocol for p = 2, by replacing each instance



of ui and vij with a sketch of the corresponding vector.
Note that we can easily perform the necessary arithmetic
to form a sketch of ui + vij and hence find (an estimate
of) ‖ui + vij‖2

2. In order to account for the inaccuracy
introduced by the approximate sketches, we must carefully
set the error parameter ε′ of the sketches. Since we compare
the change in ‖ui + vij‖2

2 to ti, we need the error given by
the sketch—which is ε′‖ui+vij‖2

2 —to be at most a constant
fraction of ti, which can be as small as ετ

2 . Thus we need
to set ε′ = O( ε

k2 ). Putting this all together gives the total
communication cost of Õ(k6/ε2).

Case 3: p > 2. For larger values of p, we can again use
sketch-like summaries. This time, we can make use of the
data summary structures of Ganguly et al. [4], since these
have the necessary summability properties. We omit full
details for brevity; the analysis is similar to the p = 2 case.
4 Bounds for F1

To get improved bounds, we start with the easiest case, of
monitoring F1, which is simply the total number of ele-
ments observed, i.e., SUM. The analysis in the above sec-
tion yields a deterministic algorithm for F1 which commu-
nicates O(k log 1

ε ) bits. This is almost optimal for determin-
istic algorithms, as indicated by the following lower bound,
which actually follows from a reduction from the one-shot
case. The proof appears in the full version of the paper.

THEOREM 4.1. Any deterministic algorithm that solves
(k, F1, τ, ε) functional monitoring has to communicate
Ω(k log 1

εk ) bits.

If we allow randomized protocols that may err with cer-
tain probability δ, we can design a sampling based algorithm
whose complexity is independent of k. This is to be con-
trasted with the one-shot case, where there is an Ω(k) lower
bound even for randomized algorithms.

THEOREM 4.2. There is a randomized algorithm for
(k, F1, τ, ε) functional monitoring with error probability at
most δ that communicates O( 1

ε2 log 1
δ ) bits.

Proof : We present a randomized algorithm derived from a
careful implementation of COIN TOSS, with error probabil-
ity 1/3. By running O(log 1

δ ) independent instances and
raising an alarm when at least half of the instances have
raised alarms, we amplify to success probability 1 − δ, as
required. Every time a site has received ε2τ/(ck) elements,
where c is some constant to be determined later, it sends a
signal to the coordinator with probability 1/k. The server
raises an alarm as soon as it has received c/ε2 − c/(2ε)
such signals, and terminates the algorithm. The commu-
nication bound is immediate. For correctness, it is suffi-
cient to prove the following: On any sequence A′, the al-
gorithm fails to output 0 with probability at most 1/6 if

F1(A
′) ≤ (1 − ε)τ , and fails to output 1 with probability

at most 1/6 if F1(A
′) ≥ τ . Then for the given input se-

quence A, applying this statement on At1−1 and At2 proves
the theorem (where t1 and t2 are as defined in Section 2).

Let X be the number of signals received by the co-
ordinator. Its expectation is at most E[X ] ≤ 1/k ·
F1/(ε

2τ/(ck)) = cF1/(ε
2τ), and at least E[X ] ≥ 1/k ·

(F1 − ε2τ)/(ε2τ/(ck)) = cF1/(ε
2τ) − c. Its variance is

Var[X ] ≤ (ckF1)/(ε
2τ) · (1/k − 1/k2) ≤ cF1/(ε

2τ).
If F1 ≤ (1− ε)τ , then the probability that the coordina-

tor outputs 1 is (by Chebyshev inequality)

Pr[X ≥ c/ε2 − c/(2ε)] ≤ Pr[X − E[X ] ≥ c/(2ε)]

≤ c(1/ε2 − 1/ε)

(c/(2ε))2
≤ 4

c
.

Similarly, if F1 ≥ τ , then the probability that the
coordinator does not output 1 is

Pr[X ≤ c/ε2 − c/(2ε)] ≤ Pr[X − E[X ] ≤ −c/(2ε) + c]

≤ c/ε2

(−c/(2ε) + c)2
≤ 1

c(1/2 − ε)2
≤ 16

c
.

Choosing c = 96 makes both probabilities at most 1/6,
as desired. �

Therefore, the randomized algorithm is better than the
deterministic algorithm for large enough ε. Combined with
the deterministic bound, we obtain the bound in Table 1.
In addition, we also have the following lower bound (proof
appears in the full version of the paper):

THEOREM 4.3. For any ε < 1/4, any probabilistic protocol
for (k, F1, τ, ε) functional monitoring that errs with proba-
bility smaller than 1/2 has to communicate Ω(min{k, 1/ε})
bits in expectation.

5 Bounds for F0

We know that the F1 problem can be solved deterministi-
cally and exactly (by setting ε = 1/τ ) by communicating
O(k log τ) bits. For any p 6= 1, the same arguments of
Proposition 3.7 and 3.8 in [1] apply to show that both ran-
domness (Monte Carlo) and approximation are necessary for
the Fp problem in order to get solutions with communication
cost better than Ω(n) for any k ≥ 2. So for the rest of the
paper we only consider probabilistic protocols that err with
some probability δ.

For monitoringF0, we can generalize the sketch of [3] in
a distributed fashion, leading to the following result, which
improves upon the previous bound of O(k2/ε3 logn log 1

δ )
in [7]. The basic idea is that, since the F0 sketch changes
“monotonically”, i.e., once an entry is added, it will never
be removed, we can communicate to the coordinator every
addition to all the sketches maintained by the individual sites.



THEOREM 5.1. There is a randomized algorithm for the
(k, F0, τ, ε) functional monitoring problem with error
probability at most δ that communicates O(k(log n +
1
ε2 log 1

ε ) log 1
δ ) bits.

Proof : Below we present an algorithm with error probability
1/3. Again, it can be driven down to δ by running O(log 1

δ )
independent copies of the algorithm.

Define t as the integer such that 48/ε2 ≤ τ/2t < 96/ε2.
The coordinator first picks two random pairwise independent
hash functions f : [n] → [n] and g : [n] → [6 ·
(96/ε2)2], and send them to all the remote sites. This incurs
a communication cost of O(k(log n+ log 1

ε )) = O(k log n)
bits. Next, each of the remote sites evaluates f(ai) for every
incoming element ai, and tests if the last t bits of f(ai) are
all zeros. If so it evaluates g(ai). There is a local buffer that
contains all the g() values for such elements. If g(ai) is not
in the buffer, we add g(ai) into the buffer, and then send it
to the coordinator. The coordinator also keeps a buffer of all
the unique g() values it has received, and outputs 1 whenever
the number of elements in the buffer exceeds (1− ε/2)τ/2t.
Since each g() value takes O(log 1

ε ) bits, the bound in the
theorem easily follows. We prove the correctness of the
algorithm below.

It is sufficient to prove the following: On any sequence
A′, the algorithm outputs 1 with probability at most 1/6 if
F0(A

′) ≤ (1 − ε)τ , and outputs 0 with probability at most
1/6 if F0(A

′) ≥ τ .
One source of error is g having collisions. Since g is

evaluated on at most 96/ε2 elements, the probability that
g has collisions is at most 1/12. From now on we assume
that g has no collisions, and will add 1/12 to the final error
probability.

LetX be the number of distinct elements inA′ that have
zeros in their last t bits of the f() value. We know [3] that
E[X ] = F0/2

t and Var[X ] ≤ F0/2
t.

If F0 ≤ (1 − ε)τ , then the algorithm outputs 1 with
probability

Pr[X >(1 − ε/2)τ/2t] ≤ Pr[X − E[X ] > ετ/2t+1]

≤ 4 · Var[X ]

(ετ/2t)2
≤ 4F0/2

t

(ετ/2t)2
≤ 4F0

ε2τ · 48/ε2
≤ 1

12
.

When F0 reaches τ , the probability of outputting 0 is

Pr[X ≤ (1 − ε/2)τ/2t] ≤ Pr[X − E[X ] ≤ −ετ/2t+1]

≤ 4 · Var[X ]

(ετ/2t)2
≤ 1

12
.

Thus, the total error probability in either case is at most 1/6,
as desired. �

Unlike the F1 case where there is a randomized algo-
rithm whose communication complexity is independent of

k, we show below that this is not the case for F0. To ob-
tain a lower bound for randomized algorithms we invoke
Yao’s Minimax Principle [23], which requires us to construct
a probability distribution on the inputs, and show that any
deterministic algorithm has to communicate a certain num-
ber of bits in expectation (w.r.t the distribution of the in-
puts). For this purpose we cast any deterministic continuous-
monitoring algorithm in the following model. Each remote
site Si maintains a set of an arbitrary number of triggering
conditions. Each triggering condition is a frequency vector
(m1, . . . ,mn) ∈ [m]n. The site Si will conduct some com-
munication when and only when the frequency vector of the
elements it has received so far is one triggering condition.
The communication may in turn lead to communication be-
tween the coordinator and other remote sites. After all the
communication is completed, those sites that have commu-
nicated with the coordinator are allowed to change their sets
of triggering conditions arbitrarily. This is a powerful model,
as the communication is arbitrary when a triggering condi-
tion is met. However, note that on the other hand, no com-
munication is allowed if none of the triggering conditions is
reached. We will use this fact to show that the constructed
inputs will trigger communication at least Ω(k) times. An-
other implicit assumption in this model is that only the cur-
rent state matters but not how the state is reached. For in-
stance if (1, 1, 0, . . . , 0) is a trigger condition, the site will
trigger communication no matter if a “1” is observed before
a “2” and vice versa. However, this assumption is not an is-
sue in our proof, as in our construction of the inputs, there is
at most one way to reach any state vector.

THEOREM 5.2. For any ε ≤ 1/4, n ≥ k2, any probabilistic
protocol for (k, F0, τ, ε) functional monitoring that errs with
probability smaller than 1/2 has to communicate Ω(k) bits
in expectation.

Proof : Following the Minimax Principle [23], it suffices
to demonstrate a probability distribution on the inputs, and
show that any deterministic algorithm that errs with proba-
bility at most 1/8 has to communicate expected Ω(k) bits.

For simplicity, we will use τ = k in the proof. Similar
constructions work for larger τ ’s. The inputs are constructed
as follows. We first pick an integer r between 1 and k/2
uniformly at random. We then proceed in r rounds. In the
first round, we randomly pick an element from {1, . . . , k}
and send it to all the sites; the order is irrelevant (for
concreteness, say in the order S1, . . . , Sk). In the second
round, we do the same thing except that the element is now
chosen from {k + 1, . . . , 2k}. We continue this process
until in the r-the round, we uniformly randomly send a
different element from {(r − 1)k + 1, . . . , rk} to each of
the k sites. We denote by Ir the set of inputs that end in r
rounds. It can be easily verified that for any input in Ir, the
algorithm can correctly terminate during and only during the



r-th round. It is helpful to think of the input construction as
follows. At first, with probability p = 1

k/2 , we (a) pick a
different element randomly and send it to each of the k sites;
otherwise, we (b) pick one random element and send it to all
the sites. In case (a) we terminate the construction, and in
case (b), we proceed to the next round. In the second round,
we do the same except that the probability of choosing case
(a) is p = 1

k/2−1 . We continue this process in this fashion
for a maximum of k/2 rounds, using p = 1

k/2−i+1 in the i-th
round.

Since the algorithm is correct with probability at least
7/8, there are s ≥ k/4 values of r: r1 ≤ r2 ≤ · · · ≤ rs,
such that the algorithm is correct with probability at least
3/4 within Irj

for each of j = 1, . . . , s. Note that for
any deterministic algorithm, these rj ’s are fixed. For any
1 ≤ j ≤ s− 1, consider the triggering conditions just before
the rj’th round. Note that these triggering conditions may
depend on the elements received in the first rj − 1 rounds.
So let us consider a particular history H of the first rj − 1
rounds in which case (b) is always chosen. There are krj−1

such histories, and each happens with equal probability. Let
zi,` = 1 if Si will trigger communication when the next
element it receives is `, and zi,` = 0 otherwise. We claim
that for at least half of these histories, the following condition
must hold.

k
∑

i=1

rjk
∑

`=(rj−1)k+1

zi,` ≥
k

2
. (5.1)

Indeed, we will show in the following that if (5.1) does
not hold for a historyH , then conditioned on the input being
in Irj

and having H as its history, the probability that the
algorithm errs is at least 1/2. If this were the case for more
than half of the histories, then the error probability would be
more than 1/4 for Irj

, contradicting the previous assumption.
To prove that if (5.1) does not hold forH , the algorithm

is very likely to fail in the next round if r = rj , consider a
random input in Irj

with history H . Recall that a randomly
selected element from {(rj − 1)k + 1, . . . , rjk} is given to
each of the k sites. The coordinator can output 1 only if some
site triggers communication, whose probability is at most (by
the union bound)

k
∑

i=1





∑rjk

`=(rj−1)k+1 zi,`

k



 =
1

2
.

Therefore we conclude that for any rj , (5.1) must hold
for at least half of its histories. Now consider the case that
the input π belongs to some Ir such that r > rj . This
happens with probability 1 − rj/(k/2). We next compute
the expected number of messages that π triggers in the rj-
th round. Suppose that (5.1) holds and π sends ` to all the
sites. Note that

∑k
i=1 zi,` sites will be triggered, unless

they receive a message from the coordinator telling them
to change their triggering conditions. So at least

∑k
i=1 zi,`

messages need to be transmitted. Thus, the expected number
of messages that π triggers in the rj -th round is

1

2
·

rjk
∑

`=(rj−1)k+1

(

1

k
·

k
∑

i=1

zi,`

)

≥ 1

4
. (5.2)

Summing up (5.2) over all rj , the total expected number
of messages is at least

∑s
j=1

(

1 − rj

k/2

)

· 1
4 = Ω(k). �

6 Bounds for F2

In the following, we present an F2 monitoring algorithm
that combines the multi-round framework of our general
monitoring algorithm and the AMS sketch [1], giving a total
communication cost of Õ(k2/ε + k3/2/ε3). This strictly
improves the bound which follows from prior work, of
O(k2/ε4) [5]. Our algorithm consists of two phases. At the
end of the first phase, we make sure that the F2 is between
3
4τ and τ ; while in the second phase, we more carefully
monitor F2 until it is in the range ((1 − ε)τ, τ). Each phase
is divided into multiple rounds. In the second phase, each
round is further divided into multiple sub-rounds to allow
for more careful monitoring with minimal communication.
We use sketches such that with probability at least 1 − δ,
they estimate F2 of the sketched vector within 1 ± ε using
O( 1

ε2 log n log 1
δ ) bits [1]. For now, we assume that all

sketch estimates are within their approximation guarantees;
later we discuss how to set δ to ensure small probability of
failure over the entire computation.

Algorithm. We proceed in multiple rounds, which are in
turn divided into subrounds. Let ui be the frequency vector
of the union of the streams at the beginning of the ith round,
and û2

i be an approximation of u2
i . In round i, we use a

local threshold ti =
(τ−û2

i )2

64k2τ . Let vij` be the local frequency
vector of updates received at site j during subround ` of
round i, and let wi` =

∑k
j=1 vij` be the total increment of

the frequency vectors in subround ` of round i. During each
(sub)round, each site j continuously monitors its v2

ij`, and
sends a bit to the server whenever bv2

ij`/tic increases.

Phase one. In phase one, there is only one subround per
round. At the beginning of round i, the server computes a
5
4 -overestimate û2

i of the current u2
i , i.e., u2

i ≤ û2
i ≤ 5

4u
2
i .

This can be done by collecting sketches from all sites with a
communication cost of O(k logn). Initially û2

1 = u2
1 = 0.

When the server has received k bits in total from sites, it
ends the round by computing a new estimate û2

i+1 for u2
i+1.

If û2
i+1 ≥ 15

16τ , then we must have u2
i+1 ≥ û2

i+1/
5
4 ≥

3
4τ , so we proceed to the second phase. Otherwise the
server computes the new ti+1, broadcasts it to all sites, and
proceeds to the next round of phase one.



Analysis of phase one. The following lemma guarantees
that the algorithm will never need to terminate during phase
one.

LEMMA 6.1. At the end of round i in phase one, u2
i+1 < τ .

Proof : Assuming pessimistically that all sites are just below
the threshold of sending the next bit, once the server has
received k bits, by the Cauchy-Schwartz inequality, we have
w2

i` = (
∑k

j=1 vij`)
2 ≤ k

∑k
j=1 v

2
ij` < 2k2ti. Therefore,

u2
i+1 = (ui + wi`)

2 = u2
i + 2uiwi` + w2

i`

≤ u2
i + 2‖ui‖ · ‖wi`‖ + w2

i`

< u2
i + 2‖ui‖

√

2k2ti + 2k2ti

≤ u2
i +

√
2

4
‖ui‖

τ − û2
i√

τ
+

(τ − û2
i )

2

32τ

≤ u2
i +

√
2

4
‖ui‖

τ − u2
i√

τ
+

(τ − u2
i )

2

32τ

= u2
i +

(√
2‖ui‖
4
√
τ

+
1

32
− u2

i

32τ

)

(τ − u2
i ).

Since ‖ui‖√
τ

≤ 1,
(

− u2

i

32τ +
√

2‖ui‖
4
√

τ
+ 1

32

)

is always less than
1, and we have u2

i+1 < τ . �

The communication cost in each round is O(k log n)
bits, and we bound the number of rounds:

LEMMA 6.2. There are O(k) rounds in phase one.

Proof : We can bound the number of rounds by showing that
sufficient progress can be made in each round. In each round,
we know w2

i` = (
∑k

j=1 vij`)
2 ≥

∑k
j=1 v

2
ij` ≥ kti, thus

u2
i+1 = (ui + wi`)

2 ≥ u2
i + w2

i` ≥ u2
i + kti

= u2
i +

(τ − ûi)
2

64kτ
≥ u2

i +
(τ − 15

16τ)
2

64kτ

= u2
i + Θ(τ/k).

So the total number of rounds in this phase is O(k). �

The communication cost of phase one is thus bound by
O(k2 logn). It would be possible to continue the first
phase by using more accurate estimates û2

i until u2
i reaches

(1 − ε)τ , but this would result in a communication cost of
Õ(k2/ε3). Instead, the use of subrounds in the second phase
gives an improved bound.

Phase two. In the second phase, the server computes a
(1 + ε/3)-overestimate û2

i at the start of each round by
collecting sketches from the sites with a communication cost
of O(k/ε2 logn). The server keeps an upper bound û2

i,` on
u2

i,`, the frequency vector at the beginning of the `-th sub-
round in round i.

As above, during each sub-round, each site j continu-
ously monitors its v2

ij`, and sends a bit to the server whenever
bv2

ij`/tic increases. When the server has collected k bits in
total, it ends the sub-round. Then, it asks each site j to send
a (1 ± 1

2 )-approximate sketch for v2
ij`. The server computes

an estimate w̃2
i` for w2

i` by combining these sketches. Note
that w̃2

i` ∈ (1 ± 1
2 )w2

i`. The server computes the new upper
bound û2

i,`+1 for u2
i,`+1 as

û2
i,`+1 = û2

i,` + 2
√

2‖ûi,`‖ · ‖w̃i`‖ + 2w̃2
i`. (6.3)

Indeed, since

u2
i,`+1 = (ui,` + wi`)

2 ≤ u2
i,` + 2‖ui,`‖ · ‖wi`‖ + w2

i`,

and u2
i,` ≤ û2

i,`, w2
i` ≤ 2w̃2

i`, we have u2
i,`+1 ≤ û2

i,`+1. Then
the server checks if

û2
i,`+1 + 3k‖ûi,`+1‖

√
ti < τ. (6.4)

If (6.4) holds, the server starts sub-round ` + 1. The local
threshold ti remains the same. If (6.4) does not hold, the
whole round ends, and the server computes a new û2

i+1 for
u2

i+1. If û2
i+1 ≥ (1 − 2

3ε)τ , the server changes its output to
1 and terminates the algorithm. Otherwise, it computes the
new ti+1, sends it to all sites, and starts the next round.
Analysis of phase two. Below we assume ε < 1

4 . We
first prove correctness. The second phase of the algorithm
never raises a false alarm, since if û2

i+1 ≥ (1 − 2
3ε)τ , then

u2
i+1 ≥ û2

i+1/(1 + ε/3) > (1 − ε)τ . The following lemma
implies that the algorithm will never miss an alarm either.

LEMMA 6.3. For any round i, at the end of the `-th sub-
round, u2

i,`+1 < τ .

Proof : Since the algorithm did not terminate at the end
of the (` − 1)-th sub-round, by the condition of (6.4) we
have û2

i,` + 3k‖ûi,`‖
√
ti < τ . At the end of the `-th

sub-round when the server has collected k bits, assuming
pessimistically that all sites are just below the threshold of
sending the next bit, by the Cauchy-Schwartz inequality, we
have w2

i` = (
∑k

j=1 vij`)
2 ≤ k

∑k
j=1 v

2
ij` ≤ 2k2ti. Since

2k2ti =
2(τ − û2

i )
2

64τ
≤ 1

128
(τ − û2

i ),

and k‖ui,`‖
√
ti = ‖ui,`‖

τ − û2
i

8
√
τ

≥
√

3

16
(τ − û2

i ),

we have 2k2ti ≤ 1
8
√

3
k‖ui,`‖

√
ti. Thus,

u2
i,`+1 = (ui,` + wi`)

2 ≤ u2
i,` + 2‖ui,`‖ · ‖wi`‖ + w2

i`

≤ u2
i,` + 2‖ui,`‖

√

2k2ti + 2k2ti

≤ u2
i,` + (2

√
2 +

1

8
√

3
)k‖ui,`‖

√
ti

< û2
i,` + 3k‖ûi,`‖

√
ti < τ.

�



Now we proceed to the analysis of the algorithm’s com-
munication complexity. It is clear that the cost of a sub-round
isO(k logn) bits, since each (1± 1

2 )-approximate sketch for
vij` has O(log n) bits. Apart from the sub-round communi-
cation cost, each round has an additional O( k

ε2 log n) cost to
compute ûi. All the other costs, e.g., the bits signaling the
start and end of a sub-round, broadcasting ti, etc., are asymp-
totically dominated by these costs. Therefore, the problem
reduces to bounding the number of rounds and sub-rounds.

LEMMA 6.4. In any round, the number of sub-rounds is
O(

√
k).

Proof : At the end of the `-th sub-round, the server has
received k bits, so w2

i` ≥ ∑k
j=1 v

2
ij` ≥ kti. Since w̃2

i` is
a (1 ± 1

2 )-estimate of w2
i`, we have w̃2

i` ≥ 1
2w

2
i` ≥ kti/2.

According to (6.3),

û2
i,`+1 ≥ û2

i,` + 2
√

2‖ûi,`‖ · ‖w̃‖

≥ û2
i,` + 2

√
2‖ûi,`‖ ·

√

kti
2

= û2
i,` +

1

4
‖ûi,`‖ ·

τ − û2
i√

kτ

≥ û2
i,` +

1

4
·
√

3

2
· 1√

k
(τ − û2

i ) = û2
i,` +

√
3

8
√
k

(τ − û2
i ).

For any `, if the `-th sub-round starts, by (6.4) we have
û2

i,` + 3k‖ûi,`‖
√
ti < τ , or

τ > û2
i,` +

3

8
· ‖ûi,`‖

τ − û2
i√

τ
> û2

i,` +
3

8
·
√

3

2
(τ − û2

i ).

Rearranging, û2
i,` < τ − 3

√
3

16
(τ − û2

i ).

As û2
i,1 = û2

i , there are at most
(

τ − 3
√

3
16 (τ − û2

i ) − û2
i

)

/
( √

3
8
√

k
· (τ − û2

i )
)

< 4
√
k sub-rounds in phase two. �

LEMMA 6.5. The total number of rounds is O(
√
k/ε).

Proof : Focus on one round, say round i. Suppose there are
s < 4

√
k sub-rounds in this round. For any `, we have

w2
i` < τ/4; else the subround would have ended earlier.

So w̃2
i` < 3τ/8. We first show how the upper bound ûi,`

increases in each sub-round. From (6.3), û2
i,`+1 is at most

û2
i,`+2

√
2
√
τ ·‖w̃i`‖+2

√

3τ/8·‖w̃i`‖ < û2
i,`+5

√
τ ·‖w̃i`‖,

so û2
i,s+1 ≤ û2

i,1 + 5
√
τ
∑s

`=1 ‖w̃i`‖. (6.5)

We know that ûi,s+1 violates (6.4), so

τ ≤ û2
i,s+1 + 3k‖ûi,s+1‖

√
ti ≤ û2

i,s+1 +
3

8
‖ûi,s+1‖

τ − û2
i

τ

< û2
i,s+1 +

3

8
(τ − û2

i ).

Substituting into (6.5), together with ûi,1 ≤ (1+ ε/3)u2
i , we

have
∑s

`=1 ‖w̃i`‖ > τ− 3

8
(τ−u2

i )−(1+ 1

3
ε)u2

i

5
√

τ
= 1

8 · τ−(1+ 8

15
ε)u2

i√
τ

.

(6.6)
Next, we lower bound u2

i+1 = u2
i,s+1, to show that we

must have made progress by the end of this round. Since
u2

i,`+1 = (ui,` + wi`)
2 ≥ u2

i,` + w2
i`, we have

u2
i+1 ≥ u2

i +
s
∑

`=1

w2
i`

≥ u2
i +

1

2

s
∑

`=1

w̃2
i` ≥ u2

i +
1

2s
(

s
∑

`=1

‖w̃i`‖)2 (C-S ineq)

> u2
i +

1

64sτ
(τ − (1 +

8

15
ε)u2

i )
2 (by (6.6))

> u2
i +

1

256
√
k · τ

(τ − (1 +
8

15
ε)u2

i )
2 (Lemma 6.4)

Initially we have u2
1 ≥ 3

4τ , and the algorithm terminates
as soon as u2

i exceeds (1 − 2
3ε)τ . For a = 3, 4, . . . , log 3

2ε
(assuming w.l.o.g. that 3

2ε is a power of 2), we bound the
number of rounds for u2

i to increase from (1 − 2−a+1)τ to
(1 − 2−a)τ , as:

τ(1 − 2−a − (1 − 2−a+1))
1

256
√

k·τ (τ − (1 + 8
15ε)(1 − 2−a)τ)

+ 1

<
2−aτ

1
256

√
k·τ ( 2−a

5 τ)2
+ 1 = 2a252 · 256

√
k + 1.

Summing over all a, we obtain that the total number of
rounds is O(

√
k/ε). �

Combining Lemma 6.4 and 6.5, we know that there
are a total of O(k/ε) sub-rounds and O(

√
k/ε) rounds.

Thus phase two incurs a communication of O((k2/ε +
k3/2/ε3) log n). Recall that the cost of phase one is
O(k2 logn). So far we have assumed that all the estimates
are always within the claimed approximation ranges. Since
we have in total computed O(poly(k/ε)) estimates, by run-
ning O(log k

εδ ) independent repetitions and taking the me-
dian for each estimate, we can guarantee an overall error
probability of no more than δ by the union bound. Thus,
we conclude

THEOREM 6.1. The (k, F2, τ, ε) functional monitoring
problem can be solved by an algorithm with a communica-
tion cost of O((k2/ε + k3/2/ε3) logn log k

εδ ) bits and suc-
ceeds with probability at least 1 − δ.

F2 lower bound. Similar to the F0 case, we prove an Ω(k)
lower bound for continuously monitoring F2 (proof given in
the full version of the paper):



THEOREM 6.2. For any ε ≤ 1/4, n ≥ k2, any probabilistic
protocol for (k, F2, τ, ε) functional monitoring that errs with
probability smaller than 1/2 has to communicate Ω(k) bits
in expectation.

7 Conclusion and Open Problems
For functional monitoring problems (k, f, τ, ε), we observe
the surprising results that for some functions, the communi-
cation cost is close to or the same as the cost for one-time
computation of f , and that the cost can be less than the num-
ber of participants, k. Our results for F2 make careful use
of compact sketch summaries, switching between different
levels of approximation quality to minimize the overall cost.
These algorithms are more generally useful, since they im-
mediately apply to monitoring L2 and L2

2 of arbitrary non-
negative vectors, which is at the heart of many practical com-
putations such as join size, wavelet and histogram represen-
tations, geometric problems and so on [5, 15]. Likewise, our
F1 techniques are applicable to continuously track quantiles
and heavy hitters of time-varying distributions [6].

It remains to close the gap in the F2 case: can a bet-
ter lower bound than Ω(k) be shown, or do there exist
Õ(k · poly(1/ε)) solutions? For other functions, includ-
ing non-linear functions such as entropy, rolling average,
information gain and variance [22], one can progress on
each function in turn, but it will be more rewarding to find
more general techniques for showing bounds for appropri-
ate classes of functions, based on the techniques shown here.
Designing (k, f, τ, ε) functional monitoring algorithms for
non-monotonic fucntions require new performance measures
in order to give meaningful analytic communication bounds.
Model variants need to be understood, for example, the dif-
ference between one-way and two-way communication from
sites to coordinators, and the power of having a broadcast
channel between coordinator and sites. Ultimately, this study
may lead to a new theory of continuous communication com-
plexity.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer
and System Sciences, 58:137–147, 1999.

[2] B. Babcock and C. Olston. Distributed top-k monitoring. In
ACM SIGMOD Intl. Conf. Management of Data, 2003.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
RANDOM, 2002.

[4] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler
algorithm for estimating frequency moments of data streams.
In ACM-SIAM Symp. on Discrete Algorithms, 2006.

[5] G. Cormode and M. Garofalakis. Sketching streams through
the net: Distributed approximate query tracking. In Intl. Conf.
Very Large Data Bases, 2005.

[6] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Ras-
togi. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In ACM SIGMOD Intl.
Conf. Management of Data, 2005.

[7] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s
different: Distributed, continuous monitoring of duplicate
resilient aggregates on data streams. In Intl. Conf. on Data
Engineering, 2006.

[8] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering
the divide: Continuous clustering of distributed data streams.
In Intl. Conf. on Data Engineering, 2007.

[9] T. Cover and J. Thomas. Elements of Information Theory.
John Wiley and Sons, Inc., 1991.

[10] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Dis-
tributed set-expression cardinality estimation. In Intl. Conf.
Very Large Data Bases, 2004.

[11] M. Dilman and D. Raz. Efficient reactive monitoring. In
IEEE Infocom, 2001.

[12] D. Donoho. Compressed sensing. IEEE Trans. Information
Theory, 52(4):1289–1306, April 2006.

[13] V. Doshi, D. Shah, M. Médard, and S. Jaggi. Distributed
functional compression through graph coloring. In IEEE
Data Compression Conf., 2007.

[14] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, A. D.
Joseph, M. Jordan, and N. Taft. Communication-efficient on-
line detection of network-wide anomalies. In IEEE Infocom,
2007.

[15] P. Indyk. Algorithms for dynamic geometric problems over
data streams. In ACM Symp. Theory of Computing, 2004.

[16] A. Jain, J. Hellerstein, S. Ratnasamy, and D. Wetherall. A
wakeup call for internet monitoring systems: The case for
distributed triggers. In Proceedings of the 3rd Workshop on
Hot Topics in Networks (Hotnets), 2004.

[17] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife track-
ing: Design tradeoffs and early experiments with zebranet. In
ASPLOS-X, 2002.

[18] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of thresh-
olded counts. In ACM SIGMOD Intl. Conf. Management of
Data, 2006.

[19] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for sensor
networks. ACM Trans. Database Systems, 30(1):122–173,
2005.

[20] S. Muthukrishnan. Data Streams: Algorithms and Applica-
tions. Now Publishers, 2005.

[21] S. Muthukrishnan. Some algorithmic problems and results in
compressed sensing. In Allerton Conference, 2006.

[22] I. Sharfman, A. Schuster, and D. Keren. A geometric ap-
proach to monitoring threshold functions over distribtuted
data streams. In ACM SIGMOD Intl. Conf. Management of
Data, 2006.

[23] A. C. Yao. Probabilistic computations: Towards a unified
measure of complexity. In IEEE Symp. Foundations of
Computer Science, 1977.

[24] A. C. Yao. Some complexity questions related to distributive
computing. In ACM Symp. Theory of Computing, 1979.


