
AN OPTIMAL DYNAMIC DATA STRUCTURE FOR

STABBING-SEMIGROUP QUERIES∗

PANKAJ K. AGARWAL† , LARS ARGE‡ , HAIM KAPLAN§, EYAL MOLAD¶, ROBERT E.

TARJAN‖, AND KE YI∗∗

Abstract. Let S be a set of n intervals in R, and let (S, +) be any commutative semigroup.
We assign a weight ω(s) ∈ S to each interval in S. For a point x ∈ R, let S(x) ⊆ S be the set
of intervals that contain x. Given a point q ∈ R, the stabbing-semigroup query asks for computing
P

s∈S(q) ω(s). We propose a linear-size dynamic data structure, under the pointer-machine model,

that answers queries in worst-case O(log n) time, and supports both insertions and deletions of
intervals in amortized O(log n) time. It is the first data structure that attains the optimal O(log n)
bound for all three operations. Furthermore, our structure can easily be adapted to external memory,
where we obtain a linear-size structure that answers queries and supports updates in O(logB n) I/Os,
where B is the disk block size.

For the restricted case of nested family of intervals (every pair of intervals are either disjoint or
one contains the other), we present a simpler solution based on dynamic trees.

1. Introduction. Let S be a set of n intervals in R, and let (S, +) be any
commutative semigroup. We assign a weight ω(s) ∈ S to each interval in S. For a
point x ∈ R and a set R of intervals, let R(x) ⊆ R be the set of intervals that contain
x. Given a point q ∈ R, a stabbing-semigroup query asks for computing

∑

s∈S(q) ω(s).
We are interested in developing a dynamic data structure to maintain S dynamically,
so that we can answer stabbing-semigroup queries and insert and delete intervals
to/from S efficiently. By taking different semigroups, for instance (Z, +), (R, max),
(N, gcd), ({0, 1},∨), etc., we obtain different applications of our data structure. If
every pair of intervals in S is either disjoint or nested, we call the problem a nested
instance of the stabbing-semigroup problem.

The so-called stabbing-max (resp. stabbing-min) problem is the special case of the
problem with the semigroup (R, max) (resp. (R, min)). This problem has applications
in object oriented programming [11, 12] and IP routing [13, 10, 17]. In IP routing,
a router maintains a dynamic table of prefixes of IP addresses which is used to pick
the outgoing line for each incoming packet. The decision is done by identifying the
longest prefix of the destination address of the packet stored in its table. We can
model this problem as a stabbing-min problem where each prefix corresponds to an
interval whose weight equals to its length. The destination address of a packet is a

∗Part of work was done while Arge and Yi were at Duke University. Agarwal was supported by
NSF under grants CNS-05-40347, IIS-07-13498, CCF-09-40671, and CCF-1012254, by ARO grants
W911NF-07-1-0376 and W911NF-08-1-0452, by an NIH grant 1P50-GM-08183-01, and by a grant
from the U.S.–Israel Binational Science Foundation. Arge was supported by MADALGO, a center
of the Danish National Research Foundation. Kaplan and Tarjan were supported by Grant no.
2006204 from the U.S.–Israel Binational Science Foundation. Tarjan’s work at Princeton was partially
supported by NSF grants CCF-0830676 and CCF-0832797. Yi was supported by a DAG and an RPC
grant from HKUST, and a Google Faculty Researach Award.

†Department of Computer Science, Duke University, Durham, NC 27708, USA. Email:
pankaj@cs.duke.edu

‡Center for Massive Data Algorithmics (MADALGO), Department of Computer Science, Aarhus
University, Aarhus, Denmark. Email: large@madalgo.au.dk

§Depatment of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Email:
haimk@tau.ac.il

¶Depatment of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
‖Department of Computer Science, Princeton University, Princeton, NJ and Hewlett-Packard,

Palo Alto, CA. Email: ret@cs.princeton.edu
∗∗Department of Computer Science and Engieerning, HKUST. Email: yike@cse.ust.hk

1

point and the shortest interval containing this point corresponds to the longest prefix
of the destination address. Note that the family of intervals in this application is
nested.

A more general problem arising in routers is IP packet classification. A router
often classifies each incoming packet into a flow according to some fields in the packet
header. The router then processes in the same way all packets that are in the same
flow. To do the classification, the router maintains a set of rules, each with a priority
assigned to it. The highest-priority rule that a packet obeys determines the flow
of the packet. The rules may stipulate range constraints on one or more fields in
the packets (e.g., source/destination IP addresses, source/destination ports), which
corresponds to one or multi-dimensional versions of the stabbing-max problem. In
many networking contexts, such as multicast routing protocols and QoS protocols,
the set of rules changes over time, in which case we need the dynamic version of the
stabbing-max problem.

Previous work. A linear-size static data structure for the stabbing-semigroup
problem that supports queries in O(log n) time can be developed using the segment
tree [8] — each node stores the semigroup sum of the intervals associated with it.
This structure can be extended to support insertions of intervals in O(log n) time,
without affecting the asymptotic query time, by using a dynamic segment tree [18].
However, the problem becomes considerably harder when deletions are allowed. If
the weights are drawn from a group, namely in the stabbing-group problem, deleting
an interval s with weight ω(s) can be implemented by inserting s with weight −ω(s),
with periodic re-building to avoid a space blowup. However, this solution does not
apply to the semigroup case because there are no inverses. By modifying the segment
tree so that each node stores the set of intervals associated with it, a query can be
answered in O(log n) time, but an update takes O(log2 n) time and the size of the
data structure becomes O(n log n). Alternatively, by using an interval tree [9] one
can obtain a linear-size data structure that supports both insertions and deletions
in O(log n) time but requires O(log2 n) time to answer a query. We discuss these
structures in more detail in Section 2.

Faster data structures have been developed for the stabbing-max problem in the
context of the IP routing problem by exploiting the fact that endpoints of intervals
are integers, and using the RAM model. For example, Feldmann and Muthukrishnan
[10] proposed the fat inverted segment tree (FIS) data structure. The dynamic version
of FIS supports queries in O(log log n+ ℓ) time, where ℓ is the number of levels in the
segment tree. The space requirement is O(n1+1/ℓ), and an insertion or deletion takes
O(n1/ℓ log n) time, but there is an upper bound on the total number of insertions and
deletions allowed. Thorup [20], improving the result of Feldmann and Muthukrishnan,
presents a linear-size data structure with O(ℓ) query time and O(n1/ℓ) update time
for ℓ = o(log n/ log log n), ℓ ≥ min{

√

log n/ log log n, log log N}, when the endpoints
are integers not exceeding N . See [13] for a survey of such results.

If the input is too large to fit in the main memory, one is interested in an external
memory data structure. In the standard two-level I/O model of computation [2], the
machine consists of a finite main memory and an infinite-size disk. In this model, a
block of B consecutive elements can be transferred between main memory and disk,
and this is referred to as one I/O operation. The data structure is stored in a number
of disk blocks, each of size B, and the cost of an operation is measured by the number
of I/O operations. See [4, 21] for surveys on external memory data structures. For
the stabbing-semigroup problem, the I/O-efficient interval tree developed by Arge

2

and Vitter [5] can be used to construct a linear-size data structure for answering
a stabbing-semigroup query in O(logB n) I/Os. An interval can be inserted into S
using O(logB n) I/Os. Their structure can be modified to handle deletions so that
each update takes O(logB n) I/Os but then a query requires O(log2

B n) I/Os. An
I/O-efficient structure for the stabbing-group problem is presented in [22] that uses
linear space, answers a query and performs an update in O(logB n) I/Os, but it does
not work for the semigroup problem.

Our results. The results in this paper combine and extend results from two confer-
ence abstracts [14, 1]. Our main result is a linear-size data structure for the stabbing-
semigroup problem, in the pointer-machine model [19] of computation. Our structure
answers queries and supports updates (insertions as well as deletions) in O(log n)
time. The query bound is worst-case while the update bounds are amortized. Our
solution starts from the straightforward solutions based on interval and segment trees
mentioned above. We then combine features of these two data structures so that query
time is O(log n), update time is O(log n log log n), and the size of the data structure
is O(n log log n). Next, we reduce the size and update time by a factor of log log n by
using a base tree that is a weight-balanced tree with a large fan-out, in which each
fat leaf stores the endpoints of many intervals. Our approach also leads to a data
structure with a similar performance in the I/O model. More precisely, we obtain a
linear-size data structure such that a query can be answered using O(logB n) I/Os
(worst-case) and each update takes O(logB n) I/Os (amortized). We also propose a
simpler data structure that uses dynamic trees to solve nested instances of the prob-
lem. Finally, we prove that our structure is optimal, in the sense that for certain
semigroups none of the query, insertion, or deletion bounds can be improved without
sacrificing the others. The lower bound is established in the cell-probe model, and in
fact holds for the (easier) stabbing-group problem. Previously an Ω(log n/ log log n)
lower bound was known [3] for the problem. Our structure can be extended to higher
dimensions using segment trees in a standard way [14], by paying a penalty of an
O(log n) factor in both time and space for each additional dimension, but the results
may not be optimal in two or higher dimensions.

The rest of this paper is organized as follows. We begin in Section 2 by describ-
ing simple data structures for the stabbing-semigroup problem that use interval and
segment trees. In Section 3, we describe our structure under the assumption that
the endpoints of all intervals belong to a fixed set P of O(n) points. This allows us
to disregard the rebalancing issue of the base tree in our multi-level structure. We
remove this assumption in Section 4, where we describe how to rebalance the base
tree. In Section 5, we describe how our structure can be adapted to external memory.
Section 6 presents our data structure for nested instances. We prove the lower bounds
in Section 7 and conclude with some open problems in Section 8.

2. Preliminaries and Basic Data Structures. We denote by S the set of
(closed) intervals stored in the structure. We use n to denote the cardinality of S.
Note that n changes as S is modified via insertions and deletions. For an interval
x ∈ S, we denote by ω(x) the weight of x. Each weight belongs to a semigroup S. To
simplify the presentation, we assume that all the endpoints of the intervals in S, as
well as the queries, are distinct. This assumption can easily be removed by fixing an
arbitrary order among identical endpoints.

For any Y ⊂ S, let ω(Y) =
∑

s∈Y ω(s). For a subset Y ⊂ S and a point q, we
denote by Y (q) the subset of Y consisting of all intervals containing q. We assume
that the semigroup is a monoid, i.e., it has an identity element, which we denote by

3

0, and define ω(∅) = 0.
Next, we describe the basic building blocks of our main data structure. The basic

ingredient we use is a structure for storing a totally ordered set X such that each
x ∈ X has a weight ω(x) ∈ S, subject to the following operations.

(i) insert(x): Insert x into X.
(ii) delete(x): Delete x from X.
(iii) UpdateWt(x, w): Given x ∈ X and w ∈ S, Update ω(x) to be w. We can

implement this by deleting x and reinserting x with its new weight.
(iv) wt(X): Return ω(X).
(v) prefixsum(b): Given b ∈ X, return

∑

x∈X, x≤b ω(x).
We implement this data type by a dynamic balanced binary tree [7], in which we

maintain the sum of the weights of the elements in each subtree. Then all operations
take time logarithmic in the size of X, except wt(X), which takes O(1) time. The size
of the data structure is linear in |X|. We can also support a find(x) operation that
locates x in the search tree in logarithmic time. If X is unordered, we can still use
this data structure by imposing an arbitrary total order on X. We call such a basic
structure a bst (for balanced search tree). Throughout this paper we shall often use
the same name for the set and the bst representing it.

Our new data structure can be viewed as a mixture of an interval tree and a
segment tree [9], so we start by reviewing these classical structures. We describe the
static versions of each of these structures, but they can be made dynamic using the
standard techniques [6].

Interval tree. In this section and Section 3, we assume that the endpoints of all
intervals in S that are ever in the structure belong to a fixed set P of m = O(n)
points. We divide R into m atomic intervals by picking an arbitrary separating point
between every two consecutive points in P . We consider these atomic intervals closed
(except the leftmost and the rightmost one). Let T be a balanced full binary tree with
m leaves. Each node v ∈ T is associated with an interval σv. If v is the i-th leftmost
leaf of T, then σv is the i-th leftmost atomic interval. If v is an interior node with v1

and v2 as its children, then the common endpoint xv of σv1 and σv2 is stored at v,
and we set σv = σv1 ∪ σv2 . For a point x ∈ R, let Πx denote the path in T from the
root to the deepest node z such that σz contains x. Note that for every point x 6∈ P ,
Πx is a path from the root to the leaf z whose atomic interval contains z.

In an interval tree, an interval s ∈ S is stored at the highest node v such that
xv ∈ s. Note that Sv is empty if v is a leaf. Let Sv ⊆ S be the set of intervals stored
at v. Let s = [a, b] be an interval in Sv. We split s into two subintervals sℓ = [a, xv]
and sr = [xv, b]. We define Lv = {sℓ | s ∈ Sv}, Rv = {sr | s ∈ Sv}, L = {sℓ | s ∈ S},
and R = {sr | s ∈ S}. For a query point q ∈ R, ω(S(q)) = ω(L(q)) + ω(R(q)).1 We
compute ω(L(q)) and ω(R(q)) separately and return their sum.

We add the following secondary structures to the interval tree to compute ω(L(q))
efficiently; the construction is symmetric for computing ω(R(q)). For a node v, let
Ev be the set of the left endpoints of the intervals in Lv. We assign to each point of
Ev the weight of the corresponding interval, and store Ev in a bst. Clearly the total
size of the data structure, including all secondary structures, is O(n).

Let q be a query point, Let Πℓ
q ⊆ Πq be the set of nodes v ∈ Πq such that v’s left

child is also in Πq. Note that L(q) ⊆ ⋃

v∈Πℓ
q
Lv and that ω(L(q)) =

∑

v∈Πℓ
q
ω(Lv(q)).

Moreover, an interval [a, xv] ∈ Lv contains q if and only if a ≤ q. To compute ω(L(q))

1If q = xv for some separating point xv, we query with a q+ that we consider to be symbolically
larger than q.

4

we traverse the path Πq. At each node v ∈ Πℓ
q, we perform a prefixsum(q) query

on Ev to obtain the weight
∑

a∈Ev,a≤q ω(a) = ω(Lv(q)) in O(log n) time. Finally, we
sum these weights and return the overall weight. Since we spend O(log n) time at
each node v, the overall query time is O(log2 n). We can insert or delete an interval
s in an interval tree in O(log n) time by finding the node v such that s ∈ Sv and
updating the bst representing Ev.

Note that it might be tempting to use dynamic fractional cascading [15] to speed
up the query procedure, but this does not work because the prefixsum(q) operation
on a bst actually relies on retrieving O(log n) weights in the bst, not just one search
location. If one stores the prefix sum at the search location, the update cost of the
bst will be high.

Segment tree. A segment tree allows us to compute ω(S(q)) in O(log n) time,
although the update time is O(log2 n) and the size is O(n log n). The base tree T of
the segment tree is the same as that of the interval tree. However, we now store an
interval s = [a, b] at a node v if σv ⊆ s and σp(v) * s, where p(v) denotes the parent
of v. Note that the parents of the nodes storing s lie on Πa ∪ Πb, and that we can
find these nodes in O(log n) time. Let S̄v ⊆ S be the set of intervals stored at v in
the segment tree. We maintain S̄v in a bst (imposing an arbitrary order on these
intervals). For a leaf z, let Lz be the set of intervals with an endpoint inside σz . (For
now, Lz contains at most one interval, but denoting it as a set will be convenient later
on.) We store Lz at z.

Since an interval s is stored at O(log n) nodes, the total size is O(n log n). An
interval can be inserted or deleted in O(log2 n) time by first finding in O(log n) time
the nodes at which s is stored and then updating the bst at each such node. For a
query point q ∈ R, let z be the leaf on the path Πq, then we have

S(q) =
⋃

v∈Πq

S̄v ∪ Lz(q).(2.1)

Since the sets S̄v for v ∈ Πq and Lz are pairwise disjoint, ω(S(q)) =
∑

v∈Πq
ω(S̄v) +

ω(Lz(q)). Therefore, ω(S(q)) can be computed in O(log n) time by traversing the
path Πq, retrieving the value ω(S̄v) in O(1) time from the bst representing S̄v at
each node v ∈ Πq, and finally checking if the interval in Lz contains q.

3. An Optimal Data Structure for Fixed Endpoints. In this section, we
continue to assume that although the set S of intervals is dynamic, the endpoints of
these intervals belong to a fixed set P of O(n) points. Recall that our assumptions in
Section 2 also imply that each point of P is an endpoint of at most one interval. The
main result is a linear-size data structure that answers a stabbing-semigroup query in
O(log n) time and performs an update in O(log n) time. Recall that the segment tree
attains an optimal query time whereas the interval tree attains an optimal update
time. We first describe how to combine the features of interval and segment trees
to construct a data structure of size O(n log n) on the same base tree that supports
queries in O(log n) time and updates in O(log n log log n) time. We then reduce the
size to linear and the update time to O(log n) without increasing the asymptotic query
time, by increasing the fan-out of the base tree and making the leaves fat, as we will
explain.

3.1. Binary base tree. Intuitively, we store the intervals in secondary struc-
tures as in the interval tree so that each interval is stored at one node of T. However,

5

we maintain the weights as in a segment tree to expedite the query procedure. We
now describe the data structure in detail.

As in the interval tree described in Section 2, we split each interval into left
and right intervals and process the sets L of left intervals and R of right intervals
separately. We describe the secondary structure for L, which allows us to compute
ω(L(q)) for a query point q efficiently. The construction for R is symmetric. We
assume that each point of P that is an endpoint of an interval s stores a bi-directional
pointer to s, and to the node u such that s ∈ Su.

Decomposition of intervals. In what follows, we first decompose the set of left
intervals L in multiple ways that will facilitate the query and update procedures.
First, recall that Lu is the set of intervals in L that have xu as their right endpoints.
For a descendant v of a node u, we define Lvu ⊆ Lu to be

Lvu = {[a, xu] ∈ Lu | a ∈ σv}.(3.1)

This is the set of all intervals in L whose right endpoints are xu and whose left
endpoints lie inside σv. Note that a particular interval [a, xu] ∈ Lu is included in Lvu

for every node v on the path from u’s left child down to the leaf z where a ∈ σz . For
a node v, let Av = {u | u is a proper ancestor of p(v)} and

Φv =
⋃

u∈Av

Lvu.(3.2)

See Figure 3.1 for an illustration of these sets.

I6

I7

xbxc xa

I1 a

c

d

b

e

I4
I5

I3
I2

σb

σd

σc

Fig. 3.1. Illustration of the definition of the sets Φv, Lvu’s: Lba = {I1, I2, I5, I7}, Lca = {I1, I2, I7},
Lda = {I1}, Lea = {I2, I7}, Ldb = {I4}, Leb = {I6}, and Φe = L̄d = {I2, I6, I7}. The picture shows
the entire interval and not only its part which is in L.

Since for a fixed v, the sets Lvu are pairwise disjoint, we have

ω(Φv) =
∑

u∈Av

ω(Lvu).(3.3)

Let L̄w = {s ∈ L | σw ⊆ s, σp(w) 6⊆ s}, which is the subset of L stored at w if we place
the intervals according to the rules of a segment tree. The following lemma shows
how a query should use the Φv sets.

Lemma 3.1. If w is a right child of its parent and v is the left sibling of w, then
Φv = L̄w.

Proof. Let s = [a, b] be an interval in Φv, and let u = p(v) = p(w). Then a must
be in σv, and b must be to the right of σu. So clearly s ∈ L̄w. To prove the converse,
assume that s = [a, b] ∈ L̄w. Then by the definition of a segment tree, σw ⊆ s but

6

σp(w) 6⊆ s. It follows that a ∈ σv. Therefore, there is a proper ancestor u′ of u such
that s ∈ Lvu′ . This implies that s ∈ Φv.

Let w be a node that is the left child of its parent. An interval s = [a, b] ∈ L that
contains σw must contain σp(w). Indeed, if this is not case, then b = xp(w), but then
a must be in σw (otherwise s is not a left interval), which contradicts the assumption
that σw ⊆ s. It follows from this observation that if w is a left child, then L̄w = ∅.
Combining this with Lemma 3.1 and Property (2.1) of a segment tree, we obtain the
following. For a query point q, let z be the leaf on the path Πq and Lz the set of
intervals in L with an endpoint in σz (there is at most one), we have

L(q) =

(

⋃

w∈Πq

L̄w

)

∪ Lz(q) =

(

⋃

w∈Πq
w: right child

L̄w

)

∪ Lz(q) =

(

⋃

w∈Πq

w: right child
v: sibling of w

Φv

)

∪ Lz(q).

Since the Φv sets are pairwise disjoint for nodes whose right siblings belong to the
path Πq, we have

ω(L(q)) =

(

∑

w∈Πq

w: right child
v: sibling of w

ω(Φv)

)

+ ω(Lz(q)).(3.4)

The secondary structures. We will use (3.4) to answer a query by adding up all
the necessary ω(Φv)’s, while building secondary structures to maintain the ω(Φv)’s
according to (3.3) under updates. More precisely, for each node v, we build a bst on
Av using ω(Lvu) as the weight of u ∈ Av. Clearly, this bst has size O(log n), and
ω(Av) = ω(Φv) can be retrieved in O(1) time. When any ω(Lvu) changes, the bst can
be updated in O(log log n) time. The total size of all the secondary data structures is
O(n +

∑

v∈T
|Av|) = O(n log n).

The query procedure is easy. Let q be a query point. We traverse the path Πq

and compute ω(L(q)) in O(log n) time using (3.4), as follows: If a node w ∈ Πq is a
right child and v is its left sibling, then we retrieve ω(Φv) in O(1) time, and we add
up these weights. Finally, we check if the interval s ∈ Lz (if there is one) contains q,
and if so, add its weight as well.

To insert or delete an interval s = [a, b], we first find the node u such that s ∈ Su.
Let sℓ = [a, xu] and sr = [xu, b]. We only describe how to handle sℓ. We traverse the
path Πa from the leaf z such that a ∈ σz , to the root of T, updating the secondary
structures bottom-up, as follows. At z, we update the weight of u in Az , ω(Lzu), in
the bst at z to ω(s) (for an insertion) or 0 (for a deletion). Next, suppose we are at
an internal node v ∈ Πa, a descendant of u, with children v1 and v2, where v1 is the
child of v preceding it on Πa that we have just processed. At this point we already
have an updated value of ω(Lv1u). Since σv = σv1 ∪ σv2 , we have

ω(Lvu) = ω(Lv1u) + ω(Lv2u).

We retrieve ω(Lv2u) from Av2 , which is not affected by the insertion/deletion of s,
and compute the new ω(Lvu). Then we update, in O(log log n) time, the weight of u,
ω(Lvu), in the bst on Av. We stop this bottom-up traversal of Πa at the grandchild
of u on Πa, and the total time spent is O(log n log log n).

Remark. Kaplan, Molad, and Tarjan [14] showed that if we redefine Av to be
the set of those ancestors of v for which Lvu 6= ∅, then the size of the structure

7

reduces to O(n log log n) without affecting the query or update time. Furthermore
by maintaining only the top part of T explicitly and storing the intervals of nodes of
depth larger than n/ log n separately, the space can be made linear and the insertion
time O(log n), but the deletion time remains O(log n log log n). We omit these details
as we will show a different approach that achieves optimality on both insertions and
deletions.

3.2. Non-binary base tree. We now improve the update time to O(log n) and
the space bound to O(n), without increasing the asymptotic query time. We do this
by increasing the fan-out of each node in the base tree T and by making each leaf of T

fat. As a result of the large fan-out, we need more complicated secondary structures,
which will be the focus of this section.

The base tree. As above, let P be the fixed set of m = Θ(n) points that contains
all the endpoints of the intervals in S. We continue to assume that at any time
each point in P is an endpoint of at most one interval in S. We divide R into
⌈m/ logm⌉ = O(n/ log n) atomic intervals, by adding a break point every ⌈log m⌉
consecutive points of P . Let f = ⌈√log n⌉. We build an f -ary tree on top of these
atomic intervals where each leaf corresponds to one. For ease of exposition, we assume
that the number of leaves is a power of f ; otherwise, the fan-out of each internal node
is Θ(f), but that does not affect our asymptotic results.

We chose the size of a leaf and the fanout so that T has O(n/ log3/2 n) internal

nodes. This choice allows to keep secondary data structures of size O(log3/2 n) =
O(f3) in each internal node while keeping the overall space linear, as we will do.

v

v1 v2 v3 v4 v5

σv2 σv4 σv5σv1

b−(v1) b−(v2) b−(v3) b−(v4) b−(v5) b+(v5)

σv3

Iℓ
2 Im

2

σv

Iℓ
1 Ir

1

Ir
2 I2

I1

Fig. 3.2. An internal node v in the base tree T. Im
1 is undefined.

As in Section 2, we associate an interval σv with every node v of T. If v is a leaf,
then σv is the corresponding atomic interval. If v is an internal node with children
v1, . . . , vf , from left to right, then σv = σv1 ∪ · · · ∪ σvf

. We refer to each σvi
as a

slab of v associated with vi. For a child vi of v, let b−(vi) be the left endpoint of
σvi

and let b+(vi) be the right endpoint of σvi
. Note that b+(vi) = b−(vi+1) for

1 ≤ i < f , and b−(v1) and b+(vf) are the boundaries of the slab of p(v) associated
with v. For two children v′ and v′′ of v, we write v′ < v′′ if v′′ is to the right of v′,
i.e., b+(v′) ≤ b−(v′′). We write v′ ≤ v′′ if either v′ = v′′ or v′ < v′′. We store the
slab boundaries of each internal node in a balanced binary search tree so that we can
determine in O(log log n) time the slab of v that contains a point x ∈ σv. This allows
us to traverse the search path Πx from the root to the leaf v containing a point x in
O(log n) time.

8

An interval s is associated with v if s is contained in σv but not a slab associated
with any of v’s children. In particular, if an interval s has both endpoints stored in
the same leaf z, then s is associated with z. As earlier, let Sv ⊆ S be the subset of
intervals associated with v. Clearly each interval is associated with exactly one node
v.

As when the base tree was binary, we store with each point in P that is an
endpoint of an interval s a bi-directional pointer to s and to the node u such that
s ∈ Su. Given a new interval s = [a, b], we can easily find the node u such that s ∈ Su

in O(log n) time. We traverse the path Πa top-down. For each internal node v on
this path, we determine in O(log log n) time the slab σv′ that contains a. If b ∈ σv′ ,
we recursively visit the child v′. If b 6∈ σv′ , then s ∈ Sv. If we reached a leaf z, then
s ∈ Sz .

Let v ∈ T be an internal node, and let s = [a, b] ∈ Sv. Assume first that v′ and
v′′ are children of v such that a ∈ σv′ and b ∈ σv′′ . If b+(v′) = b−(v′′), then we split s
into two intervals: sℓ = [a, b+(v′)] and sr = [b+(v′), b] (e.g. interval I1 in Figure 3.2).
Otherwise, we split s into three intervals: sℓ = [a, b+(v′)], sm = [b+(v′), b−(v′′)], and
sr = [b−(v′′), b] (e.g. interval I2 in Figure 3.2). We refer to sℓ, sm, and sr as the left,
middle, and right intervals of s, and their weights are the same as the weight of s.
For an internal node v, let

Lv = {sℓ | s ∈ Sv}, Rv = {sr | s ∈ Sv}, Mv = {sm | s ∈ Sv},

and for a leaf v let Lv = Rv = Mv = ∅. Let L =
⋃

v Lv, R =
⋃

v Rv, M =
⋃

v Mv,
where the union is taken over all internal nodes v of T.

Let q be a query point, and let z be the leaf of T such that q ∈ σz . Then

ω(S(q)) = ω(L(q)) + ω(R(q)) + ω(M(q)) + ω(Sz(q)).

For each leaf z, we maintain a linked list of the intervals in Sz. Since each point
of P is an endpoint of at most one interval, |Sz| = O(log n). To compute ω(Sz(q)) we
traverse Sz and sum the weights of all intervals in Sz(q).

Below we describe the secondary structures stored at each node in order to com-
pute ω(L(q)), ω(M(q)), and ω(R(q)) efficiently. We first describe the secondary data
structures for the middle intervals, which are new. The secondary data structures for
the left intervals and right intervals are similar to the ones we had when we used a
binary base tree in Section 3.1, but some additional ideas are needed to cope with the
large fanout.

Middle intervals. At each internal node v, we use several multislab bst structures
to store the middle intervals. First, for each pair of children v′ and v′′ of v with
v′ ≤ v′′, we have a multislab structure Mv(v

′, v′′) storing the subset of all intervals
s ∈ Sv such that sm = [b−(v′), b+(v′′)]. (We order these intervals arbitrarily in the
bst.) We maintain these

(

f
2

)

= O(log n) multislab structures in a linked list. Since
each interval in Mv is stored in exactly one multislab, the total size of these multislab
structures at v is O(|Mv|).

Furthermore, for each child v′ of v, we have a slab bst structure Mv(v
′). The

structure Mv(v
′) has an element for each pair of children v1 and v2 of v, such that

v1 ≤ v′ ≤ v2. The weight of this element is ω(Mv(v1, v2)). We keep a pointer from
v′ to Mv(v

′). The size of each slab bst is O(log n) as there may be O(log n) pairs
of children v1 and v2, such that v1 ≤ v′ ≤ v2. Since there are O(

√
log n) slab bst

structures at v, the total size of all slab bst structures at v is O(log3/2 n). It follows

9

that the total size of all multislab and slab bst structures at v is O(|Mv|+ log3/2 n).

Since we have O(n/ log3/2 n) internal nodes, and each interval contributes a middle
part only to one set Mv, all multislab and slab structures at all nodes v take O(n)
space.

Let q ∈ R be a query point. Since the sets Mv are pairwise disjoint, ω(M(q)) =
∑

v∈Πq
ω(Mv(q)).

2 Furthermore, ω(Mv(q)) is exactly ω(Mv(v
′)) where v′ is the child

of v on Πq. So to compute ω(Mv(q)), we traverse the path Πq as described before,
and when we move from a node v to its child v′, we query the structure Mv(v

′) and
obtain ω(Mv(v

′)) in O(1) time. We add these values to obtain ω(M(q)). The overall
query time is O(log n).

Next, we consider updates. Suppose we insert or delete an interval s whose middle
part sm exists. Let v be the node such that s ∈ Sv. (Recall that v can be computed
in O(log n) time.) Let sm = [b−(v′), b+(v′′)]. We find the multislab bst Mv(v

′, v′′)
in O(log n) time by searching the list of the multislab structures. Then we insert
s into or delete s from Mv(v

′, v′′) and then query this bst for the updated weight
ω(Mv(v

′, v′′)). Finally for every w with v′ ≤ w ≤ v′′, we update the weight of the
element corresponding to the pair v′, v′′ in the slab bst Mv(w), to be ω(Mv(v

′, v′′)).
This update takes O(log log n) time for each w, and O(

√
log n · log log n) = O(log n)

for all slab structures.
Lemma 3.2. The set M of middle intervals is stored in multislab and slab bst

structures of the internal nodes of T so that a stabbing-semigroup query on the middle
intervals can be answered in O(log n) time. Furthermore, when a segment s is inserted
or deleted and sm exists, sm can be inserted into or deleted from these secondary
structures in O(log n) time.

Left intervals. We now describe the secondary data structures for maintaining the
left intervals. The secondary data structures for maintaining the right intervals are
symmetric. To store the left intervals, we follow the same approach as in Section 3.1.
The large fanout causes additional complications, however.

Decomposition of intervals. We define Lvu and Φv the same way as in (3.1)
and (3.2), respectively, but bear in mind that the intervals in these sets are different
because the base tree is different now. Note that (3.3) still holds. Since each node
has f children, we need to refine (3.4). For a node v, let Λ(v) be the set of siblings of
v that precede v. For a leaf z, let Lz be the set of intervals in L that have their left
endpoints in σz. The following lemma generalizes (3.4). See Figure 3.3.

b

a

σc

σa

σb

q

Λ(b)

Λ(c)

c

d

Λ(d)

σd

I5

I1

I2

I4

I3

Fig. 3.3. Querying among left intervals;
S

y∈Λ(b) Φy = {I2},
S

y∈Λ(c) Φy = {I1, I3},
S

y∈Λ(d) Φy =

{I4, I5}.

2Recall that Mz = ∅ for the leaf z ∈ Πq.

10

Lemma 3.3. Let q be a query point, let Πq be the search path of q in T, and let
z be the leaf node in Πq. Then

ω(L(q)) =
∑

v∈Πq

∑

y∈Λ(v)

ω(Φy) + ω(Lz(q)).(3.5)

Proof. Clearly the sets Φy whose weights we sum in (3.5) are disjoint, and are
also disjoint from Lz . So it suffices to show that every left interval s = [a, x] that
contains q is contained in either Lz or one of the sets Φy.

Let v be the deepest common node of Πq and Πa. If v is a leaf, then v = z, q ∈ σz ,
and s ∈ Lz. Otherwise, let v′ be the node following v on Πa and v′′ the node following
v on Πq. By the definition of v, v′ 6= v′′, and since s contains q, v′ < v′′. Moreover,
s ∈ Lu for some proper ancestor u of v = p(v′); otherwise s must be [a, b+(v′)] and
cannot contain q. So s ∈ Φv′ and v′ ∈ Λ(v′′).

For the converse, it is easy to verify that every s ∈ Φ(y) for y ∈ Λ(v) and v ∈ Πq,
contains q.

Secondary structures. As in the binary case we maintain bst structures that
allow us to obtain ω(Φv) in O(1) time, for every node v. But two new difficulties
arise. The first is that the ability to get ω(Φv) in O(1) time is not sufficient to answer
a query in logarithmic time. By Lemma 3.3, to guarantee logarithmic query time
we have to be able to compute

∑

y∈Λ(v) ω(Φy) in O(log log n) time for any node v.

Since |Λ(v)| = O(
√

log n), computing this explicitly would be too slow. The second
difficulty is how to update the values ω(Φv). We introduce the following secondary
structures to address these difficulties.

• Lz : We store the list Lz at z. This list has size O(log n) and allows us to
compute the second term of (3.5) in O(log n) time.

• Av: As in the binary case, for each internal node v we maintain the set

Av = {u ∈ T | u is a proper ancestor of p(v)}

in a bst where the weight of u in this structure is ω(Lvu). So it follows
from (3.2) that ω(Av) = ω(Φv). The size of Av is O(log n/ log log n) for our
non-binary base tree.

• Bv: For each internal node v we maintain a bst, Bv, over the children of v
where the weight of a child w is ω(Φw). By a prefixsum(w) query to Bv

with a child w of v, we get
∑

y∈Λ(w) ω(Φy) in O(log log n) time. With these

bsts we can answer a query in a straightforward way using (3.5). The size of
Bv is O(

√
log n).

• Cvu: To be able to efficiently update the BSTs on Av’s, hence also the Bv’s,
we introduce a third secondary structure, Cvu, for every pair of nodes v and
u ∈ Av. In Cvu we have an element for each child w of v, whose weight is
ω(Lwu). It is clear that ω(Cvu) = ω(Lvu). The size of Cvu is O(

√
log n).

The reason for introducing these Cvu’s is the following. When we insert an
interval into Lu or delete an interval s = [a, x] from Lu, the weights ω(Lvu)
may change for some nodes v, on the path from u to the leaf containing a.
Let v1, . . . , vf be the children of v, we have

ω(Lvu) =

f
∑

i=1

ω(Lviu),

11

ω(Φw)

ω(Φv)

ω(Lwu)

ω(Lvu)

ω(Lp(v)u)

ω(Lzu) ω(Φz)

Cp(v)u

Cvu

Cwu

Av

Ap(v)

Aw Bw

Bv

Bp(v)

Fig. 3.4. Updating the secondary structures of left intervals. Here z is a leaf, w = p(z) and v = p(w).

and the Cvu’s are connected in this way that allows for efficient updates.
When ω(Lviu) changes for some i, we update the weight of vi in Cvu. Then
we get the new value of ω(Lvu). Once we have ω(Lvu) we update the weight
of v in Cp(v)u, and the process continues upward. We also use the new value
of ω(Lvu) to update the weight of u in Av. Then from Av we obtain ω(Φv)
and update the weight of v in Bp(v). See Figure 3.4 for an illustration of this
process.

We now argue that all secondary structures representing L require O(n) space.
The total size of all the Lz lists is clearly O(n). Consider an internal node v. The
structure Av has size O(log n/ log log n); the structure Bv has size O(

√
log n); we

have O(log n/ log log n) structures Cvu, one for every ancestor u of v each of size

O(
√

log n), so together they occupy O(log3/2 n/ log log n) space. Summing this bound

over all O(n/ log3/2 n) internal nodes in T we get that the total size of all the secondary
structures is O(n).

After getting the relationship of all the secondary structures right, the query and
update procedures are relatively straightforward. We nevertheless describe them here
for completeness.

Answering a query. Let q ∈ R be a query point. We compute ω(L(q)) using (3.5).
We traverse the path Πq in a top-down manner. For an internal node v ∈ Πq that is fol-
lowed by v′ ∈ Πq, we perform a query prefixsum(v′) on Bv and get

∑

y∈Λ(v′) ω(Φy).

When we reach the leaf z ∈ Πq, we scan the list Lz stored at z and compute ω(Lz(q))
by summing the weights of all intervals in Lz that contain q. We then sum the values
obtained at the nodes of Πq and return the result. The overall query time is O(log n)
since we spend O(log log n) time at each of the O(log n/ log log n) nodes on Πq, and
O(log n) time at the leaf that is the last node on Πq.

Updating L. Suppose we are to insert or delete an interval s = [a, b]. Assume that
s ∈ Su and let [a, x] be the left interval of s which is in Lu. Let z be the leaf such that
a ∈ σz . We first add/remove s to/from the list Lz and then traverse Lz . We compute
the new value of ω(Lzu) by adding the weights of all left intervals in Lz ∩ Lu, and
ω(Φz) by adding the weights of all left intervals in Lz \Lw where w = p(z). Next, the
weights of z in Bw is updated to ω(Φz) and its weight in Cwu to ω(Lzu). After having
the updated value of ω(Cwu), we first update the weight of u in Aw to ω(Lwu), and
then retrieve the new value of ω(Aw) = ω(Φw) from Aw.

12

Next, we continue to the parent v of w. We update the weight of w in Bv to be
ω(Φw). We then update the weight of w in Cvu to be (the updated) ω(Cwu), and
from Cvu we obtain the new value of ω(Lvu). Then we update the weight of u in Av

to be ω(Lvu) and obtain the new value of ω(Av) = ω(Φv). We continue updating the
nodes on Πa bottom-up, maintaining the invariant that after processing node v, we
know the value of ω(Lvu), we have updated Av so that ω(Av) = ω(Φv), and that the
structures Cvu and Bv are updated. We stop when we reach the child of u on Πa.

We spend O(log n) time to update the leaf z since the length of Lz is O(log n).
At each internal node we update and query bst structures of size O(log n) so these
operations take O(log log n) time, and overall the update procedure takes O(log n)
time.

Lemma 3.4. The set L of left intervals can be maintained in secondary structures
using linear space so that a stabbing-semigroup query with respect to L can be answered
in O(log n) time. A left interval can be inserted into or deleted from L in O(log n)
time.

Using T and all secondary structures together (Lemmas 3.2 and 3.4) as well as
the lists representing Sz at each leaf z, we obtain the main result of this section.

Theorem 3.5. A set S of n intervals, whose endpoints belong to a fixed set of
O(n) points, can be maintained in a data structure of linear size so that a stabbing-
semigroup query can be answered in O(log n) time. An interval can be inserted into
S or deleted from S in O(log n) time.

4. Rebalancing the Base Tree. In the previous section we assumed that the
endpoints of the input intervals are from a fixed set of O(n) points, and thus the base
tree T was static. In this section we show how to remove this restriction, that is, how
to insert the endpoints of a new interval s into T before we insert s into the secondary
structures, and how to delete the endpoints of s from T after we delete s from the
secondary structures.

The easiest way to handle deletions is using the standard technique of global
rebuilding. Say T contained n intervals when we last rebuilt it. When deleting an
endpoint we simply mark it as deleted in the node of T that contains it. After n/2
deletions we discard the old structure, completely rebuild the base tree T without
the deleted endpoints, and insert the intervals from the secondary structures of the
old structure into the secondary structures of the new structure one by one. We
can rebuild the base tree (without the secondary structures) T in O(n) time and
perform Θ(n) insertions in O(n log n) time to construct the secondary structures.
Thus, the amortized cost of a deletion of an endpoint is O(log n). Since the fan-out
f =

⌈√

log2 n
⌉

depends on n we also rebuild T when the number of intervals that it
contains doubles since the last time it was rebuilt. So in between global rebuildings of
T the number of intervals in T is between n/2 and 2n and f is fixed to be

⌈√

log2 n
⌉

where n is the number of intervals that were in T right after its last rebuilding. There
are no simple tricks to perform insertions easily, and the rest of this section is devoted
to this task.

4.1. The base tree. In order to handle insertions of endpoints, we make the
base tree T a weight-balanced B-tree with branching factor f and leaf parameter
log n [5]. The weight of a node v of T (not to be confused with the weight of an
interval), denoted by nv, is the number of endpoints stored at the leaves of the subtree
rooted at v. The weight of each leaf is between 1

2 log n and 2 log n, and the weight of
each internal node (except for the root) at level ℓ (leaves are at level 0) is between
1
2f ℓ log n and 2f ℓ log n. It is easy to see that the condition on the weights implies that

13

the fan-out of each internal node (except for the root) is between f/4 and 4f , and
that the root has fan-out between 2 and 4f [5]. The slight variation in the number
of endpoints in a leaf and the fan-out of the internal nodes of T does not affect any
of the arguments we used when discussing the secondary structures in the previous
section, i.e., we can still query and update the secondary structures in O(log n) time
(Lemmas 3.2 and 3.4).

w w

v v′′v′

b+(v)b−(v) b+(v)b−(v)b b

Fig. 4.1. Node v is split into two nodes v′ and v′′ at the slab boundary b; b becomes a slab boundary
at w = p(v) after the split, with σv′ = [b−(v), b] and σv′′ = [b, b+(v)].

After an insertion of an endpoint into a leaf z of the weight-balanced tree T, the
weight constraint of the nodes on the path from z to the root of T may be violated.
That is, the weight of the leaf z may become larger than 2 log n, and the weight of
an ancestor v of z at level ℓ may become larger than 2f ℓ log n. If the weight of z is
too large, then we define a new slab boundary b, and split z along b into two leaves
z′ and z′′ of weights log n and log n + 1, respectively. If an internal node v at level ℓ
becomes too large, then we split v along a slab boundary b into two nodes v′ and v′′

of weight roughly f ℓ log n—more precisely, the weight of each of the two new nodes
is between (f ℓ − 2f ℓ−1) log n and (f ℓ + 2f ℓ−1) log n. In either case, b becomes a new
slab boundary at p(z) or p(v), respectively, and we update the binary search tree of
the slab boundaries at that node. Refer to Figure 4.1.

Next, we need to update all the affected secondary structures following the split.
The procedures are different depending on whether a leaf or an interval node is split,
and below we describe them separately. In either case, our goal is to update all the
necessary secondary structures in O(nv log log n) time. Since we split a node v only
once every O(nv) insertions of endpoints into its subtree, if we charge O(log log n)
time to each endpoint inserted into the subtree of v since its last split, then the total
charges pay for the split. An endpoint may be charged by each ancestor of the leaf to
which it belongs. This gives O(log n) charges in total per endpoint.

4.2. Splitting a leaf. Suppose we are splitting a leaf z into new leaves z′ and
z′′ at a slab boundary b = b+(z′) = b−(z′′), and let w = p(z). This affects a sequence
of secondary structures:

(i) It first affects the way how the intervals are associated with the nodes of T.
More precisely, the intervals in Sz that cross b will move to Sw, with the
other intervals splitting into Sz′ and Sz′′ . An interval moving from Sz to Sw

is broken into a left interval and a right interval (we will only talk about the
left intervals below), which in turn affects the lists Lz, Lz′ , Lz′′ .

(ii) Since a slab at w is split into two, the secondary structures at w for the
middle intervals Mw are affected.

(iii) Some secondary structures for the left intervals are also affected, including
Bw and Cwu for proper ancestors u of w, because w now has one more child.

Note that although we have some new left intervals (generated from the intervals
moving from Sz to Sw), they only appear in the Lz′ , Lz′′ lists, not the Av, Bv, Cvu

14

structures. Below we describe how to perform all the necessary updates in detail.
The lists Sz, Sz′ , Sz′′ , Sw. We split the list Sz of intervals with both endpoints in z

into two lists: Sz′ , containing intervals with both endpoints in z′, and Sz′′ containing
intervals with both endpoints in z′′. The other intervals in Sz have their left endpoint
in z′ and right endpoint in z′′, and all of them now belong to Sw. Any such interval
s = [a1, a2] added to Sw breaks into a left interval sℓ = [a1, b], and a right interval
sr = [b, a2]. We add sℓ to the list Lz′ . We also split Lz into Lz′ and Lz′′ . An interval
in Lz with a left endpoint in z′ is added to Lz′ , and a left interval with a left endpoint
in z′′ is added to Lz′′ . All these take time O(log n) = O(nz) since Sz and Lz both
have size O(log n).

The middle interval structures at w. The secondary structures for the middle
intervals at w are affected by the split of z. Since each middle interval spanning the
multislab defined by z and y for some child y > z, now spans the multislab defined
by z′ and y, the multislab bst Mw(z, y) becomes Mw(z′, y). Similarly, the multislab
bst Mw(y, z) for y < z becomes Mw(y, z′′). The multislab Mw(z, z) also becomes
Mw(z′, z′′). These are merely notational changes.

Now suppose z has a right sibling zr. Consider an interval s ∈ Sw with left
endpoint in z′ and right endpoint not in z. If sm existed before the split of z, then it
must have been in a multislab Mw(zr, y) for some y ≥ zr. We delete s from Mw(zr, y)
and insert it into Mw(z′′, y) instead. If sm did not exist before the split of z, then after
the split sm = [b−(z′′), b+(z′′)], so we insert s into the multislab structure Mw(z′′, z′′).
Similarly, suppose z has a left sibling zℓ, and consider an interval s ∈ Sw with left
endpoint not in z and right endpoint in z′′. If sm existed before the split of z, then it
must have been in a multislab Mw(y, zℓ) for some y < zℓ. We delete s from Mw(y, zℓ)
and insert it into Mw(y, z′) instead. If sm did not exist before the split of z, then after
the split sm = [b−(z′), b+(z′)], so we insert s into the multislab structure Mw(z′, z′).
See Figure 4.2.

w w

z z
′

z
′′zrzℓ zℓ zr

I1

I3

I2
I4

I6
I5

I1

I3

I5
I6

I2
I4

b

b
−(z) b

+(z) b
+(z)b

−(z)

Fig. 4.2. Updating the multislabs at w = p(z) when z splits. Before the split Im
5 , Im

6 are undefined
and after the split Im

5 ∈ Mw(z′, z′) and Im
6 ∈ Mw(z′′, z′′). Before the split Im

1 ∈ Mw(zr , zr) and after
the split Im

1 ∈ Mw(z′′, zr). Before the split Im
2 ∈ Mw(zℓ, zℓ) and after the a split Im

2 ∈ Mw(zℓ, z
′).

The intervals Im
3 , and Im

4 remain in the same multislabs.

After updating the multislab structures at w we continue and update the slab
structures at w. Let Mw(z1) be a slab structure of a leaf z1 > z. We delete from
Mw(z1) all the pairs (z, y) for y > z1 and insert the pairs (z′, y) and (z′′, y) instead with
weights ω(Mw(z′, y)) and ω(Mw(z′′, y)), respectively. We update the slab structures
Mw(z1) for z1 < z analogously. Finally we discard the slab structure Mw(z) and
construct two new slab structures Mw(z′) and Mw(z′′). The structure Mw(z′) contains
all the pairs in Mw(z) and pairs (y, z′) for y < z′. Similarly, the structure Mw(z′′)

15

contains all the pairs in Mw(z) and pairs (z′′, y) for z′′ < y. The weight of each
pair (y1, y2) is ω(Mw(y1, y2)). This completes the updates to the data structures
representing middle intervals. Note that the middle intervals at nodes other than w
are not affected.

The updates to the middle intervals structures at w take O(log n log log n) =
O(nz log log n) time. We delete and insert O(log n) intervals into multislab structures
Mw(z′′, ·) and Mw(·, z′) in O(log n log log n) time. We perform O(

√
log n) deletions

and insertions of pairs containing z, z′, and z′′, into each slab structure Mw(z1) for
z1 6= z′, z′′. As there are O(

√
log n) slab structures, and each update take O(log log n)

time, all updates to slab structures take O(log n log log n) time. We also construct
from scratch the slab structures Mw(z′) and Mw(z′′), by inserting O(log n) pairs each
in O(log log n) time.

Left interval structures. Consider now the left interval structures affected by the
split of z. These structures are Bw and Cwu for proper ancestors u of w. Other
structures for the left intervals are not affected by the split.

We first compute ω(Φz′) by summing the weights of all the intervals in Lz′ that
are not in Lw. We compute ω(Φz′′) similarly. Then we delete z from Bw and insert z′

and z′′ with weights ω(Φz′) and ω(Φz′′), respectively. This step takes O(log n) time.
To update Cwu, we sort the intervals s in Lz′ according to the ancestor u of w

where s ∈ Lu. For each proper ancestor u of w, we sum the weights of all intervals in
Lu and obtain ω(Lz′u). Similarly we obtain ω(Lz′′u). Then we delete z from Cwu and
insert z′ and z′′ instead with weights ω(Lz′u) and ω(Lz′′u), respectively. Note that
ω(Lwu) does not change so Aw is not affected. This step takes O(log n log log n) time:
It takes O(log n log log n) time to sort and traverse Lz′ and Lz′′ , and it takes O(log n)
time to update the O(log n/ log log n) structures Cwu, each in time O(log log n).

This completes the description of the updates when we split a leaf.

4.3. Splitting an internal node. Consider now a split of an internal node v
into v′ and v′′ at a slab boundary b. Let w be the parent of v. The changes needed
following this split are similar to those following a leaf split, but the details are more
involved. On the high level, we still have the following three steps:

(i) The split first affects the way how the intervals are associated with the nodes
of T: The intervals in Sv that cross b will move to Sw, while the others are
partitioned into Sv′ and Sv′′ . An interval moving from Sv to Sw is split into a
left interval and a right interval at b (we will only talk about the left intervals
below). Unlike the leaf split case, here the new left intervals are not only
stored in the Lz lists, but also some Av, Bv, Cvu structures, which need to be
updated.

(ii) As in the leaf-split case, a slab at w is split into two slabs, which affects the
secondary structures built at w on the middle intervals. Furthermore, since
v′ and v′′ are two new internal nodes, their middle interval structures need
to be built.

(iii) Many left interval structures are also affected, and there are three types of
changes we need to perform. First, each interval moving from Sv to Sw

has a new left interval, so we update these left intervals in the secondary
structures. Second, v is split into v′ and v′′, so we discard Av, Bv, Cyv

(for every descendant y of v) and rebuild Av′ , Av′′ , Bv′ , Bv′′ , Cyv′ (for every
descendant y of v′), Cyv′′ (for every descendant y of v′′), Cv′u and Cv′′u (for
every ancestor u of w). Finally, analogous to the leaf-split case, a child of w is
being split, so Bw and all the Cwu’s for proper ancestors u of w are updated.

16

We now describe in detail how all the necessary updates are performed.
The lists Sv, Sv′ , Sv′′ , Sw. The list Sv is partitioned as follows. Let s = [a1, a2]

be an interval in Sv; a1, a2 ∈ σv. If both a1, a2 lie in σv′ (resp. σv′′), then s is
moved to Sv′ (resp. Sv′′); if s intersects the common boundary b of σv′ and σv′′ , then
s is moved to Sw. When associated with v, s had a left interval, a right interval,
and possibly a middle interval when associated with v. When moving to w, the
middle interval disappears, while the left and right intervals become sℓ = [a1, b] and
sr = [b, a2], possibly longer than they were previously. See Figure 4.3. We update
the left interval with the endpoint a in the list Lz where a ∈ σz to this new sℓ (recall
that we have a pointer from s to its left endpoint a, which is stored at z). These steps
take O(|Sv|) = O(nv) time.

b
b−(v)

σv

σv1 σv2

b+(v)

Fig. 4.3. Solid intervals move from Sv to Sw; the left interval derived from each of these intervals
changes. The right endpoint of the new left intervals is b. Dotted intervals are now in Sv′ or Sv′′ ;
their partitions into left, middle, and right intervals do not change.

The middle interval structures at v′, v′′, w. The multislabs of v′ and v′′ are multi-
slabs of v corresponding to pairs of children of v that are either both children of v′ or
both children of v′′. They can be copied over directly. We can obtain the slab struc-
tures of v′ and v′′ from slab structures of v. Let y be a child of v′. We obtain Mv′(y)
by deleting from Mv(y) all pairs which are not both children of v′. We construct the
slab structures of children of v′′ similarly. All of these operations take time at most
O(|Sv|) = O(nv).

We also update the middle-interval structures at w. This is analogous to update
procedure for a leaf split. Here, to identify the middle intervals of the multislabs
Mw(v′′, y), for the right siblings y of v′′, we traverse the subtree of v′ to find all
intervals whose other endpoint is in σw but was not in σv. When we find an interval
s ∈ Sw such that sm after the split is not empty, starting at b+(v′) and ending
at b+(y), we add sm to Mw(v′′, y). We identify middle intervals of the multislabs
Mw(y, v′) analogously.

We claim that updating middle-interval data structures at w takes O(nv log log n)
time. Indeed, inserting O(nv) pairs into multislab structures Mw(v′′, ·) and Mw(·, v′),
after deleting them from the multislab structures that previously contained them,
takes O(nv log log n) time. We obtain each of the O(

√
log n) slab structures of v′ and

v′′ by O(log n) updates to slab structures of v in O(log3/2 n log log n) time. Since

nv = Ω(log3/2 n), this bound is also O(nv log log n). Constructing the slab struc-
tures Mw(v′) and Mw(v′′) takes O(log n log log n) time, which is again bounded by
O(nv log log n).

The left interval structures. We update the affected left interval structures by
traversing the subtrees of v′ and v′′ (i.e., the former subtree of v) bottom-up. For
each leaf z in the subtree of v′, we scan Lz and identify the intervals in Lz ∩Lv′ . We
sum the weights of these intervals and obtain ω(Lzv′). At each proper descendant y

17

of v′, we discard Cyv and construct Cyv′ by inserting every child y′ of y into Cyv′ with
weight ω(Ly′v′). From the new Cyv′ we get ω(Lyv′), which allows us to continue to
build the Cyv′ structures upward until reaching v′. Meanwhile, we also delete v from
Ay and insert v′ instead, with weight ω(Lyv′). In addition, letting w = p(v), we rebuild
the Cyw structures for all descendants y of v′ during this bottom-up traversal, since
Lw now contains new left intervals—the ones that intersect the new slab boundary b.
Finally, we also update the weight of w in Ay to be ω(Lyw). Similarly, we perform
these changes for every descendant y of v′′. It is easy to verify that all the updates
during this bottom-up traversal takes O(nv) time. Recall that nv is the number of
points in the subtree of v and the number of internal nodes in this subtree is only
O(nv/ log n).

After we have completed the rebuilding of the structures Cyw, Cyv′ , and Cyv′′ ,
and updated Ay for all y in the former subtree of v, we also rebuild the structures By

for all nodes y in this subtree. For each node y and a child y′ of y, we insert y′ into
By with the updated weight ω(Ay′). The time for this is proportional to the number
of nodes in the subtree of v, which is O(nv/

√
log n).

Consider now ancestors u of w. For each such u, we build the structures Cv′u and
Cv′′u: We insert each child y of v′ into Cv′u with weight ω(Lyu), and similarly build
Cv′′u. Then we construct Av′ and Av′′ by inserting each proper ancestor u of v′ and
v′′ to Av′ and Av′′ with weights ω(Lv′u) and ω(Lv′′u), respectively. (We also associate
the occurrence of u in Av′ with Cv′u and similarly for Av′′ .) Lastly, we construct Bv′

and Bv′′ . The time taken by these operations is proportional to the total size of the
structures that we construct, which is

O(
√

log n log n/ log log n) = O(log3/2 n) = O(nv).

Finally, for every proper ancestor u of w we update Cwu. We delete v from Cwu

and insert v′ and v′′ instead, with weights ω(Lv′u) and ω(Lv′′u), respectively. Then
we make corresponding updates to Bw.

Putting it together. This completes the description of the split of a node v,
whether it is a leaf or an internal node. The time it takes to perform the split is
O(nv log log n); the split time at an internal node is dominated by the time it takes to
rearrange the middle intervals in the subtree of v into their multislab structures. By
the earlier argument, this translates to an amortized cost of O(log n) per insertion.
Combining this with the global rebuilding technique mentioned in the beginning of
the section implies that the amortized cost of a delete operation is also O(log n). We
thus obtain the following.

Theorem 4.1. A set of n intervals can be maintained in linear-size data structure
so that a stabbing-semigroup query can be answered in O(log n) time worst-case, and
an interval can be inserted or deleted in amortized O(log n) time.

5. External Memory Structure. Let B be the size of a block that we can
transfer in one I/O operation from external to internal memory. Our data structure
can be easily adapted to external memory by using the following parameters: we
let each leaf of the base tree contain B logB n endpoints, and let the fan-out f be
max{

√

logB n,
√

B}, that is, when n < BB , the fan-out is fixed at
√

B; as n gets

larger than BB , the fan-out increases at
√

logB n. We also change the fan-out of
all the bst structures to B, so that we can update and query a bst structure on m
elements in O(⌈logB m⌉) I/Os. To see that the analysis goes through, consider the
following two cases.

18

Case 1: logB n ≥ B. In this case the fan-out is f =
√

logB n. Noticing that
logB logB n ≥ 1, one can verify that the analysis in Sections 3 and 4 goes through, by
replacing every base-2 logarithm with a base-B logarithm.

Case 2: logB n < B. In this case by our choice of f , the height of the base tree
T is O(logB n), that is, it is essentially a B-tree. Recall that we attach secondary
structures to the base tree for the middle intervals M and the left intervals L and
handle them separately. We consider them one by one.

Since there are O(f2) = O(B) multislabs at each node v, the middle interval struc-
tures at v now answer a query in O(1) I/Os, so the total query cost is O(logB n) I/Os.
The total update cost is also O(logB n). The size of the middle interval structures
at v takes O(1 + (|Mv| + f3)/B) blocks. Since there are O(n/(Bf logB n)) internal
nodes and middle interval structures exist at only the internal nodes, the total size of
all these structures is still O(n/B) blocks.

Next we consider the secondary structures for the left intervals. We spend O(1)
I/Os to query Bv at each node v on a root-to-leaf path, and spend O(logB n) I/Os
at the leaf, so the total query cost is still O(logB n) I/Os. To perform an update, we
update one Av, one Bv, and one Cuv structure at each node on a root-to-leaf path.
The cost is O(⌈logB logB n⌉) I/Os for updating Av, which is O(1) since logB n < B.
The cost to update a Bv or a Cuv structure is also O(1) I/Os. So the total update cost,
summed over all nodes, is O(logB n) I/Os. The space requirement of these structures
is O(n/(B logB n)) = O(n/B) blocks.

Finally, it can be verified that the procedure in Section 4 spends O(nv·⌈logB logB n⌉) =
O(nv) I/Os to split a node v during rebalancing, so the amortized cost of an update
is O(logB n) I/Os.

Theorem 5.1. A set of n intervals can be stored in an external memory data
structure using O(n/B) blocks, so that a stabbing-semigroup query can be answered
in O(logB n) I/Os in the worst-case and each update can be performed in O(logB n)
amortized I/Os.

6. Nested Intervals. In this section we propose a simpler data structure, based
on dynamic trees [18], for the special case in which the intervals in S are nested, i.e.,
at any given time, two intervals in S are either disjoint or one is contained in the
other. It requires linear space, and each operation takes O(log n) time. Without
loss of generality, we assume that S always contains the interval ξ = [−∞,∞] whose
weight is 0.

We define a containment tree, C, on the intervals in S. Each interval in S is a
node in C, and the parent of an interval s is the smallest interval in S that contains s.
We order the children of a node in increasing order of their left endpoints. We define
the weight of an edge e in C, denoted by ω(e), from an interval s to its parent to be
ω(s); see Figure 6.1. For a node s ∈ C, let Π(s, C) be the path in C from the root to
s, and let p(s) denote the parent of s in C. For a point x ∈ R, let sx be the smallest
interval that contains x. By definition,

ω(S(x)) =
∑

e∈Π(sx,C)

ω(e).(6.1)

A weakness of C is that an insertion or a deletion of an interval may require
insertions and deletions of many edges. We therefore represent C by a binary tree B,
as follows. The nodes of B are the same as the nodes of C. The left child of a node
v in B is the first child of v in C, or null if v is a leaf in C. The weight of the edge

19

(a)
(b)

q

1 a

d

j
3

c

12ihg
10

9

lk

e f

ξ

5

ξ

0

0

0

0

0

0

0

0

0

0

4

b6

2 11

0

0
ξ

k
4 53

e
72

1

b

6 9

i

1011
128

87

1

2

3
k

4
l

5 0

e7

a

8

b
6 0

0
c

9
g

10
h

11
i

12

c

hgf

j l

d

a

d

j
f

(c)

Fig. 6.1. (a) Nested intervals, numbers denote the weights of the intervals; ξ = (−∞,∞) is the
interval of weight 0 added to S; sq = l. (b) Containment tree C, bold path denotes Π(sq, C). (c)
Binary tree B, bold path denotes Π(sq , B).

between v and its left child is the weight of the interval associated with v. The right
child of v in B is the right sibling of v in C, or null if v is the rightmost child of its
parent in C. The weight of the edge from v to its right child is 0. For any (non-null)
node s ∈ B,

∑

e∈Π(s,B)

ω(e) =
∑

e∈Π(p(s),C)

ω(e),(6.2)

which implies that

ω(S(x)) =
∑

e∈Π(sx,B)

ω(e) + ω(sx).(6.3)

See Figure 6.1. It is easy to verify that an insertion or a deletion of an interval requires
only O(1) insertion and deletions of edges to/from B.

We maintain B as a dynamic tree data structure, introduced by Sleator and
Tarjan [18].3 Recall that dynamic trees support each of the following operations in
O(log n) time:

• MinCost(v): finds the minimum cost of an edge on the path from v to the
root of its tree.

• Link(v, w, c): v should be the root of a tree and w a node in another tree.
This operation connects the tree containing v with the tree containing w by
adding an edge with cost c between v and w with w being the parent.

• Cut(v): Splits the tree containing v by removing the edge from v to its
parent.

We change the standard implementation of dynamic trees in a straightforward way
so that weights of the edges are elements of a semigroup, and instead of MinCost(v)
we support the following query:

3In this representation B is an unordered tree, that is, it does not distinguish between a right
child of a node v ∈ B and its left child. This does not interfere with the correctness of the structure.

20

• SumCost(v): returns the sum of the weights of the edges on the path from
v to the root of its tree.

We also store the endpoints of all intervals in a balanced search tree T. If x is an
endpoint of an interval s ∈ S, we store a pointer at the node of T that stores x to the
node of B corresponding to the interval s. The overall size of the structure is linear.

Let q ∈ R be a query point. We compute ω(S(q)) as follows. We first find in
O(log n) time the predecessor x of q in T. Suppose x is an endpoint of the interval
s ∈ S. If x is the right endpoint of an interval s, then sq = p(s). By (6.1) and (6.2),

ω(S(q)) =
∑

e∈Π(s,B)

ω(e),

and therefore we return the value of SumCost(s). If x is the left endpoint of an
interval s, then s = sq. In this case, by (6.3), we return ω(S(q)) = SumCost(s)+ω(s).

To insert an interval s = [a, b], we need to update both T and B. We first update
B, and add to it a node representing s and then we insert a and b to T. When we
add a and b to T, we also store pointers in the nodes containing a and b to the node
containing s in B.

4
s

1

3

1

4

3

3

4

B

2

1 1

2 s 5

C

2 3 4 5

43

2

s

B

3
4

5

2

3

4

5

1

s

1

2 3

42

C

4s

1

s
1

5432(b)

2

1

(a)

2 3

1

Fig. 6.2. Inserting an interval s: (a) s is the leftmost child of 1; ℓ− = 1, ℓ+ = 2, r− = 3, and
r+ = 4. (b) s has a left sibling 2; ℓ− = 2, ℓ+ = 3, r− = 4, and r+ = 5. Thick lines indicate the
newly created edges in B.

We first find the predecessor and successor a−, a+ (resp. b−, and b+) of a (resp.
b) in T. Suppose a−, a+, b−, and b+ are the endpoints of the intervals ℓ−, ℓ+, r−, and
r+, respectively. We allocate a new node for s and update its children as follows. (We
also use s to refer to the node containing s when no confusion arises.) If a+ > b, then
s does not contain an interval of S, so s is a leaf of C. Otherwise, ℓ+ should be the
leftmost child of s in C and r− should be the rightmost child of s in C. So we make
ℓ+ the left child of s in B by performing Cut(ℓ+) followed by Link(ℓ+, s, ω(s)). The
right child of s in B should be the right sibling of s in C. If b+ is the right endpoint
of r+, then s is the rightmost child of its parent in C so s does not have another child
in B. If b+ is the left endpoint of r+, then r+ should be the next sibling of s in C. So
to update B we perform Cut(r+) followed by Link(r+, s, 0). See Figure 6.2.

Finally, we set the parent of s in C. If a− is the left endpoint of ℓ−, then s is
the leftmost child of ℓ− in C, and we perform Link(s, ℓ−, ω(ℓ−)); see Figure 6.2 (a).
Otherwise, ℓ− is the left sibling of s in C, and we perform Link(s, ℓ−, 0); see Fig-
ure 6.2 (b). (In the latter case if ℓ− was not the rightmost child of its parent in C

21

before the insertion of s, then this right sibling of ℓ− was either ℓ+ or r+. In either
case we have made a cut such that ℓ− has no right child prior to the link which made
s its child in B.)

This implementation of insert takes O(log n) time: By searching in T, a−, a+, b−,
and b+ can be computed in O(log n) time. Once we locate these points we perform a
constant number of links and cuts which also take O(log n) time. The implementation
of delete is similar.

Remark. By exploiting the internal structure of the dynamic trees [18], we can
maintain additional information at each node of the dynamic tree so that there is no
need for T. Using this additional information we can find the predecessor and the
successor of a point using the dynamic tree itself. We omit these details from this
paper.

7. Lower Bounds. In this section, we prove lower bounds for the dynamic
stabbing-group problem, i.e., returning the sum of the weights of intervals containing
a query point, but the weights of intervals are now drawn from a group and thus both
addition and subtraction operations are allowed on the weights. Since it is easier to an-
swer stabbing-group queries, these lower bounds hold for stabbing-semigroup queries
as well. The lower bounds are proved in the cell-probe model, by using reductions
from the partial-sum problem.

The cell-probe model, introduced by Yao [23], assumes that the memory is a
collection of fixed-size cells (words). To perform a query or an update, the algorithm
reads and writes cells of the memory, and the cost of the operation is simply the
number of cells read and written. All other computation is free. We assume that a
memory cell has Θ(log n) bits, to ensure that n can be represented in one word. We
also assume that any endpoint or weight of an interval is represented in one word.

The partial-sum problem asks to maintain an array A[1..n] subject to the following
two operations:
Update(k, ∆): Set A[k] to be ∆, and

prefixsum(k): Return
∑k

i=1 A[i].
Pǎtraşcu and Demaine [16] proved the following lower bound for the partial-sum

problem in the cell-probe model. Suppose the array elements belong to the group
Z/nZ = {0, 1, . . . , n − 1} with addition/subtraction modulo n. Let π be the bit-
reversal permutation, i.e., π(i) is the integer obtained by reversing the log2 n bits
of i (for simplicity assume that n is power of 2). Perform the following alternating
Update and prefixsum operations. The i-th operation is Update(π(i), ∆) for odd
i, where ∆ is chosen uniformly at random from {0, . . . , n − 1}; and the operation
is prefixsum(π(i)) if i is even. Note that even though the indices affected by the
operations are fixed, the ∆ values in the update operations define a distribution
on input sequences. Let tu and tq be the expected amortized time of the Update

and prefixsum operations, respectively, on this distribution of input sequences of
a data structure for the partial-sum problem. Pǎtraşcu and Demaine [16] proved
that tq log(tu/tq) = Ω(log n) and tu log(tq/tu) = Ω(log n), irrespective of the number
of memory cells used by the data structure, initial preprocessing time of the data
structure, and the initial values of A[i]. For simplicity, we assume that initially
A[i] = 0 for all i.

A sequence of operations for the partial-sum problem can be solved by performing
a sequence of insert and query operations on a dynamic stabbing-group data structure,
for the group Z/nZ, as follows. For an Update(k, ∆) operation, we insert an interval
[k, n] with weight ∆; for a prefixsum(k) query, we issue a stabbing-group query at

22

k. It is easy to verify that this solves the partial-sum problem on any sequence of
operations. Hence, for any stabbing-group data structure with insert and query time
ti and tq, respectively, tq log(ti/tq) = Ω(log n) and ti log(tq/ti) = Ω(log n).

We also show how to use the lower bound by Pǎtraşcu and Demaine [16] for partial
sums to prove a lower bound on the trade-off between the query time and the deletion
time in a deletion-only data structure for the stabbing-group problem. Specifically,
we assume that a set of intervals preprocessed into a data structure such that we
can delete intervals from the data structure and perform stabbing-group queries, and
show a trade-off between the deletion time and the query time.

Let p be a prime number and let n = p2. The weights are chosen from the
group Z/pZ. Define a family S of n intervals si,j = [i, p], for 0 ≤ i, j < p, with
weights ω(si,j) = j. Suppose we have a stabbing-group structure D initialized to
contains S that supports deletions and queries. Consider the sequence of p Update

and prefixsum operations in the construction of [16] described above, with array size
p and the group Z/pZ. We can simulate such a sequence by deletions and queries on D

as follows. For Update(k, ∆), we delete the interval sk,p−∆. Note that ω(sk,p−∆) =
p − ∆. For any k, we delete at most one interval among sk,0, . . . , sk,p−1, as each
Update operation updates a different array element. For prefixsum(k), we issue a
stabbing-group query at k. Before the above prefixsum operation was performed,
suppose ℓ Update operations were performed on array elements with index at most k,
with weights ∆1, . . . , ∆ℓ. Then the weight of the intervals currently in S that contain
k is

kp(p − 1)/2 −
ℓ

∑

i=1

(p − ∆i) ≡
ℓ

∑

i=1

∆i (mod p),

which is the same as the output of prefixsum(k).
The following theorem summarizes the lower bounds that we obtain via the re-

ductions from partial sums that we described.
Theorem 7.1. For any stabbing-group data structure in the cell-probe model

storing n intervals, if the amortized insertion, deletion, and query times are ti, td,
and tq, respectively, then the following trade-offs hold:

tq log(ti/tq) = Ω(log n); ti log(tq/ti) = Ω(log n);

tq log(td/tq) = Ω(log n); td log(tq/td) = Ω(log n).

Remark. Our deletion-query trade-off holds only for the amortized cost of the
first p =

√
n deletions in a data structure storing n = p2 intervals. Although it

is straightforward to prove the same trade-off for the first O(n1−ǫ) deletions, for
any small constant ǫ, it seems difficult to extend the argument to the first Ω(n)
deletions. However, we believe that the trade-off indeed still holds if Ω(n) deletions
are considered.

8. Open Problems. In this paper we consider data structures that work with
any semigroup, and present an optimal solution. However, our lower bound does
not prevent us from obtaining an improved structure with some special semigroups,
such as the stabbing-max problem (using (R, max)), or the existence problem (using
({0, 1},∨)). So far there are no better results on these special problems than our

23

general-purpose stabbing-semigroup data structure in the pointer-machine model, al-
though sub-logarithmic bounds can be obtained on a RAM [20]. Another interesting
question to ask is the counting problem, which is the case where we use the group
(Z/nZ, +), but all weights are fixed to be one. Our lower bound does not hold for
this case as it assumes that weights can be arbitrarily chosen from (Z/nZ, +).

Acknowledgment. The authors thank Mihai Pǎtraşcu for helpful discussions on
the lower bound of the problem. They also thank two anonymous referees for their
useful comments.

REFERENCES

[1] P. K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbing-max data structure?
In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 803–812, 2005.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. IEEE Symposium

on Foundations of Computer Science, pages 534–543, 1998.
[4] L. Arge. External memory data structures. In Handbook of Massive Data Sets, pages 313–357.

Kluwer Academic Publishers, 2002.
[5] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM Journal on

Computing, 32(6):1488–1508, 2003.
[6] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proceedings

of the IEEE, 80(9):1412–1434, 1992.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 2nd

Edition. The MIT Press, 2001.
[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkopf. Computational Geometry:

Algorithms and Applications. Springer, 2000.
[9] H. Edelsbrunner. A new approach to rectangle intersections, part I. International Journal of

Computer Mathematics, 13:209–219, 1983.
[10] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. In Proc. IEEE INFO-

COM, pages 1193–1202, 2000.
[11] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object oriented

languages. In Proc. Annual European Symposium on Algorithms, pages 107–120, 1996.
[12] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: a geometric

approach with applications to string matching problems. In Proc. ACM Symposium on

Theory of Computing, pages 483–491, 1999.
[13] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network, 15(2):24–32,

2001.
[14] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic rectangular intersection with priorities. In

Proc. ACM Symposium on Theory of Computing, pages 639–648, 2003.
[15] K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5:215–241, 1990.
[16] M. Pǎtraşcu and E. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM Journal

on Computing, 35(4):932–963, 2006.
[17] S. Sahni, K. Kim, and H. Lu. Data structures for one-dimensional packet classification using

most-specific-rule matching. In Proc. International Symposium on Parallel Architectures,

Algorithms and Networks, pages 3–14, 2002.
[18] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and

System Sciences, 26(3):362–391, 1983.
[19] R. E. Tarjan. A class of algorithms which require non-linear time to maintain disjoint sets.

Journal of Computer and System Sciences, 18(2):110–127, 1979.
[20] M. Thorup. Space efficient dynamic stabbing with fast queries. In Proc. ACM Symposium on

Theory of Computing, pages 649–658, 2003.
[21] J. S. Vitter. External memory algorithms and data structures. In External memory algorithms,

pages 1–38. American Mathematical Society, 1999.
[22] J. Yang and J. Widom. Incremental computation and maintenance of temporal aggregates. In

Proc. IEEE International Conference on Data Engineering, pages 51–60, 2001.
[23] A. Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

24

