Tracking Distributed Data

Ke Yi

HKUST
The Distributed Count-Down Problem

k sites
The Distributed Count-Down Problem

Alert when n items have arrived

k sites
The Count-Down Problem

Naive solution: $O(n)$ communication

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Naive solution: \(O(n) \) communication

“Safe zone” based approach:

- Set threshold = \(n/k \), safe when every local count < \(n/k \)

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Naive solution: $O(n)$ communication

“Safe zone” based approach:

- Set threshold = n/k, safe when every local count < n/k
- When one local count reaches n/k, broadcast to
 - Compute the current total count
 - Compute new leeway = n − total count
 - Set new threshold = leeway / k

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Naive solution: $O(n)$ communication

“Safe zone” based approach:

- Set threshold $= n/k$, safe when every local count $< n/k$
- When one local count reaches n/k, broadcast to
 - Compute the current total count
 - Compute new leeway $= n - \text{total count}$
 - Set new threshold $= \text{leeway} / k$

Analysis

- # rounds: $O(k \log n)$
- Cost per round: $O(k)$
- Total cost: $O(k^2 \log n)$

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Set threshold \(= \frac{n}{2k} \)

Round 1:

\[\frac{n}{2k} \]

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Set threshold $= \frac{n}{2k}$

Round 1: after k signals: $\frac{n}{2} \leq \text{count} < n$

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Round 2:

\[\frac{n}{4k} \]

signal

signal

signal

signal

signal

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Round 2:

\[\frac{n}{4k} \]

signal → signal → signal

[signal] [signal] [signal]

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Round 2:

after another k signals: $\frac{3}{4}n \leq \text{count} < n$

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Down Problem

Round 2:

after another k signals: $\frac{3}{4}n \leq count < n$

Analysis

$\#$ rounds: $O(\log n)$

cost per round: $O(k)$

total cost: $O(k \log n)$

[Cormode, Muthukrishnan, Yi, SODA’08]
The Count-Tracking Problem

Counter n_1

Counter n_2

Counter n_3

Counter n_k

k sites

Counters increment over time
The Count-Tracking Problem

Coordinator wants to track $n = \sum n_i$ with relative ε-error.

Counters increment over time.
Every site uses a series of thresholds:
\[t_0 = 1, \quad t_1 = 1 + \varepsilon, \quad t_2 = (1 + \varepsilon)^2, \ldots \]

Sends a message when \(n_i \) reaches a threshold

\[t_3, \quad t_2, \quad t_1 \]
Deterministic Algorithm

Every site uses a series of thresholds:
\[t_0 = 1, \quad t_1 = 1 + \varepsilon, \quad t_2 = (1 + \varepsilon)^2, \ldots \]

Sends a message when \(n_i \) reaches a threshold
Every site uses a series of thresholds:
\[t_0 = 1, \quad t_1 = 1 + \varepsilon, \quad t_2 = (1 + \varepsilon)^2, \ldots \]
Sends a message when \(n_i \) reaches a threshold.
Every site uses a series of thresholds:
\[t_0 = 1, \; t_1 = 1 + \varepsilon, \; t_2 = (1 + \varepsilon)^2, \ldots \]

Sends a message when \(n_i \) reaches a threshold
Deterministic Algorithm

Every site uses a series of thresholds:
\[t_0 = 1, \ t_1 = 1 + \varepsilon, \ t_2 = (1 + \varepsilon)^2, \ldots \]

Sends a message when \(n_i \) reaches a threshold.
Deterministic Algorithm

Every site uses a series of thresholds:
\[t_0 = 1, \ t_1 = 1 + \varepsilon, \ t_2 = (1 + \varepsilon)^2, \ldots \]
Sends a message when \(n_i \) reaches a threshold

Relative \(\varepsilon \)-error for each \(n_i \)

Total cost:
\[\sum_i \log_{1+\varepsilon} n_i = O(k/\varepsilon \cdot \log n) \]
Deterministic Algorithm

Every site uses a series of thresholds:
\[t_0 = 1, \quad t_1 = 1 + \varepsilon, \quad t_2 = (1 + \varepsilon)^2, \ldots \]

Sends a message when \(n_i \) reaches a threshold

Relative \(\varepsilon \)-error for each \(n_i \)

Total cost:
\[\sum_i \log_{1+\varepsilon} n_i = O\left(\frac{k}{\varepsilon} \cdot \log n\right) \]

Communication is one-way
Theorem

Any deterministic protocol that solves the count-tracking problem must communicate $\Omega\left(\frac{k}{\varepsilon} \cdot \log n\right)$ messages, even with two-way communication.

[Yi, Zhang, PODS’09]
Theorem

Any deterministic protocol that solves the count-tracking problem must communicate $\Omega(k/\varepsilon \cdot \log n)$ messages, even with two-way communication.

\sum triggering thresholds $< \varepsilon n$
Theorem

Any deterministic protocol that solves the count-tracking problem must communicate $\Omega(k/\varepsilon \cdot \log n)$ messages, even with two-way communication.

\sum triggering thresholds $< \varepsilon n$

adversary always triggers the lowest threshold

[Yi, Zhang, PODS’09]
Randomized Algorithm

Sends n_i with probability p when a new item arrives
$n_i - \bar{n}_i$ is a random variable
$n_i - \bar{n}_i$ is a random variable

\[\hat{n}_i = \begin{cases}
\bar{n}_i - 1 + 1/p, & \text{if } \bar{n}_i \text{ exists;} \\
0, & \text{else.}
\end{cases} \]
Analysis

\[n_i - \bar{n}_i \text{ is a random variable} \]

\[\hat{n}_i = \begin{cases}
\bar{n}_i - 1 + 1/p, & \text{if } \bar{n}_i \text{ exists;} \\
0, & \text{else.}
\end{cases} \]

\[E[\hat{n}_i] = n_i, \quad \text{Var}[\hat{n}_i] = 1/p^2 \]
Analysis

\[n_i - \bar{n}_i \text{ is a random variable} \]

\[
\hat{n}_i = \begin{cases}
\bar{n}_i - 1 + 1/p, & \text{if } \bar{n}_i \text{ exists;} \\
0, & \text{else.}
\end{cases}
\]

\[E[\hat{n}_i] = n_i, \ Var[\hat{n}_i] = 1/p^2 \]

\[\hat{n} = \sum \hat{n}_i \]

\[E[\hat{n}] = \sum \hat{n}_i = n, \ Var[\hat{n}] = k/p^2 \]
Rounds

Chebyshev inequality

SD less than $\varepsilon n \rightarrow p = O(\sqrt{k}/\varepsilon n)$

constant probability of success (at any one time instance)
Chebyshev inequality

SD less than $\varepsilon n \rightarrow p = O(\sqrt{k/\varepsilon n})$
constant probability of success (at any one time instance)

- Track a 2-approximation \bar{n} of n using the deterministic algorithm
 - Broadcast \bar{n} whenever \bar{n} doubles
 - Set $p = \frac{\sqrt{k}}{2\bar{n}}$

- Divide the tracking period into rounds
 - n changes by at most a constant factor in a round
 - p is fixed in a round
Communication Cost

- Communication cost
 - Tracking a 2-approximation: $O(k \log n)$
 - Number of messages in a round: $O(np) = O(\sqrt{k/\varepsilon})$
 - Total: $O(k \log n + \sqrt{k/\varepsilon} \cdot \log n)$
 - Can be improved to $O(k \log n / \log(k\varepsilon^2) + \sqrt{k/\varepsilon} \cdot \log n)$
Communication Cost

- Communication cost
 - Tracking a 2-approximation: $O(k \log n)$
 - Number of messages in a round: $O(np) = O(\sqrt{k/\varepsilon})$
 - Total: $O(k \log n + \sqrt{k/\varepsilon} \cdot \log n)$
 - Can be improved to $O(k \log n / \log(k\varepsilon^2) + \sqrt{k/\varepsilon} \cdot \log n)$

- Lower bounds
 - Only allow one-way communication: $\Omega(k/\varepsilon \cdot \log n)$
 (randomization doesn’t help)
 - Two-way communication: $\Omega(k + \sqrt{k/\varepsilon} \cdot \log n)$
Tight Bounds for Count-Tracking

- Upper bound in words
- Lower bound in number of messages

$k < \frac{1}{\varepsilon^2}$

$\Theta(\sqrt{k/\varepsilon} \cdot \log n)$

$k > \frac{1}{\varepsilon^2}$

$\Theta \left(k \frac{\log n}{\log(k\varepsilon^2)} \right)$

[Huang, Yi, Zhang, PODS’12]
The Distributed Streaming Model

\[
\begin{align*}
A_1(t) &= 2 \quad 1 \quad 2 \quad 4 \quad 1 \\
A_2(t) &= 2 \quad 4 \quad 1 \quad 2 \quad 3 \quad 2 \\
A_3(t) &= 2 \quad 1 \quad 1 \quad 2 \quad 4 \\
\end{align*}
\]
The Distributed Streaming Model

Coordinator tries to compute $f(A_1(t) \cup A_2(t) \cup \cdots \cup A_k(t))$ for all t

k sites

$A_1(t)$

$A_2(t)$

$A_3(t)$
Generalization of Two Models

Communication model
(One-shot model)
Generalization of Two Models

Communication model (One-shot model) Data stream model
Generalization of Two Models

Communication model
(One-shot model)

Data stream model

Goal
- Communication cost
- Space
Generalization of Two Models

Trivial problems in these two models could be highly nontrivial in the combined model!

Goal
- Communication cost
- Space

Communication model
(One-shot model)

Data stream model
Problems

- The count-down problem
- Count-tracking
- Frequent items (heavy hitters)
- Random sampling
- Other problems
Frequent Items: Definition

\[|A| = n \]

heavy hitters

\[\theta n \]
Frequent Items: Definition

\[(\theta \pm \varepsilon)n\]

heavy hitters

don’t care

\[|A| = n\]
Frequent Items: Definition

\[(\theta \pm \varepsilon)n \]

heavy hitters

don’t care

\[|A| = n \]
Frequency estimation with F_1 error

Estimate the frequency of every element with additive error εn.

\[(\theta \pm \varepsilon)n\]

heavy hitters

don’t care

$|A| = n$
Frequent Items

Use the previous algorithm on each item \(i \)

- Maintain a count for each item at each site
- Space
Frequent Items

Use the previous algorithm on each item i

- Maintain a count for each item at each site
- Space

<table>
<thead>
<tr>
<th>Streaming algorithm (Misra-Gries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost per site: $O(1/\varepsilon)$</td>
</tr>
<tr>
<td>• total: $O(k/\varepsilon)$</td>
</tr>
<tr>
<td>• improve to $O(\sqrt{k}/\varepsilon)$</td>
</tr>
</tbody>
</table>
Idea: maintain only large enough counts
Frequent Items: Algorithm

Idea: maintain only large enough counts

\[i: \bullet \bullet \bullet \bullet \]

Start to count \(i \) with probability \(p \)
Frequent Items: Algorithm

Idea: maintain only large enough counts

i:

- Start to count i with probability p
- Update the count with probability p
Frequent Items: Analysis

Coordinator only know \bar{c}
Frequent Items: Analysis

Coordinator only know \bar{c}

\[\hat{f}_i = \begin{cases}
\bar{c} - 1 + \frac{2}{p}, & \text{if } \bar{c} > 0; \\
0, & \text{else.}
\end{cases} \]
Frequent Items: Analysis

Coordinator only know \bar{c}

$$\hat{f}_i = \begin{cases}
\bar{c} - 1 + 2/p, & \text{if } \bar{c} > 0; \\
0, & \text{else.}
\end{cases}$$

Bias might be as large as $\varepsilon n/\sqrt{k}$
Frequent Items: Analysis

Coordinator only know \bar{c}
Frequent Items: Analysis

Coordinator only know \bar{c}

$$\hat{f}_i = \begin{cases}
 c - 1 + 1/p, & \text{if } c > 0; \\
 0, & \text{else.}
\end{cases}$$
Estimate c by \bar{c}

$$\hat{c} = \begin{cases} \bar{c} - 1 + 1/p, & \text{if } \bar{c} > 0; \\ 0, & \text{else.} \end{cases}$$
Frequent Items: Analysis

Combined estimator

\[\hat{f}_i = \begin{cases}
\bar{c} - 2 + \frac{2}{p}, & \text{if } \bar{c} \geq 2; \\
1/p, & \text{if } \bar{c} = 1; \\
0, & \text{else.}
\]
Frequent Items: Analysis

- \(\mathbb{E}[\hat{f}_i] = f_i \)

- \(\text{Var}[\hat{f}_i] \leq 2/p^2 \)
Frequent Items: Analysis

- $E[\hat{f}_i] = f_i$

- $\text{Var}[\hat{f}_i] \leq 2/p^2$

 set $p = O(\sqrt{k}/\varepsilon n)$

 space: $O(\sqrt{k}/\varepsilon)$

 space per site: $O(1/(\varepsilon\sqrt{k}))$

 communication: same as before
Frequent Items: Lower Bound

- Communication lower bound still hold
- Space lower bound
Frequent Items: Lower Bound

- Communication lower bound still hold
- Space lower bound
 - Communication-space tradeoff
Communication-Space Tradeoff

Theorem

Any randomized algorithm that solves the frequency tracking problem with communication C bits and uses M bits of space per site, we have $C \cdot M = \Omega(\log n/\varepsilon^2)$.
Theorem

Any randomized algorithm that solves the frequency tracking problem with communication \(C \) bits and uses \(M \) bits of space per site, we have \(C \cdot M = \Omega(\log n/\varepsilon^2) \).

<table>
<thead>
<tr>
<th>Communication cost:</th>
<th>(O(\sqrt{k}/\varepsilon \cdot \log n)) bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space per site:</td>
<td>(\Omega(1/(\varepsilon \sqrt{k}))) bits</td>
</tr>
</tbody>
</table>
Theorem

The k-party communication complexity for the one-shot frequency estimation problem is $\Omega(\sqrt{k/\varepsilon})$ bits.

[Woodruff, Zhang, STOC’12]
Theorem
The k-party communication complexity for the one-shot frequency estimation problem is $\Omega(\sqrt{k}/\varepsilon)$ bits.

Direct-Sum theorem
Solve ℓ instances of the frequency estimation problem simultaneously needs $\Omega(\ell \cdot \sqrt{k}/\varepsilon)$ bits of communication.

[Woodruff, Zhang, STOC’12]
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M.

Use \mathcal{A} to solve tk-party one-shot problem.
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve tk-party one-shot problem.
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M.

Use \mathcal{A} to solve tk-party one-shot problem.
Proof sketch

Let A be a k-party tracking algorithm with communication C and space M

Use A to solve tk-party one-shot problem.
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M.

Use \mathcal{A} to solve tk-party one-shot problem.
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve tk-party one-shot problem.
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve tk-party one-shot problem.
Proof sketch

Let \mathcal{A} be a k-party tracking algorithm with communication C and space M

Use \mathcal{A} to solve tk-party one-shot problem.

\[
C + M \cdot tk \geq \Omega\left(\frac{\sqrt{kt}}{\varepsilon}\right)
\]
Problems

- The count-down problem
- Count-tracking
- Frequent items (heavy hitters)
- Random sampling
- Other problems
Reservoir Sampling [Waterman ’??; Vitter ’85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample
Reservoir Sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample
- When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away
- When $k = 1$, reservoir sampling has cost $\Theta(s \log n)$
- When $k \geq 2$, reservoir sampling has cost $O(n)$ because it’s costly to track i
When $k = 1$, reservoir sampling has cost $Θ(s \log n)$.

When $k \geq 2$, reservoir sampling has cost $O(n)$ because it’s costly to track i.

Tracking i approximately?

Sampling won’t be uniform.
When $k = 1$, reservoir sampling has cost $\Theta(s \log n)$

When $k \geq 2$, reservoir sampling has cost $O(n)$ because it’s costly to track i

Tracking i approximately?

Sampling won’t be uniform

Key observation: We don’t have to know the size of the population in order to sample!
Basic Idea: Binary Bernoulli Sampling
Basic Idea: Binary Bernoulli Sampling
Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items.
Basic Idea: Binary Bernoulli Sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items.

The coordinator could maintain a Bernoulli sample of size between s and $O(s)$.
Sampling from Distributed Streams

- Initialize $i = 0$
- In round i:
 - Sites send in every item w.p. 2^{-i} (This is a Bernoulli sample with prob. 2^{-i})

![Diagram showing a tree structure with nodes S_1, S_2, S_3, and S_k connected to a central node C.]
Sampling from Distributed Streams

- Initialize $i = 0$
- In round i:
 - Sites send in every item w.p. 2^{-i}
 (This is a Bernoulli sample with prob. 2^{-i})
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 (The lower sample is a sample with prob. 2^{-i-1})
Sampling from Distributed Streams

- Initialize $i = 0$
- In round i:
 - Sites send in every item w.p. 2^{-i}
 (This is a Bernoulli sample with prob. 2^{-i})
 - Coordinator maintains a **lower sample** and a **higher sample**: each received item goes to either with equal prob.
 (The lower sample is a sample with prob. 2^{-i-1})
 - When the lower sample reaches size s, the coordinator broadcasts to advance to round $i \leftarrow i + 1$
 Discard the upper sample
 Split the lower sample into a new lower sample and a higher sample
Sampling from Distributed Streams: Analysis

- Communication cost of round i: $O(k + s)$
- Expect to receive $O(s)$ sampled items before round ends
- Broadcast to end round: $O(k)$

[Cormode, Muthukrishnan, Yi, Zhang, PODS’10, JACM’12]
[Woodruff, Tirthapura, DISC’11]
Sampling from Distributed Streams: Analysis

- Communication cost of round \(i \): \(O(k + s) \)
 - Expect to receive \(O(s) \) sampled items before round ends
 - Broadcast to end round: \(O(k) \)

- Number of rounds: \(O(\log(n/s)) \)
 - In round \(i \), need \(\Theta(s) \) items being sampled to end round
 - Each item has prob. \(2^{-i} \) to contribute: need \(\Theta(2^i s) \) items

[Cormode, Muthukrishnan, Yi, Zhang, PODS’10, JACM’12]
[Woodruff, Tirthapura, DISC’11]
Sampling from Distributed Streams: Analysis

- Communication cost of round \(i\): \(O(k + s)\)
 - Expect to receive \(O(s)\) sampled items before round ends
 - Broadcast to end round: \(O(k)\)

- Number of rounds: \(O(\log(n/s))\)
 - In round \(i\), need \(\Theta(s)\) items being sampled to end round
 - Each item has prob. \(2^{-i}\) to contribute: need \(\Theta(2^i s)\) items

- Communication: \(O((k + s) \log n)\)
 - Can be improved to \(O(k \log_{k/s} n + s \log n)\)
 - A matching lower bound

[Cormode, Muthukrishnan, Yi, Zhang, PODS’10, JACM’12]
[Woodruff, Tirthapura, DISC’11]
Problems

- The count-down problem
- Count-tracking
- Frequent items (heavy hitters)
- Random sampling
- Other problems
Other Results on Distributed Tracking

- Frequency moments
 - F_2: $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA’08]
 - F_2: $\tilde{O}(k/{\text{poly}}(\varepsilon))$ [Woodruff, Zhang, STOC’12]
Other Results on Distributed Tracking

- Frequency moments
 - F_2: $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA’08]
 - F_2: $\tilde{O}(k/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC’12]
 - F_2: $\tilde{\Omega}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC’12]
Other Results on Distributed Tracking

- Frequency moments
 - F_2: $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA’08]
 - F_2: $\tilde{O}(k/poly(\varepsilon))$ [Woodruff, Zhang, STOC’12]
 - F_2: $\tilde{\Omega}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC’12]
 - $F_p, p > 1$: $\tilde{\Theta}(k^{p-1}/poly(\varepsilon))$ [Woodruff, Zhang, STOC’12]
Other Results on Distributed Tracking

- Frequency moments
 - F_2: $\tilde{O}(k^2/\varepsilon^2 + k^{1.5}/\varepsilon^4)$ [Cormode, Muthukrishnan, Yi, SODA’08]
 - F_2: $\tilde{O}(k/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC’12]
 - F_2: $\tilde{\Omega}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC’12]
 - $F_p, p > 1$: $\tilde{\Theta}(k^{p-1}/\text{poly}(\varepsilon))$ [Woodruff, Zhang, STOC’12]
 - F_0 (distinct count): $\tilde{\Theta}(k/\varepsilon^2)$ [Woodruff, Zhang, STOC’12]
Other Results on Distributed Tracking

- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]
- Heavy hitters and quantiles [Yi, Zhang, PODS’09]
 [Huang, Yi, Zhang, PODS’12]
- Sliding windows [Chan, Lam, Lee, Ting, STACS’10]
 [Cormode, Yi, SSDBM’12]
Open Problems

- Any streaming problem
- Histograms, clustering, graph problems, geometric problems, ...
Open Problems

- Any streaming problem
 - Histograms, clustering, graph problems, geometric problems, ...
- Does it have to be streaming?
 - If we don’t care about space ...
Open Problems

- Any streaming problem
 - Histograms, clustering, graph problems, geometric problems, ...

- Does it have to be streaming?
 - If we don’t care about space ...
 - Even if we care about space... streaming lower bounds do not apply!
Open Problems

- Any streaming problem
 - Histograms, clustering, graph problems, geometric problems, ...

- Does it have to be streaming?
 - If we don’t care about space ...
 - Even if we care about space... streaming lower bounds do not apply!

- How to model deletions?
 - Competitive analysis? [Yi, Zhang, SODA’09]
Motivated by database/networking applications

- Adaptive filters [Olston, Jiang, Widom, SIGMOD’03]
- A generic geometric approach [Scharfman et al. SIGMOD’06]
- Prediction models [Cormode, Garofalakis, Muthukrishnan, Rastogi, SIGMOD’05]
Thank you!