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An index is . . .

An index (database) is a (disk-based) data structure that im-
proves the speed of data retrieval operations (queries) on a
database table.

An index is a single number calculated from a set of prices

Dow Jones, S & P, Hang Seng

An index is a list of keywords and their page numbers in a book

An index is an exponent

An index is a finger

An index is a list of academic publications and their citations

An index (search engine) is an inverted list from keywords to web
pages
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Hash Table and B-tree

Hash tables and B-trees are taught to undergrads and actually
used in all database systems

B-tree: lookups and range queries; Hash table: lookups

External memory model (I/O model):

Each I/O reads/writes a block

Memory of size M

Disk partitioned into blocks of size B

Memory

Disk
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The B-tree
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A range query in O(logB N +K/B) I/Os

K: output size
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The B-tree

A range query in O(logB N +K/B) I/Os

K: output size

memory

logB N − logBM = logB
N
M

The height of B-tree never goes beyond 5 (e.g., if B = 100, then
a B-tree with 5 levels stores n = 10 billion records). We will
assume logB

N
M = O(1).
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External Hashing

null

null

null null

null

null

null

1 21

32 82

64 34 24

55

h(x) = last digit of x

14 null null

Ideal hash function assumption: h maps each object to a hash value
uniformly independently at random

Expected average cost of a successful (or unsuccessful) lookup is
1 + 1/2Ω(B) disk accesses, provided the load factor is less than a
constant smaller than 1 [Knuth, 1973]
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Exact Numbers Calculated by Knuth

The Art of Computer Programming, volume 3, 1998, page 542
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Exact Numbers Calculated by Knuth

The Art of Computer Programming, volume 3, 1998, page 542

Extremely close to ideal
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Now Let’s Go Dynamic

B-tree: Split blocks when necessary

Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]
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Now Let’s Go Dynamic

Cannot hope for lower than 1 I/O per insertion only if the
changes must be committed to disk right away (necessary?)

B-tree: Split blocks when necessary

Otherwise we probably can lower the amortized insertion cost by
buffering, like numerous problems in external memory, e.g. stack,
priority queue,... All of them support an insertion in O(1/B) I/Os
— the best possible

Focus on insertions first: Both the B-tree and hash table do a
search first, then insert into the appropriate block

These resizing operations only add O(1/B) I/Os amortized per
insertion; bottleneck is the first search + insert

Hashing: Rebuild the hash table when too full; extensible hashing
[Fagin, Nievergelt, Pippenger, Strong, 79]; linear hashing [Litwin,
80]
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Dynamic B-trees

Dynamic Hash Tables
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Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, Acta Informatica’96]: Log-
arithmic method + B-tree

memory

`2M

`M

M
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Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, Acta Informatica’96]: Log-
arithmic method + B-tree

memory

`2M

`M

M

Insertion: O( `
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log`
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Query: O(log`
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) (omit the K
B

output term)
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Dynamic B-trees for Fast Insertions

LSM-tree [O’Neil, Cheng, Gawlick,
O’Neil, Acta Informatica’96]: Log-
arithmic method + B-tree

memory

`2M

`M

M

Insertion: O( `
B

log`
N
M

)

Query: O(log`
N
M

) (omit the K
B

output term)

Stepped merge tree [Jagadish, Narayan, Seshadri, Sudar-
shan, Kannegantil, VLDB’97]: variant of LSM-tree

Insertion: O( 1
B

log`
N
M

)

Query: O(` log`
N
M

)

Usually ` is set to be a constant, then they both have
O( 1

B log N
M ) insertion and O(log N

M ) query
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More Dynamic B-trees

Y-tree [Jermaine, Datta, Omiecinski, VLDB’99]

Buffer-tree (buffered-repository tree) [Arge, WADS’95; Buchsbaum,

Goldwasser, Venkatasubramanian, Westbrook, SODA’00]

Streaming B-tree [Bender, Farach-Colton, Fineman, Fogel, Kuszmaul,

Nelson, SPAA’07]
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More Dynamic B-trees

Y-tree [Jermaine, Datta, Omiecinski, VLDB’99]

No better solutions known ...

Buffer-tree (buffered-repository tree) [Arge, WADS’95; Buchsbaum,

Goldwasser, Venkatasubramanian, Westbrook, SODA’00]

Deletions? Standard trick: inserting “delete signals”

Streaming B-tree [Bender, Farach-Colton, Fineman, Fogel, Kuszmaul,

Nelson, SPAA’07]

q u
logB 1

B logB
1 1

BB
ε

Bε 1
B

Cache-oblivious model [Demaine, Fineman, Iacono, Langerman, Munro,

SODA’10]
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Compare with the rich results in RAM!

Θ(
√

logN/ log logN) insertion and query [Andersson, Thorup,
JACM’07]

Predecessor

Range reporting

O(logN/ log logN) insertion and O(log logN) query [Mortensen,
Pagh, Pǎtraşcu, STOC’05]

O(
√

logN/ log logN) insertion and query [Andersson, Thorup,
JACM’07]

Partial-sum

Θ(logN) insertion query [Pǎtraşcu, Demaine, SODA’04]

Other results that depend on the word size w
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Are the EM and DB people just dumb?



13-1

Our Main Result

For any dynamic range query index with a query cost of q and an
amortized insertion cost of u, the following tradeoff holds{
q · log(uB/q) = Ω(logB), for q < α logB,α is any constant;
uB · log q = Ω(logB), for all q.
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Our Main Result

For any dynamic range query index with a query cost of q and an
amortized insertion cost of u, the following tradeoff holds{
q · log(uB/q) = Ω(logB), for q < α logB,α is any constant;
uB · log q = Ω(logB), for all q.

Current upper bounds:
q u

logB 1
B logB

1 1
BB

ε

Bε 1
B

Assuming logB
N
M

= O(1), all the bounds are tight!

Can’t be true for B = o(
√

log n log log n), since the exponential
tree achieves u = q = O(

√
log n/ log log n) [Andersson, Thorup,

JACM’07]. (n = N/M)

1
B

log N
M

log N
M
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The real question

How large does B need to be for buffer-tree
to be optimal for range reporting?

Known: somewhere between
Ω(
√

log n log log n) and O(nε)
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Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, PODS’97, JACM’02]
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Lower Bound Model: Dynamic Indexability

Indexability: [Hellerstein, Koutsoupias, Papadimitriou, PODS’97, JACM’02]

4 7 9 1 2 4 3 5 8 2 6 7 1 8 9 4 5

Objects are stored in disk blocks of size up to B, possibly with
redundancy.

a query reports {2,3,4,5}

The query cost is the minimum number of blocks that can
cover all the required results (search time ignored!).

cost = 2

Similar in spirit to popular lower bound models: cell probe
model, semigroup model
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Previous Results on Static Indexability

2D stabbing queries: q · log(s/N) = Ω(log(N/B)) [Arge, Samo-
ladas, Yi, ESA’04, Algorithmica’99]

1D range queries: s = N, q = 1 trivially

Adding dynamization makes it much more interesting!

Nearly all external indexing lower bounds are under this model

2D range queries: s/N · log q = Ω(log(N/B)) [Hellerstein,
Koutsoupias, Papadimitriou, PODS’97], [Koutsoupias, Taylor, PODS’98],
[Arge, Samoladas, Vitter, PODS’99]

Tradeoff between space (s) and query time (q)
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Dynamic Indexability

Still consider only insertions

4 5time t:

memory of size M

4 7 9 ← snapshot1 2 7

1 2 6 7

8 inserted

blocks of size B = 3

4 5time t+ 1: 4 7 91 2 6 7 6 inserted

1 2 5time t+ 2: 4 7 9 6 8

transition cost = 2

Update cost: u = amortized transition cost per insertion



18-1

The Ball-Shuffling Problem

→
B balls q bins
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The Ball-Shuffling Problem

→
B balls q bins

→ cost = 1
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The Ball-Shuffling Problem

→
B balls q bins

→ cost = 1

→ cost = 2

cost of putting the ball directly into a bin = # balls in the bin + 1
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The Ball-Shuffling Problem

→
B balls q bins
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The Ball-Shuffling Problem

→
B balls q bins

→ cost = 5
Shuffle:
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The Ball-Shuffling Problem

→
B balls q bins

→ cost = 5

Cost of shuffling = # balls in the involved bins

Shuffle:

Putting a ball directly into a bin is a special shuffle

Goal: Accommodating all B balls using q bins with minimum cost
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The Workload Construction

round 1:
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time
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round 1:

round 2:
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time
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round 2:

keys

time

round 3:
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The Workload Construction

round 1:

round 2:

keys

time

round 3:

· · ·

round B:

Queries that we require the index to cover with q blocks
# queries ≥ 2MB

snapshot

snapshot

snapshot

snapshot

Snapshots of the dynamic index considered
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The Workload Construction

round 1:

keys

time

round 2:

round 3:
· · ·

round B:

There exists a query such that

• The ≤ B objects of the query reside in ≤ q blocks
in all snapshots

• All of its objects are on disk in all B snapshots (we
have ≥MB queries)

• The index moves its objects uB2 times in total
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is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.
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The Reduction

An index with update cost u and query A gives us a
solution to the ball-shuffling game with cost uB2 for B
balls and q bins

Lower bound on the ball-shuffling problem:

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.

{
q · log(uB/q) = Ω(logB), for q < α logB,α is any constant;
uB · log q = Ω(logB), for all q.

⇒
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Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.

q

cost lower bound



23-2

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.

q

cost lower bound

1

B2



23-3

Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.

q

cost lower bound

1

B2

B4/3

2
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Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.

q

cost lower bound

1

B2

B4/3

2 logB

B logB
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Ball-Shuffling Lower Bounds

Theorem: The cost of any solution for the ball-shuffling problem
is at least{

Ω(q ·B1+Ω(1/q)), for q < α logB where α is any constant;
Ω(B logq B), for any q.

q

cost lower bound

1

B2

B4/3

2 logB

B logB

Bε

B
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Dynamic B-trees

Dynamic Hash Tables
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N
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Hash table query I/O: 1 + 1/2Ω(B); insertion the same
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A long-time conjecture in the external memory community:

The insertion cost must be Ω(1) I/Os if the query cost is required
to be O(1) I/Os.
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Dynamic Hash Tables

B-tree query I/O: O(logB
N
M )

Hash table query I/O: 1 + 1/2Ω(B); insertion the same

A long-time conjecture in the external memory community:

The insertion cost must be Ω(1) I/Os if the query cost is required
to be O(1) I/Os.

Buffering is useless?
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Logarithmic method (folklore?)
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Dynamic Hash Tables (for successful queries)

Logarithmic method (folklore?)
memory

4m

2m

m

Insertion: O( 1
B log N

M )
Expected average query: O(1)

Improving query time

Idea: Keep one table large enough

8m

x x/β

For some parameter β = Bc, c ≤ 1

2x2x
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Dynamic Hash Tables (for successful queries)

Logarithmic method (folklore?)
memory

4m

2m

m

Insertion: O( 1
B log N

M )
Expected average query: O(1)

Improving query time

Idea: Keep one table large enough

8m

x x/β

For some parameter β = Bc, c ≤ 1

2x2xInsertion: O(Bc−1)
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Dynamic Hash Tables (for successful queries)

Logarithmic method (folklore?)
memory

4m

2m

m

Insertion: O( 1
B log N

M )
Expected average query: O(1)

Improving query time

Idea: Keep one table large enough

8m

x x/β

For some parameter β = Bc, c ≤ 1

2x2xInsertion: O(Bc−1)

Query: 1+O(1/Bc)
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Dynamic Hash Tables (for successful queries)

Logarithmic method (folklore?)
memory

4m

2m

m

Insertion: O( 1
B log N

M )
Expected average query: O(1)

Improving query time

Idea: Keep one table large enough

8m

x x/β

For some parameter β = Bc, c ≤ 1

2x2xInsertion: O(Bc−1)

Query: 1+O(1/Bc)

Still far from the target 1+1/Ω(2B)
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Query-Insertion Tradeoff for Successful queries

1 + 1/2Ω(B)

1−O(1/B(c−1)/4)

Ω(Bc−1)

O(Bc−1)

Ω(1)

O(1)

Insertion

Query

1 + Θ(1/B)

1 + Θ(1/Bc), c < 11

upper bounds

lower bounds

1+Θ(1/Bc)
c > 1

[Wei, Yi, Zhang, SPAA’09]

standard hashing
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Indexability Too Strong!

Näıve solution: For every B items, write to a block.

Query cost is 1, insertion is 1/B
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Indexability Too Strong!

Näıve solution: For every B items, write to a block.

Query cost is 1, insertion is 1/B

Too many possible
mappings!
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Indexability Too Strong!

Näıve solution: For every B items, write to a block.

Query cost is 1, insertion is 1/B

Indexabilty + information-theoretical argument

If with only the information in memory, the hash table cannot
locate the item, then querying it takes at least 2 I/Os.

Too many possible
mappings!
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The Abstraction

Consider the layout of a hash table at any snapshot. Denote all
the blocks on disk by B1, B2, . . . , Bd. Let f : U → {1, . . . , d}
be any function computable within memory.

We divide items inserted into 3 zones with respect to f .

Memory zone M : set of items stored in memory. tq = 0.

Fast zone F : set of items x such that x ∈ Bf(x). tq = 1.

Slow zone S: The rest of items. tq = 2.
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The Key

The hash table can employ a
family F of at most 2M dis-
tinct f ’s.

Note that the current f
adopted by the hash table is
dependent upon the already in-
serted items, but the family F
has to be fixed beforehand.
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How about All Queries? (Latest results)

We are essentially talking about the membership problem

Can’t use indexability model

Have to use cell probe model
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All queries (the membership problem)

(The cell probe model)

Query

Insert
0

upper bounds

lower bounds

1
B

log n 1
1
B

logM
B

n

`
B

log` n, log` n

nε

truncated buffer tree

buffer tree

hashing

1 + 1/2Ω(B)

Bε

B
log n
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All queries (the membership problem)

(The cell probe model)

Query

Insert
0

upper bounds

lower bounds

1
B

log n 1
1
B

logM
B

n

`
B

log` n, log` n

nε

truncated buffer tree

buffer tree

hashing

1.1

[Yi, Zhang, SODA’10]

0.9
1

1 + 1/2Ω(B)

Bε

B
log n
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All queries (the membership problem)

(The cell probe model)

Query

Insert
0

upper bounds

lower bounds

1
B

log n 1
1
B

logM
B

n

`
B

log` n, log` n

nε

truncated buffer tree

buffer tree

hashing

1.1

[Yi, Zhang, SODA’10]

logB logn n

0.9
1

1 + 1/2Ω(B)[Verbin, Zhang, STOC’10]

Bε

B
log n



33-1

THE BIG BOLD CONJECTURE

All these fundamental data structure prob-
lems have the same query-update tradeoff
in external memory when u = o(1), for suf-
ficiently large B.

Partial-sum: all B; Range reporting: B > nε; Predecessor: unknown.
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THE BIG BOLD CONJECTURE

All these fundamental data structure prob-
lems have the same query-update tradeoff
in external memory when u = o(1), for suf-
ficiently large B.

Strong implication: The buffer tree (and many

of the log method based structures) is simple, practical,
versatile, and optimal!

Partial-sum: all B; Range reporting: B > nε; Predecessor: unknown.
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The End

T HANK YOU

Q and A


