Efficient Maintenance of Materialized Top-k Views

Ke Yi, Hai Yu, Jun Yang
Dept. of Computer Science, Duke University

Gangqiang Xia, Yuguuo Chen
Inst. of Statistics and Decision Sciences, Duke University
Materialized top-\(k\) views

- Base table: \(T(id, val)\)
- A top-\(k\) query:
  ```sql
  SELECT id, val FROM T
  ORDER BY val FETCH FIRST \(k\) ROWs ONLY;
  ```
 - Special cases: MIN and MAX
 - Need at least one scan of \(T\) (assuming there is no ordered index on \(T.val\))
- Want better query response time?
 - Standard trick—make it a materialized view
Maintaining a top-k view

- **Self-maintainable** (i.e., no need to query base table) in many cases
 - Insertion
 - Deletion of a tuple outside the top k
 - Update of a tuple that does not cause it to drop out of the top k

- **Not self-maintainable** in other cases
 - Deletion of a tuple from the top k
 - Update of a tuple causing it to drop out of the top k
 - Need an expensive refill query over the base table to find the new k-th ranked tuple
Traditional warehousing solution

- Make views **completely** self-maintainable by storing additional **auxiliary views**
 - Example: to make $\sigma_{p_1} R \bowtie_p \sigma_{p_2} S$ self-maintainable, store $\sigma_{p_1} R$ and $\sigma_{p_2} S$

- To make a top-k view completely self-maintainable, we need to store a copy of the entire base table!
 - Cost is too high: not just storage, but also the overhead of maintaining the copy

- Why pay such a high cost to catch some rare cases?
Two observations

- Instead of complete compile-time self-maintenance, aim at achieving runtime self-maintenance with high probability at much lower cost. “Optimize for the common case”

- Instead of static auxiliary view definitions determined at compile-time, allow dynamic auxiliary view definitions which change according to the update workload. Like a “semantic cache” of auxiliary data
A simple algorithm

- Idea: maintain a top-\(k'\) view, where \(k'\) changes at run-time but stays between \(k\) and some \(k_{\text{max}}\)
 - The extra tuples serve as a “buffer” to deter refill queries

\[1 \ 2 \ \ldots \ k \ \overset{k_{\text{max}}}{=} k' \]

\(V\): a top-\(k'\) view

\(v_{k'}\): value of the lowest ranked tuple currently in \(V\)

Update: tuple \(t\) has its value updated to \(val\)
- Ignorable: \(t\) not in \(V\), \(val < v_{k'}\) Do nothing
- Neutral: \(t\) in \(V\), \(val > v_{k'}\) Update \(V\); no change to \(k'\)
- Good: \(t\) not in \(V\), \(val > v_{k'}\) Insert \(t\) into \(V\); increment \(k'\)
 - If \(k'\) exceeds \(k_{\text{max}}\), discard the lowest ranked tuple in \(V\)
- Bad: \(t\) in \(V\), \(val < v_{k'}\) Delete \(t\) from \(V\); decrement \(k'\)
 - If \(k'\) drops below \(k\), issue a refill query to restore \(k'\) to \(k_{\text{max}}\)
Remaining questions

- How do we choose a right value for k_{max}?
- What factors affect the optimal k_{max} value?
 - Trade-off: increasing k_{max} reduces refill frequency, but
 - V takes more space
 - Updating V takes longer
 - More updates need to be applied to V
- How effective is the algorithm with small k_{max}?
- How do we choose k_{max} without accurate prior knowledge about the update workload?
A closer look at the maintenance cost

Amortized cost of processing one update =

\[C_{\text{update}} \times (1 - f_{\text{ignore}}) + C_{\text{refill}} \times f_{\text{refill}} \]

- \(C_{\text{update}} \): cost of updating \(V \); \(O(\log k_{\text{max}}) \)
- \(f_{\text{ignore}} \): fraction of updates that are ignorable (decreases as \(k_{\text{max}} \) increases)
- \(C_{\text{refill}} \): cost of a refill operation; \(O(N) \), where \(N \) is the size of the base table
- \(f_{\text{refill}} \): frequency of refill operations

Since \(C_{\text{refill}} \gg C_{\text{update}} \), a reasonable goal is to reduce \(f_{\text{refill}} \) to \(1/N \), so the second product becomes \(O(1) \)
Random walk model

- Between two refills, the value of k' follows a random walk on points \{ $k - 1, k, \ldots, k_{\text{max}}$ \}
 - Begins with k_{max} (right after a refill)
 - Moves left on a bad update
 - Moves right on a good update
 - Stays put on an ignorable or neutral update
 - Ends with $k - 1$ (when another refill is needed)

- Refill interval $Z = \text{hitting time from } k_{\text{max}} \text{ to } (k - 1)$

- Assume probabilities of bad and good updates are fixed at p and q for now; will drop this assumption later
First try: expected hitting time

h_i: expected time to hit $(k - 1)$ starting from i

- $b_{k_{\text{max}}} = 1 + p \times b_{k_{\text{max}}-1} + (1-p) \times b_{k_{\text{max}}}$
- $b_i = 1 + p \times b_{i-1} + q \times b_{i+1} + (1-p-q) \times b_i$
- $b_{k-1} = 0$

- Can solve for $b_{k_{\text{max}}} (= \mathbb{E}[Z])$ directly
 - E.g., if $p = q$ then $b_{k_{\text{max}}} = (k_{\text{max}}-k+1) (k_{\text{max}}-k+2) / (2p)$
 - That is, we can choose $k_{\text{max}} = (k-1) + N^{0.5}$ so that $\mathbb{E}[Z] \approx N$

- But we want $\mathbb{E}[f_{\text{refill}}] = \mathbb{E}[1/Z]$, which is not equal to $1 / \mathbb{E}[Z]$ in general!

- Change strategy: make sure that $\mathbb{P}[Z > N]$ is high
High-probability result when $p = q$

- Theorem: When $p = q$, if $k_{\text{max}} = (k-1) + \sqrt{N}^{0.5+\varepsilon}$ then $\Pr[Z > N] \geq 1 - 4 \cdot \exp(-N^{2\varepsilon}/2)$

- In English
 When bad and good updates are equally likely, we can pick k_{max} to be a just a bit more than \sqrt{N} in order to ensure that, with high probability, refill only occurs after at N updates

- We think $p = q$ is a common case
 - If the value distribution is stationary, the rate at which tuples enter top k should be the same as the rate at which they leave top k
High-probability result when $p < q$

- **Theorem:** When $p < q$, if $k_{\text{max}} = (k-1) + c \ln N$, then $\mathbb{P}[Z > N] \geq 1 - o(1)$
 - For a large enough constant c depending only p and q

In English

When bad updates are less likely than good updates, we can pick k_{max} to be $O(\ln N)$ in order to ensure that, with high probability, refill only occurs after at N updates.

- Intuitively, this case is better because the view is more likely to grow than to shrink
What if \(p > q \)?

- The view is more likely to shrink than to grow
- Need \(k_{\text{max}} = O(N) \) to bring \(\mathbb{E}[Z] \) up to \(N \)
 - Might as well keep a copy of the base table!
 - We conjecture no good solution exists
- We also hope \(p > q \) is a rare case
 - Typically, people enjoy watching tuples “compete” with each other to enter top \(k \)
 - It is less interesting to watch tuples trying to “escape” from top \(k \)
Generalization

- No need to assume that p and q are fixed
- No need to assume that random walk is memoryless
- Theorem for $p = q$ still holds if “$p = q$” is replaced by “random walk W is origin-tending”
 - That is, regardless of the previous steps taken, the probability of W moving towards k_{max} is always no less than that of moving towards k
- Theorem for $p < q$ still holds if “$p < q$” is replaced by “random walk W is strictly origin-tending”
 - That is, regardless of the previous steps taken, the probability of W moving towards k_{max} is always no less than δ times that of moving towards k, where $\delta > 1$
Case study: random up-and-downs

- Initial values: symmetric unimodal distribution with mean μ
- In each time step, choose an item at random and modify it by a value drawn from a symmetric unimodal distribution with mean 0
- What are the odds of this update being good/bad?
- Can show: $p < q$ as long as top-k values $> \mu$
 - Random walk is origin-tending
 - $k_{\text{max}} = N^{0.5+\varepsilon}$ is enough
Case study: total sales in a moving window

- Sales for a book b over time: $X^b_1, X^b_2, \ldots, X^b_t, \ldots$ (assume all independently & identically distributed)
- Interested in total sales of b in a moving window:
 $\sum_{t-w+1 \leq t' \leq t} X^b_{t'}$
- As t moves forward, what are the odds that b moves in/out of top-k?

- Can show: $p = q$
 - Random walk is origin-tending
 - $k_{\text{max}} = N^{0.5+\varepsilon}$ is enough
Experiments

- **Scenarios**
 - Base table in DBMS
 - Top-k view can be maintained by **application (in-memory heap)** or by **DBMS (B$^+$-tree)**
 - Different update cost
 - Top-k view can be maintained locally or remotely
 - Different refill cost
 - 4 possible combinations

- **Costs are real 😊 (measured for different view/query sizes)**
- **Data/updates are synthetic 😐, but not over-simplistic**
 - Simulation of total sales in a moving window, with daily sales following a Poisson distribution
Maintenance cost vs. k_{max}

- Local db view
- Remote db view
- Local app view
- Remote app view

Refill dominates \leftarrow
Update dominates \rightarrow
Choosing k_{max} in practice

- Theoretical bounds may not be tight/accurate enough
- p and q are difficult to measure
- p, q, and costs may vary at runtime

- Idea: dynamically adjust k_{max} so that amortized cost of refill \approx that of view update
 - Start with some guess for k_{max} ($N^{0.6}$ is reasonable)
 - Target refill interval: $C_{\text{refill}} / C_{\text{update}}$ (observed at runtime)
 - If actual refill interval $< \text{target} / \alpha$, increase k_{max} by a factor
 - If actual refill interval $> \text{target} \cdot \alpha$, decrease k_{max} by a factor
 - Allow some leeway (α) from the target interval
Experiments with adaptive algorithm

\[N = 10,000; \quad k = 10 \]

\[k_{\text{max}} \text{ can be lower than what the theory predicts} \]
Conclusion and future work

- **Top-k view maintenance**: a little trick goes a (provably) long way!
- **Main idea**: auxiliary data for high-probability runtime self-maintenance
- **Currently working on** generalizing the idea to other types of views (e.g., joins)

For detailed proofs and experiment results, see http://www.cs.duke.edu/~junyang/papers/yyycxc-topk.ps
Related work

- Lots of work on view self-maintenance
 - Blakeley et al., *TODS* 1989; Gupta et al., *EDBT* 1996
 - Quass et al., *PDIS* 1996, etc.: auxiliary data for compile-time self-maintenance
 - We propose auxiliary data for runtime self-maintenance with higher probability

- Lots of work on top-k queries
 - Most focuses on efficient query processing
 - Hristidis et al., *SIGMOD* 2001: select ordered/top-k views to materialize
 - We support efficient maintenance algorithm

- Top-k view maintenance
 - Traditionally: deletes/updates to MIN and MAX are not handled
 - Palpanas et al., *VLDB* 2002: “work areas” for MIN and MAX
 - We provide rigorous analysis and guidelines for choosing sizes of “work areas”
 - Babcock & Olston, upcoming *SIGMOD* 2003: approximate distributed top-k maintenance, focus on reducing communication