Efficient Maintenance of Materialized Top-k Views

Ke Yi, Hai Yu, Jun Yang Dept. of Computer Science, Duke University Gangqiang Xia, Yuguo Chen Inst. of Statistics and Decision Sciences, Duke University

Materialized top-k views

- ✤ Base table: T(<u>id</u>, val)
- A top-k query: SELECT id, val FROM T ORDER BY val FETCH FIRST k ROWS ONLY;
 - Special cases: MIN and MAX
 - Need at least one scan of T (assuming there is no ordered index on T.val)
- Want better query response time?
- Standard trick—make it a materialized view

Maintaining a top-k view

- Self-maintainable (i.e., no need to query base table) in many cases
 - Insertion
 - Deletion of a tuple outside the top k
 - Update of a tuple that does not cause it to drop out of the top k
- Not self-maintainable in other cases
 - Deletion of a tuple from the top k
 - Update of a tuple causing it to drop out of the top k
 - Need an expensive refill query over the base table to find the new k-th ranked tuple

Traditional warehousing solution

- Make views completely self-maintainable by storing additional auxiliary views
 - Example: to make $\sigma_{p1} R \bowtie_p \sigma_{p2} S$ self-maintainable, store $\sigma_{p1} R$ and $\sigma_{p2} S$
- To make a top-k view completely self-maintainable, we need to store a copy of the entire base table!
 Cost is too high: not just storage, but also the overhead of maintaining the copy

* Why pay such a high cost to catch some rare cases?

Two observations

Instead of complete compile-time self-maintenance, aim at achieving runtime self-maintenance with high probability at much lower cost " "Optimize for the common case" Instead of static auxiliary view definitions determined at compile-time, allow dynamic auxiliary view definitions

which change according to the update workload [©] Like a "semantic cache" of auxiliary data

A simple algorithm

 Idea: maintain a top-k' view, where k' changes at run-time but stays between k and some k_{max}

 $k_{\rm max} = k'$

The extra tuples serve as a "buffer" to deter refill queries

V: a top-k' view

 $v_{k'}$: value of the lowest ranked tuple currently in V Update: tuple t has its value updated to val

1 2 ...

- Ignorable: t not in V, $val < v_{k'}$ Do nothing
- Neutral: t in V, $val > v_{k'}$ Update V; no change to k'
- Good: t not in V, $val > v_{k'}$ Insert t into V; increment k'

• If k' exceeds k_{max} , discard the lowest ranked tuple in V

Bad: t in V, $val < v_{k'}$ Delete t from V; decrement k'

• If k' drops below k, issue a refill query to restore k' to k_{max}

Remaining questions

- How do we choose a right value for k_{max} ?
- What factors affect the optimal k_{max} value?
 - Trade-off: increasing k_{max} reduces refill frequency, but
 - V takes more space
 - Updating V takes longer
 - More updates need to be applied to V

How effective is the algorithm with small k_{max}?
 How do we choose k_{max} without accurate prior knowledge about the update workload?

A closer look at the maintenance cost

Amortized cost of processing one update =

- $C_{\text{update}} \times (1 f_{\text{ignore}}) + C_{\text{refill}} \times f_{\text{refill}}$
 - C_{update} : cost of updating V; $O(\log k_{\text{max}})$
 - *f*_{ignore}: fraction of updates that are ignorable (decreases as *k*_{max} increases)
 - C_{refill} : cost of a refill operation; O(N), where N is the size of the base table
 - f_{refill} : frequency of refill operations

Since $C_{\text{refill}} \gg C_{\text{update}}$, a reasonable goal is to reduce f_{refill} to 1/N, so the second product becomes O(1)

Random walk model

- ✤ Between two refills, the value of k' follows a random walk on points { k − 1, k, ..., k_{max} }
 - Begins with k_{max} (right after a refill)
 - Moves left on a bad update
 - Moves right on a good update
 - Stays put on an ignorable or neutral update
 - Ends with k 1 (when another refill is needed)
- \sim Refill interval Z = hitting time from k_{max} to (k 1)
- Assume probabilities of bad and good updates are fixed at p and q for now; will drop this assumption later

First try: expected hitting time

 b_i : expected time to hit (k - 1) starting from i

• $b_{k_{\max}} = 1 + p \times b_{k_{\max}-1} + (1-p) \times b_{k_{\max}}$

$$b_{i} = 1 + p \times b_{i-1} + q \times b_{i+1} + (1 - p - q) \times b_{i}$$

• $b_{k-1} = 0$

* Can solve for $b_{k_{\max}}$ (= $\mathbb{E}[Z]$) directly

• E.g., if p = q then $b_{k_{\max}} = (k_{\max}-k+1)(k_{\max}-k+2)/(2p)$ • That is, we can choose $k_{\max} = (k-1) + N^{0.5}$ so that $\mathbb{E}[Z] \approx N$

* But we want $\mathbb{E}[f_{\text{refill}}] = \mathbb{E}[1/Z]$, which is not equal to 1 / $\mathbb{E}[Z]$ in general!

The Change strategy: make sure that $\mathbb{P}[Z > N]$ is high

High-probability result when p = q

- ★ Theorem: When p = q, if $k_{\max} = (k-1) + N^{0.5+\varepsilon}$ then $\mathbb{P}[Z > N] \ge 1 - 4 \cdot \exp(-N^{2\varepsilon}/2)$
- TIN English
 - When bad and good updates are equally likely, we can pick k_{max} to be a just a bit more than sqrt(N) in order to ensure that, with high probability, refill only occurs after at N updates
- We think p = q is a common case
 - If the value distribution is stationary, the rate at which tuples enter top k should be the same as the rate at which they leave top k

High-probability result when p < q

- ★ Theorem: When p < q, if $k_{\max} = (k-1) + c \ln N$, then $\mathbb{P}[Z > N] \ge 1 - o(1)$
- For a large enough constant *c* depending only *p* and *q* In English
 - When bad updates are less likely than good updates, we can pick k_{max} to be $O(\ln N)$
 - in order to ensure that, with high probability,
 - refill only occurs after at N updates
- Intuitively, this case is better because the view is more likely to grow than to shrink

What if p > q?

The view is more likely to shrink than to grow
Need $k_{\max} = O(N)$ to bring $\mathbb{E}[Z]$ up to N

- Might as well keep a copy of the base table!
- We conjecture no good solution exists
- We also hope p > q is a rare case
 - Typically, people enjoy watching tuples "compete" with each other to enter top k
 - It is less interesting to watch tuples trying to "escape" from top k

Generalization

- \clubsuit No need to assume that *p* and *q* are fixed
- No need to assume that random walk is memoryless
- Theorem for p = q still holds if "p = q" is replaced by "random walk W is origin-tending"
 - That is, regardless of the previous steps taken, the probability of W moving towards k_{max} is always no less than that of moving towards k
- Theorem for p < q still holds if "p < q" is replaced by "random walk W is strictly origin-tending"
 - That is, regardless of the previous steps taken, the probability of W moving towards k_{\max} is always no less than δ times that of moving towards k, where $\delta > 1$

Case study: random up-and-downs

- * Initial values: symmetric unimodal distribution with mean μ
- In each time step, choose an item at random and modify it by a value drawn from a symmetric unimodal distribution with mean 0
- What are the odds of this update being good/bad?
- * Can show: p < q as long as top-k values $> \mu$
 - Random walk is origin-tending
 - $\Im k_{\text{max}} = N^{0.5 + \varepsilon}$ is enough

Case study: total sales in a moving window

- Sales for a book b over time: X^b₁, X^b₂, ..., X^b_t, ... (assume all independently & identically distributed)
 Interested in total sales of b in a moving window:
 - $\sum_{t-w+1 \leq t' \leq t} X^{b}_{t'}$
- As t moves forward, what are the odds that b moves in/out of top-k?
- \bullet Can show: p = q

Random walk is origin-tending

 $\Im k_{\max} = N^{0.5 + \varepsilon}$ is enough

Experiments

- Scenarios
 - Base table in DBMS
 - Top-k view can be maintained by application (in-memory heap) or by DBMS (B⁺-tree)
 - Different update cost
 - Top-k view can be maintained locally or remotely
 - Different refill cost
 - [©]4 possible combinations
- ✤ Costs are real ☺ (measured for different view/query sizes)
- ✤ Data/updates are synthetic ☺, but not over-simplistic
 - Simulation of total sales in a moving window, with daily sales following a Poisson distribution

Maintenance cost vs. k_{max}

Choosing k_{max} in practice

- Theoretical bounds may not be tight/accurate enough
- $\Rightarrow p$ and q are difficult to measure
- $\bullet p, q$, and costs may vary at runtime

- ✤ Idea: dynamically adjust k_{max} so that amortized cost of refill ≈ that of view update
 - Start with some guess for k_{max} (N^{0.6} is reasonable)
 - Target refill interval: C_{refill} / C_{update} (observed at runtime)
 - If actual refill interval < target / α , increase k_{max} by a factor
 - If actual refill interval > target $\cdot \alpha$, decrease k_{\max} by a factor • Allow some leeway (α) from the target interval

Experiments with adaptive algorithm

N = 10,000; k = 10

 k_{max} can be lower than what the theory predicts

Conclusion and future work

- Top-k view maintenance: a little trick goes a (provably) long way!
- Main idea: auxiliary data for high-probability runtime self-maintenance
- Currently working on generalizing the idea to other types of views (e.g., joins)

For detailed proofs and experiment results, see http://www.cs.duke.edu/~junyang/papers/yyyxc-topk.ps

Related work

Lots of work on view self-maintenance

- Blakeley et al., *TODS* 1989; Gupta et al., *EDBT* 1996
- Huyn, VLDB 1997: runtime self-maintenance
- Quass et al., PDIS 1996, etc.: auxiliary data for compile-time self-maintenance
 We propose auxiliary data for runtime self-maintenance with higher probability
- Lots of work on top-k queries
 - Most focuses on efficient query processing
 - Hristidis et al., SIGMOD 2001: select ordered/top-k views to materialize
 We support efficient maintenance algorithm
- Top-k view maintenance
 - Traditionally: deletes/updates to MIN and MAX are not handled
 - Palpanas et al., VLDB 2002: "work areas" for MIN and MAX
 The provide rigorous analysis and guidelines for choosing sizes of "work areas"
 - Babcock & Olston, upcoming SIGMOD 2003: approximate distributed top-k maintenance, focus on reducing communication