Incorporating Structured World Knowledge into Unstructured Documents via Heterogeneous Information Networks

Yangqiu Song

Collaborators

Chenguang Wang

Ming Zhang

Jiawei Han

Slides Credit: Chenguang Wang

Outline

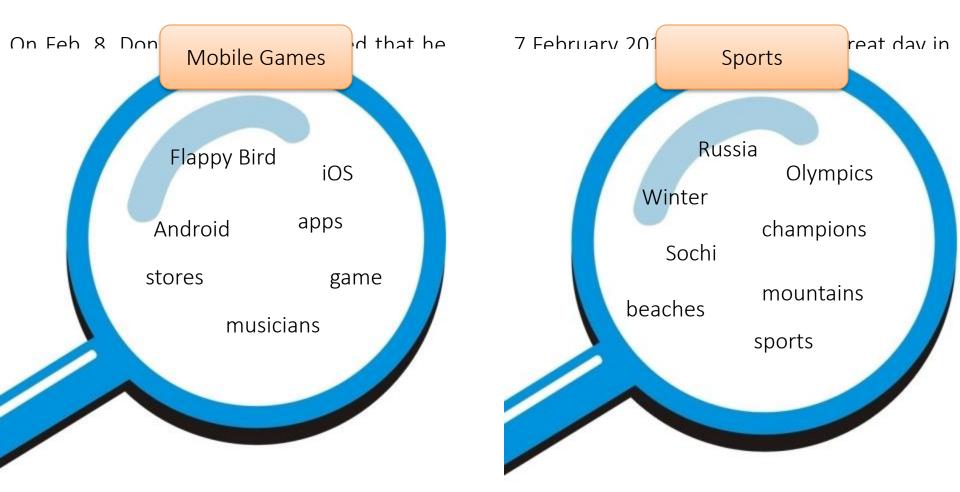
- Text Analytics: Motivation
 - Two Challenges
 - Representation
 - Labels
- Text Categorization via HIN
 - HIN construction from texts
 - From HIN similarity to clustering and classification
 - World knowledge indirect supervision
- Conclusions and future work

Text Categorization: Two Challenges

- Impacts many applications!
 - ✓ Social network analysis, health care, machine reading ...
- Traditional approach:

- Two challenges:
 - ✓ Representation
 - ✓ Labels

Representation: Bag-of-words



Internet trolls."

from / to 23 February 2014.

Context: Topic Models and Word Embeddings

• Topic Modeling (Blei et al., 2003)

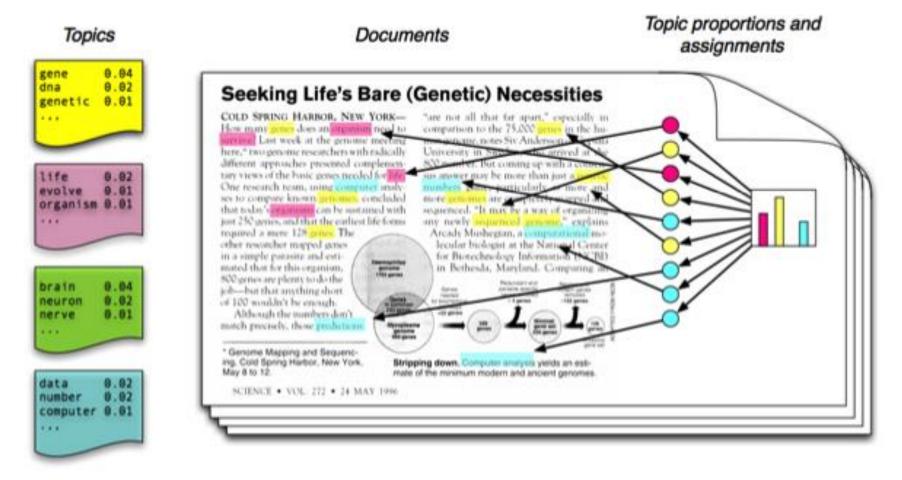
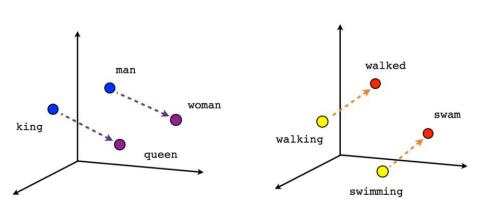


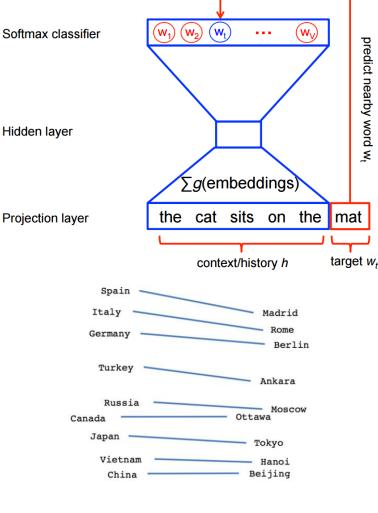
Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Context: Topic Models and Word Embeddings

- Word embedding
 - Word2vec (Mikolov et al., 13)
 - Glove (Pennington et al., 14)
 - Matrix factorization

(Deerwester'90;Levy et al., 15)





Country-Capital

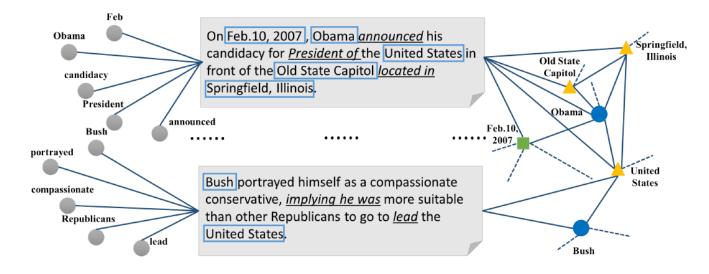
Male-Female

Verb tense

https://www.tensorflow.org/versions/r0.7/tutorials/word2vec/index.html

What's Missing?

• The semantics of entities and their relations



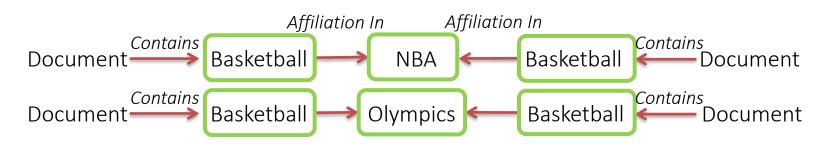
• What can context cover?

``New York'' vs. ``New York Times''

• What cannot?

``George Washington'' vs. ``Washington''

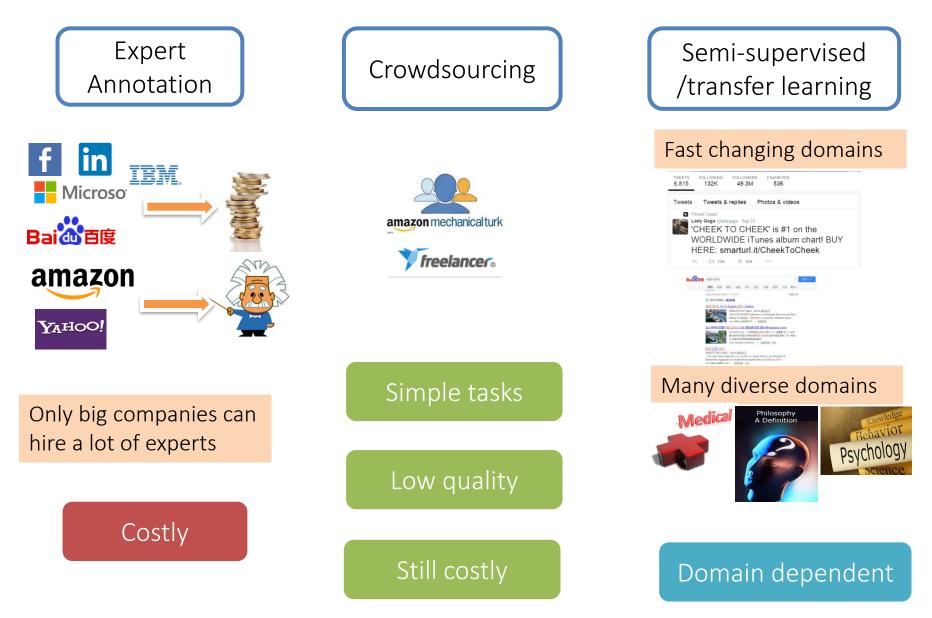
- Higher order relations



Outline

- Text Analytics: Motivation
 - Two Challenges
 - Representation
 - Labels
- Text Categorization via HIN
 - HIN construction from texts
 - From HIN similarity to clustering and classification
 - World knowledge indirect supervision
- Conclusions and future work

Acquire Labeled Data



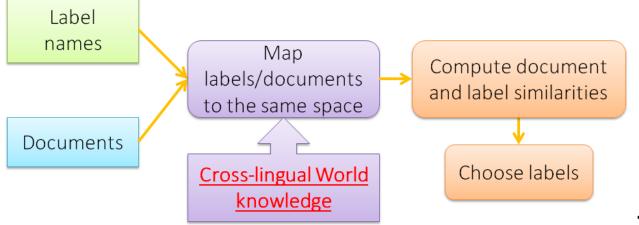
Our Solution

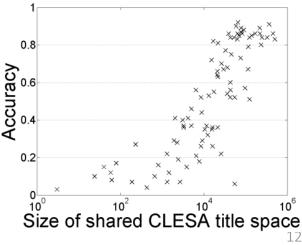
- World Knowledge enabled learning
 - Millions of entities and concepts
 - Billions of relationships

Grounding texts to knowledge bases

Classification without Supervision

- Label names carry a lot of information
 - We can use world knowledge as features
 - Classify document to English labels
 - 179 languages with Wikipedia
- July 15 08:30–09:55:
 - Machine Learning19: Classification2





WikipediA

由文

886 000+ 條目

Españo

266 000+ artículo

Русский

1 280 000+ vo

Distribution of the 40,633,831 articles in different language editions (as of 1 July 2016)^[1]

> English (12.8%) Swedish (8.2%) Cebuano (6.5%)

German (4.8%) Dutch (4.6%) French (4.4%) Russian (3.3%) Italian (3.2%)

Spanish (3.1%) Waray-Waray (3.1%)

Other (46%)

English

5 184 000+ article

Português

日本語

1 020 000+ 924

Deutsch

Français

M. Chang, L. Ratinov, D. Roth, V. Srikumar: Importance of Semantic Representation: Dataless Classification. AAAI'08.

Y. Song, D. Roth: On dataless hierarchical text classification. AAAI'14.

Y. Song, D. Roth: Unsupervised Sparse Vector Densification for Short Text Similarity. HLT-NAACL'15.

This Talk: Structured World Knowledge Enabled Learning and Text Mining

Different domains

tweets, blogs, websites, medical, psychology

Structured world knowledge bases

WIKIPEDIA The Free Encyclopedia

With help of machine learning algorithms [Document similarity in ICDM'15] [Document clustering in KDD'15] [Document classification in AAAI'16] [Item recommendation, ongoing]

More general and effective machine learning/ data mining

[Relation clustering in IJCAI'15] [Similarity search in SDM'16] [Paraphrasing in ACL'13] [Data type refinement, ongoing]

Outline

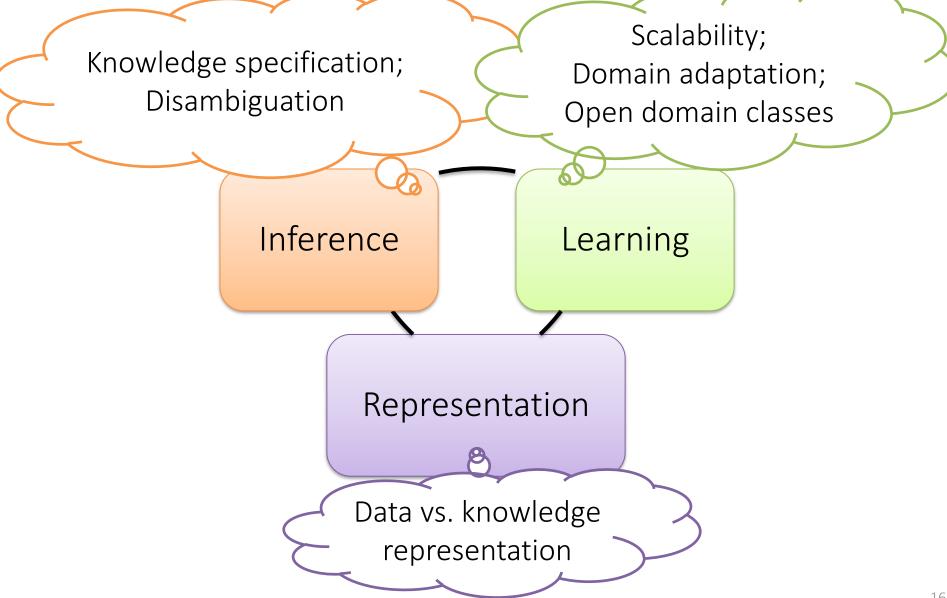
- Motivation
 - Two Challenges
 - Representation
 - Labels
- Text Categorization via HIN
 - HIN construction from texts
 - From HIN similarity to clustering and classification
 - World knowledge indirect supervision
- Conclusions and future work

Text Categorization via HIN

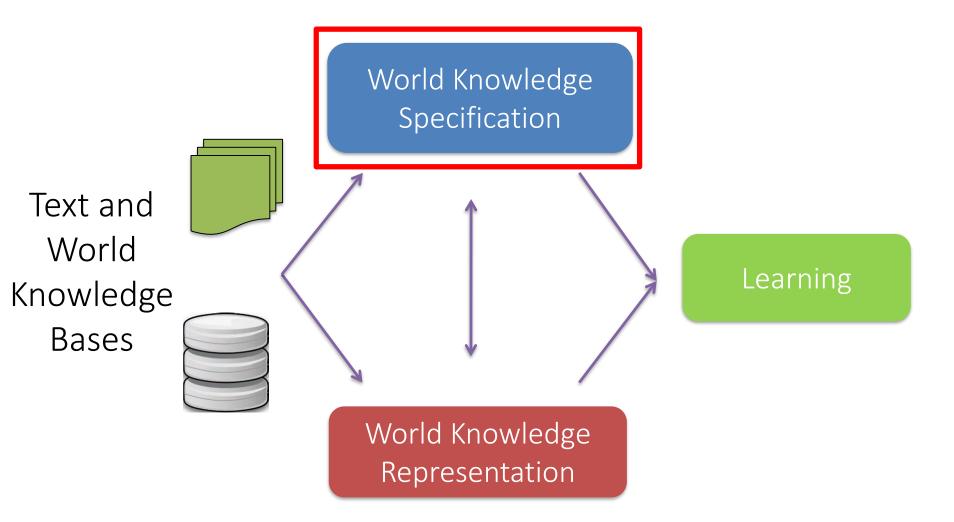
How to convert unstructured texts to HINs?

• What can we do with the HINs?

Challenges of Using World Knowledge



Networked Text Analysis Framework



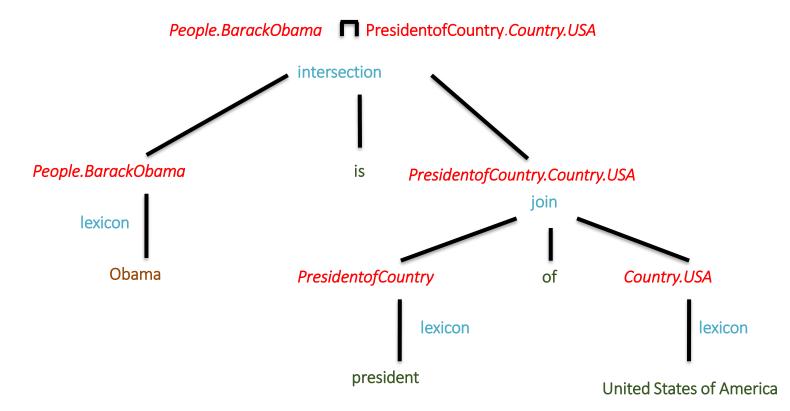
Wang et al., Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks. KDD'15. Wang et al. World knowledge as indirect supervision for document clustering. TKDD'16.

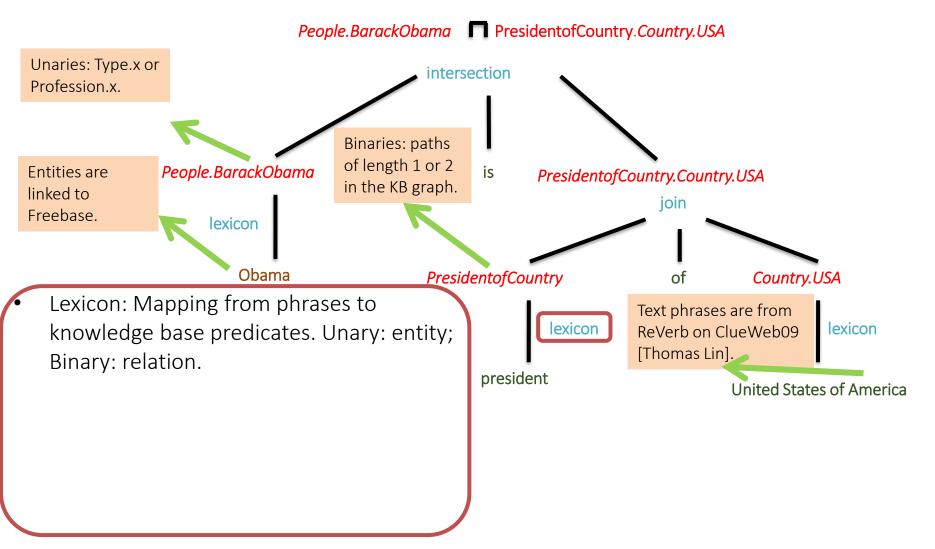
Document Obama is the president of the United States of America

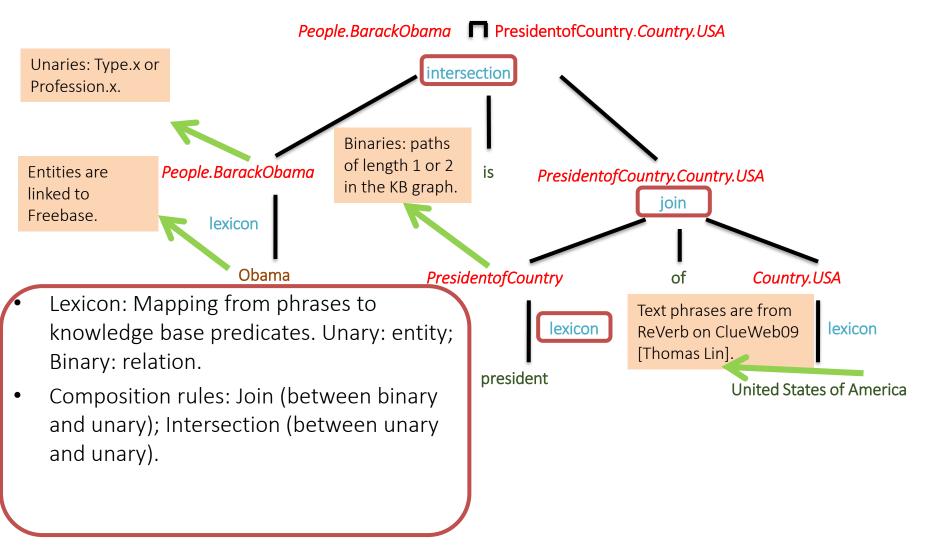
Semantic parsing is the task of mapping a piece of natural language text to a formal meaning representation.

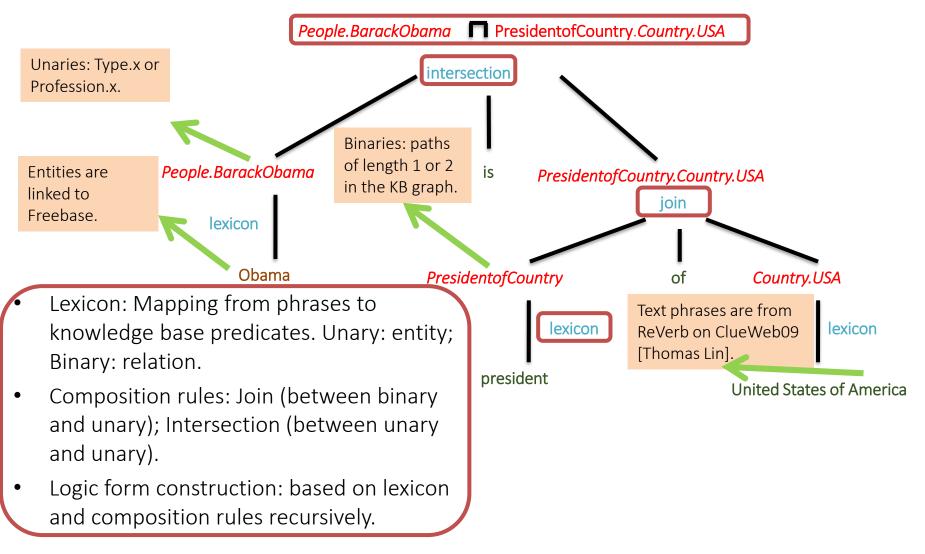
Logic form *People.BarackObama* **¬** PresidentofCountry.*Country.USA*

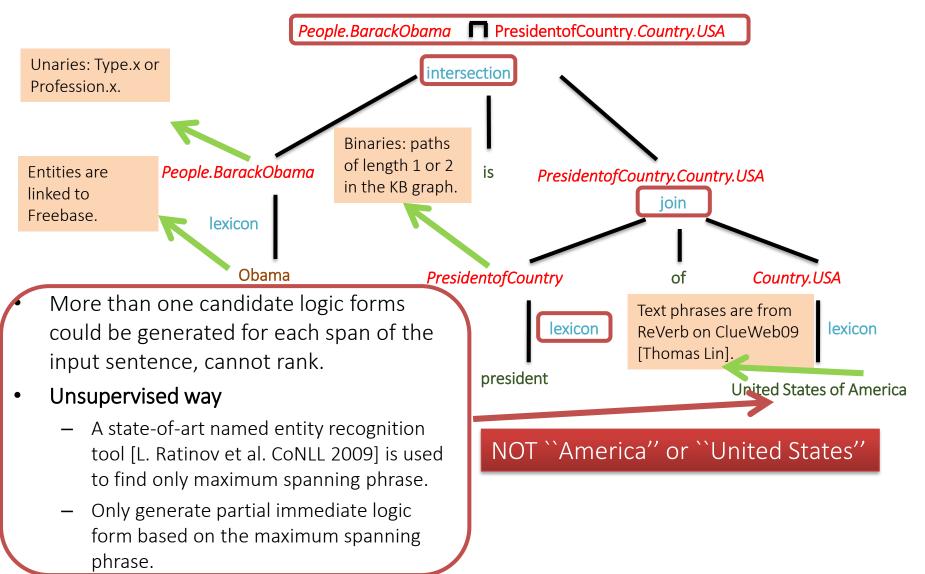
- Motivation: [Berant et al. EMNLP'13] aim to train a parser from question/answer pairs on a large knowledge-base Freebase
 - Existing semantic parsing approaches, that require expert annotation
 - Scales to large scale knowledge-bases, supervised by the QA pairs
- No such training data for the document dataset.



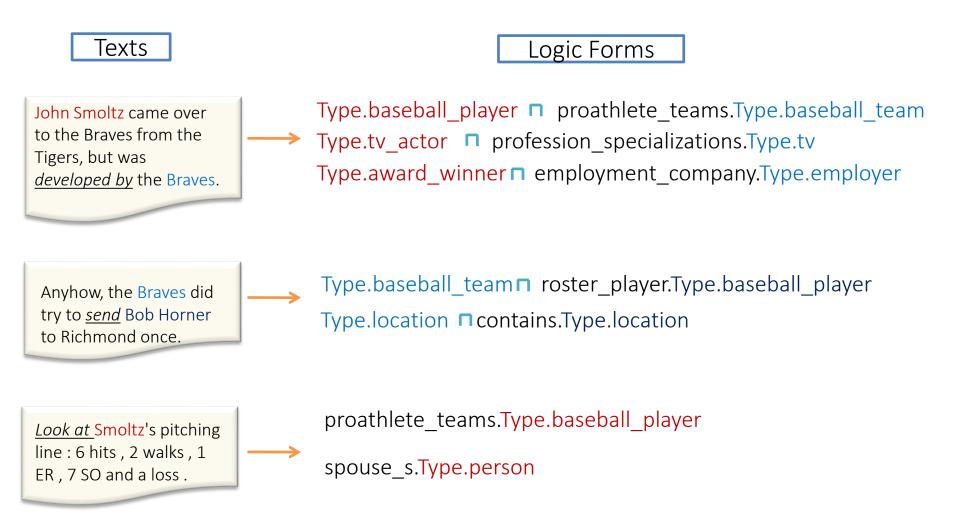








Examples of Semantic Parsing on 20-NG

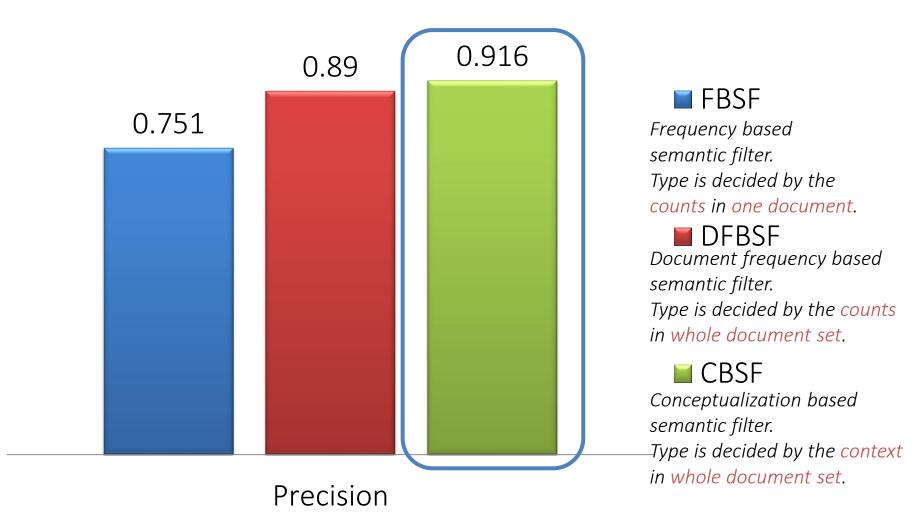


Some of the forms are not noisy results

World Knowledge Specification: Semantic Filtering

- Term frequency based semantic filtering (FBSF)
 - How many times a type appearing in a document
- Document frequency based semantic filtering (DFBSF)
 How many documents a type appearing in, in a corpus
- Conceptualization based semantic filter (CBSF)
 - Clustering the same entity (with different mentions) based on their types
 - In each cluster, use the most frequent type for the mentions

Precision of Different Semantic Filtering



Wang et al., Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks. KDD'15. Wang et al., World knowledge as indirect supervision for document clustering. TKDD'16.

Examples of Semantic Filtering on 20NG

Type.baseball_player□proathlete_teams.Type.baseball_teamType.tv_actor□profession_specializations.Type.tvType.award_winner□employment_company.Type.employer

Anyhow, the Braves did try to <u>send</u> Bob Horner to Richmond once. Type.baseball_team roster_player.Type.baseball_player Type.location contains.Type.location

<u>Look at Smoltz</u>'s pitching line : 6 hits , 2 walks , 1 ER , 7 SO and a loss . proathlete_teams.Type.baseball_player

spouse_s.Type.person

John Smoltz: Type.baseball_player

Braves:Type.baseball_team

Error Analysis of Semantic Filtering

Type of error	Example sentence	Number and percentage of errors		
		FBSF (805)	DFBSF (359)	CBSF (272)
Entity Recognition	"Einstein 's theory of relativity explained mercury 's motion."	179 (22.2%)	129 (35.9%)	105 (38.6%)
Entity Disambiguation	"Bill said all this to make the point that Christianity is eminently."	537 (66.7%)	182 (50.7%)	130 (47.8%)
Subordinate Clause	"Bruce S. Winters, worked at United States Technologies Research Center, bought a Ford."	89 (11.1%)	48 (13.4%)	37 (13.6%)

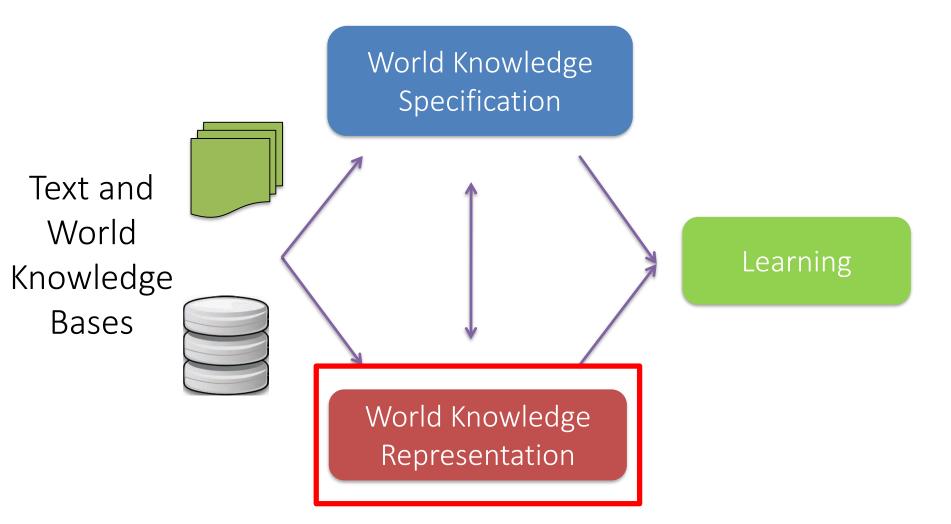
Finding #1: Entity disambiguation is the major error factor.

Entity disambiguation is a tough research problem in NLP community. The type information of relations are not sufficient to further prune out mismatching entities during semantic filtering process.

Finding #2: CBSF performs the best.

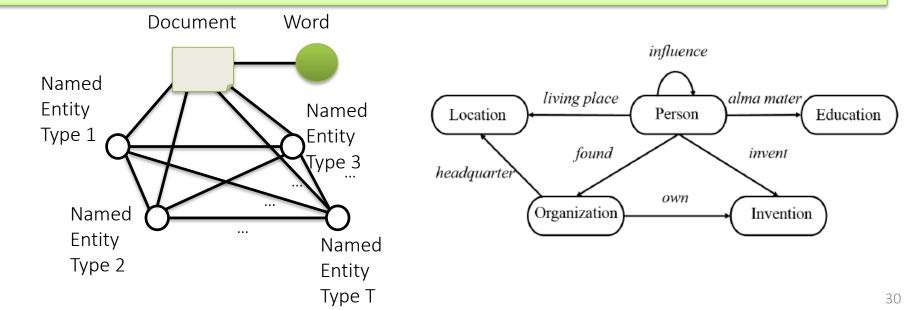
For example, by using context, the number of incorrect entities caused by disambiguation can be dramatically reduced.

Networked Text Analysis Framework



World Knowledge Representation : Heterogeneous Information Network (HIN)

HIN network-schema: network with multiple object types and/or multiple link types.

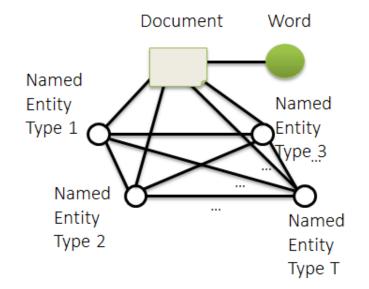


Outline

- Motivation
 - Two Challenges
 - Representation
 - Labels
- Text Categorization via HIN
 - HIN construction from texts
 - From HIN similarity to clustering and classification
 - World knowledge indirect supervision
- Conclusions and future work

Meta-path, Commuting Matrix, and PathSim

- Meta-path path defined over the network schema.
 - [Sun et al., 2011]



- Commuting matrix:
 - e.g., document->word binary occurrence matrix: W
- PathSim Document word Contains
 Word Contains
 Document
 - e.g.,
 - $W^T W$: dot product

Other Meta-paths in Text HIN



KnowSim

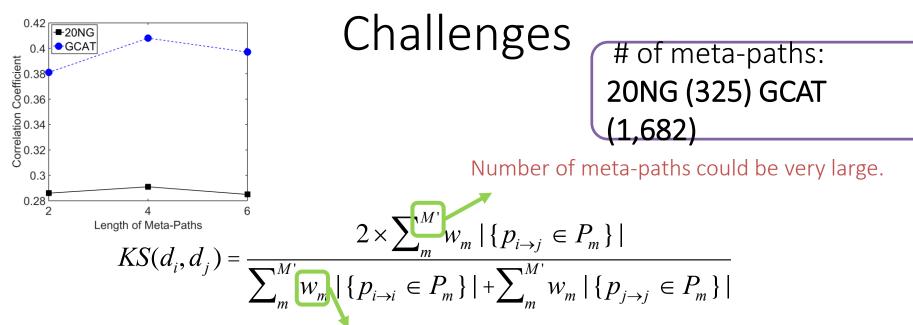
An ensemble of similarity measures defined on structured HIN.

Semantic overlap: the number of meta-paths between two documents.

$$KS(d_{i}, d_{j}) = \frac{2 \times \sum_{m}^{M'} w_{m} |\{p_{i \to j} \in P_{m}\}|}{\sum_{m}^{M'} w_{m} |\{p_{i \to i} \in P_{m}\}| + \sum_{m}^{M'} w_{m} |\{p_{j \to j} \in P_{m}\}|}$$

Semantic broadness: the number of total meta-paths between themselves.

- <u>Intuition:</u> The larger number of highly weighted meta-paths between two documents, the more similar these documents are, which is further normalized by the semantic broadness.
- KnowSim is computed in nearly linear time.



The weight/importance of each meta-path is different when the domain is different.

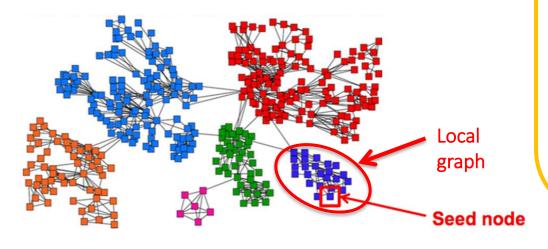
#1: How should we generate the large number of meta-paths at the same time? Previous studies only focus on single meta-path, enumeration over the network is OK. In real world, what will happen when thousands of meta-paths are needed?

#2: How should we decide the weight of each meta-path?

Previous studies treat them equally. In real world, different meta-path should contribute differently in various domains.

Meta-Path Dependent Random Walk

Intuition: Discovering compact sub-graph based on seed document nodes.



Algorithm outline

- Run PPR (approximate connectivity to seed nodes) with teleport set = {S}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find compact sub-graph.
- Use the sub-graph instead of the whole graph to compute # of meta-paths between nodes.
- 0.1 0.08 0.06 0.04 0.02 0 Random Sampling MDPN

Frobenius norm of approximation of commuting matrices on 20NG dataset

36

- Compute Personalized PageRank (PPR) around seed nodes.
- The random walk will get trapped inside the blue sub-graph.

Meta-Path Ranking

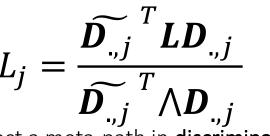
of meta-paths: 20NG (325) and GCAT (1,682)

 Maximal Spanning Tree based Selection [Sahami, 1998]

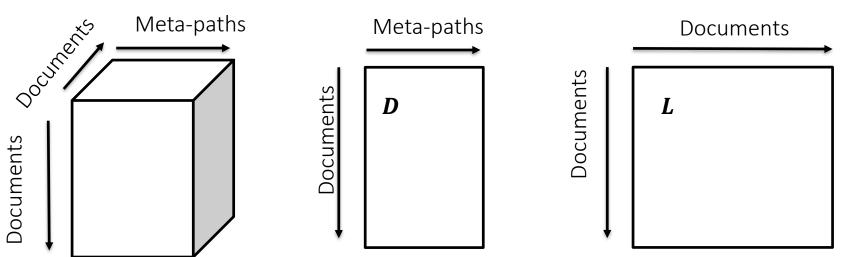
$$\frac{\sum_{j\neq i}^{M}\cos(\boldsymbol{D}_{.,j_{1}},\boldsymbol{D}_{.,j_{2}})}{M-1}$$

Select meta-paths with the largest dependencies with others

• Laplacian Score based Selection [He, 2006]



Select a meta-path in **discriminating documents** from different clusters



Experiments

Document datasets						
Name	#(Categories)	#(Leaf Categories)	#(Documents)			
20Newsgroups (20NG)	6	20	20,000			
MCAT (Markets)	9	7	44,033			
CCAT (Corporate/Industrial)	31	26	47,494			
ECAT (Economics)	23	18	19,813			

MCAT, CCAT, ECAT are top categories in RCV1 dataset containing manually labeled newswire stories from Reuter Ltd.

World knowledge bases						
Name	#(Entity Ty	pes) #(Entity Instance	es) #(Relation Ty	pes) #(Relation Instances)		
Freebase	1,500	40 millions	35,000	2 billions		
publicly available knowledge base with entities and relations collaboratively collected by its community members.						
YAGO2	350,000	10 millions	100	120 millions		
a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.						
	The number is reported in [X. Dong et al. KDD'14], In our downloaded dump of Freebase, we found 79 domains, 2,232 types, and 6,635 properties.					

38

Text Similarity Results

- Evaluation: correlation with document similarity
 - In the same category: 1
 - In different categories: 0

Datasets	Similarity Measures	BOW	BOW+ TOPIC	BOW+TOPIC+ ENTITY
20NG	Cosine	0.2400	0.2713	0.2768
	Jaccard	0.2352	0.2632	0.2650
	Dice	0.2400	0.2712	0.2767
GCAT	Cosine	0.3490	0.3639	0.3128
	Jaccard	0.3313	0.3460	0.2991
	Dice	0.3490	0.3638	0.3156

	KnowSim+UNIFORM	KnowSim+MST	KnowSim+LAP
20NG	0.2860	0.2891	0.2913 (+5.2%)
GCAT	0.3815	0.3833	0.4086 (+12.3%)

Outline

- Motivation
 - Two Challenges
 - Representation
 - Labels
- Text Categorization via HIN
 - HIN construction from texts
 - From HIN similarity to clustering and classification
 - World knowledge indirect supervision
- Conclusions and future work

Spectral Clustering with KnowSim

- Non-linear clustering (Ng et al., NIPS'01)
 - Construct k-NN graph based on pair-wise similarities
 - Perform k-means over Eigen vectors of the graph Laplacian

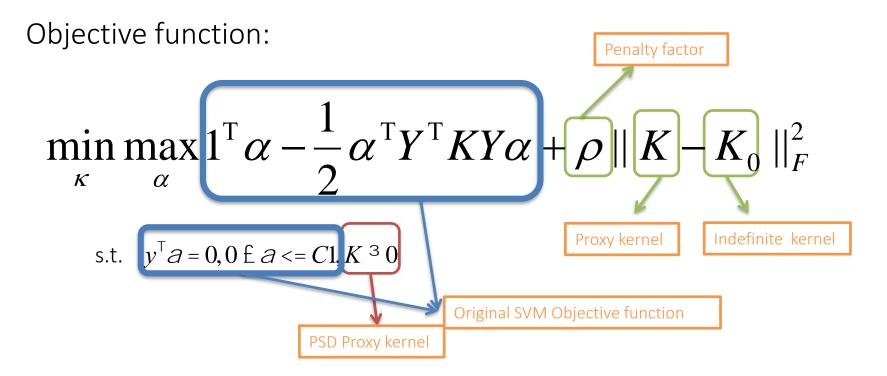
Datasets	Similarity Measures	BOW	BOW+TOPIC	BOW+TOPIC+ENTITY
20NG	Cosine	0.3440	0.3461	0.4247
	Jaccard	0.3547	0.3517	0.4292
	Dice	0.3440	0.3457	0.4248
GCAT	Cosine	0.3932	0.4352	0.4106
	Jaccard	0.3887	0.4292	0.4159
	Dice	0.3932	0.4355	0.4112

	KnowSim+UNIFORM	KnowSim+MST	KnowSim+LAP
20NG	0.4304	0.4304	0.4461 (+3.9%)
GCAT	0.4463	0.4653	0.4736(+8.8%)

Wang et al., KnowSim: A Document Similarity Measure on Structured Heterogeneous Information Networks. ICDM'15.

SVM with Indefinite HIN-Kernel

- SVM needs a positive semi-definite(PSD) kernel matrix
- KnowSim matrix is non-PSD
- Feed the non-PSD KnowSim kernel matrix to SVM [Luss and d'Aspremont 2008']
 - Learn a proxy of non-PSD KnowSim matrix
 - Simultaneously learn a SVM classifier.



Wang et al., Text Classification with Heterogeneous Information Network Kernels. AAAI'16.

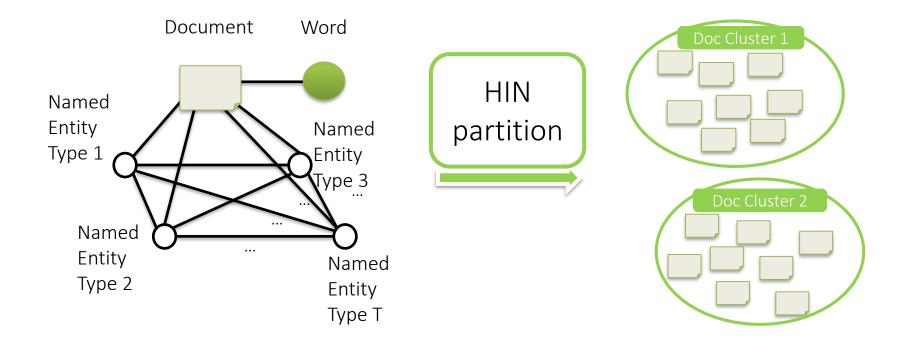
Classification Results

Average accuracy								
Model		Discr	ete			Embeddir	ıg	
Settings	BO	\sim	BOV	V+ENTITY		Word2ve	С	
20NG-SIM	90.8	1%	9	1.11%		91.67%		
20NG-DIF	96.6	6%	9	6.90%		98.27%		Mikolov 2013.
GCAG-SIM	94.1	5%	(94.29		96.81%		Window: 5
GCAT-DIF	88.9	8%	9	0.18%		90.64%		Dim: 400
		Ave	rage a	ccuracy				
Model	SVM ^{HIN}	SVIV	HIN+Kr	nowSim		IndefSVM ^{HIN} +KnwoSim		-KnwoSim
Settings		DWD		DWD+other MetaPaths	-	DWD)WD+other MetaPaths
20NG-SIM	91.60%	92.32	%	92.68%		92.65%		93.38%
20NG-DIF	97.20%	97.83	%	98.01%		98.13%		98.45%
GCAG-SIM	94.82%	95.29	%	96.04%		95.63%		98.10%
GCAT-DIF	91.19%	90.70	%	91.88%		91.63%		93.51%

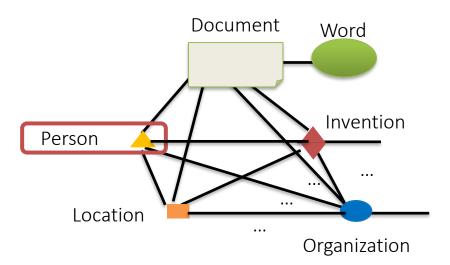
Collective classification: Lu and Gatoor 2003; Kong et al. 2012

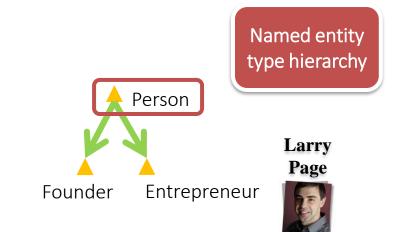
Outline

- Motivation
 - Two Challenges
 - Representation
 - Labels
- Text Categorization via HIN
 - HIN construction from texts
 - From HIN similarity to clustering and classification
 - World knowledge indirect supervision
- Conclusions and future work



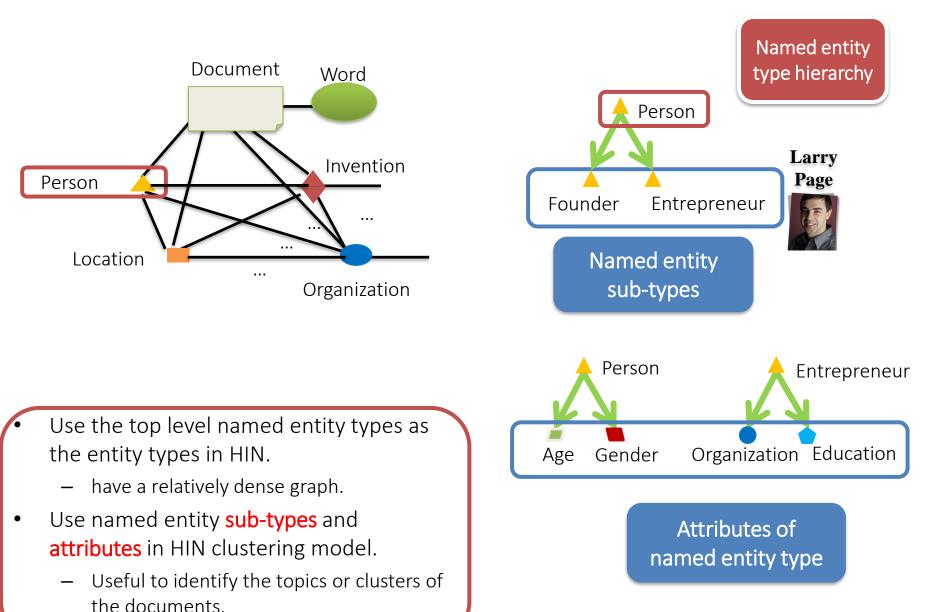
Wang et al., Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks. KDD'15. Wang et al. World knowledge as indirect supervision for document clustering. TKDD'16.



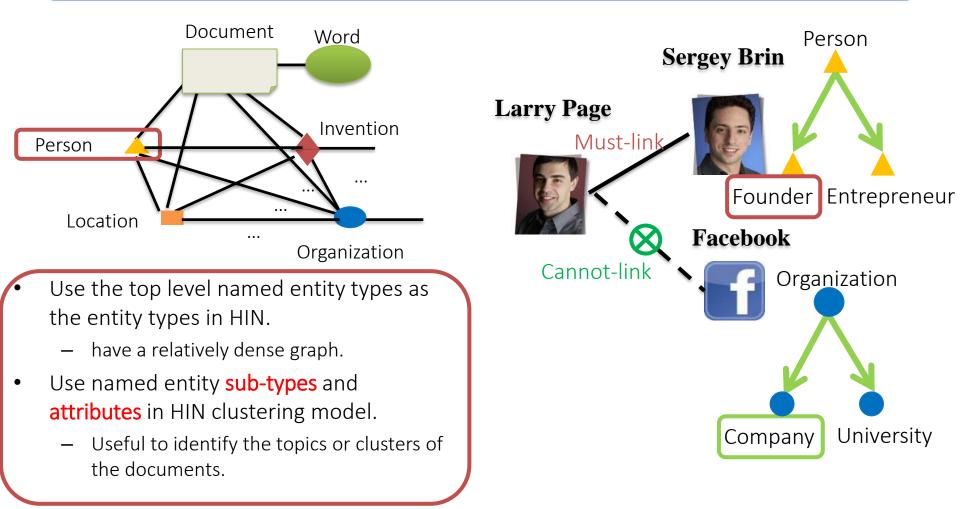


Use the top level named entity types as the entity types in HIN.

- have a relatively dense graph.



Extend the framework of **information-theoretic co-clustering** (ITCC) [I. S. Dhillon et al. KDD'03] and constrained ITCC [Y. Song et al. TKDE'13].



Song et al. Constrained Co-clustering with Unsupervised Constraints for Text Analysis. TKDE, 2013

For documents and words, factorize
$$q(d_m, w_i) = p \begin{pmatrix} \hat{d}_{k_d} \\ \hat{w}_{k_w} \end{pmatrix} p(d_m | \hat{d}_{k_d}) p(w_i | \hat{w}_{k_w}) p(d_m | \hat{d}_{k_d}) p(w_i | \hat{w}$$

Clustering Algorithm

Algorithm: Alternating Optimization

Input: HIN defined on documents D, words W, entities E^t , t = 1, ..., T, Set maxIter and max δ .

while iter < maxIter and $\delta > \max \delta$ do

D Label Update: minimize J_{CHINC} w.r.t. L_d .

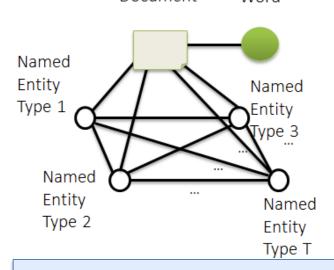
D Model Update: update $q(d_m, w_i)$ and $q(d_m, e_i^t)$.

for t = 1,...,T do E^{t} Label Update: minimize J_{CHINC} w. r. t. $L_{e^{t}}$. E^{t} Model Update: update $q(d_{m}, e_{i}^{t})$ and $q(e_{j}^{s}, e_{i}^{t})$. end for

D Label Update: minimize J_{CHINC} w.r.t. L_d . D Model Update: update $q(d_m, w_i)$ and $q(d_m, e_i^t)$.

W Label Update: minimize J_{CHINC} w. r. t. L_w . W Model Update: update $q(d_m, w_i)$.

Compute cost change δ . end while



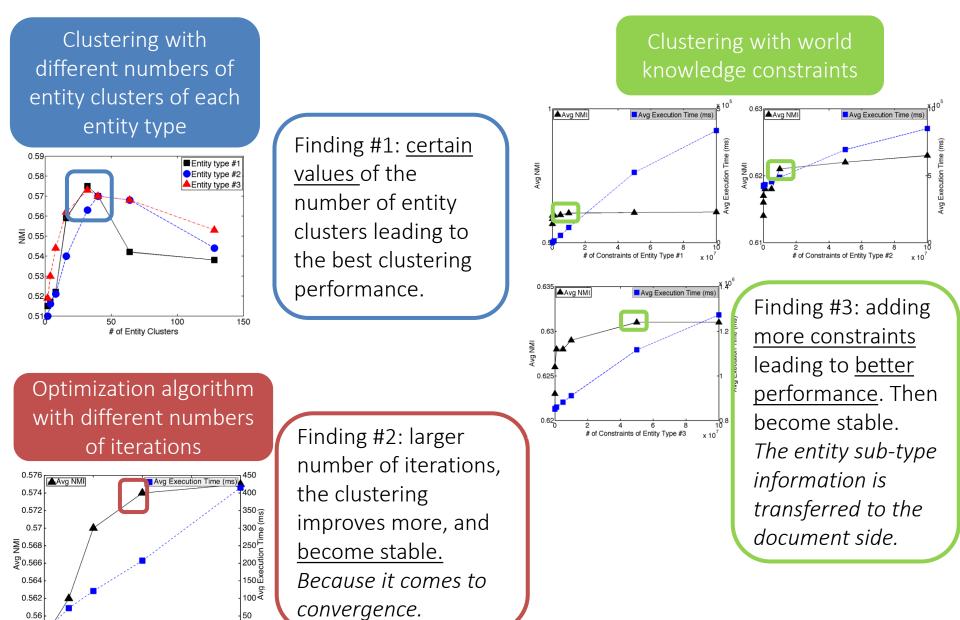
Knowledge indirect supervision: sub-types or attributes <u>cannot directly</u> <u>affect the document labels</u>. Constraints affect entity labels, entity labels will be transferred to affect the document labels.

Clustering Results on 20 Newsgroups



Wang et al., Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks. KDD'15. Wang et al. World knowledge as indirect supervision for document clustering. TKDD'16.

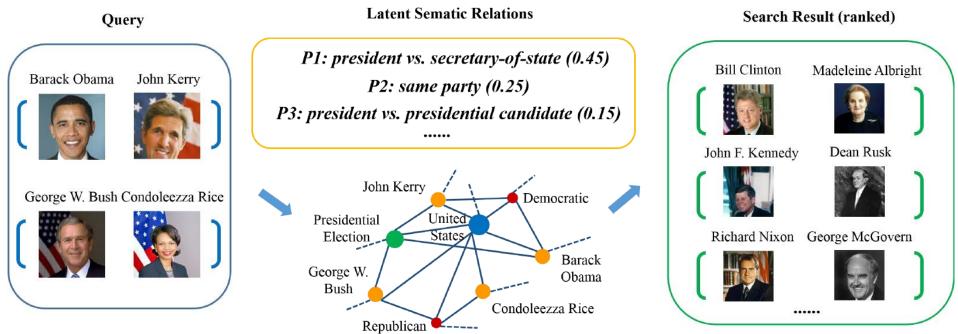
Parameter Study



0.558

Other Research

• Relation search



Example query-based meta-paths on Rel-Full. We show the most important four query-based meta-paths of different queries.

Query: {(Google, Larry Page), (Microsoft, Bill Gates), etc.}	ω
$Organization \xrightarrow{\text{ is founded by}} Founder$	0.384
$Organization \xrightarrow{\text{run business in}} Industry \xrightarrow{\text{win award in}^{-1}} Founder$	0.274
$Organization \xrightarrow{\text{ is founded by}} Person \xrightarrow{\text{ is influence peer}^{-1}} Founder$	0.174
$Organization \xrightarrow{\text{'s leadership}} Person \xrightarrow{\text{mailing address}} Location \xrightarrow{\text{mailing address}^{-1}} Founder$	0.115
Query: {(Google, Larry Page), (Yahoo!, Marissa Mayer), etc.}	ω
$Organization \xrightarrow{\text{run by}} CEO \xrightarrow{\text{job title}} Founder$	0.32
$Organization \xrightarrow{\text{founded date}} Date \xrightarrow{\text{graduation date}^{-1}} Founder$	0.229
$Organization \xrightarrow{\text{headquarter}} \textit{Location} \xrightarrow{\text{education institute}} \textit{Founder}$	0.207
$Organization \xrightarrow{\text{run business in}} Industry \xrightarrow{\text{win award in}^{-1}} Founder$	0.113

Wang et al. RelSim: Relation Similarity Search in Schema-Rich Heterogeneous Information Networks. SDM'16.

Future Work



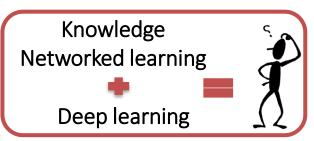
Which domain needs to consider more structured information?

in the world knowledge base?

[Document similarity in ICDM'15] [Document clustering in KDD'15] [Document classification in AAAI'16] [Item recommendation, ongoing]

More general and effective machine learning/ data mining

[Relation clustering in IJCAI'15] [Similarity search in SDM'16] [Paraphrasing in ACL'13] [Data type refinement, ongoing]



Conclusion

Problem	Text Representation and Annotation Efforts
Framework	World knowledge specification and representation; Text as HIN based learning and modeling
System	We are working on making analyzing text as network open source [Data and Code]

Thank You! 🙂

Dataset

• 4 sub-datasets are constructed

	Document datasets							
20NewsGroup	Sub-datasets	#(Document)	#(word)	#(Entity)	#(Total)	#(Types)		
	20NG-SIM	3000	22686	5549	31235	1514		
	20NG-DIF	3000	25910	6344	35254	1601		
	GCAG-SIM	3596	22577	8118	34227	1678		
	GCAT-DIF	2700	33345	12707	48752	1523		
RCV1-GCAT	E	Each sub-dataset	ts consists of t	hree similar or	distinct topics			
	More entities in GCAT							