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Text Categorization: Two Challenges
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Representation: Bagf-words
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Context: Topic Models and Wdtinbeddings
A Topic ModelingRleiet al., 2003)
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Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.



Context: Topic Models and Wdtinbeddings

A Word embedding
I Word2vec Mikolovet al., 13)
I Glove Pennington et al., 14)
I Matrix factorization
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A The semantics of entitiesdtheir relations
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Acquire Labeled Data
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Our Solution

A World Knowledgenabled learning
I Millionsof entities and concepts
I Billionsof relationships
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A Grounding texts to knowledge bases

11



Classificatiomvithout Supervision
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This Talk: Structured World Knowledg:
Enabled Learning and Text Mining
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Text Categorization via HIN
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Challenges of Using World Knowledg
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World Knowledge Specification:
Unsupervised Semantic Parsing for Documen

Document Obama is the president of the United States of Americ

Semantic parsing is the task of mapping
a piece of natural language text to a
formal meaning representation.

Logic form People.BarackObam#& PresidentofCountrZountry.USA

A Motivation:[BerantS I | f ® &ima tbtfaih &parsed from
guestion/answer pairs on a large knowledigse Freebase

I Existing semantic parsing approaches, that require expert annotation
I Scales to large scale knowledgpeses, supervised by the QA pairs

A No such training data for the document dataset.
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World Knowledge Specification:
Unsupervised Semantic Parsing for Documen

Document Obama is the president of the United States of Americi

People.BarackObamd™1 PresidentofCountrZountry.USA

/ intersection \

People.BarackObama is PresidentofCountry.Country.USA
join
lexicon / I \
Obama PresidentofCountry Country.USA
lexicon lexicon
president

United States of America
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World Knowledge Specification:
Unsupervised Semantic Parsing for Documen

Document Obama is the president of the United States of Americi

People.BarackObamd™1 PresidentofCountrZountry.USA

Unaries Type.»or

: intersection
Profession.x
Binaries: paths |

Entities are People.BarackObama Ofléngth 1or2 g PresidentofCountry.Country.USA

: in the KB graph.
linked to grap join

Freebase. Iexicon‘ / I \

Obama PresidentofCountry Country.USA
Lexicon: Mapping from phrases to \
knowledge base predicates. Unary: entity;
Binary: relation.

- Text phrases are from
lexicon|  ReVeron ClueWeb09
[Thomas Linl

lexicon

president United States of America
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World Knowledge Specification:
Unsupervised Semantic Parsing for Documen

Document Obama is the president of the United States of Americi

People.BarackObamd™1 PresidentofCountrZountry.USA

Unar|es_Type.>or intersectior]
Profession.x

Binaries: paths |

Entities are People.BarackObama Of length 1 or 2 is PresidentofCountry.Country.USA

: in the KB graph.
linked to grap join

Freebase. lexicon ‘ / ‘\

Obama PresidentofCountry of Country.USA

K Lexicon: Mapping from phrases to
knowledge base predicates. Unary: entity;
Binary: relation.

A Composition rules: Join (between binar
and unary); Intersection (between unar
and unary).

- Text phrases are from
lexicon|  ReVeron ClueWeb09
[Thomas Linl

lexicon

president United States of America
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World Knowledge Specification:
Unsupervised Semantic Parsing for Documen

Document Obama is the president of the United States of Americi

People.BarackObamd™ 1 PresidentofCountrZountry.USA

Unaries Type.>or intersection
Profession.x

Binaries: paths |

Entities are People.BarackObama Of length 1 or 2 is PresidentofCountry.Country.USA
in the KB graph.

linked to o
join
Freebase. lexicon ‘ / I \
Obama PresidentofCountry of Country.USA

- Text phrases are from
lexicon|  ReVeron ClueWeb09
[Thomas Linl

A' Lexicon: Mapping from phrases to
knowledge base predicates. Unary: entity;
Binary: relation.

A Composition rules: Join (between binar
and unary); Intersection (between unar
and unary).

A Logic form construction: based on lexicon
and composition rules recursively.

lexicon

president United States of America

22



World Knowledge Specification:
Unsupervised Semantic Parsing for Documen

Document Obama is the president of the United States of Americ:

People.BarackObamd™ 1 PresidentofCountrZountry.USA

Unaries Type.>or

: intersectiorn
Profession.x

Binaries: paths |

Entities are People.BarackObama Of length1or2 g PresidentofCountry.Country.USA

linked to in the KB graph. oin

Freebase. lexicon ‘ / I \
Obama PresidentofCountry of Country.USA

- Text phrases are from
lexicon|  ReVeron ClueWeb09
[Thomas Linl

More than one candidate logic formsN

could be generatetbr each span of the

iInput sentence, cannot rank. _
president

A Unsupervised way Hd States of America

lexicon

I A stateof-art named entity recognition
tool [L.Ratinowet al. CoNLI2009] is used
to find only maximum spanning phrase.

I Only generate partial immediate logic

form based on the maximum spanning
\ phrase. /
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