Automatic Information Fusion with Heterogeneous Information Networks

Yangqiu Song Department of CSE, HKUST, Hong Kong

1

Joint work with many collaborators; Slides Credit: Chenguang Wang, Huan Zhao, Yanfang (Fanny) Ye

Homogeneous Graph/Networks

Transportation Network

Food Network

Social Network

Gene Network

http://snap.stanford.edu/higher-order/higher-order-SM-science16.pdf

Heterogeneous Information Networks

- Yizhou Sun, Jiawei Har
 - Entity type mapping
 - Link type mapping: $E \rightarrow R$

)09-2012 (UIUC)

Modern Social Media

- Entities: Person, Check-in location, Articles, etc.
- Relations: Friends, Like, Check-in, etc.

Scholar Networks

- Entities: Paper, Venue, Author, Keyword, etc.
- Relations: Write, Attend, Contain, etc.

Knowledge Graphs

• Example of entities and their relations:

Bio-medical Network

- Entities: Gene, Patient, Drug, Disease, etc.
- Relations: Drug repurposing, Genotyping, etc.

http://web.cs.ucla.edu/~yzsun/Tutorials.htm https://sites.google.com/site/feiwang03/talks

Problems in HIN

- Link Prediction
 - Homogeneous
 - Heterogeneous (recommendation)
- Entity Typing/Profiling

Similarity Search

Meta-Path: Author-Paper-Author

Abnormal kidney

physiology

Diabetes

nsipidus

Decreased urine

Predictions

1 AQP1 2 AQP6 3 AQP5 4 MIP ... 40 MYBL2

Gene-Phenotyp

Gene-Gene

Predicted link

osmolailty

Response to salt she

Rank	Author	Score
1	Christos Faloutsos	1
2	Spiros Papadimitriou	0.127
3	Jimeng Sun	0.12
4	Jia-Yu Pan	0.114
5	Agma J. M. Traina	0.110
6	Jure Leskovec	0.096
7	Caetano Traina Jr.	0.096
8	Hanghang Tong	0.091
9	Deepayan Chakrabarti	0.083
10	Flip Korn	0.053

Christos' students or close collaborators

http://bigdata.ices.utexas.edu/project/gene-disease/ http://web.cs.ucla.edu/~yzsun/Tutorials.htm http://xren7.web.engr.illinois.edu/tutorial.html

Meta-path, Commuting Matrix, and PathSim

Meta-path defined over network schema.

- e.g., document->word binary occurrence matrix: W
- Un-normalized similarity: $W^T W$: dot product
 - Overall normalization: PathSim [Sun et al., VLDB'11]
 - Individual normalization: Path Ranking Algorithm [Lao et al., ML'10, EMNLP'11]

If there are many meta-paths, how to integrate them into a machine learning algorithm?

Representative Applications

- Text Classification
 - Unsupervised fusion for many meta-paths
- Recommender System
 - Feature based instead of similarity based fusion for heterogeneous linking
- Malware Detection
 - Supervised fusion using multi-kernel learning

Text Categorization: Two Challenges

- Impacts many applications!
 - ✓ Social network analysis, health care, machine reading ...
- Traditional approach:

- Two challenges:
 - ✓ Representation
 - ✓ Labels

Representation: Bag-of-words

Internet trolls."

from / to 23 February 2014.

What Semantics Can HIN Provide for Text?

HIN network-schema: network with multiple object types and/or multiple link types.

Knowledge Empowered Text Classification

Wang et al., KDD'15 Wang et al., TKDD'16 World Knowledge Specification: Unsupervised Semantic Parsing for Documents

Document Trump is the president of the United States of America

Semantic parsing is the task of mapping a piece of natural language text to a formal meaning representation.

Logic form *People.DonoldTrump* **¬** PresidentofCountry.*Country.USA*

- Motivation: [Berant et al. EMNLP'13] aim to train a parser from question/answer pairs on a large knowledge-base Freebase
 - Existing semantic parsing approaches, that require expert annotation
 - Scales to large scale knowledge-bases, supervised by the QA pairs
- We extend it to document analysis.

World Knowledge Specification: Unsupervised Semantic Parsing for Documents

Document Trump is the president of the United States of America

Example Meta-paths in Text HIN

KnowSim

An ensemble of similarity measures defined on structured HIN.

Semantic overlap: the number of meta-paths between two documents.

$$KS(d_{i}, d_{j}) = \frac{2 \times \sum_{m}^{M'} w_{m} | \{p_{i \to j} \in P_{m}\} |}{\sum_{m}^{M'} w_{m} | \{p_{i \to i} \in P_{m}\} | + \sum_{m}^{M'} w_{m} | \{p_{j \to j} \in P_{m}\} |}$$

Semantic broadness: the number of total meta-paths between themselves.

- <u>Intuition:</u> The larger number of highly weighted meta-paths between two documents, the more similar these documents are, which is further normalized by the semantic broadness.
- KnowSim is computed in nearly linear time.

The weight/importance of each meta-path is different when the domain is different.

#1: How should we generate the large number of meta-paths at the same time? Previous studies only focus on single meta-path, enumeration over the network is OK. In real world, what will happen when thousands of meta-paths are needed?

#2: How should we decide the weight of each meta-path?

Previous studies treat them equally. In real world, different meta-path should contribute differently in various domains.

Meta-Path Dependent Random Walk

Intuition: Discovering compact sub-graph based on seed document nodes.

Algorithm outline

- Run PPR (approximate connectivity to seed nodes) with teleport set = {S}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find compact sub-graph.
- Use the sub-graph instead of the whole graph to compute
 # of meta-paths between nodes.

- Compute Personalized PageRank (PPR) around seed nodes.
- The random walk will get trapped inside the blue sub-graph.

commuting matrices on 20NG dataset 21

Meta-Path Ranking

of meta-paths: 20NG (325) and GCAT (1,682)

 Maximal Spanning Tree based Selection [Sahami, 1998]

$$\frac{\sum_{j\neq i}^{M}\cos(\boldsymbol{D}_{.,j_{1}},\boldsymbol{D}_{.,j_{2}})}{M-1}$$

Select meta-paths with the largest dependencies with others

• Laplacian Score based Selection [He, 2006]

Select a meta-path in **discriminating documents** from different clusters

Experiments

	Documer	it datasets	
Name	#(Categories)	#(Leaf Categories)	#(Documents)
20Newsgroups (20NG)	6	20	20,000
MCAT (Markets)	9	7	44,033
CCAT (Corporate/Industrial)	31	26	47,494
ECAT (Economics)	23	18	19,813

MCAT, CCAT, ECAT are top categories in RCV1 dataset containing manually labeled newswire stories from Reuter Ltd.

World knowledge bases											
Name	#(Entity Types) #(Entity Instances) #(Relation Types) #(Relation Instances										
Freebase	Freebase 1,500 40 millions 35,000 2 billions										
publicly available knowledge base with entities and relations collaboratively collected by its community members.											
YAGO2	350,000)	10 millions	100		120 millions					
a semantic knowledge base, derived from Wikipedia, WordNet and GeoNames.											
The numb we found	The number is reported in [X. Dong et al. KDD'14], In our downloaded dump of Freebase, we found 79 domains, 2,232 types, and 6,635 properties.										

Spectral Clustering with KnowSim (ICDM'15)

- Non-linear clustering (Ng et al., NIPS'01)
 - Construct k-NN graph based on pair-wise similarities
 - Perform k-means over Eigen vectors of the graph Laplacian

Datasets	Similarity Measures	BOW	BOW+TOPIC	BOW+TOPIC+ENTITY
20NG	Cosine	0.3440	0.3461	0.4247
	Jaccard	0.3547	0.3517	0.4292
	Dice	0.3440	0.3457	0.4248
GCAT	Cosine	0.3932	0.4352	0.4106
	Jaccard	0.3887	0.4292	0.4159
	Dice	0.3932	0.4355	0.4112

	KnowSim+UNIFORM	KnowSim+MST	KnowSim+LAP
20NG	0.4304	0.4304	0.4461 (+3.9%)
GCAT	0.4463	0.4653	0.4736 (+8.8%)

Wang et al., KnowSim: A Document Similarity Measure on Structured Heterogeneous Information Networks. ICDM'15.

Classification Results with SVM needs a positive semidefinite(PSD) kernel matrix (AAAI'16)

		Av	erage accuracy				
Model			Discrete		Embedding	-	
Setting	S	BOW	BOW+EN	ΤΙΤΥ	Word2vec		
20NG-SI	Μ	90.81%	6 91.11	%	91.67%	ſ	
20NG-D	IF	96.66%	6 96.90 [°]	%	98.27%		Mikolov 2013. Window: 5
GCAG-SI	M	94.15%	6 94.29)	96.81%		Dim: 400
GCAT-D	IF	88.98%	6 90.18	%	90.64%		
		A١	verage accuracy				
Model	SVM ^{HIN}	S∨	′M ^{HIN} +KnowSim	owSim IndefSVM ^{HIN} +KnwoSir			
Settings			DWD+other	D	DWD+other		
			MetaPaths	Ν	<u>MetaPaths</u>		
20NG-SIM	91.60%		92.68%		93.38%		
20NG-DIF	97.20%		98.01%		98.45%		
GCAG-SIM	94.82%		96.04%		98.10%		
GCAT-DIF	91.19%		91.88%		93.51%		

Wang et al., Text Classification with Heterogeneous Information Network Kernels. AAAI'16.

Results on Semi-supervised Learning (IJCAI'17)

- BOW: bag-of-words
- Entity: entities extracted by semantic parsing
- NB: naïve Bayes
- SVM: support vector machines
- LP: label propagation
 - LP+Meta-graph: co-training [Wan et al., SDM'15]
 - KnowSim: unsupervised ensemble of meta-paths [Wang et al., ICDM'16]

	Ν	1B	S	٧M		LP		Semi	IIN		Ensemble	
Settings Datasets	BOW	BOW+ Entity	BOW	BOW+ Entity	BOW+ Entity	Meta- path	Know- Sim	DWD Graph	Full- Graph	SVM	EM	Co- train
20NG-SIM 20NG-DIF GCAT-SIM GCAT-DIF	$39.02 \\ 43.74 \\ 71.24 \\ 56.60$	$\begin{array}{c} 48.46 \\ 57.24 \\ 71.24 \\ 56.66 \end{array}$	37.34 39.57 73.92 63.52	$\begin{array}{c} 49.67 \\ 55.71 \\ 74.64 \\ 63.91 \end{array}$	54.53 72.40 70.97 61.95	57.75 76.13 71.05 61.37	$56.87 \\ 77.14 \\ 60.59 \\ 51.64$	$\begin{array}{c c} 48.94 \\ 61.31 \\ 79.14 \\ 64.32 \end{array}$	58.46 77.69 81.02 65.05	52.04 71.36 68.79 57.48	54.44 73.08 69.96 58.19	60.99 80.08 80.97 66.95

• We show our results of five labeled training data for each class. All the numbers are averaged accuracy (in percentage %) over 50 random trials.

Jiang et al., Semi-supervised Learning over Heterogeneous Information Networks by Ensemble of Meta-graph Guided Random Walks. IJCAI'17. 26

Representative Applications

• Text Classification

- Unsupervised fusion for many meta-paths

- Recommender System
 - Feature based instead of similarity based fusion for heterogeneous linking
- Malware Detection
 - Supervised fusion using multi-kernel learning

RS is Everywhere Nowadays

Typical Recommendation Problem

Matrix Factorization

- Matrix Factorization is one of the most popular methods for collaborative filtering
 - Given matrix $R \in \mathbb{R}^{n*m}$
 - each row represents an user i
 - While each column an item j

$$MAE = \frac{\sum_{(i,j)\in\mathcal{R}_{test}} |R_{ij} - \hat{R}_{ij}|}{|\mathcal{R}_{test}|},$$
$$RMSE = \sqrt{\frac{\sum_{(i,j)\in\mathcal{R}_{test}} (R_{ij} - \hat{R}_{ij})^2}{|\mathcal{R}_{test}|}}.$$

Other Existing Approaches

- Collaborative Filtering: Recommend items based only on the users past behavior
 - User based: find similar users for what they liked
 - Item based: find similar items which I have liked
- Content based: extract features for items
- Personalized learning to rank
- Demographic: user profiling
- Social recommendation: trust based
- Hybrid

It's a Heterogeneous Information Network!

A Typical Network Schema of Yelp

- R: reviews;
- U: users;
- B: business;
- Cat: category of item;
- Ci: city

Meta-graphs Extracted From Yelp

Compute a Similarity based on Meta-graph

Compute
$$\mathbf{C}_{P_1}$$
: $\mathbf{C}_{P_1} = \mathbf{W}_{RB} \cdot \mathbf{W}_{RB}^{\top}$;
Compute \mathbf{C}_{P_2} : $\mathbf{C}_{P_2} = \mathbf{W}_{RA} \cdot \mathbf{W}_{RA}^{\top}$;
Compute \mathbf{C}_{S_r} : $\mathbf{C}_{S_r} = \mathbf{C}_{P_1} \odot \mathbf{C}_{P_2}$;
Compute \mathbf{C}_{M_9} $\mathbf{C}_{M_9} = \mathbf{W}_{UR} \cdot \mathbf{C}_{S_r} \cdot \mathbf{W}_{UR}^{\top} \cdot \mathbf{W}_{UB}$;

How to Assemble Different Meta-graphs?

- Existing works still work on similarities
- HeteRec [Yu et al., WSDM'14]:
 - □ Factorize each meta-path
 - Ensemble using the recovered matrices
 - □Item-based CF

SemRec [Shi et al., CIKM'15]:

Ensemble of original similarity matrices based on different meta-paths

User based CF

How to Assemble Different Meta-graphs?

- Factorization Machine [Rendle ICDM'10, TIST'12]
 - One of the state-of-art recommendation model recent years.

Feature vector x													Т	arg	et y								
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0]		5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	У ⁽⁶⁾
	A	B Us	C ser		Т	NH	SW <u>Movie</u>	ST ;		TI Otl	NH her M	SW lovie	ST s rate	ed	Time	ΓL	NH _ast I	SW Novie	ST e rate	 ed			

Matrix Factorization (MF)+Factorization Machine (FM)

• For each meta-graph, do MF:

$$\min_{\mathbf{U},\mathbf{B}} \frac{1}{2} ||P_{\Omega}(\mathbf{U}\mathbf{B}^{\top} - \mathbf{R})||_{2}^{2} + \frac{\lambda_{u}}{2} ||\mathbf{U}||_{2}^{2} + \frac{\lambda_{b}}{2} ||\mathbf{B}||_{2}^{2}$$

- Given all MF latent features:
 - L meta-graphs
 - F dimension of MF

$$\mathbf{x}^{n} = \underbrace{\mathbf{u}_{i}^{(1)}, ..., \mathbf{u}_{i}^{(l)}, ..., \mathbf{u}_{i}^{(L)}}_{L \times F} \underbrace{\mathbf{b}_{j}^{(1)}, ..., \mathbf{b}_{j}^{(l)}, ..., \mathbf{b}_{j}^{(L)}}_{L \times F}$$

$$\hat{y}^n(\mathbf{w}, \mathbf{V}) = w_0 + \sum_{i=1}^d w_i x_i^n + \sum_{i=1}^d \sum_{j=i+1}^d \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i^n x_j^n,$$

Automatic Meta-graph Selection

• The original cost function of FM

$$\min_{\mathbf{w},\mathbf{V}} \sum_{n=1}^{N} (y^n - \hat{y}^n(\mathbf{w},\mathbf{V}))^2$$
$$\hat{y}^n(\mathbf{w},\mathbf{V}) = w_0 + \sum_{i=1}^{d} w_i x_i^n + \sum_{i=1}^{d} \sum_{j=i+1}^{d} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i^n x_j^n.$$

• + group lasso:

$$\Phi_{\mathbf{w}}(\mathbf{w}) = \sum_{l=1}^{2L} ||\mathbf{w}_l||_2$$

$$\Phi_{\mathbf{V}}(\mathbf{V}) = \sum_{l=1}^{2L} ||\mathbf{V}_l||_2$$

L meta-graphs

- In side meta-graph: L2 norm
- Between meta-graphs: L1 norm

nonmonotonous accelerated proximal gradient (nmAPG) algorithm [Li and Lin, NIPS'15]

Comparison Results

Traditional Approaches			Amazon-200k	Yelp-200k	CIKM-Yelp	CIKM-Douban
	\sim	RegSVD	2.9656 (+60.0%)	2.5141 (+49.9%)	1.5323 (+27.7%)	0.7673 (+9.0%)
		FMR	1.3462 (+11.9%)	1.7637 (+28.6%)	1.4342 (+22.8%)	0.7524 (+7.2%)
		HeteRec	2.5368 (+53.2%)	2.3475 (+47.0%)	1.4891 (+25.6%)	0.7671 (+9.0%)
HIN Based		SemRec	- -	1.4603 (+13.8%)	1.1559 (+4.2%)	0.7216 (+3.2%)
Approaches]	FMG	1.1864	1.2588	1.1074	0.6985

- HeteRec [Yu et al., WSDM'14]:
 - Factorize each meta-path
 - Ensemble using the recovered matrices
 - Item-based CF

- SemRec [Shi et al., CIKM'15]:
 - Ensemble of original similarity matrices based on different metapaths
 - User based CF

	Amazon-200k	Yelp-200k	CIKM-Yelp	CIKM-Douban
Density	0.015%	0.024%	0.086%	0.630%

Selected Meta-graphs for Yelp

		User	-Part	Item-Part				
		W	V	W	V			
Valn	Important	$M_1 - M_4, M_6, M_8$	$M_1 - M_3, M_5, M_8$	$M_1 - M_5, M_8, M_9$	M_3, M_8			
reip	Useless	M_5, M_7, M_9	M_4, M_6, M_7, M_9	M_{6}, M_{7}	$M_1, M_2, M_4 - M_7, M_9$			

Representative Applications

• Text Classification

- Unsupervised fusion for many meta-paths

- Recommender System
 - Feature based instead of similarity based fusion for heterogeneous linking
 - Malware Detection
 - Supervised fusion using multi-kernel learning

Malicious Software

Download unwanted app

Heterogeneous Information Network Representation

Multi-kernel Learning

p-norm multi-kernel learning framework

Performance of Different Meta-paths

PID	Method	F1	β	ACC	TP	FP	TN	FN
1	AA^T	0.9529	0.1069	94.40%	283	19	189	19
2	ABA^T	0.9581	0.0900	95.00%	286	9	189	16
3	\mathbf{APA}^T	0.9495	0.0858	94.20%	273	0	198	29
4	AIA^T	0.9183	0.0623	90.40%	270	16	182	32
5	$\mathbf{A}\mathbf{B}\mathbf{P}\mathbf{B}^T\mathbf{A}^T$	0.9479	0.0670	94.00%	273	1	1 97	29
6	$\mathbf{A}\mathbf{P}\mathbf{B}\mathbf{P}^T\mathbf{A}^T$	0.9502	0.0565	94.20%	277	4	194	25
7	$\mathbf{A}\mathbf{B}\mathbf{I}\mathbf{B}^T\mathbf{A}^T$	0.8683	0.0639	84.60%	25 4	29	169	48
8	$\mathbf{AIBI}^T \mathbf{A}^T$	0.8722	0.0639	85.00%	256	29	169	46
9	$\mathbf{A}\mathbf{P}\mathbf{I}\mathbf{P}^T\mathbf{A}^T$	0.8373	0.0445	81.20%	242	34	164	60
10	$\mathbf{AIPI}^T \mathbf{A}^T$	0.8761	0.0572	86.60%	237	2	196	65
11	$\mathbf{A}\mathbf{B}\mathbf{P}\mathbf{I}\mathbf{P}^T\mathbf{B}^T\mathbf{A}^T$	0.9184	0.0616	90.80%	259	3	195	43
12	$\mathbf{A}\mathbf{P}\mathbf{B}\mathbf{I}\mathbf{B}^T\mathbf{P}^T\mathbf{A}^T$	0.8597	0.0617	84.60%	236	11	187	66
13	$\mathbf{A}\mathbf{B}\mathbf{I}\mathbf{P}\mathbf{I}^T\mathbf{B}^T\mathbf{A}^T$	0.9284	0.0426	91.80%	266	5	193	36
14	$\mathbf{AIBPB}^T \mathbf{I}^T \mathbf{A}^T$	0.8237	0.0426	82.60%	218	3	195	84
15	$\mathbf{AIPBP}^T \mathbf{I}^T \mathbf{A}^T$	0.8597	0.0469	81.60%	215	5	193	87
16	$\mathbf{A}\mathbf{P}\mathbf{I}\mathbf{B}\mathbf{I}^T\mathbf{P}^T\mathbf{A}^T$	0.8597	0.0458	84.60%	236	11	187	66
17	Combined-kernel (5)	0.9214		91.20%	258	0	198	44
18	Combined-kernel (16)	0.9740		96.80%	300	14	184	2
19	Multi-kernel (5)	0.9834		98.00%	297	5	193	5
20	Multi-kernel (16)	0.9884		<u>98.60%</u>	299	4	194	3

Conclusion

Heterogeneous information networks as explicit semantic analysis

We worked on how to fuse different kinds of information

Many interesting ideas and results and could be applied in the context of DL

Thank You! 🙂