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Knowledge Graph

• In 2012, Google released its project “Google 
Knowledge Graph”
• A graph-based knowledge representation 

connecting real-world entities to support search
• Landmarks, celebrities, cities, sports teams, buildings, 

geographical features, movies, celestial objects, works 
of art and more

• Get information instantly relevant to a query

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

• A knowledge graph has many names in the history
• Semantic networks, knowledge base, ontology, …
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UIUC COVID-19 Literature Knowledge Graph

• http://blender.cs.illinois.edu/covid19/

• Extract entities, relations and events 
from text
• 50,752 Gene nodes

• 10,781 Disease nodes

• 5,738 Chemical nodes

• 535 Organism nodes

• 133 relation types 

• 13 Event types

• Knowledge extraction from images, and 
do cross-media fusion and inference 
with entities and events

Q. Wang et al., COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation. Arxiv, 2020
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Berkeley Lab COVID-19 Knowledge Graph

https://federallabs.org/news/berkeley-lab-creates-knowledge-graph-to-make-covid-19-drug-predictions
Image from: https://github.com/Knowledge-Graph-Hub/kg-covid-19/wiki

32,000 drugs
21,000 human
272 viral proteins plus 
roughly the same number 
of genes
more than 50,000 
scientific studies and 
clinical trials.
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UT Austin COVID-19 Knowledge Graph
• 53,523 Drugs, 12,077 Diseases, 15,519 Species, 18,678 Genes, Gene 

mutations extracted from CORD-19 dataset

Chen, C., Ebeid, I.A., Bu, Y., & Ding, Y. (2020). Coronavirus knowledge graph: A case study. KDD Workshop on Knowledge Graph, 2020.
https://www.semanticscholar.org/cord19

remdesivir related 
diseases

remdesivir related 
drugs
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Knowledge Sharing
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Existing Approaches

• Federated database systems
• Support unified query language over heterogeneous databases without doing 

actual data integration

• Do not help improve individual KG’s quality or service with private data 
preserved

• Learning based methods: aligned knowledge base embedding
• Powerful for knowledge representation, reasoning, and many downstream 

applications

• However, revealing vector representations to other parties can also leak 
private information
• Reverse engineering individuals’ properties and identities
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Knowledge Sharing

• Each party has its private part of data, which cannot be disclosed to 
others
• Patient information
• Drag chemical compound 
• Personal gene expressions

• Even if privacy is not a concern, they would not expose their 
knowledge to other companies except they can also benefit from 
others
• Existing drug repurposing failure cases

• Integrating knowledge itself is not trivial or easy
• A lot of ambiguities
• For example, amyotrophic lateral sclerosis, motor neurone disease, and Lou 

Gehrig’s Disease refer to the same disease 10



Federated Machine Learning

• Horizontal federated learning
• Node embeddings should be aligned

• Very unlikely

• Vertical federated learning
• Samples (nodes) should be partially aligned

• Possible but sometimes unlikely

• Aligned nodes are in different embedding space 
but features are not complementary

• Federated transfer learning
• Nodes and their embeddings are aligned

• Possible

• Nodes and their embeddings are not aligned
• Likely

Figure credit: WeBank Tutorial, Chapter 1 - Introduction to Federated Learning. https://www.fedai.org/
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Our Approach: Federated Knowledge Graphs 
Embedding (FKGE)

• Asynchronous and decentralized
• Pairs up KGs from different domains

• Scalable and compatible with many base embedding models
• A meta-algorithm for existing KG embedding methods through a handshake 

protocol 

• FKGE is privacy-preserving and guarantees no raw data leakage
• No raw data transmission between collaborators, and transmitted generated 

embeddings are differentially private
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• Typical translational embedding
• Nodes are treated as the same type

• Relations are distinguished in triplets
(head, relation, tail)

Background: Knowledge Graph Embedding

Figure Credit: Fei Wang
Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, Oksana Yakhnenko: Translating Embeddings for Modeling Multi-relational Data. NIPS 2013

Score 𝒉𝑖 + 𝒓𝑘 − 𝒕𝑗 = 𝒉𝑖 + 𝒓𝑘 − 𝒕𝑗

Head entity ID 𝑖
e.g., Crohn’s disease

Tail entity ID 𝑗
e.g., Diarrhea 

Relation type 𝑘
e.g., SymptomOfDisease

Score 𝒉𝑖 + 𝒓𝑘 − 𝒕𝑗 >Score 𝒉𝑖 + 𝒓𝑘 − 𝒕𝑙 + 𝛿
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• Existing knowledge graph embedding 
performs well on individual KG, 
• But may not be applied directly on 

multiple KGs

• They do have incentives to share KGs 
if they can:
• Benefit from sharing

• Improve their own services without 
revealing sensitive records

KG Embedding from Different Owners
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The FKGE Framework
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The FKGE Framework

Knowledge graphs 𝑔𝑖 = {E𝑖, R𝑖, T𝑖} 
for entities, relations, and triples.

Every element in KG locates in different databases 
and cannot access other KGs’ databases
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The FKGE Framework

A subset of entities E𝑖 ∩ E𝑗 and relations R𝑖 ∩ R𝑗 in 
each pair of KGs is known to be the same.
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The FKGE Framework

Each KG owner trains its own embeddings 
of entities and relations locally.
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The FKGE Framework

Based on the trained embeddings, FKGE aggregates the 
embeddings of both aligned entities and relations from paired KGs, 
and then updates all embeddings in a federated manner. 19



The FKGE Framework

FKGE includes a secure pipeline that can refine the embeddings 
of E𝑖 ∩ E𝑗 and R𝑖 ∩ R𝑗 and further improve embeddings.
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The FKGE Framework

FKGE further improve embeddings of 
E𝑖 ∪ R𝑖 and E𝑗 ∪ R𝑗 individually.
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The FKGE Framework: A Running Example

During first federation, they form 3 pairs 
of KGs: (𝑔1, 𝑔3), (𝑔2, 𝑔1), and (𝑔3, 𝑔2).

22



The FKGE Framework: A Running Example

After the first federation, 𝑔1 and 𝑔2 gain 
improvement for overall embeddings.
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The FKGE Framework: A Running Example

𝑔3’s training takes longer time and fails to improve its 
embedding; therefore, 𝑔3 backtracks to initial embedding.
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The FKGE Framework: A Running Example

During second federation, 𝑔1 and 𝑔2 pair up as (𝑔2, 
𝑔1) and (𝑔1, 𝑔2) and only 𝑔1 gains improvements. 
𝑔2 backtracks to previous embedding.

Since 𝑔3 is still on the training process, it 
will not join second federation and will 
go to sleep state if no available KG exists.25



The FKGE Framework: A Running Example

For third federation, 𝑔1 finishes its training and broadcasts 𝑔3

to wake up. Then they form (𝑔1 , 𝑔3), (𝑔1 , 𝑔2) and (𝑔4, 𝑔1) pairs 
for federation based on each queue owned by each KG. 26



The FKGE Framework

Remaining problem: How to perform 
secure alignment of embeddings?
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Background: Differential Privacy (DP) 

A lightweight privacy preserving solution

Slides credit: WeBank Tutorial, Chapter 2: Privacy-Preserving Techniques. https://www.fedai.org/
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Background: Differential Privacy (DP) 
• Definition: Differential Privacy (DP) [Dwork 2008] 

• A randomized mechanism M is ϵ-differentially private, if for all output t of M, and 
for two databases D1and D2 which differ by at most one element, we have 

• Pr 𝑀 𝐷1 = 𝑡 = 𝑒𝜖Pr 𝑀 𝐷2 = 𝑡 .

Cynthia Dwork, 2008. Differential privacy: a survey of results. Theory and Applications of Models of Computation. 

Slides credit: WeBank Tutorial, Chapter 2: Privacy-Preserving Techniques. https://www.fedai.org/

Pr 𝑀 𝐷1

Pr 𝑀 𝐷2

difference is small

Intuition: changes in the distribution are too small to be perceived with variations on a single element. 
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Background: DP in Machine Learning

• WISH: parameters of ML models to encode general patterns 
• ‘‘patients who smoke are more likely to have heart disease’’

• Rather than facts about specific training examples 
• “Jane Smith has heart disease”

• REALITY: ML algorithms do not learn to ignore specifics by default
• So here the randomized mechanism M in machine learning is a learning 

algorithm that can satisfy the differential privacy

• Differential privacy is in fact well aligned with the goals of machine learning
• Reduce overfitting
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Background: Private Aggregation of Teacher 
Ensembles (PATE)
• A framework of differential privacy requires that 

• the probability change (the privacy budget) of learning any particular set of 
parameters stays roughly the same 

• if we change a single training example in the training set
• add a training example

• remove a training example

• change the values within one training example

• If a single patient (Jane Smith) does not affect the outcome of 
learning, then that patient’s records cannot be memorized and her 
privacy is respected

• Smaller privacy budgets correspond to stronger privacy guarantees

31Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, Kunal Talwar. Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data. 
ICLR 2027

Pr 𝑀 𝐷1

Pr 𝑀 𝐷2

difference is small



Background: Private Aggregation of Teacher 
Ensembles (PATE)

• Assume that Jane Smith contributed to 
the training data of one of models only
• If that model predicts that a patient like 

Jane has cancer 

• whereas the other model predicts the 
contrary, 

• this reveals private information about Jane.

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html
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Background: PATE

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

Partitioning the private dataset 
in subsets of data (no overlap)
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Background: PATE

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

ML model, called a teacher, on 
each of these partitions
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Background: PATE

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

Add noise while aggregating the 
predictions to form a single 
common prediction
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Background: PATE

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

Noisymax mechanism

36
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Background: PATE

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

If most of the teachers agreed on the same 
class, adding noise to the vote counts will 
not change the fact that this class received 
the most votes
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Background: PATE

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

When two teachers voting for the label ‘‘Cancer’’ while the 
two teachers vote for ‘‘Healthy”:
The random noise prevents the outcome from reflecting any 
individual teachers to protect privacy: the noisy aggregation’s 
outcome is equally likely to be ‘‘Healthy’’ or ‘‘Cancer’’.
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Background: Student Model in PATE

• Each prediction made by the aggregation mechanism increases the 
total privacy budget
• The total privacy budget eventually becomes too large when many labels are 

predicted

• We can’t publicly publish the ensemble of teacher models

• One additional step in PATE: creating a student model
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Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

Background: PATE
• The student is trained by transferring knowledge 

acquired by the teacher ensemble in a privacy-
preserving way.

• The student has access to a relatively large set of 
unlabeled inputs and it must learn with as little 
supervision from the teachers as possible.
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The Privacy-Preserving Adversarial Model

Privacy-Preserving Adversarial Translation (PPAT) network
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PPAT Network PPAT network exploits GAN structure to generate 
differentially private synthetic embedding with high utility
• We replace the original GAN discriminator with multiple 

teacher discriminators and 
• One student discriminator to achieve differential privacy
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PPAT Network
The generator 𝐺 is a translational mapping matrix:
𝜃𝐺 = 𝑊
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PPAT Network The objective of the generator 𝐺 is to generate 
adversarial samples by making 𝐺(𝑋)=WX and 𝑌 similar so 
that the student discriminator 𝑆 cannot distinguish them
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PPAT Network The learning objective of teacher discriminators is the same as the 
original discriminator that distinguishes between fake samples 
𝐺(𝑋) and real samples 𝑌,  trained on disjointly partitioned data
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PPAT Network The discriminator is parameterized
by 𝜃𝑆, which takes embeddings of both 𝐺(𝑋) and 𝑌
as an input under the CSLS metric used by MUSE

Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.2018. Word Translation Without Parallel Data. Proceedings of ICLR.
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PPAT Network The learning objective of the student discriminator 𝑆
is to classify generated samples given aggregated 
PATE noisy labels
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PPAT Network For student discriminator 𝑆, no data is publicly 
available. The training is solely based the generated 
samples: uniformly generated using Xavier initialization
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By the Post-Processing Theorem, the student discriminator 𝑆 is differentially private 
since it is trained by differentially private labels.
The generator 𝐺 is differentially private since 𝐺 is trained by student discriminator 𝑆.

C. Dwork and A. Roth. 2014. The Algorithmic Foundations of Differential Privacy. In The Algorithmic Foundations of Differential Privacy. 19–20.

PPAT Network
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The host calculates the generator’s and all discriminators’ loss functions locally; 
Gradients of generator loss are sent back to the generator to update its parameters.

C. Dwork and A. Roth. 2014. The Algorithmic Foundations of Differential Privacy. In The Algorithmic Foundations of Differential Privacy. 19–20.

PPAT Network
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Privacy Budget
• Smaller privacy budgets correspond to stronger privacy guarantees

• Similar to PATE and PATE-GAN, In practice, the privacy budget primarily depends 
on the how much noise is added and consensus between teachers

Consensus between teachersHow much noise is added

Higher consensus→smaller privacy budgetslarger amounts of noise→smaller privacy budget
(smaller lambda: larger scale parameter
𝜎2 = 2𝑏2 where 𝑏 = 1/𝜆)

l: the new parameter introduced by 
moments accountant method for 
iterating DP bound based on 𝛼

51



Experiments

• 11 KGs at different 
scales from the Linked 
Data community

• In total, there are 
more than 1-million 
nodes and 5-million 
edges

• Train:dev:test=90:5:5
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Experiments • Number of AEs (Aligned Entities): 
Ranging from tens to >100K 
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Privacy Setting

• 𝜆 = 0.05

• 𝛿 = 10E−5

• 𝛼 (𝑙 ) = 0.29

• 𝛿 = 1/11.5

• 𝑙 = 9

• 𝜖 = 2.73

According to PATE, (𝜖, 𝛿 )=(2, 10E−5) 
satisfies normal privacy budget while 
(𝜖, 𝛿 )=(8, 10E−5) is a relatively looser 
bound.

54



Performance on Triple Classification

• Comparison based on TransE

• All KGs are improved ranging from 1.47% to 16.36%
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Performance on Triple Classification

• Comparison based on different embedding methods:
• Dbpedia (TransR), Geonames (TransD), Yago (TransE), Geospecies (TransR), Poképédia

(TransE), Sandrart (TransD), Hellenic (TransD), Lexvo (TransD), Tharawat (TransD), 
Whisky (TransH), and World lift (TransR) 

• All KGs are improved ranging from 0.86% to 11.82%
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Performance on Triple Classification

• TransE trained based on a unified KG:
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Performance on Link Prediction

• We observe similar improvements on same settings
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Effects of Aligned Entities and Relations

• Geonames KG is split into two 
subsets
• FKGE-ent: only align entities

• FKGE-rel: only align relations

• FKGE: align both

• Evaluated on triple classification
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Noise Scales

• Variance of Laplace distribution: 𝜎2 = 2𝑏2 where 𝑏 = 1/𝜆
• Larger 𝜆 means smaller variance (add less noise to teachers) and larger privacy budget

• All accuracies are similar with no difference greater than 0.6% 

• PPAT network tends to be robust by introducing acceptable randomness
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Execution Time

• KGEmb-Update usually costs 
much more time than PPAT 
network

• The cost for PPAT training 
increases roughly linearly from 
350s to 1,000s as number of 
aligned entities increases

• With batch size = 32, 𝑑 = 100, and 
64 bit for double precision, total 
communication cost for a batch 
training of the PPAT network is at 
most 0.845 Mb 61



Conclusions

• We proposed a new differentially private knowledge graph 
embedding framework FKGE:
• Asynchronous and decentralized

• Scalable and compatible with many base embedding models

• Privacy-preserving and guaranteeing no raw data leakage

• Code is available at: https://github.com/HKUST-KnowComp/FKGE

Thank You! ☺
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