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Knowledge Graph

* A knowledge graph has many names in the history
* Semantic networks, knowledge base, ontology, ...

* In 2012, Google released its project “Google
Knowledge Graph”
* A graph-based knowledge representation

connecting real-world entities to support search

* Landmarks, celebrities, cities, sports teams, buildings,
geographical features, movies, celestial objects, works
of art and more

* Get information instantly relevant to a query

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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COVID-19
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COVID-19 affects different people in different ways. Most infected people will develop mild to

moderate illness and recover without hospitalization.

Most commaon symptoms:
e fover

« dry cough

e tiredness

Less common symptoms:

« aches and pains

+ sore throat

+ diarhoea

= conjunctivitis

+ headache

+ loss of taste or smell

= arash on skin, or discolouration of fingers or toes
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Cases overview

& Worldwide

Deaths

792K

Recovered

14.5M

Total cases

22.6M

= More locations and statistics

+' shows new cases reported yesterday - Updaied less than 4 hours ago -

Source: Wikipedia - About this data

Coronavirus disease (COVID-19) is an infectious disease caused by
a newly discovered coronavirus.

Most people who fall sick with COVID-19 will experience mild to




JIUC COVID-19 Literature Knowledge Graph
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Berkeley Lab COVID-19 Knowledge Graph
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UT Austin COVID-19 Knowledge Graph

* 53,523 Drugs, 12,077 Diseases, 15,519 Species, 18,678 Genes, Gene
mutations extracted from CORD-19 dataset
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Existing Approaches

* Federated database systems

* Support unified query language over heterogeneous databases without doing
actual data integration

* Do not help improve individual KG’s quality or service with private data
preserved

* Learning based methods: alighed knowledge base embedding

* Powerful for knowledge representation, reasoning, and many downstream
applications

* However, revealing vector representations to other parties can also leak
private information

e Reverse engineering individuals’ properties and identities



Knowledge Sharing

e Each party has its private part of data, which cannot be disclosed to
others
* Patient information
* Drag chemical compound
* Personal gene expressions

* Even if privacy is not a concern, they would not expose their
knowledge to other companies except they can also benefit from
others

e Existing drug repurposing failure cases

* Integrating knowledge itself is not trivial or easy
* A lot of ambiguities

* For example, amyotrophic lateral sclerosis, motor neurone disease, and Lou
Gehrig’s Disease refer to the same disease



Federated Machine Learning

Data from A

Samples
Horizontal
Federated Learning

Data from B

* Horizontal federated learning

* Node embeddings should be aligned -
* Very unlikely

—— e e e e e e e e e === =y

* Vertical federated learning o bwtoma
» Samples (nodes) should be partially aligned L -
* Possible but sometimes unlikely ’ ‘ Data from B
* Aligned nodes are in different embedding space
but features are not complementary
* Federated transfer learning | Transor Learing
* Nodes and their embeddings are aligned N -
* Possible 5
* Nodes and their embeddings are not aligned e
e Likely

Features 11
Figure credit: WeBank Tutorial, Chapter 1 - Introduction to Federated Learning. https://www.fedai.org/
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Our Approach: Federated Knowledge Graphs
Embedding (FKGE)

* Asynchronous and decentralized
 Pairs up KGs from different domains

e Scalable and compatible with many base embedding models
* A meta-algorithm for existing KG embedding methods through a handshake
protocol
* FKGE is privacy-preserving and guarantees no raw data leakage

* No raw data transmission between collaborators, and transmitted generated
embeddings are differentially private



Background: Knowledge Graph Embedding

Drug Network

Genomic
Medicine

Drug

Phenotype/
Genotype
Association

Disease Network Gene Network

Figure Credit: Fei Wang

* Typical translational embedding

* Nodes are treated as the same type

* Relations are distinguished in triplets
(head, relation, tail)

Score(hi + 71, — tj) — “hl T Ty — J”
Tail entity ID j
e.g., Diarrhea

Relation type k
e.g., SymptomOfDisease

Score(hi + 71, — tj)>Score(hl- +r,—1)+9

13

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durdn, Jason Weston, Oksana Yakhnenko: Translating Embeddings for Modeling Multi-relational Data. NIPS 2013



KG Embedding from Different Owners

* Existing knowledge graph embedding

performs well on individual KG,

* But may not be applied directly on
multiple KGs

* They do have incentives to share KGs

if they can:
* Benefit from sharing

* Improve their own services without
revealing sensitive records
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The FKGE Framework
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The FKGE Framework
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Knowledge graphs g, = {E;, R;, T;} @ Every element in KG locates in different databases
for entities, relations, and triples. and cannot access other KGs’ databases
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The FKGE Framework
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A subset of entities E; N E; and relations R; N R; in
each pair of KGs is known to be the same.
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The FKGE Framework
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Each KG owner trains its own embeddings
of entities and relations locally.
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Based on the trained embeddings, FKGE aggregates the
embeddings of both aligned entities and relations from paired KGs,
and then updates all embeddings in a federated manner.
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The FKGE Framework
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FKGE includes a secure pipeline that can refine the embeddings
of E; N E; and R; N R; and further improve embeddings.
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E; UR;and E; U R; individually.
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The FKGE Framework: A Running Example
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During first federation, they form 3 pairs
of KGs: (g4, 93), (92, 94), and (g3, g,).
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The FKGE Framework: A Running Example
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After the first federation, g, and g, gain
improvement for overall embeddings.
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The FKGE Framework: A Running Example
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gs's training takes longer time and fails to improve its
embedding; therefore, g5 backtracks to initial embedding.
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The FKGE Framework: A Running Example
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During second federation, g, and g, pair up as (g,, Since g, is still on the training process, it
g,) and (g4, g,) and only g, gains improvements. will not join second federation and will
g, backtracks to previous embedding. go to sleep state if no available KG exists.



The FKGE Framework: A Running Example

LY
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For third federation, g, finishes its training and broadcasts g,
to wake up. Then they form (g,, gs), (91, g,) and (g,, g,) pairs
for federation based on each queue owned by each KG. 2%
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Remaining problem: How to perform
secure alignment of embeddings?

More accurate representation
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Background: Differential Privacy (DP)

A lightweight privacy preserving solution

Database

0 N e nd - - - i i—
5 4 3 2 = ° T .05 & Q -8

Slides credit: WeBank Tutorial, Chapter 2: Privacy-Preserving Techniques. https://www.fedai.org/
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Background: Differential Privacy (DP)

 Definition: Differential Privacy (DP) [Dwork 2008]

* Arandomized mechanism M is e-differentially private, if for all output t of M, and
for two databases , we have

+ Pr(M(D,) = t) = e€Pr(M(D,) = t).

t Pr(M(Dl))\

’ Pr(M(D,))

difference is small

Intuition: changes in the distribution are too small to be perceived with variations on a single element.

Cynthia Dwork, 2008. Differential privacy: a survey of results. Theory and Applications of Models of Computation.
. . . . . . L] 29
Slides credit: WeBank Tutorial, Chapter 2: Privacy-Preserving Techniques. https://www.fedai.org/
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Background: DP in Machine Learning

* WISH: parameters of ML models to encode general patterns
* “patients who smoke are more likely to have heart disease”

e Rather than facts about specific training examples
e “Jane Smith has heart disease”

 REALITY: ML algorithms do not learn to ignore specifics by default

* So here the randomized mechanism M in machine learning is a learning
algorithm that can satisfy the differential privacy

 Differential privacy is in fact well alighed with the goals of machine learning
e Reduce overfitting

30



Background: Private Aggregation of Teacher
Ensembles (PATE)

* A framework of differential privacy requires that

* the probability change (the privacy budget) of learning any particular set of
parameters stays roughly the same
* if we change a single training example in the training set
* add a training example
* remove a training example

Pr(M(Dl))\

e change the values within one training example

* If a single patient (Jane Smith) does not affect the outcome of
learning, then that patient’s records cannot be memorized and her
privacy is respected

* Smaller privacy budgets correspond to stronger privacy guarantees

Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, lan Goodfellow, Kunal Talwar. Semi-supervised Knowledge Transfer for Deep Learning from Private Trainiig Data.
ICLR 2027



Background: Private Aggregation of Teacher
Ensembles (PATE) o

* Assume that Jane Smith contributed to ,-—'w
the training data of one of models only -
* |f that model predicts that a patient like
Jane has cancer
* whereas the other model predicts the -l
contrary,
* this reveals private information about Jane. -t:m

Private data Partitions Teachers

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html .




Background: PATE

Partitioning the private dataset
in subsets of data (no overlap)

Jane Smith does
not have cancer \‘-

Ithy
Py Add
Gaussian
ancer l noise to Class with
+ each vote most noisy
count votes
d > —> Healthy
- 1 E\ e
Healthy = 8 = 8
Record %" .f_):“ E :“5
similar to
Jane’s
Healthy
(. / Jo )
v v %_J H_J ;Y_J
Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html
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Background: PATE

ML model, called a teacher, on
each of these partitions

Jane Smith does

not have cancer \‘-

Ithy
Py Add
Gaussian
ancer l noise to Class with
+ each vote most noisy
count votes
d > — Healthy
Health =g £ 3
ealthy = = 5
Record %" .f_):“ E c_c“:’r
similar to
Jane’s
Healthy
(. / Jo )
v v %_J H_J ;Y_J
Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html
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Background: PATE

Add noise while aggregating the
predictions to form a single
common prediction

Jane Smith does

not have cancer \-

Healthy
Py Add
Gaussian
— Cancer l noise to Class with
+ each vote most noisy
count votes
Fy v d > — Healthy
- 1 E\ e
Healthy = 38 = 8
Record %" .f_):“ E :“5
similar to
Jane’s
Healthy
(. / Jo )
v v %_J H_J ;Y_J
Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html
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. Noisymax mechanism
Background: PATE PATE; (x) :ayg{glla}x(nj(x)ﬂfj)
Jed0,

Vo, V1 are i.1.d. Lap(%) (or Gaussian noise)

Jane Smith does

not have cancer \‘-

Healthy
nj(x)=[{T; : Ti(x) = j}| forj=0,1
2122 Add
Gaussian
— Cancer l noise to Class with
+ each vote most noisy
count votes
Fy v d > — Healthy
== . _E" —
Z @ = @
Record Healthy R ER
similar to t© t°
Jane’s
Healthy
\ ) N\ y J » J ;Y_) ;Y_) ;Y_/
Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html *



Background: PATE

Jane Smith does

not have cancer \-

If most of the teachers agreed on the same
class, adding noise to the vote counts will

not change the fact that this class received
the most votes

212 Add
Gaussian
— Cancer l noise to Class with
+ each vote - most noisy
count votes
e - — Healthy
= [ _? e
Health = 3 = 8
Record Y 5 & ° &
similar to il t©
Jane's
@8 Healthy
\ J N J J
v v %_J H_J H_J
Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html Y




Background: PATE

Jane Smith

has cancer \'-

Ill

When two teachers voting for the label “Cancer’” while the

two teachers vote for “Healthy”:

The random noise prevents the outcome from reflecting any
individual teachers to protect privacy: the noisy aggregation’s
outcome is equally likely to be “Healthy’’ or “Cancer”.

~—* Cancer —

AN
- 1‘\___ Add
N Gaussian
| _ — Cancer — | noise to Class with
R i each vote most Noisy
| L count | votes
f/’ | I - i —* Healthy
— ~+ Healthy—"| | £ 8 < 3
Record e ¢ 8 : 8
similar to f - ° S
Jane's /
Healthy ’
5\ AN A \ J i\ J \ J
Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html
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Background: Student Model in PATE

e Each prediction made by the aggregation mechanism increases the
total privacy budget

* The total privacy budget eventually becomes too large when many labels are
predicted

* We can’t publicly publish the ensemble of teacher models

* One additional step in PATE: creating a student model
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 The student is trained by transferring knowledge

Ba Ckg round: PATE acquired by the teacher ensemble in a privacy-

preserving way.

N  The student has access to a relatively large set of
unlabeled inputs and it must learn with as little
supervision from the teachers as possible.

Jane Smith

S35 Noisy aggregation
L Data labeled ( }
with privacy F————=3 Partly labeled data O/\ O
T = - O< O
> I O/’
£ o
T &
[4}] 1]
Ir O
Student
- Unlabeled data
Unlabeled data Unlabeled

public data

Figure from: https://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html v



The Privacy-Preserving Adversarial Model

Privacy-Preserving Adversarial Translation (PPAT) network
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PPAT network exploits GAN structure to generate
PPAT N etwork differentially private synthetic embedding with high utility
 We replace the original GAN discriminator with multiple
teacher discriminators and
 One student discriminator to achieve differential privacy
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| Parameter v : L
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PPAT Network

The generator G is a translational mapping matrix:

69(; =W
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PPAT Network The objective of the generator G is to generate
adversarial samples by making G(X)=WX and Y similar so
that the student discrimyinator S cannot distinguish them

T e e : l
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PPAT Netwo rk The learning objective of teacher discriminators is the same as the
original discriminator that distipguishes between fake samples
G(X) and real samples Y, trajed on disjointly partitioned data

1 - T;(IG(xm)} 05)) + Z log (Tf(yx| 67))]
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The discriminator is parameterized
PPAT Network by O¢, which takes embeddings of both G(X) and Y

as an input under the CSLS metric used by MUSE

CSLS(Wzs,y:) = 2cos(Was,yt) — rr(Wxs) — rs(yz)

re(Waxs) = % Z | cos(Wzg, yt)
yi ENp (W)
S
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Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.2018. Word Translation Without Parallel Data. Proceedings of ICLR.



PPAT Netwo I’k The learning objective of the student discriminator S
is to classify generated samples given aggregated
PATE noisy labels
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PPAT Netwo I'k For student discriminator S, no data is publicly
available. The training is solely based the generated

samples: uniformly generated using Xavier initialization
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PPAT Network

By the Post-Processing Theorem, the student discriminator S is differentially private
since it is trained by differentially private labels.
The generator ( is differentially private since G is trained by student discriminator S.
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C. Dwork and A. Roth. 2014. The Algorithmic Foundations of Differential Privacy. In The Algorithmic Foundations of Differential Privacy. 19-20.



PPAT Network

The host calculates the
Gradients of generator

generator’s and all discriminators’ loss functions locally;
loss are sent back to the generator to update its parameters.
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C. Dwork and A. Roth. 2014. The Algorithmic Foundations of Differential Privacy. In The Algorithmic Foundations of Differential Privacy. 19-20.



Privacy Budget

* Smaller privacy budgets correspond to stronger privacy guarantees

e Similar to PATE and PATE-GAN, In practice, the privacy budget primarily depends
on the how much noise is added and consensus between teachers

P[M(D) € S] < eP[M(D’) € S|+ 6.

I: the new parameter introduced by 1
moments accountant method for . _ Oc’(l) + 10g( 3)
iterating DP bound based on « € = mlln ]

l

l
a(l) = a(l) + min {2/121(1 + 1), log ((1 —-q) (1 i;;q) +q€2/11)}

s I,
How much noise is added 2+ Alno —nyl—_ Consensus between teachers

1= 4exp(Alng —ni))

larger amounts of noise—>smaller privacy budget
(smaller lambda: larger scale parameter
% = 2b? where b = 1/1) ot

Higher consensus—>smaller privacy budgets



Experiments

e 11 KGs at different
scales from the Linked
Data community

* |In total, there are
more than 1-million
nodes and 5-million
edges

* Train:dev:test=90:5:5

KGs #Relation | #Entity #Triple
Dbpedia 14,085 49,1078 1,373,644
Geonames 6 300,000 1,163,878
Yago 37 286,389 1,824,322
Geospecies 38 41,943 782,120
Pokeépédia 28 238,008 548,883
Sandrart 20 14,765 18,243
Hellenic 4 11,145 33,296
Lexvo 6 9,810 147,211
Tharawat 12 4,693 31,130
Whisky 11 642 1,339
World lift 10 357 1,192
Summation 14,257 1,398,830 | 5,915,596
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Experiments
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According to PATE, (€, 6 )=(2, 10E-5)

Priva CYy Setti ng satisfies normal privacy budget while
(€, 0 )=(8, 10E-5) is a relatively looser
e 1=0.05 bound.
e 4 = 10E-5
e ax(l)=0.29

o a(l) +log(5)
e5=1/11.5 €=mlm l
¢ 1=9 o
c¢=273  a(l)=a(l)+min {2/121(l+ 1),log ((1 -q) (1 - e;q) +q€2/11)}

2+ Alng —nq|

1= dexp(Alng —n1))
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Performance on Triple Classification

e Comparison based on TransE
e All KGs are improved ranging from 1.47% to 16.36%
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Performance on Triple Classification

* Comparison based on different embedding methods:

« Dbpedia (TransR), Geonames (TransD), Yago (TransE), Geospecies (TransR), Poképéedia
(TransE), Sandrart (TransD), Hellenic (TransD), Lexvo (TransD), Tharawat (TransD),

Whisky (TransH), and World lift (TransR)

e All KGs are improved ranging from 0.86% to 11.82%
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Performance on Triple Classification

 TransE trained based on a unified KG:
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Performance on Link Prediction

* We observe similar improvements on same settings

Methods Independent-TransE FKGE Random-Independent-KGE Multi-FKGE
Metric Hit@10 Hit@3 Hit@1 | Hit@10 Hit@3 Hit@1 || Hit@10 Hit@3 Hit@1 | Hit@10 Hit@3 Hit@1
Dbpedia 23.29 12.88 5.12 25.07 14.41 6.37 5.46 2.51 1.10 6.67 3.20 1.24
Geonames 3.82 3.69 1.93 9.65 4.88 2.12 8.45 4.53 1.90 8.85 4.97 2.14
Yago 2.05 0.76 0.25 2.59 0.88 0.29 2.03 0.75 0.24 2.36 0.75 0.24
Geospecies 58.49 45.81 34.01 60.97 46.95 35.03 38.68 26.43 13.12 40.92 28.04 14.38
Pokeépédia 38.14 29.04 19.31 45.58 35.48 24.90 34.22 25.13 16.43 42.12 32.14 22.65
Sandrart 87.39 83.16 67.18 88.65 84.97 72.14 87.71 83.71 68.91 87.99 84.22 69.69
Hellenic 32.18 21.87 18.96 33.00 22.87 19.35 32.21 22.23 18.59 32.82 22.59 19.44
Lexvo 85.67 76.07 58.29 87.35 77.74 62.90 84.21 75.82 58.09 85.72 76.99 59.76
Tharawat 12.48 4.56 1.67 13.45 5.26 2.19 12.30 4.38 1.39 12.55 5.21 1.77
Whisky 28.78 15.15 9.84 35.60 18.93 10.60 28.78 18.93 12.87 30.12 19.45 12.92
World lift 45.76 24.57 7.62 51.69 28.88 11.17 18.64 8.47 1.69 18.85 9.32 2.54
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Effects of Aligned Entities and Relations

 Geonames KG is split into two 0.92 -
90.28%
subsets 0-901 " 89.00% 89.00%
. - 88.00% 88.00%
* FKGE-ent: only align entities
* FKGE-rel: only align relatio R £5.12% .
. o ™ R R b I' it il
* FKGE: align both E ose L g P ) i '””uf.'m T R A uf,Jprp."f«'
< 0.82
. . [ . .80 4 —— TransE:subgeonamesA —— FKGE-rel:subgeonamesA
* Evaluated on trlple ClaSS|f|Cat|On TransE:subgeonamesB —— FKGE-rel:subgeonamesB
0781 FKGE-ent:subgeonamesA FKGE:subgeonamesA
0.76 4 —— FKGE-ent:subgeonamesB  —— FKGE:subgeonamesB
0 50000 100000 150000 200000 250000 300000

Training time(s)
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Noise Scales

* Variance of Laplace distribution: 0% = 2b% where b = 1/
* Larger A means smaller variance (add less noise to teachers) and larger privacy budget

* All accuracies are similar with no difference greater than 0.6%
* PPAT network tends to be robust by introducing acceptable randomness

Noise A No noise 0.05 1 2 5

Dbpedia 63.51%  67.94% 638.29% 68.54% 638.11%
Geonames | 74.29%  74.21% 74.28% 74.34% 74.02%




Execution Time

 KGEmb-Update usually costs

much more time than PPAT 5000

—4=—PPAT network trainin KGEmb-Update
network K P

4000 -

* The cost for PPAT training
increases roughly linearly from
350s to 1,000s as number of
aligned entities increases 2000 1

3000 A1

Time(s

1000 - —— "

* With batch size =32, d = 100, and =T
64 bit for double precision, total - "
0

communication cost for a batch 01 02 03 04 05 06 07 08 09 1.0
training of the PPAT network is at Ratio of aligned entites
most 0.845 Mb



Conclusions

* We proposed a new differentially private knowledge graph
embedding framework FKGE:
* Asynchronous and decentralized
* Scalable and compatible with many base embedding models
* Privacy-preserving and guaranteeing no raw data leakage

e Code is available at: https://github.com/HKUST-KnowComp/FKGE

Thank You! ©
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