An Overview of Commonsense Knowledge Graph Construction and Reasoning at HKUST

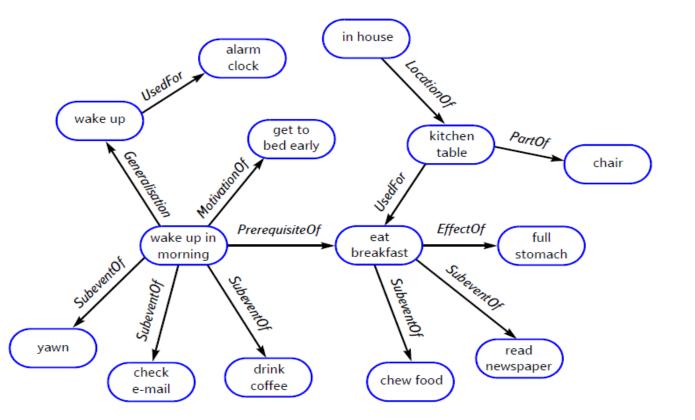
Yangqiu Song Department of CSE, HKUST, Hong Kong 香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

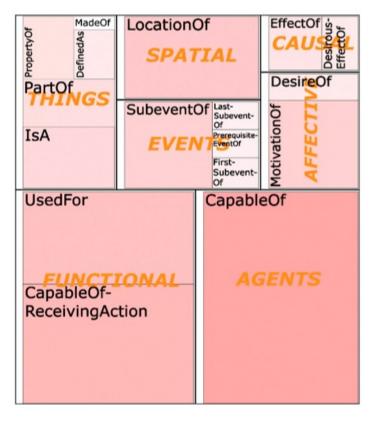
Outline

- Motivation: NLP and commonsense knowledge
- Consideration: selectional preference
- New proposal: large-scale and higher-order selectional preference
- Extensions

ы СМНК 🗢	5:42 PM	ы Смнк 🗢	5:43 PM	ыІ СМНК 🗢	5:44 PM	и смнк 🗢	5:44 PM	ыІ СМНК 🗢	5:45 PM	🕑 🕇 🍯 98%
Hey Siri whe	ere is the ne	e Hey Siri I'm h	ungry	Hey Siri I'm	tired	Hey Siri I'm t	ired	Hey Siri I	want to learn py	rthon
restaurant		Tap to Edit 🕥	0,	Tap to Edit 🔉		Tap to Edit 🔉		Tap to Edit		
Tap to Edit 🔹										
		l can help with	that!			Listen to me, Y			e l understand.	
The closest or				once in a whil	e.	iPhone right no	ow and tak			
門店 on Tong C			is 添好			wait here.				
which average	es 3½ star	on Tong Chun s	Street ir							
inexpensive.		which average			Inte	eracting with hu	uman invo	olves a lot		
		inexpensive.			of c	ommonsense l	knowledg	9		
MAPS					•	Space				
		MAPS			•	Time				
添好	F運點心專門] 添好運點心專門店								
		が対理記心寺」」泊 Dim Sum · 3.1 km			•	Location				
Dim Sum · 5.2 km		★★★★★★ (97) on 開飯	剌·¥		•	State				
★★★★★ (97) on 開	飯喇・¥				•	Causality				
	Directions 14 min drive	Ichiran (Tsim Sha Tsui) Ramen · 10 km ★★★★★ (310) on 開飯喇 · ¥		•	Color					
				•	Shape					
				•	Physical inter	action				
Hospital	E Te				•					
Tongh	Aing Street S	Kam Wah Cafe				Theory of mi				
0		Caribbean · 9.8 km ★★★★★ (1042) on 開創	近画·¥			Human intera	actions			
NG C	添好運點心專門店				•					

Judy Kegl, The boundary between word knowledge and world knowledge, TINLAP3, 1987 Ernie Davis, Building Als with Common Sense, Princeton Chapter of the ACM, May 16, 2019 % 🔲 🕈


Commonsense Knowledge is the Key


- How to define commonsense knowledge? (Liu & Singh, 2004)
 - "While to the average person the term 'commonsense' is regarded as synonymous with 'good judgement', "
 - "in the AI community it is used in a technical sense to refer to the millions of basic facts and understandings possessed by most people."
 - "Such knowledge is typically omitted from social communications", e.g.,
 - If you forget someone's birthday, they may be unhappy with you.

How to collect commonsense knowledge?

• ConceptNet5 (Speer and Havasi, 2012)

• Core is from Open Mind Common Sense (OMCS) (Liu & Singh, 2004)

• Essentially a crowdsourcing based approach + text mining

The Scale

• "A founder of AI, Marvin Minsky, once estimated that '...commonsense is knowing maybe 30 or 60 million things about the world and having them represented so that when something happens, you can make analogies with others'." (Liu & Singh, 2004)

- ConceptNet
 - 2004: 1.6 million relations among 300,000 nodes
 - 2017: 21 million edges over 8 million nodes
 - 1.5 million nodes are English

What contribute to ConceptNet5.5 (21 million edges and over 8 million nodes)?

- Facts acquired from Open Mind Common Sense (OMCS) (Singh 2002) and sister projects in other languages (Anacleto et al. 2006)
- Information extracted from parsing Wiktionary, in multiple languages, with a custom parser ("Wikiparsec")
- "Games with a purpose" designed to collect common knowledge (von Ahn, Kedia, and Blum 2006) (Nakahara and Yamada 2011) (Kuo et al. 2009)
- Open Multilingual WordNet (Bond and Foster 2013), a linked-data representation ofWordNet (Miller et al. 1998) and its parallel projects in multiple languages
- JMDict (Breen 2004), a Japanese-multilingual dictionary
- OpenCyc, a hierarchy of hypernyms provided by Cyc (Lenat and Guha 1989), a system that represents commonsense knowledge in predicate logic
- A subset of DBPedia (Auer et al. 2007), a network of facts extracted from Wikipedia infoboxes

Most of them are entity-centric knowledge, there are only 116,097 edges among 74,989 nodes about events

Most Existing KBs are Entity-centric

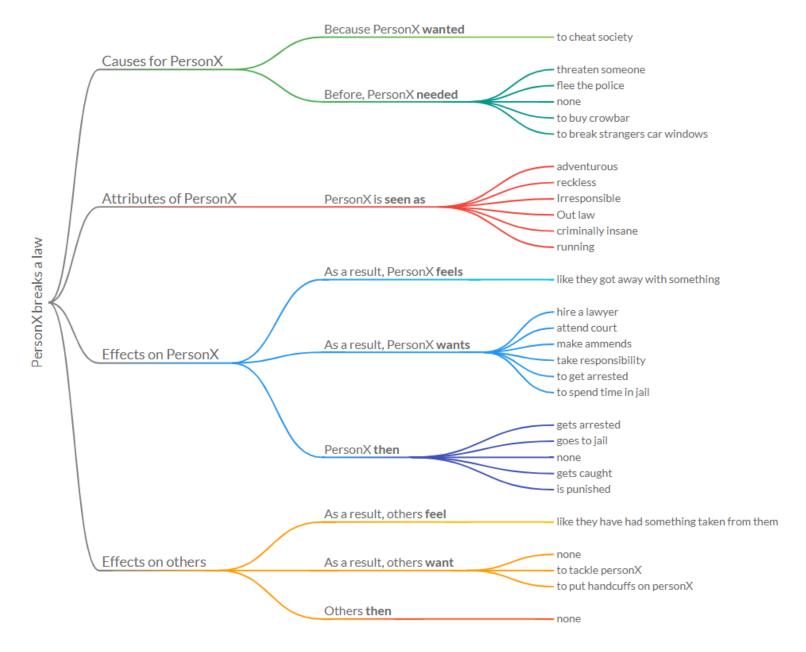
- Many large-scale knowledge graphs about entities and their attributes (property-of) and relations (thousands of different predicates) have been developed
 - Millions of entities and concepts
 - Billions of relationships

Google Knowledge Graph (2012) 570 million entities and 18 billion facts

However,

- Semantic meaning in our language can be described as 'a finite set of mental primitives and a finite set of principles of mental combination (Jackendoff, 1990)'.
- The primitive units of semantic meanings include
 - Thing (or Object, Entity, Concept, Instance, etc.),
 - Property,
 - Place,
 - Path,
 - Amount,
 - Activity,
 - State, Eventuality
 - Event,
 - etc.

How to collect more knowledge about eventualities rather than entities and relations?



Ray Jackendoff. (Ed.). (1990). Semantic Structures. Cambridge, Massachusetts: MIT Press.

ATOMIC

- Crowdsoursing 9 Types of IF-THEN relations
- All personal entity information has been removed to reduce ambiguity

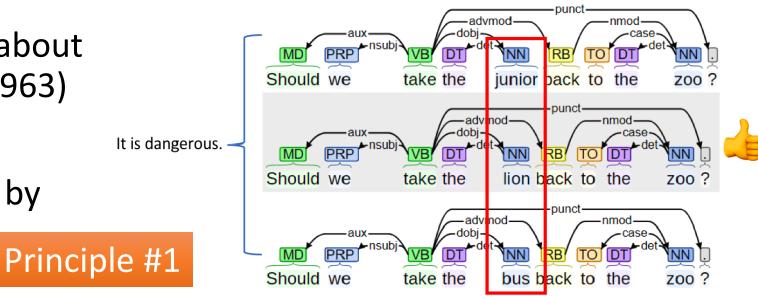
• Arbitrary texts

Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi: ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI, 2019.

KnowlyWood

- Perform information extraction from free text
 - Mostly movie scripts and novel books
- Four relations: previous, next, parent, similarity
- Only verb+object

Niket Tandon, Gerard de Melo, Abir De, Gerhard Weikum: Knowlywood: Mining Activity Knowledge From Hollywood Narratives. CIKM 2015: 223-232


How to define and scale up the commonsense knowledge acquisition and inference?

Outline

- Motivation: NLP and commonsense knowledge
- Consideration: selectional preference
- New proposal: large-scale and higher-order selectional preference
- Application on the Winograd Schema Challenge
- Extensions

- Disambiguation needs both "the speaker's knowledge of his
 - language and his knowledge about the world" (Katz and Fodor, 1963)
 - Compare semantic meanings by fixing grammar
 - Syntactically unambiguous

14

Selectional Preference (SP)

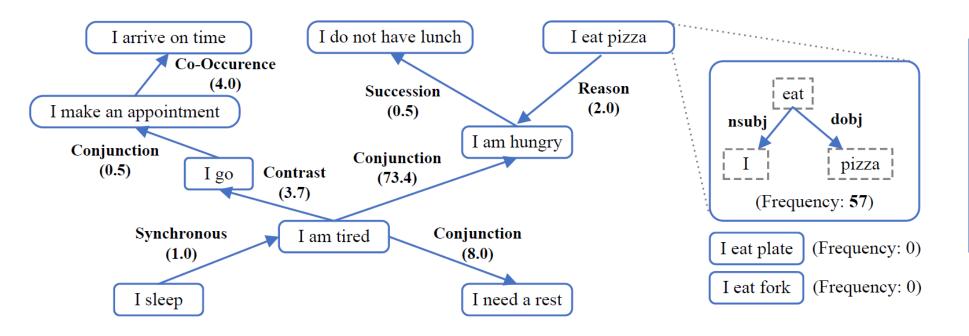
Principle #2

15

- The need of language inference based on 'partial information (in John MaCarthy's phrase)' (Wilks, 1975)
 - The soldiers fired at the women, and we saw several of them fall.
 - The needed partial information: hurt things tending to fall down
 - "not invariably true"
 - "tend to be of a very high degree of generality indeed"

(hurt, X) connection (X, fall)

- Selectional preference (Resnik, 1993)
 - A relaxation of selectional restrictions (Katz and Fodor, 1963) and as syntactic features (Chomsky, 1965)
 - Applied to isA hierarchy in WordNet and verb-object relations


Yorick Wilks. 1975. An intelligent analyzer and understander of English. Communications of the ACM, 18(5):264–274. Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170–210. Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA. Philip Resnik. 1993. Selection and information: A class-based approach to lexical relationships. Ph.D. thesis, University of Pennsylvania.

Outline

- Motivation: NLP and commonsense knowledge
- Consideration: selectional preference
- New proposal: large-scale and higher-order selectional preference
- Extensions

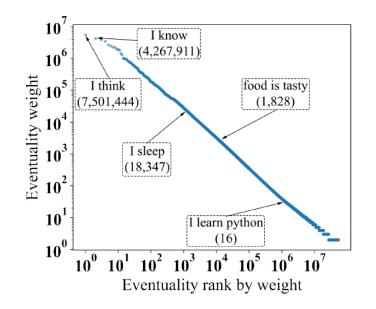
A New Eventuality Knowledge Graph: ASER Activities, States, Events, and their Relations


- Use verb-centric patterns from dependency parsing
 - Principle #1: to compare semantics by fixing syntax (Katz and Fodor, 1963)
- Maintain a set of key tags and a set of auxiliary tags
 - Principle #2: to obtain frequent 'partial information' (Wilks, 1975)

A hybrid graph of

- Each eventuality is a hyper-edge of words
- Heterogeneous edges among eventualities

A Running Example

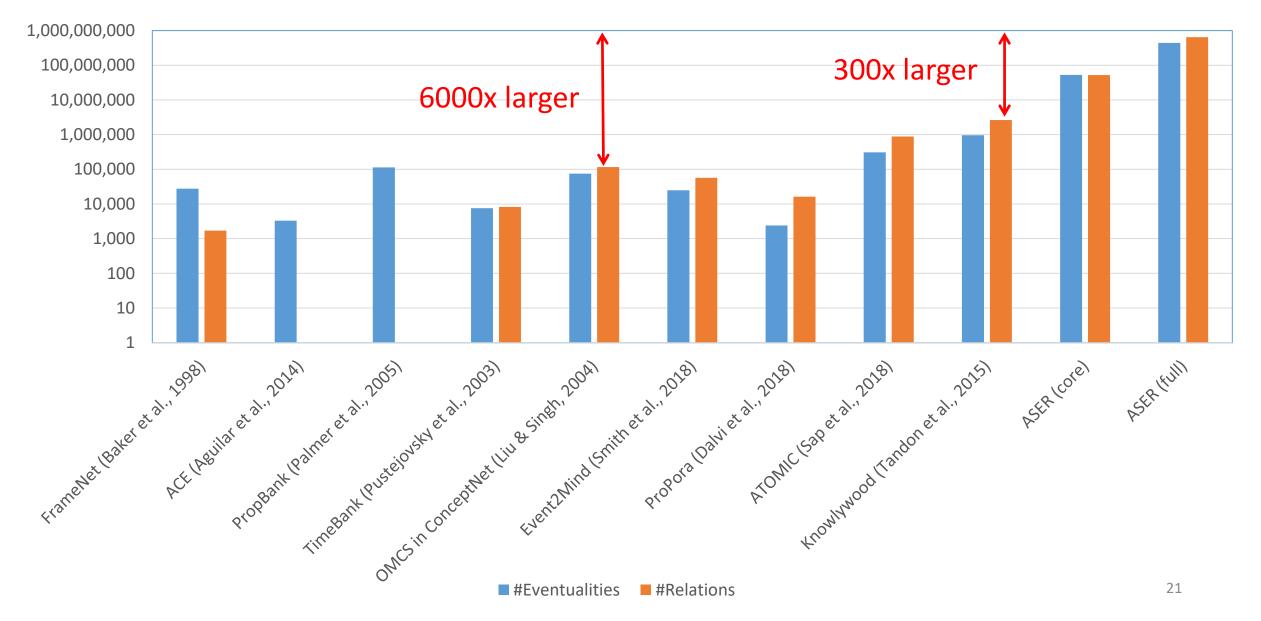


18

Eventualities

- Using patterns to collect partial information
- Six relations are also kept but treated as auxiliary edges
 - advmod,
 - amod,
 - nummod,
 - aux,
 - compound,
 - neg

Pattern	Code	Example
n1-nsubj-v1	S-V	`The dog barks'
n1-nsubj-v1-dobj-n2	S-V-O	`I love you'
n1-nsubj-v1-xcomp-a	s-v-a	`He felt ill'
n1-nsubj-(v1-iobj-n2)-dobj-n3	S-V-O-O	`You give me the book'
n1-nsubj-a1-cop-be	s-be-a	`The dog is cute'
n1-nsubj-v1-xcomp-a1-cop-be	s-v-be-a	`I want to be slim'
n1-nsubj-v1-xcomp-n2-cop-be	s-v-be-o	`I want to be a hero'
n1-nsubj-v1-xcomp-v2-dobj-n2	S-V-V-O	`I want to eat the apple'
n1-nsubj-v1-xcomp-v2	S-V-V	`I want to go'
(n1-nsubj-a1-cop-be)-nmod-n2-case-p1	s-be-a-p-o	`It' cheap for the quality'
n1-nsubj-v1-nmod-n2-case-p1	s-v-p-o	`He walks into the room'
(n1-nsubj-v1-dobj-n2)-nmod-n3-case-p1	s-v-o-p-o	`He plays football with me'
n1-nsubjpass-v1	spass-v	`The bill is paid'
n1-nsubjpass-v1-nmod-n2-case-p1	spass-v-p-o	`The bill is paid by me'


Eventuality Relations

- Classifiers trained on Penn Discourse Treebank (PDTB) (Prasad et al., 2007)
- 14 relations taking from CoNLL shared task
 - More frequent relations
- Less ambiguous connectives
 - 'so that' 31 times only in 'Result' relations
- Some are ambiguous
 - 'while': Conjunction 39 times, Contrast 111 times, Expectation 79 times, and Concession 85 times

Relation Type	Examples
Precedence	E1 before E2; E1 , then E2; E1 till E2; E1 until E2
Succession	E1 after E2; E1 once E2
Synchronous	E1, meanwhile E2; E1 meantime E2; E1, at the same time E2
Reason	E1, because E2
Result	E1, so E2; E1, thus E2; E1, therefore E2; E1, so that E2
Condition	E1, if E2; E1, as long as E2
Contrast	E1, but E2; E1, however E2; E1, by contrast E2; E1, in contrast E2; E1 , on the other hand, E2; E1, on the contrary, E2
Concession	E1, although E2
Conjunction	E1 and E2; E1, also E2
Instantiation	E1, for example E2; E1, for instance E2
Restatement	E1, in other words E2
Alternative	E1 or E2; E1, unless E2; E1, as an alternative E2; E1, otherwise E2
ChosenAlternative	E1, E2 instead
Exception	E1, except E2

Prasad, R., Miltsakaki, E., Dinesh, N., Lee, A., Joshi, A., Robaldo, L., & Webber, B. L. (2007). The penn discourse treebank 2.0 annotation manual. 20 Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi Prasad, Christopher Bryant, Attapol T. Rutherford. The CoNLL-2015 Shared Task on Shallow Discourse Parsing.

Scales of Verb Related Knowledge Graphs

Partial Information Aggregation

• "hurt things tending to fall down"

(hurt, X) connection (X, fall)

• "stocks price may increase when company X acquire a start-up"

(company, acquire, start-up) result-in (stock, increase)

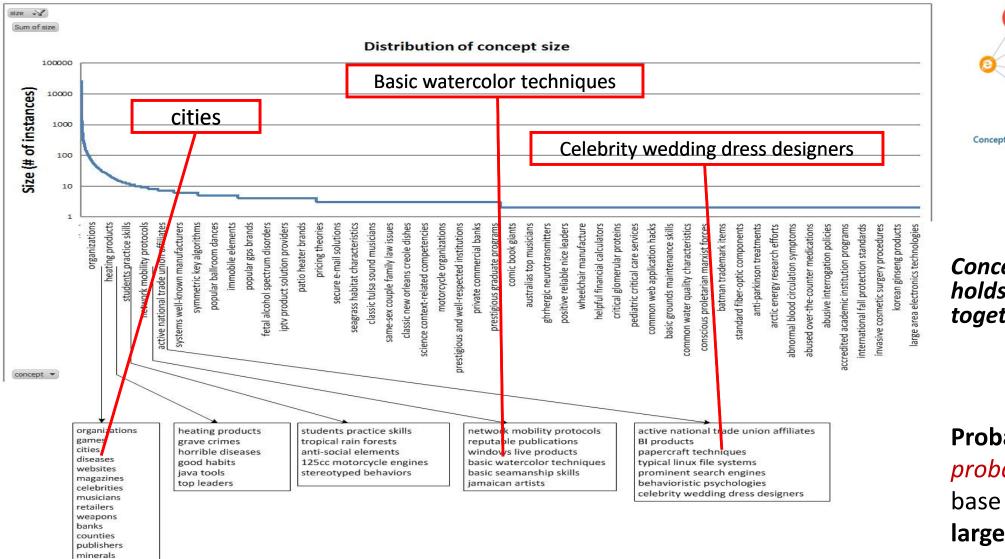
Normalization

Probability

He, she, I, Bob,	─────────────────────────────────────	1.0
1996, 2020, 1949,	─────YEAR	1.0
23, 20, 333,	→DIGIT	1.0
www.google.com,	→URL	1.0

Conceptualization with **ProBase**

Microsoft Concept Graph Preview For Short Text Understanding


Concept

Concept

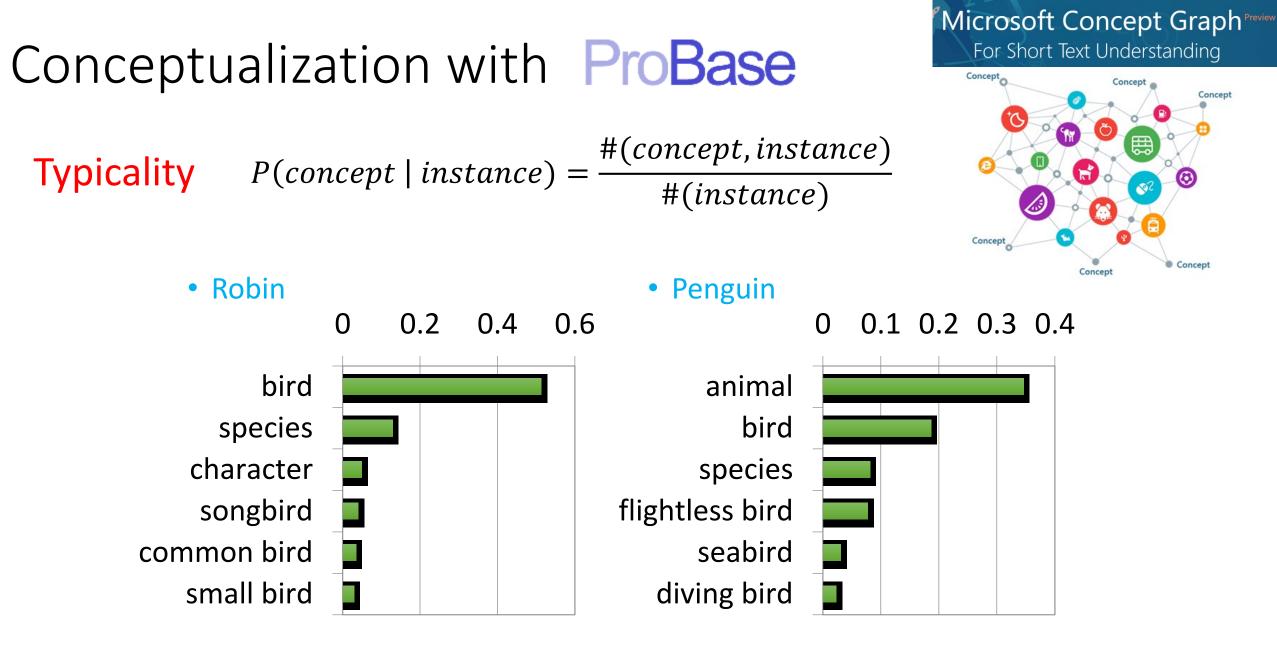
 \odot

Concept

Concept

Data are available at https://concept.research.microsoft.com/

Concepts are the glue that holds our mental world together.


Concept

Gregory L. Murphy NYU

Probase is a *large, universal,* probabilistic knowledge base with an extremely large concept space

24

Wentao Wu, Hongsong Li, Haixun Wang, Kenny Qili Zhu: Probase: a probabilistic taxonomy for text understanding. SIGMOD Conference 2012: 481-492

Data are available at https://concept.research.microsoft.com/

Wentao Wu, Hongsong Li, Haixun Wang, Kenny Qili Zhu: Probase: a probabilistic taxonomy for text understanding. SIGMOD Conference 2012: 481-492 25 Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, Weizhu Chen: Short Text Conceptualization Using a Probabilistic Knowledgebase. IJCAI 2011: 2330-2336

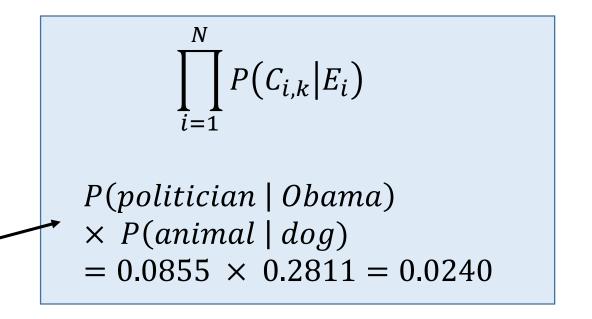
A Running Example

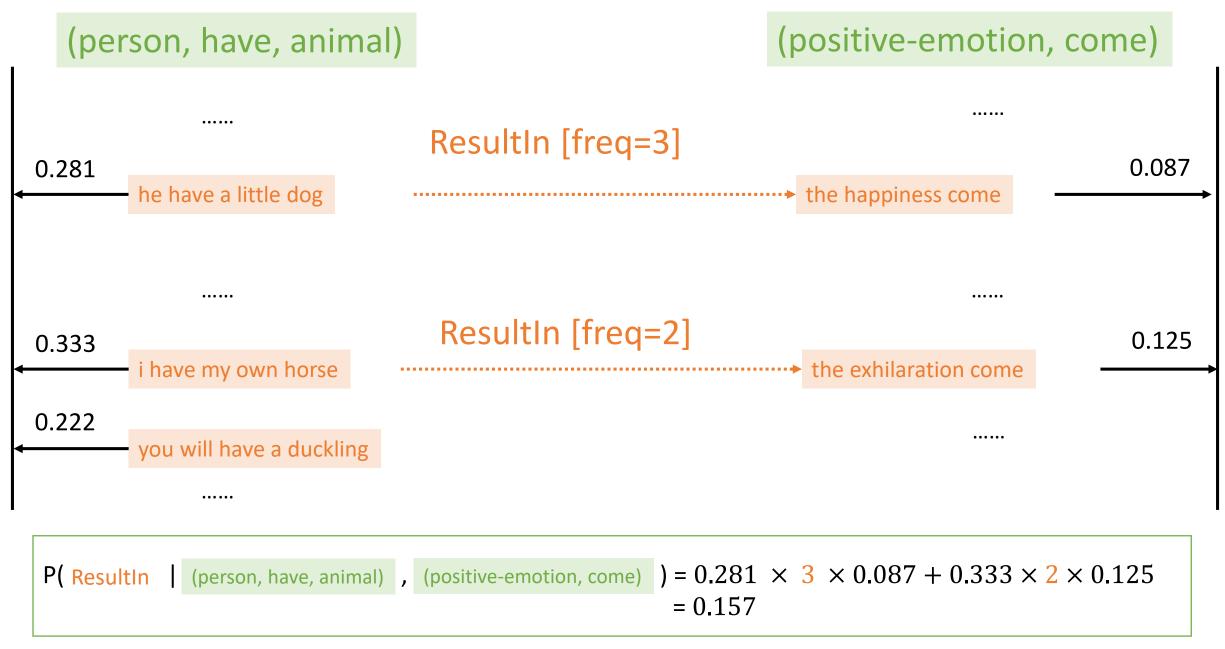
Obama

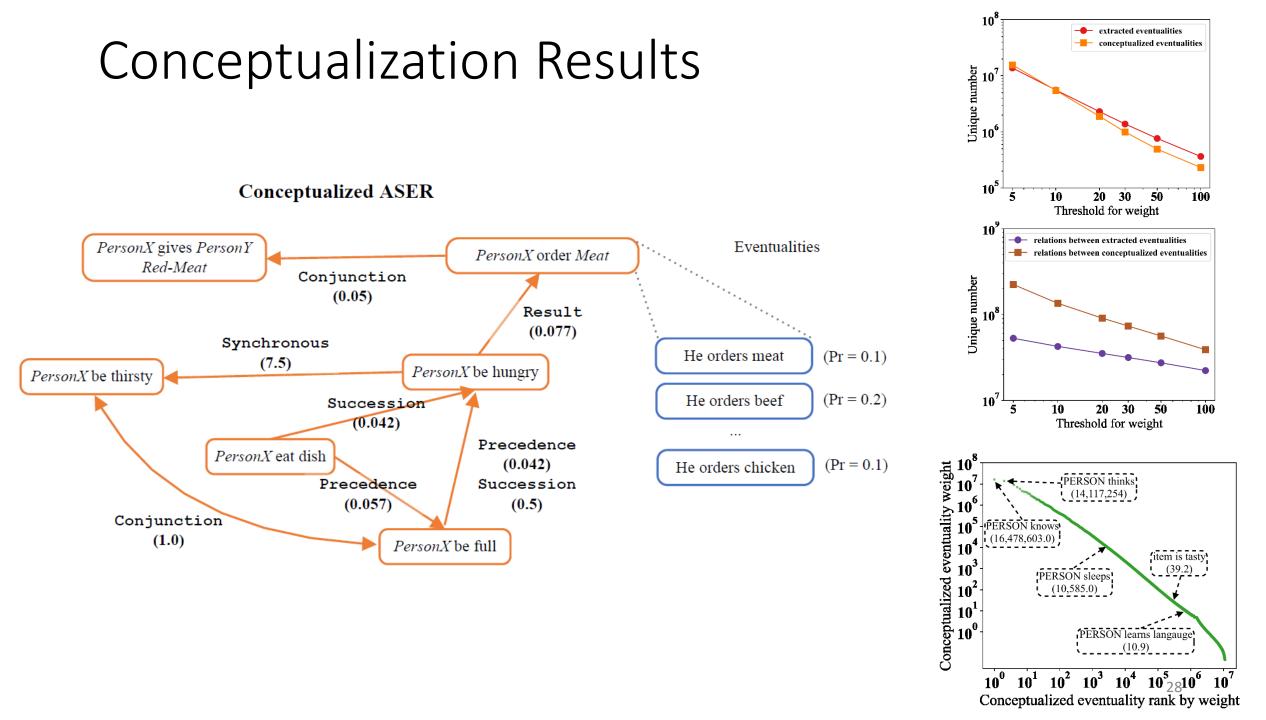
(politician, 0.0855) (democrat, 0.0560) (liberal, 0.0560)

. . .

(Obama, have, dog)


(obama have <u>animal</u>, 0.2811) (obama have <u>pet</u>, 0.1377) (<u>politician</u> have dog, 0.0855) (<u>democrat</u> have dog, 0.05604)


(<u>politician</u> have <u>animal</u>, <mark>0.0240</mark>) (<u>democrat</u> have <u>animal</u>, 0.01575)


. . .

dog

(animal, 0.2811) (pet, 0.1377) (domestic animal, 0.0525)

ASER 2.0

• 1.0: Rule based extraction (14 Eventuality Patterns, Improved Version)

Data	#Unique Eventualities	#Unique Relations
Core	34,212,258	15,339,027
Full	272,206,675	205,758,398

• 2.0: Discourse Parser (18 Eventuality Patterns + Wang and Lan 2015)

Data	#Unique Eventualities	#Unique Relations
Core	52,940,258	52,296,498
Full	438,648,952	648,514,465

- Conceptualization Core (threshold=5):
 - Concepts: 15,640,017 (based on 13,766,746 eventualities, 1.X times)
 - Concept Relations: 224,213,142 (based on 52,927,979 eventuality relations, 4.X times)

Graph Inference Examples

• One hop relations $\Pr(E_t|E_h, T_1) = \frac{W_{\langle E_h, T_1, E_t \rangle}^{(r)}}{\sum_{E'_t, s.t., (E_h, T_1, E'_t) \in \mathcal{R}} W_{\langle E_h, T_1, E'_t \rangle}^{(r)}},$

• Eventualities

- ("I drink coffee", Reason, "I enjoy the flavor")
- ("You go to restaurant", Precedence, "You got sick")
- ("It is a cat", Condition, "It is a tiger")
- Concepts
 - ("Company be Stakeholder-Group", Condition, "PersonX be successful")
 - ("PersonX hurt Insect", Condition, "PersonX help Insect")
 - ("PersonX be Emotion", Succession, "PersonX marry")

Graph Inference Examples

• Two hop relations $\Pr(E_t|E_h, T_1, T_2) = \sum_{E_m \in \mathcal{E}_m} \Pr(E_m|E_h, T_1)\Pr(E_t|E_m, T_2),$

• Eventualities

- ("I go to bed", Conjunction, ["I sleep early"], Result, "I am healthy")
- ("We have lunch", Conjunction, ["We really hit it off"], Contrast, "She has a boyfriend at time")
- ("I go to restaurant", Reason, ["I have a coupon"], Contrast, "It is expired")

Concepts

- ("PersonX wait for PersonY", Precedence, ["PersonX be tired"], Result, "PersonX go to sleep")
- < "PersonX be cranky", Synchronous, ["PersonX be hungry"], Result, "PersonX order Meat" >

Rule Mining: Concepts

• Mine Rules using AMIE+ $\langle E_a, T_1, E_b \rangle \land \langle E_b, T_2, E_c \rangle \Rightarrow \langle E_a, T_3, E_b \rangle$,

Rule	$E_a \xrightarrow{\text{Reason}} E_f \wedge E_b \xrightarrow{\text{Succession}} E_f \Rightarrow E_a \xrightarrow{\text{Reason}} E_b$		
Instances	I ask \rightarrow I am not sure \land I do not know \rightarrow I am not sure \Rightarrow I ask \rightarrow I do not know		
	We are lucky \rightarrow We notice \land We order \rightarrow We notice \Rightarrow We are lucky \rightarrow We order		
	I remember it \rightarrow I see it \land I realize \rightarrow I see it \Rightarrow I remember it \rightarrow I realize		
Rule	$E_a \xrightarrow{\text{Concession}} E_f \wedge E_b \xrightarrow{\text{Precedence}} E_f \Rightarrow E_a \xrightarrow{\text{Contrast}} E_b$		
Instances	I am unconscious \rightarrow I wake up \land I see \rightarrow I wake up \Rightarrow I am unconscious \rightarrow I see		
	I swear \rightarrow I guess \land I do not know \rightarrow I guess \Rightarrow I swear \rightarrow I do not know		
	I can not believe \rightarrow It is great \land I think \rightarrow It is great \Rightarrow I can not believe \rightarrow I think		
Rule	$E_a \xrightarrow{\text{Alternative}} E_e \wedge E_e \xrightarrow{\text{Exception}} E_b \Rightarrow E_a \xrightarrow{\text{Exception}} E_b$		
InstancesIt is not \rightarrow It is wrong \wedge It is wrong \rightarrow It is \Rightarrow It is not \rightarrow It isI really want \rightarrow I think \wedge I think \rightarrow I know \Rightarrow I really want \rightarrow I know			
			It is not \rightarrow I suppose \land I suppose \rightarrow You know \Rightarrow It is not \rightarrow You know

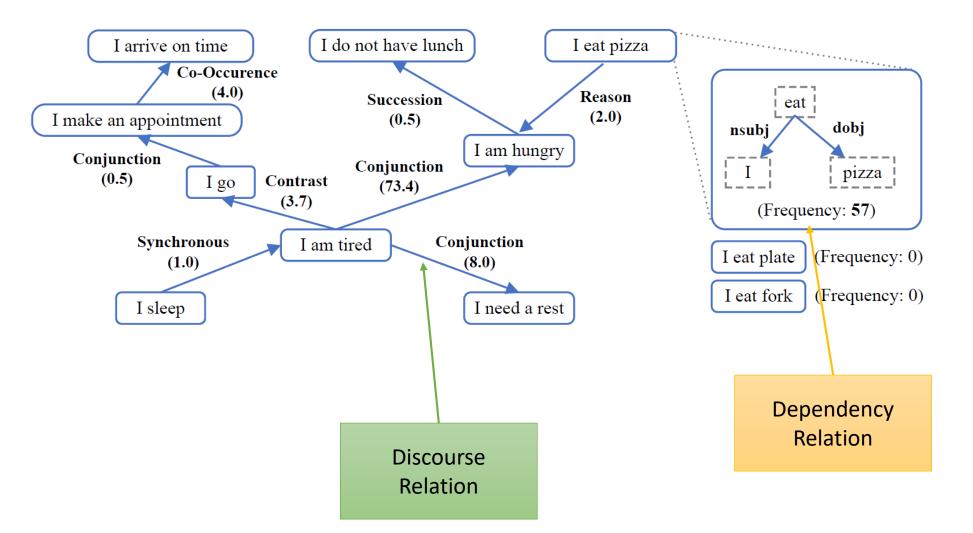
Rule Mining: Concepts

• Mine Rules using AMIE+ $\langle E_a, T_1, E_b \rangle \land \langle E_b, T_2, E_c \rangle \Rightarrow \langle E_a, T_3, E_b \rangle$,

Rule	$E_e \xrightarrow{\text{Instantiation}} E_a \wedge E_e \xrightarrow{\text{Instantiation}} E_b \Rightarrow E_a \xrightarrow{\text{Conjunction}} E_b$
Instances	<i>PersonX</i> realize \rightarrow <i>PersonX</i> point out \land <i>PersonX</i> realize \rightarrow PersonX have <i>information</i> \Rightarrow <i>PersonX</i> point out \rightarrow <i>PersonX</i> have <i>information</i>
	PersonX have \rightarrow PersonX get \land PersonX have \rightarrow PersonX own \Rightarrow PersonX get \rightarrow PersonX own
	$PersonX$ know $\rightarrow PersonX$ be sure $\land PersonX$ know $\rightarrow PersonX$ remember $\Rightarrow PersonX$ be sure $\rightarrow PersonX$ remember
Rule	$E_e \xrightarrow{\text{Concession}} E_b \land E_e \xrightarrow{\text{Restatement}} E_a \Rightarrow E_a \xrightarrow{\text{Contrast}} E_b$
Instances	<i>PersonX</i> order $dish \rightarrow PersonX$ be hungry $\land PersonX$ order $dish \rightarrow PersonX$ order $\Rightarrow PersonX$ order $\rightarrow PersonX$ be hungry
	PersonX wish \rightarrow PersonX doubt \land PersonX wish \rightarrow PersonX need \Rightarrow PersonX doubt \rightarrow PersonX need
	<i>PersonX</i> love it \rightarrow <i>PersonX</i> hate it \land <i>PersonX</i> love it \rightarrow it be good \Rightarrow <i>PersonX</i> hate it \rightarrow it be good
Rule	$E_e \xrightarrow{\text{Exception}} E_b \wedge E_e \xrightarrow{\text{Succession}} E_a \Rightarrow E_a \xrightarrow{\text{Contrast}} E_b$
Instances	<i>item</i> be ready \rightarrow <i>PersonX</i> wait \land <i>item</i> be ready \rightarrow <i>PersonX</i> check \Rightarrow <i>PersonX</i> check \rightarrow <i>PersonX</i> be wait
	PersonX say \rightarrow PersonX be sorry \land PersonX say \rightarrow PersonX be surprised \Rightarrow PersonX be sorry \rightarrow PersonX be surprised
	it be \rightarrow PersonX guess \land it be \rightarrow it be factor \Rightarrow PersonX guess \rightarrow it be factor
·	

Meta-path Mining

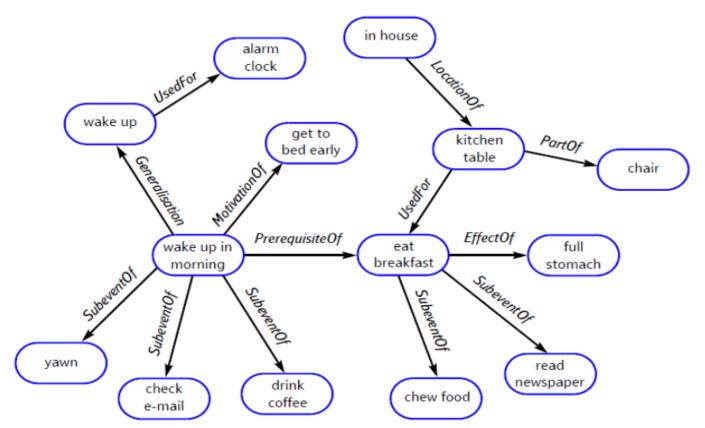
#Hop	meta-path	Instances
2	$E_1 \xrightarrow{\text{Conjunction}} E_2 \xrightarrow{\text{Contrast}} E_3$	I go to bed \rightarrow I go to sleep \rightarrow I wake up I have breakfast \rightarrow I have milk \rightarrow I feel sick I take bus \rightarrow I go to work \rightarrow I go home
	$E_1 \xrightarrow{\operatorname{Precedence}} E_2 \xrightarrow{\operatorname{Precedence}} E_3$	You go to sleep \rightarrow You wake up \rightarrow You hit the ground You drink alcohol \rightarrow You go to toilet \rightarrow You have to pee You go to restaurant \rightarrow You are sick \rightarrow You go to hospital
	$E_1 \xrightarrow{\text{Conceptualization}} C_1 \xrightarrow{\text{ConceptInstantiation}} E_2$	He is psychiatrist \rightarrow <i>PersonX</i> is <i>Specialist</i> \rightarrow I am attorney I want milk \rightarrow <i>PersonX</i> want <i>Animal-Product</i> \rightarrow He wants burgers You make reservation \rightarrow <i>PersonX</i> make <i>Service</i> \rightarrow He makes statement
	$E_1 \xrightarrow{\text{Conjunction}} E_2 \xrightarrow{\text{Conjunction}} E_3$	I go to gym \rightarrow I have to wait \rightarrow I go home I am vegan \rightarrow My wife is vegan \rightarrow I used to eat meat It is a cat \rightarrow It is fine \rightarrow It is beautiful
	$E_1 \xrightarrow{\text{Reason}} E_2 \xrightarrow{\text{Result}} E_3$	I go to bar \rightarrow I have many friends \rightarrow I have parties I go to school \rightarrow We could afford \rightarrow I get my first job I am in pain \rightarrow I am alone \rightarrow I sit at bar
	$E_1 \xrightarrow{\operatorname{Precedence}} E_2 \xrightarrow{\operatorname{Conjunction}} E_3 \xrightarrow{\operatorname{Precedence}} E_4$	The rain comes down \rightarrow The engine whistles \rightarrow The train starts \rightarrow The train moves on The moon arises \rightarrow The weather is pleasant \rightarrow The snow ceases \rightarrow The night is still She sleeps \rightarrow The phone rings \rightarrow We gets home \rightarrow She hangs up the phone
3	$E_1 \xrightarrow{\text{Conjunction}} E_2 \xrightarrow{\text{Conceptualization}} C_1 \xrightarrow{\text{ConceptInstantiation}} E_3$	I play piano \rightarrow I am musician \rightarrow <i>PersonX</i> be <i>Artist</i> \rightarrow He is actor I am chill \rightarrow It is a snake \rightarrow It be <i>Predator</i> \rightarrow It is a bear It is hot \rightarrow I am sweating \rightarrow <i>PersonX</i> be <i>Symptom</i> \rightarrow She is in a coma
	$E_1 \xrightarrow{\text{Condition}} E_2 \xrightarrow{\text{Reason}} E_3 \xrightarrow{\text{Conjunction}} E_4$	Everyone knows him \rightarrow He comes off the bench \rightarrow He makes his debut for club \rightarrow He scores his first goal I am healthy \rightarrow I sleep \rightarrow I am exhausted \rightarrow I am cold We get the check \rightarrow We order dessert \rightarrow I am still hungry \rightarrow We eat everything
	$E_1 \xrightarrow{\text{Result}} E_2 \xrightarrow{\text{Contrast}} E_3 \xrightarrow{\text{Conjunction}} E_4$	I am tired \rightarrow I go to bed \rightarrow The sun is shining \rightarrow The wind blows There is a storm coming \rightarrow The rain falls \rightarrow The sky is clear \rightarrow The air is warm I have you number \rightarrow I call you \rightarrow I have a meeting \rightarrow I have a presentation
	$E_1 \xrightarrow{\text{Contrast}} E_2 \xrightarrow{\text{Reason}} E_3 \xrightarrow{\text{Reason}} E_4$	I am a vegan \rightarrow I eat meat \rightarrow I enjoy it \rightarrow It tastes good The painting is controversial \rightarrow It is a masterpiece \rightarrow It belongs in museum \rightarrow It is valuable I get over it quickly \rightarrow i be go to mall \rightarrow Reason \rightarrow i have a job interview 34


Outline

- Motivation: NLP and commonsense knowledge
- Consideration: selectional preference
- New proposal: large-scale and higher-order selectional preference

• Extensions

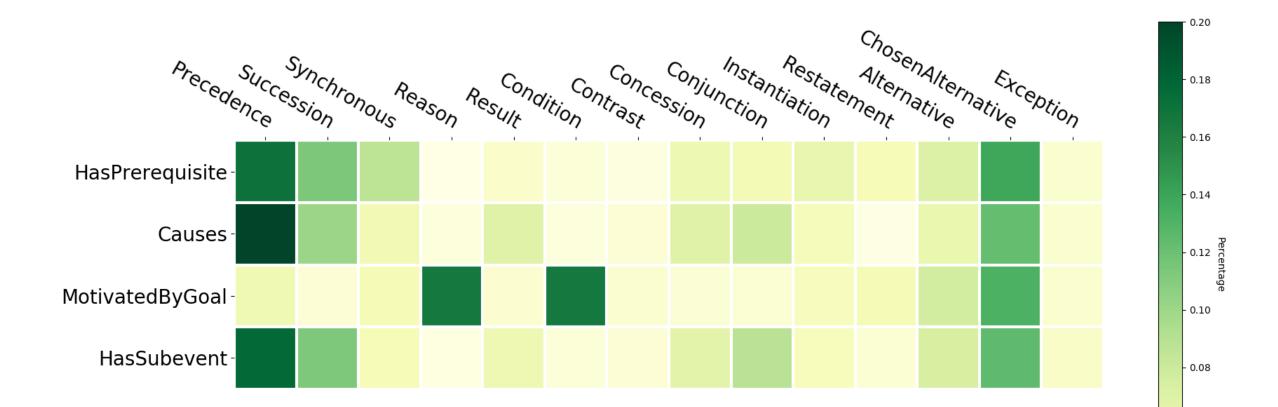
- Transform to ConceptNet
- Transform to ATOMIC


ASER is Essentially a Knowledge Graph based on Linguistics

How is it transferrable from linguistic knowledge to existing definition of commonsense knowledge?

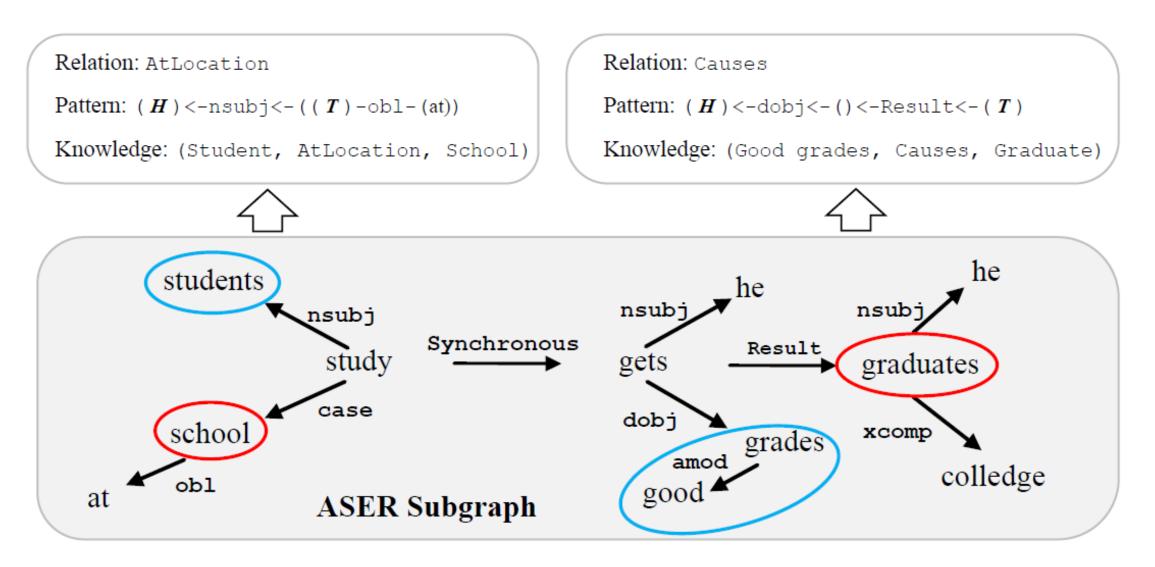
Core is OMCS (Liu & Singh 2004)

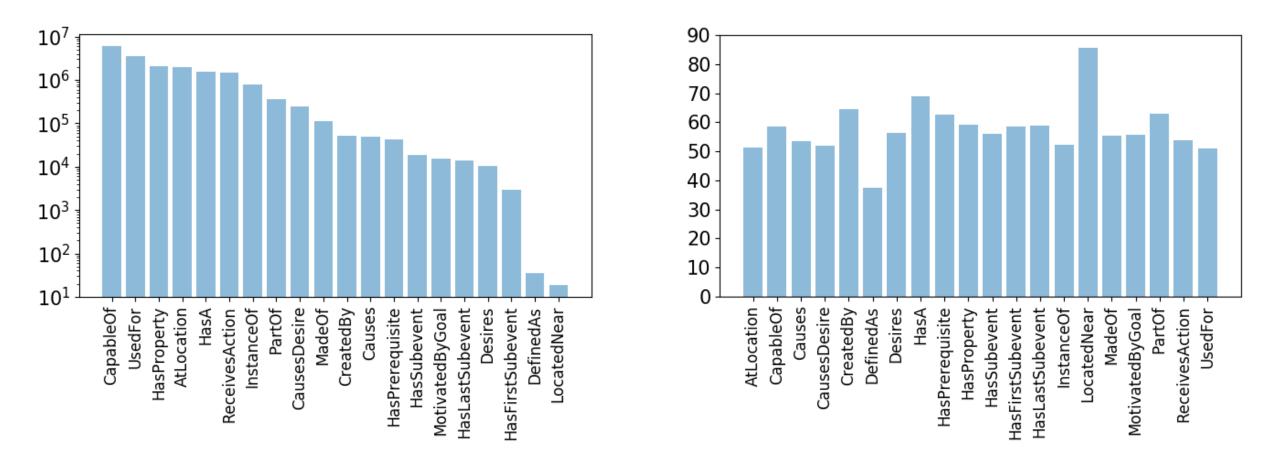
- Commonsense knowledge base
 - Commonsense knowledge about noun-phrases, or entities.



Speer and Havasi. "Representing General Relational Knowledge in ConceptNet 5." *LREC*. 2012.

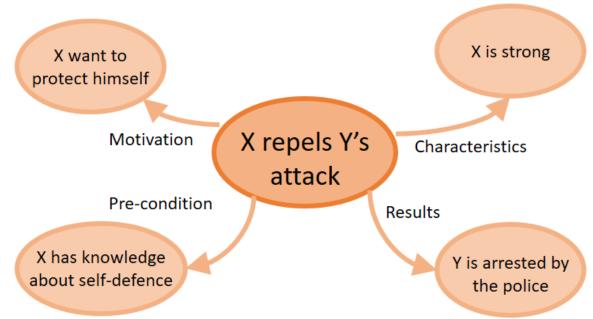
Revisit the Correlations of SP and OMCS


Revisit the Correlations of ASER and OMCS

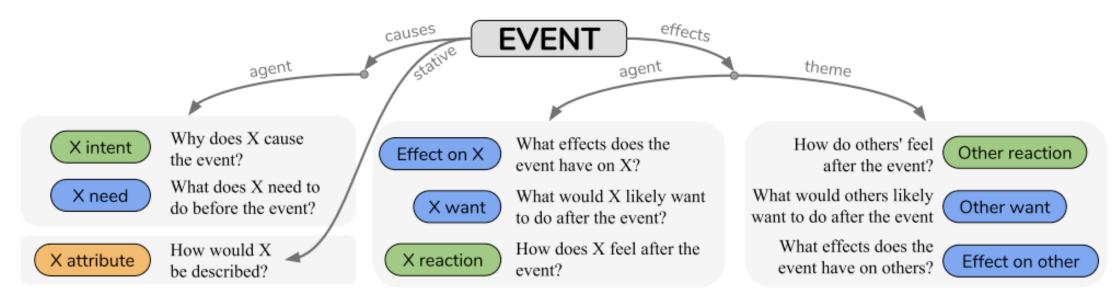

0.06

0.04

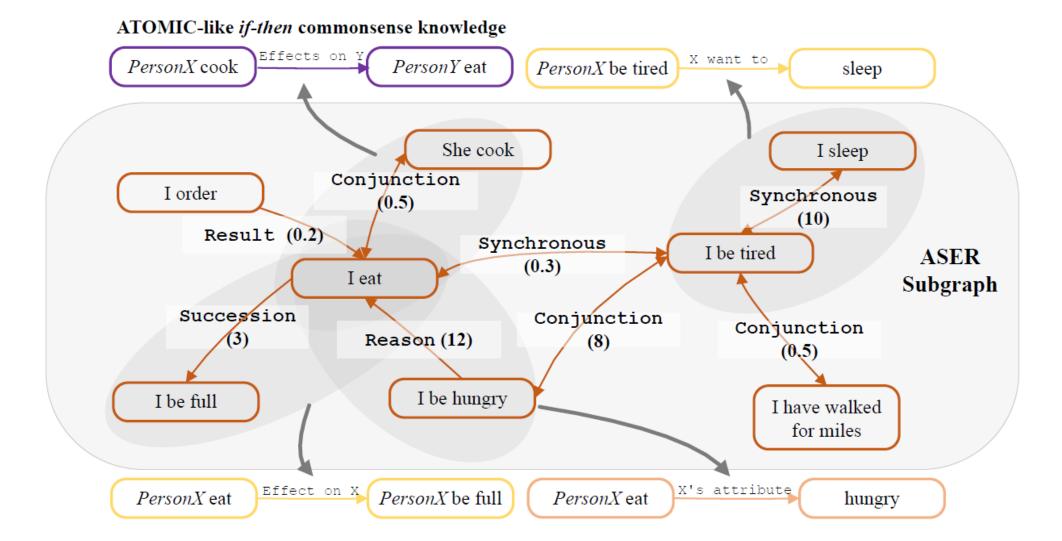
TransOMCS



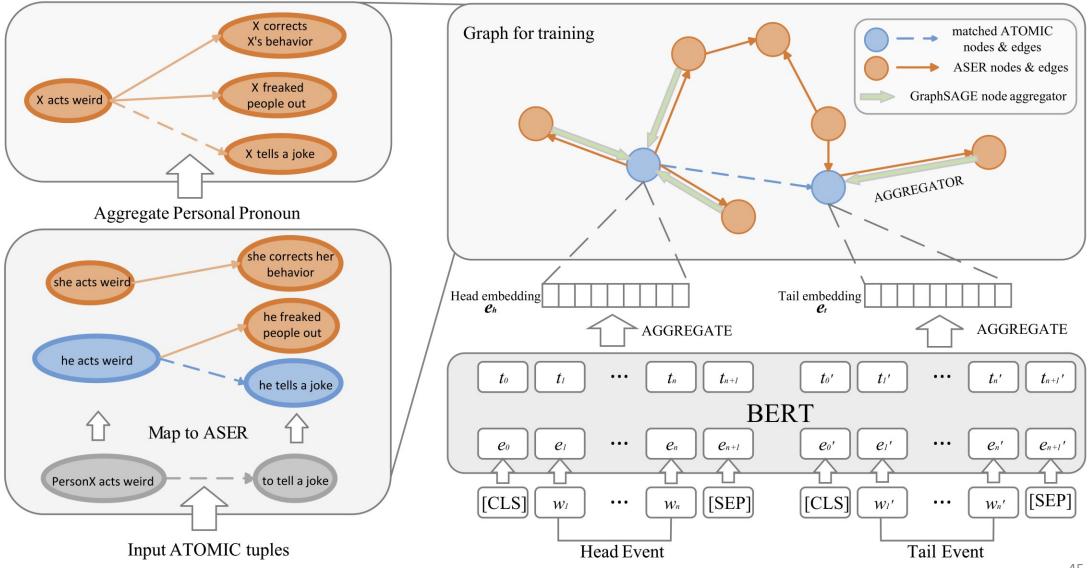
Distribution of Relations and Accuracy


ATOMIC (Sap, Maarten, et al. 2019)

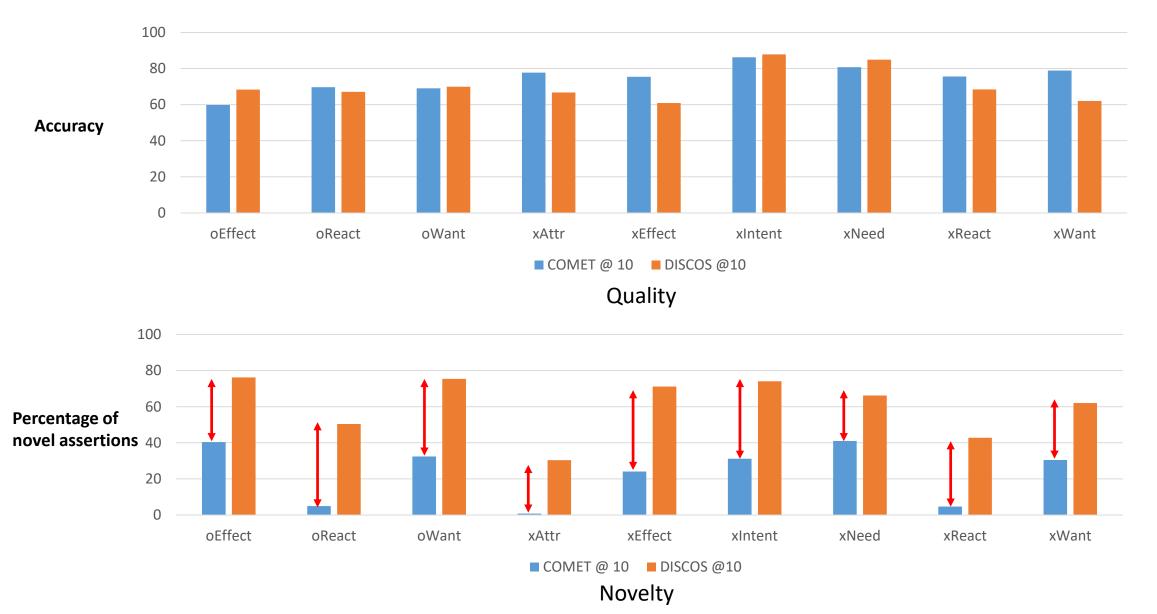
- Everyday if-then commonsense knowledge These are day-to-day knowledge that help us understand each other.
 - If a person *X* did something, human beings are able to inference:
 - Motivation: Why person X did this.
 - Pre-conditions: What enables X to do this.
 - Characteristics: What are attributes of X.
 - Result: What will affect X/others


ATOMIC (Sap, Maarten, et al. 2019)

- Define 4 categories of if-then relations:
 - Causes-agent (Motivation & Pre-condition): xIntend, xNeed
 - Stative (Characteristics): xAttr
 - Effects-agent (Results on X): xWant, xReact, xEffect
 - Effects-theme (Results on others): oWant, oReact, oEffect



Sap, Maarten, et al. "Atomic: An atlas of machine commonsense for if-then reasoning.", AAAI 2019.


DISCOS: Transform to ATOMIC

DISCOS Framework

DISCOS Result

Future Work

- We have proven that ASER can be transferred to other commonsense knowledge graphs:
 - OMCS/ConceptNet: TransOMCS (IJCAI 2020)
 - ATOMIC: DISCOS (WWW 21)
 - Social Chemistry 101?
- Multi-modality ASER?
- Applications of ASER?
 - Event detection and reasoning
 - Other NLP tasks
 - Legal AI

• ...