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Understanding Human’s Language Requires 
Complex Knowledge

• "Crucial to comprehension is the knowledge that the reader brings to 
the text. The construction of meaning depends on 

• the reader's knowledge of the language, 

• the structure of texts, a knowledge of the subject of the reading, 

• and a broad-based background or world knowledge.” (Day and Bamford, 1998)

• Contexts and knowledge contributes to the meanings

https://www.thoughtco.com/world-knowledge-language-studies-1692508
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An Example of NLP

A   dog   is   chasing   a   boy   on   the   playground.
Det Noun Aux Verb Det Noun Prep Det Noun

Noun Phrase Complex Verb Noun Phrase
Noun Phrase

Prep Phrase

Verb Phrase

Verb Phrase

Sentence

Dog(d1).
Boy(b1).
Playground(p1).
Chasing(d1,b1,p1).

Semantic analysis

Lexical analysis

(part-of-speech tagging)

Syntactic analysis

(Parsing)

A person saying this may
be reminding another 
person to get the dog 
back… 

Pragmatic analysis

(speech act)

Scared(x) if Chasing(_,x,_).

+

Scared(b1)

Inference

3Slides from Chengxiang Zhai and Hongning Wang
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The State of the Art 

A   dog   is   chasing   a   boy   on   the   playground

Det Noun Aux Verb Det Noun Prep Det Noun

Noun Phrase Complex Verb Noun Phrase
Noun Phrase

Prep Phrase

Verb Phrase

Verb Phrase

Sentence

Semantics: some aspects

- Entity/relation extraction

- Word sense disambiguation

- Anaphora resolution

POS Tagging: 97%

Parsing: 90% on WSJ

Speech act analysis: ???Inference: ???

4Slides from Chengxiang Zhai and Hongning Wang
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Pragmatics - Implicature

• “An implicature is something the speaker suggests or implies with 
an utterance, even though it is not literally expressed.” (Wikipedia)

A: What are they doing?
B: The firefighters should move the _____ quickly.

boy/cat.

rock.

• Relevant world knowledge
• There is probably a fire engine around.
• They are probably geared up.
• There maybe other people looking at them.

• There is someone/something in danger.
• They are cooperating to save (the case).

• More ignorable commonsense
• Firefighters are rescuers.
• Firefighters are human beings.
• There are more than one person.
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“Commonsense Knowledge”

• When we communicate,
• we omit a lot of “common sense” knowledge, which we assume the 

hearer/reader possesses

• we keep a lot of ambiguities, which we assume the hearer/reader knows how 
to resolve

Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining By ChengXiang Zhai, Sean Massung

• A lemon is sour. 
• Attributes of objects

• To open a door, you must usually first turn the doorknob. 
• Condition/consequence of actions

• If you forget someone’s birthday, they may be unhappy 
with you.

• Cause/effect between events and states

• Social: 
• If you forget your friend’s birthday, 

he/she may be mad at you.
• Physical: 

• Apples fall instead of floating in the air.
• World Entities: 

• Lions are bigger than cats.
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In this tutorial, I will introduce

• How to collect commonsense knowledge? (Part 1)

• What we can do so far for commonsense reasoning and related tasks? 
(Part 2)
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How to Collect Commonsense Knowledge?

• Motivation 

• Information Extraction
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How to Define Commonsense Knowledge as 
Computer Scientists? (Liu & Singh, 2004)

• “While to the average person the term ‘commonsense’ is regarded as 
synonymous with ‘good judgement’, ”

• “the AI community it is used in a technical sense to refer to the millions of basic 
facts and understandings possessed by most people.”

• “Such knowledge is typically omitted from social communications”, e.g.,
• If you forget someone’s birthday, they may be unhappy with you.

H Liu and P Singh, ConceptNet - a practical commonsense reasoning tool-kit, BTTJ, 2004
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ConceptNet: An Approach Developed 16 Years Ago

• ConceptNet5 (Speer and Havasi, 2012) 
• Core is from Open Mind Common Sense (OMCS) (Liu & Singh, 2004)

Essentially a crowdsourcing
based approach + text mining
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ATOMIC: Everyday If-then Commonsense Knowledge

• These are day-to-day knowledge that help us understand each other.

• If a person X did something, human beings are able to inference:
• Motivation: Why person X did this.

• Pre-conditions: What enables X to do this.

• Characteristics: What are attributes of X.

• Result: What will affect X/others

Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi: ATOMIC: An Atlas of 
Machine Commonsense for If-Then Reasoning. AAAI, 2019.
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ATOMIC: Everyday If-then Commonsense Knowledge

• Define 4 categories of if-then relations:
• Causes-agent (Motivation & Pre-condition): xIntend, xNeed

• Stative (Characteristics): xAttr

• Effects-agent (Results on X): xWant, xReact, xEffect

• Effects-theme (Results on others): oWant, oReact, oEffect

Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi: ATOMIC: An Atlas of 
Machine Commonsense for If-Then Reasoning. AAAI, 2019.
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• Crowdsoursing 9 Types of IF-
THEN relations

• Arbitrary texts: Human 
annotation

• All personal entity information 
has been removed to reduce 
ambiguity

ATOMIC 

Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi: ATOMIC: An Atlas of 
Machine Commonsense for If-Then Reasoning. AAAI, 2019.
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Ways of Collecting Commonsense Knowledge
• Crowdsourcing

• Pros
• High quality

• With proper quality control

• Human can be creative when writing answers
• Reflecting the ambiguity of language use

• Cons
• Ways of collection will limit the objects 

• Training Turk users: overfitting to the supervisor?
• Time and money cost

• Difficult to make the careful distinctions in 
quantifier structure

• When used to train a machine learning algorithm
• Selection bias

• Information extraction
• Pros

• Large-scale free text to use
• Automatic and low time/money cost
• Better coverage of more objects to 

reflect the world knowledge

• Cons
• Reporting bias

• Frequency may not reflect preference

• Rules may be inadequate 
• Noisy data
• Lack of principles to perform extraction

How about a combination of two approaches?
• Accurate annotation (KB1)
• Automatic extraction + conceptualization and generation (KB2)
• Learning to population KB1 with KB2 if they share similar structure

14

In fact, different 
commonsense knowledge 
bases have different 
properties



Revisit the Correlations of 
Selectional Preference and OMCS (ConceptNet)

(sing, song) (dobj, 9.25)
(song, UsedFor, sing)

(phone, ring) (nsubj, 8.75)
(phone, CapableOf, ring)

(cold, water) (amod, 8.86)
(water, HasProperty, cold)

(create, new) (dobj_amod, 8.25)
(create idea, UsedFor, invent 
new things)

(hungry, eat) (nsubj_amod, 10.00)
(eat, MotivatedByGoal, are 
hungry) 15



Transform ASER to ATOMIC
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Coverage and Implicit Edges

• Most event related commonsense relations are implicit on ASER
• ConceptNet (Event-related relations), ATOMIC, ATOMIC 2020, and GLUCOSE

Maarten Sap, et al. ATOMIC: An atlas of machine commonsense for if-then reasoning. AAAI 2019.
Jena D Hwang, et al. (Comet-) Atomic 2020: On Symbolic and Neural Commonsense Knowledge Graphs. AAAI 2021.
Nasrin Mostafazadeh, et al. Glucose: Generalized and contextualized story explanations. NAACL 2020. 
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So Far We Know That

• Some commonsense may appear in selectional preference when we talk

• Event and casual relations: explicit extraction may not be useful for 
commonsense

• More inference and/or reasoning have to be performed

• How about language models?

18



Do Language Models Know Commonsense? 

https://demo.allennlp.org/masked-lm
19
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GPT-2

https://demo.allennlp.org/next-token-lm 20
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BERT

https://demo.allennlp.org/masked-lm
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GPT-2

https://demo.allennlp.org/next-token-lm
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GPT-2

https://demo.allennlp.org/next-token-lm
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BERT

https://demo.allennlp.org/masked-lm
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BERT

https://demo.allennlp.org/masked-lm
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BERT

https://demo.allennlp.org/masked-lm
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BERT

https://demo.allennlp.org/masked-lm
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BERT

https://demo.allennlp.org/masked-lm
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So Far We Know That

• Some commonsense may appear in selectional preference when we talk

• Event and casual relations: explicit extraction may not be useful for 
commonsense

• More inference and/or reasoning have to be performed

• Large languages models probably need appropriate use (prompt) to get 
commonsense knowledge

29



How to Collect Commonsense Knowledge?

• Motivation

• Information Extraction
• Do we have more principled ways of information extraction for commonsense 

knowledge?

30



• Knowledge in ConceptNet
• Things

• Spatial

• Location

• Events

• Causal

• Affective

• Functional

• Agents

31



Primitive Semantic Units in our Mind

• Semantic meaning in our language can be described as ‘a finite set of 
mental primitives and a finite set of principles of mental combination 
(Jackendoff, 1990)’. 

• The primitive units of semantic meanings include 
• Thing (or Object), 
• Activity, 
• State, 
• Event, 
• Place, 
• Path, 
• Property, 
• Amount, 
• etc.

Jackendoff, R. (Ed.). (1990). Semantic Structures. Cambridge, Massachusetts: MIT Press.
32



Knowledge Base

artist

painter

Picasso

MovementBorn Died …

Cubism1881 1973 …

art

painting

Guernica
…Year Type

…1937 Oil on Canvas

Traditional knowledge 
bases are mostly focused 
on entities/concepts and 
their attributes

Slide Credit: Haixun Wang
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Existing Knowledge Graphs

• Many large-scale knowledge graphs about entities and their attributes
(property-of) and relations (thousands of different predicates) have been 
developed

• Millions of entities and concepts

• Billions of relationships

NELL

Google Knowledge Graph (2012)

570 million entities and 18 billion facts
But how to characterize our mental world?

34



How to Grow a Mind?
--Statistics, Structure, and Abstraction

• “In coming to understand the 
world—in learning concepts, 
acquiring language, and 
grasping causal relations—our 
minds make inferences that 
appear to go far beyond the 
data available.”

• The ability of performing 
powerful abstraction is the key

• The inference are usually 
probabilistic

How to grow a mind: statistics, structure, and abstraction. Science. Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, Noah D Goodman. 2011.
35



“Concepts are the glue that holds our mental world together”
--Gregory L. Murphy, NYU

bird

Typicality can be probabilistic: both are 
birds, but a “robin” is a more typical bird 
than a “penguin”

Slide Credit: Haixun Wang
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Why Are Concepts So Important?

• I steal several slides from Push Singh, the creator of OMCS and 
ConcepNet

37
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Representing Knowledge in Multiple Ways

38
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Representing Knowledge in Multiple Ways
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Representing Knowledge in Multiple Ways
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Representing Knowledge in Multiple Ways
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Representing Knowledge in Multiple Ways
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Prototypical situations



Representing Knowledge in Multiple Ways

• “When you get an idea and 
want to “remember” it, you 
create a K-line for it.”

• “When later activated, the 
K-line induces a partial 
mental state resembling the 
partial mental state that 
created that K-line.”

• “A partial mental state is a 
subset of those mental 
agencies operating at one 
moment.”

44
M. Minsky, “K-Lines: A theory of Memory," Cognitive Science 4 (1980). 117-133.



Representing Knowledge in Multiple Ways

• Encode memories in 
“abstract” form. 

• Search all memory for the 
“nearest match.” 

• Use prototypes with 
detachable defaults. 

• Remember “methods,” not 
“answers.” 

• To get the mind into the 
(partial) state that solve the 
old problem, and then the 
mind might be able to handle 
the new problem in “the same 
way”.

45
M. Minsky, “K-Lines: A theory of Memory," Cognitive Science 4 (1980). 117-133.



Commonsense Reasoning

• Conceptualization and its compositionality in a sentence is one of the keys to 
commonsense reasoning (generalization), but there is still lack of study 

Y: Trophy does not fit in suitcase, REASON, it is big

Grounding
• Computer not fit in parcel, 

REASON, Computer is big

• Rock not fit in carrier, REASON, 
rock is big

• …

The CSKB is usually incomplete. So there is no 
direct support to entail the conclusion Y.
Simple similarity/analogy does not always work, 
especially when training data is small (see 
Winograd Schema Challenge and Winogrande)

CSKB/Training Data

Consistent

Conceptualization Instantiation

Trophy is an item; Suitcase is a container

If we instantiate all, 
it’s possible to entail

Induction

Deduction

Current deep learning models do not 
perform concept-level induction. Instead, 
they use model induction to summarize all 
they observe in the training data. That also 
means, they conceptualization ability is 
restricted to what they have seen. 46

X: Item does not fit in container, REASON, item is big



Commonsense Reasoning

• The other way of doing conceptualization cannot help reasoning;

• Simple similarity does not explain this error. 

PersonX eats cookies, xWant, to get some milk

to get some beverage

to get some dairy product

47



The K-Line Theory

• Attach a K-node (a mental state, KE) to a “Pyramid” 
agent (PE) at a certain level

• The pyramid is a tree structure that we conceptualize 
the world

• The mapping has a lower-band limit and a higher band 
limit, to compare the right common, non-conflicting 
properties

• E.g., mapping Tesla to a company, big company,  IT company, 
AI company, high-tech company, automobile company, when 
comparing it with Google, Toyota, some small company, 
needs the right level of comparison

• Then the partial states in PE will help us to make 
abstraction, logical and procedural reasoning

• A lower K-line could affect the instantiation of a higher-
level, “more abstract” K-line

48
M. Minsky, “K-Lines: A theory of Memory," Cognitive Science 4 (1980). 117-133.



Representing Knowledge in Multiple Ways

49
M. Minsky, “K-Lines: A theory of Memory," Cognitive Science 4 (1980). 117-133.

• This is why we are building the 
concept-level representations 
of events

• Before talking about ASER, we 
need to find a knowledge base 
for conceptualization

2.0 



Capture 
concepts 
in human 

mind

Represent 
them in a 

computable
form

Transform 
them to 

machines

Machines 
have better 

understanding
of human 

world

More than 2.7 million concepts automatically 
harnessed from 1.68 billion documents

Computation/Reasoning enabled 
by scoring:

Consensus:  
e.g., is there a company called Apple?

Typicality:
e.g. how likely you think of Apple when
you think about companies?

Ambiguity:
e.g., does the word Apple, sans any 

context, represent Apple the company?

Similarity:
e.g., how likely is an actor also a celebrity?

Freshness:
e.g., Pluto as a dwarf planet is a claim more 
fresh than Pluto as a planet.

…

Give machines a new CPU 
(Commonsense Processing Unit) 
powered by a distributed graph engine called Trinity.

A little knowledge 
goes a long way after 
machines 
acquire a
human 
touch

1
2

3

4

A Probabilistic Knowledge Base

Slide Credit: Haixun Wang
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Data Sources

• Patterns for single statements
• Concept-instance “IsA” relationship: Hearst pattern [Hearst, 1992] (“A such as B, C 

and D”, etc.)
• Good: “countries such as USA and Japan …”

• Tough: “animals other than cats such as dogs …”

• Handling multi-word expressions: 
• “domestic animals such as cats and dogs …”

• Instance-attributes: “What is A of B?”, etc.

• Semantic cleaning
• Mutual exclusive

• Machine learning (e.g., Yu et al., 2020)
• May Improve recall but reduce accuracy
• Still working on single word concepts (mention detection is a big problem)

Changlong Yu, Jialong Han, Peifeng Wang, Yangqiu Song, Hongming Zhang, Wilfred Ng, and Shuming Shi. When Hearst Is not Enough: Improving Hypernymy Detection from Corpus with 
Distributional Models. EMNLP. 2020.
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Data are available at https://concept.research.microsoft.com/
Wentao Wu, Hongsong Li, Haixun Wang, Kenny Qili Zhu: Probase: a probabilistic taxonomy for text understanding. SIGMOD Conference 2012: 481-492

• 2.7 million concepts 
citiescities

Basic watercolor techniquesBasic watercolor techniques

Celebrity wedding dress designersCelebrity wedding dress designers

Probase is a large, universal, 
probabilistic knowledge 
base with an extremely 
large concept space 

Slide Credit: Haixun Wang
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Nodes: Concepts

Probase: 

Freebase:

Cyc:

2.7 M concepts 
automatically 

harnessed

2.7 M concepts 
automatically 

harnessed

2 K concepts
built by community 

effort

2 K concepts
built by community 

effort

120 K concepts
25 years human 

labor

120 K concepts
25 years human 

labor

Slide Credit: Haixun Wang
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𝑃 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) =
#(𝑐𝑜𝑛𝑐𝑒𝑝𝑡, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)

#(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)

Conceptualization with

Data are available at https://concept.research.microsoft.com/
Wentao Wu, Hongsong Li, Haixun Wang, Kenny Qili Zhu: Probase: a probabilistic taxonomy for text understanding. SIGMOD Conference 2012: 481-492
Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, Weizhu Chen: Short Text Conceptualization Using a Probabilistic Knowledgebase. IJCAI 2011: 2330-2336

• Robin • Penguin
0 0.2 0.4 0.6

bird

species

character

songbird

common bird

small bird

0 0.1 0.2 0.3 0.4

animal

bird

species

flightless bird

seabird

diving bird

Typicality

54
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Primitive Semantic Units in our Mind

• Semantic meaning in our language can be described as ‘a finite set of 
mental primitives and a finite set of principles of mental combination 
(Jackendoff, 1990)’. 

• The primitive units of semantic meanings include 
• Thing (or Object), 
• Activity, 
• State, 
• Event, 
• Place, 
• Path, 
• Property, 
• Amount, 
• etc.

Jackendoff, R. (Ed.). (1990). Semantic Structures. Cambridge, Massachusetts: MIT Press.

How about others 
rather than entities and 

relations?
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Semantic Primitive Units

• Entities or concepts can be nouns or noun phrases
• Concepts in ProBase (2012): 

• Company, 
• IT company, 
• big company, 
• big IT company,
• …

• Hierarchy is partially based on head+modifier composition
• Noun + noun: e.g., IT company
• Adj + noun: e.g., big company

• Let’s think about verbs and verb phrases
• How should we define semantic primitive unit for verbs?

56



“Linguistic Description – Grammar = Semantics”
The lower bound of a semantic theory (Katz and Fodor, 1963)

• Disambiguation needs both “the speaker's 
knowledge of his language and his knowledge
about the world” (Katz and Fodor, 1963)

• The bill is large.

• Some document demanding a sum of money to 
discharge a debt exceeds in size most such documents

• The beak of a certain bird exceeds in bulk those of 
most similar birds

• Syntactically unambiguous

• Compare semantic meanings by fixing grammar

Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170–210.

Principle #1Principle #1
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Selectional Preference (SP)

• The need of language inference based on ‘partial information’ (Wilks, 
1975)

• The soldiers fired at the women, and we saw several of them fall.

• The needed partial information: hurt things tending to fall down

• “not invariably true”

• “tend to be of a very high degree of generality indeed”

• Selectional preference (Resnik, 1993)

• A relaxation of selectional restrictions (Katz and Fodor, 1963) and as syntactic 
features (Chomsky, 1965)

• Applied to isA hierarchy in WordNet and verb-object relations

Yorick Wilks. 1975. An intelligent analyzer and understander of English. Communications of the ACM, 18(5):264–274.
Katz, J. J., & Fodor, J. A. (1963). The structure of a semantic theory. Language, 39(2), 170–210.
Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.
Philip Resnik. 1993. Selection and information: A class-based approach to lexical relationships. Ph.D. thesis, University of Pennsylvania. 

Principle #2Principle #2
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A Test of Commonsense Reasoning

• Proposed by Hector Levesque at U of Toronto

• An example taking from Winograd Schema Challenge

• On the surface, they simply require the resolution of anaphora 
• But Levesque argues that for Winograd Schemas, the task requires the use of 

knowledge and commonsense reasoning

• (A) The fish ate the worm. It was hungry.
• (B) The fish ate the worm. It was tasty.

http://commonsensereasoning.org/winograd.html 
https://en.wikipedia.org/wiki/Winograd_Schema_Challenge

62
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Why is it a challenge?

• Must also be carefully written 
not to betray their answers 
by selectional restrictions or 
statistical information about 
the words in the sentence

• Designed to be an 
improvement on the Turing 
test

The soldiers fired at the women, and we saw several of them fall.

• (A) The fish ate the worm. It was hungry.
• (B) The fish ate the worm. It was tasty.

63



A Brief History of Datasets and Development

The first large dataset.
Rahman and Ng: 
EMNLP-CoNLL

2012

Stanford: 55.19%
Their system: 73.05%

“Strictly speaking, we are addressing a relaxed version of 
the Challenge: while Levesque focuses solely on definite 
pronouns whose resolution requires background knowledge 
not expressed in the words of a sentence, we do not impose 
such a condition on a sentence.”

Levesque. AAAI 
Spring Symposium

2011

Davis et al. "A Collection 
of Winograd Schemas"

2014

The first round of the challenge was a 
collection of 60 Pronoun Disambiguation 
Problems (PDPs). The highest score 
achieved was 58% correct, by Quan Liu, 
from University of Science and 
Technology, China.

Recent results
(Unsupervised/few-shot)

Author/year System Fine-tuned Accuracy

Emami et al. (2018) Knowledge Hunter No 54.58%

Trieu H. Trinh and Quoc V. Le (2018) Language models (single) No 54.58%

Language models (Ensemble) No 63.74%

Alec Radford et al. (2019) GPT-2 No details 70.70%

Ruan et al. (2019) BERT-large + dependency Rahman and Ng 2012 dataset 71.10%

Kocijan et al. (2019) BERT-large No 60.10%

GPT No 55.30%

Wiki + Rahman and Ng 2012 dataset 72.20%

• Human’s performance: 92.1% 
(Bender 2015) 

• WinoGrande (RoBERTa + 43K Training 
data): 90.1% (Sakaguchi et al., 2019)
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SP-10K: A Large-scale Evaluation Set

• Traditional evaluation
• Small sets of one-hop direct dependency relations

• McRae et al., 1998: 821 pairs of nsubj and dobj relations

• Keller and Lapata, 2003: 540 pairs of dobj, noun-noun, and amod relations

• Padó et al., 2006: 207 pairs of nsubj, dobj, and amod relations

• Wang et al, 2018: 3062 (subject, verb, dobject) triplets

• Pseudo-disambiguation (Ritter et al., 2010; de Cruys, 2014): corpus driven, no 
human annotation

• Ours:
• 10K pairs of five relations, including two 2-hop relations

Hongming Zhang, Hantian Ding, and Yangqiu Song. SP-10K: A Large-Scale Evaluation Set for Selectional Preference Acquisition. ACL, 2019.
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Examples in SP-10K

dobj Plausibility

(eat, meal) 10.00

(close, door) 8.50

(touch, food) 5.50

(hate, investment) 4.00

(eat, mail) 0.00

nsubj Plausibility

(singer, sing) 10.00

(law, permit) 7.78

(women, pray) 5.83

(victim, contain) 2.22

(textbook, eat) 0.00

amod Plausibility

(fresh, air) 9.77

(new, method) 8.89

(medium, number) 4.09

(immediate, food) 2.05

(secret, wind) 0.75

dobj_amod Plausibility

(lift, heavy object) 9.17

(design, new object) 8.00

(attack, small object) 5.23

(inform, weird object) 3.64

(earn, rubber object) 0.63

nsubj_amod Plausibility

(evil subject, attack) 9.00

(recent subject, demonstrate) 6.00

(random subject, bear) 4.00

(happy subject, steal) 2.25

(sunny subject, make) 0.56
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Correlations with OMCS (sing, song) (dobj, 9.25)
(song, UsedFor, sing)

(phone, ring) (nsubj, 8.75)
(phone, CapableOf, ring)

(cold, water) (amod, 8.86)
(water, HasProperty, cold)

(create, new) (dobj_amod, 8.25)
(create idea, UsedFor, invent 
new things)

(hungry, eat) (nsubj_amod, 10.00)
(eat, MotivatedByGoal, are 
hungry)
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Performance on Winograd Schema

• 72 out of 273 questions satisfying 
nsubj_amod and dobj_amod relations

• Jim yelled at Kevin because he was so upset.

• We compare the scores
• (yell, upset object) following nsubj_amod

• (upset object , yell) following dobj_amod

• Results

dobj_amod Plausibility

(lift, heavy object) 9.17

(design, new object) 8.00

(attack, small object) 5.23

(inform, weird object) 3.64

(earn, rubber object) 0.63

nsubj_amod Plausibility

(evil subject, attack) 9.00

(recent subject, 
demonstrate)

6.00

(random subject, bear) 4.00

(happy subject, steal) 2.25

(sunny subject, make) 0.56

Model Correct Wrong NA Accuracy
(predicted)

Accuracy
(overall)

Stanford 33 35 4 48.5% 48.6%

End2end (Lee et al., 2018) 36 36 0 50.0% 50.0%

PP* (Resnik, 1997) 36 19 17 65.5% 61.8%

SP-10K 13 0 56 100% 59.0%
*PP: posterior probability for SP 
acquisition using Wikipedia data
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KnowlyWood

• Perform information extraction 
from free text

• Mostly movie scripts and novel 
books

• Four relations: previous, next, 
parent, similarity

• No subject information
• Only verb+object

Niket Tandon, Gerard de Melo, Abir De, Gerhard Weikum: Knowlywood: Mining Activity Knowledge From Hollywood Narratives. 
CIKM 2015: 223-232
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ASER (Activities, States, Events, and their Relations)

Alexander P. D. Mourelatos. Events, processes, and states. Linguistics and Philosophy, 2, 415-434. 1978.
Emmon Bach. The algebra of events. Linguistics and philosophy, 9 (1), 5-16. 1986.

• State: The air smells of jasmine.
• Process: It’s snowing.
• Development: The sun went down.
• Punctual occurrence: The cable 

snapped. He blinked. The pebble hit the 
water.

Mourelatos’ taxonomy (1978)

• Static states: be in New York, love (one's cat);
• Dynamic states: sit, stand, drunk, present, sick;
• Processes: walk, push a cart, sleep;
• Protracted events: build (a cabin), eat a sandwich, polish a 

shoe, walk to Boston; 
• Culminations: take off; arrive, leave, depart;
• Happenings: blink, flash, knock, kick, hit, pat, wink; 

Bach’s taxonomy (1986)
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Eventualities

• Using patterns to collect 
partial information

• Six relations are also kept but 
treated as auxiliary edges

• advmod, 

• amod, 

• nummod, 

• aux, 

• compound, 

• neg

Pattern Code Example
n1-nsubj-v1 s-v `The dog barks'
n1-nsubj-v1-dobj-n2 s-v-o `I love you'
n1-nsubj-v1-xcomp-a s-v-a `He felt ill'

n1-nsubj-(v1-iobj-n2)-dobj-n3 s-v-o-o `You give me the book'
n1-nsubj-a1-cop-be s-be-a `The dog is cute'
n1-nsubj-v1-xcomp-a1-cop-be s-v-be-a `I want to be slim'
n1-nsubj-v1-xcomp-n2-cop-be s-v-be-o `I want to be a hero'

n1-nsubj-v1-xcomp-v2-dobj-n2 s-v-v-o `I want to eat the apple'
n1-nsubj-v1-xcomp-v2 s-v-v `I want to go'

(n1-nsubj-a1-cop-be)-nmod-n2-case-p1 s-be-a-p-o `It' cheap for the quality'

n1-nsubj-v1-nmod-n2-case-p1 s-v-p-o `He walks into the room'

(n1-nsubj-v1-dobj-n2)-nmod-n3-case-p1 s-v-o-p-o `He plays football with me'
n1-nsubjpass-v1 spass-v `The bill is paid'

n1-nsubjpass-v1-nmod-n2-case-p1 spass-v-p-o `The bill is paid by me'
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Eventuality Relations
• 14 relations taking from 

CoNLL shared task
• More frequent relations

• Less ambiguous 
connectives

• ‘so that’ 31 times only in 
‘Result’ relations

• Some are ambiguous
• ‘while’: Conjunction 39 

times, Contrast 111 times, 
Expectation 79 times, and 
Concession 85 times

• Classifiers trained on Penn 
Discourse Treebank (PDTB) 
(Prasad et al., 2007)

Relation Type Examples

Precedence E1 before E2; E1 , then E2; E1 till E2; E1 until E2

Succession E1 after E2; E1 once E2

Synchronous E1, meanwhile E2; E1 meantime E2; E1, at the same time E2

Reason E1, because E2

Result E1, so E2; E1, thus E2; E1, therefore E2; E1, so that E2

Condition E1, if E2; E1, as long as E2

Contrast E1, but E2; E1, however E2; E1, by contrast E2; E1, in contrast E2; E1 , on the 
other hand, E2; E1, on the contrary, E2

Concession E1, although E2

Conjunction E1 and E2; E1, also E2

Instantiation E1, for example E2; E1, for instance E2

Restatement E1, in other words E2

Alternative E1 or E2; E1, unless E2; E1, as an alternative E2; E1, otherwise E2

ChosenAlternative E1, E2 instead

Exception E1, except E2

Prasad, R., Miltsakaki, E., Dinesh, N., Lee, A., Joshi, A., Robaldo, L., & Webber, B. L. (2007). The penn discourse treebank 2.0 annotation manual.
Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi Prasad, Christopher Bryant, Attapol T. Rutherford. The CoNLL-2015 Shared Task on Shallow Discourse Parsing.
Jianxiang Wang and Man Lan. A Refined End-to-End Discourse Parser. CONLL Shared Task 2015.
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A Running Example

An input sentence

Eventuality Extraction

Relation Extraction

Graph Construction

Conceptualization
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1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

#Eventualities #Relations

Scales of Verb Related Knowledge Graphs

300x larger
6000x larger
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So far we have:

• A concept based knowledge base: ProBase
• There are many others

• Hypernym detection is also an active research in NLP

• A verb-phrase based knowledge base: ASER

• How to concepualize?

NELL
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Inference for Winograd Schema Challenge

Question

ASER
Knowledge

Extracted
Eventualities

97. The fish ate the worm. It was hungry.

98. The fish ate the worm. It was tasty.

The fish: (‘X ate Y’, ‘X was hungry’)

the worm: (‘X ate Y’, ‘Y was hungry’)

The fish: (‘X ate Y’, ‘X was tasty’)

the worm: (‘X ate Y’, ‘Y was tasty’)

ASER(‘X ate Y’, ‘X was hungry’) = 18

ASER(‘X ate Y’, ‘Y was hungry’) = 1

ASER(‘X ate Y’, ‘X was tasty’) = 0

ASER(‘X ate Y’, ‘Y was tasty’) = 7

Prediction

The fish

the worm

76



Partial Information Aggregation

• “hurt things tending to fall down”

• “stocks price may increase when a company acquires a start-up”

(hurt, X) connection (X, fall)

(company, acquire, start-up) result-in (stock, increase)
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He, she, I, Bob, … PERSON

1996, 2020, 1949, … YEAR

23, 20, 333, …. DIGIT

www.google.com, …     URL

1.0

1.0

1.0

1.0

Probability

Normalization
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(person, have, animal) (positive-emotion, come)

You, will have, a duckling

I, have, my own horse the exhilaration, come

ResultIn [freq=2] 0.1250.333

He, have, a little dog
0.281

0.222

the happiness, come
0.087

ResultIn [freq=3]
…… ……

…… ……

……

……

P(                 |                                     ,                                          ) = 0.281 × 3 × 0.087 + 0.333 × 2 × 0.125
= 0.157

(person, have, animal)ResultIn (positive-emotion, come)

Conceptualization
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Conceptualization Examples

Hongming Zhang, Xin Liu, Haojie Pan, Haowen Ke, Jiefu Ou, Tianqing Fang, Yangqiu Song: ASER: Towards Large-scale Commonsense 
Knowledge Acquisition via Higher-order Selectional Preference over Eventualities. CoRR abs/2104.02137 (2021)
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ASER 2.0
• 1.0 (in 2019): Rule based extraction (14 Eventuality Patterns, Improved Version)

• 2.0 (in 2021): Discourse Parser (18 Eventuality Patterns + Wang and Lan 2015)

• Conceptualization Core (Using top 5 concepts for each detected instance): 
• Concepts: 15 millions (based on 14 millions eventualities, 1.X times)
• Concept Relations: 224 millions (based on 53 millions eventuality relations, 4.X 

times)

Data #Unique Eventualities #Unique Relations
Core 34 millions 15 millions
Full 272 millions 206 millions

Data #Unique Eventualities #Unique Relations
Core 53 millions 52 millions
Full 439 millions 649 millions

Hongming Zhang, Xin Liu, Haojie Pan, Haowen Ke, Jiefu Ou, Tianqing Fang, Yangqiu Song: ASER: Towards Large-scale Commonsense 
Knowledge Acquisition via Higher-order Selectional Preference over Eventualities. CoRR abs/2104.02137 (2021)
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Rule Mining: Eventualities

• Mine Rules using AMIE + 

Concession E1, although E2

ChosenAlternative E1, E2 instead

Luis Galárraga, Christina TeflioudiFabian Suchanek, Katja Hose Fast Rule Mining in Ontological Knowledge Bases with AMIE+. VLDB Journal 2015.
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Rule Mining: Concepts

• Mine Rules using AMIE+ 

Instantiation E1, for example E2; E1, for instance E2

Restatement E1, in other words E2

Luis Galárraga, Christina TeflioudiFabian Suchanek, Katja Hose Fast Rule Mining in Ontological Knowledge Bases with AMIE+. VLDB Journal 2015.
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Incorporating More Relations

Concept Graph

Eventuality Graph

Two Issues :
1. Concept Transitivity
2. Verb’s Entailment Relations
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Entailment Graph Construction

Node Type Reference #Graphs #Nodes #Edges Domain

Typed Predicate Berant et al., ACL, 2011
Hosseini et al. TACL, 2018

2,303
363

10,672
101K

263,756
66M

Place/disease
News

Open IE Proposition Levy et al., CoNLL, 2014 30 5,714 1.5M Healthcare

Eventuality Ours 473 10M 103M Commonsense
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Three-step Construction

Changlong Yu, Hongming Zhang, Yangqiu Song, Wilfred Ng, Lifeng Shang . Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations. AKBC. 2020.
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Other Resources

• ELG: An Event Logic Graph to discovery of 
evolutionary patterns among events

• Sequential (the same meaning with “temporal”)

• Causal

• Conditional 

• Hypernym-hyponym (“is-a”) relations between events

• Causal Bank and Cause Effect Graph
• Sentences expressing causal patterns

• Lexical causal knowledge graph

ELG: An Event Logic Graph Xiao Ding, Zhongyang Li, Ting Liu, Kuo Liao. Arxiv. 2019.
Zhongyang Li, Xiao Ding, Ting Liu, J Edward Hu, and Benjamin Van Durme. Guided generation of cause and effect. IJCAI, 2020. 
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Conclusions for This Part

• Commonsense has been a long standing core AI problem

• We have seen a sudden interest in commonsense recently

• We have talked about commonsense knowledge acquisition
• Crowdsourcing

• Learning upon annotated data will be introduced in the second part
• Information extraction

• How to formulate the problem
• What have been done

• What’s missing?
• We have done entity and eventuality based extraction
• Other commonsense knowledge, e.g., physical knowledge, attribute (color, shape) knowledge 

were not mentioned
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10 Minutes Break
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In this tutorial, I will introduce

• How to collect commonsense knowledge? (Part 1)

• What we can do so far for commonsense reasoning and related tasks? 
(Part 2)
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs

• Learning and Reasoning for Downstream Tasks (CSQA)

Slides credit of this part: Tianqing Fang
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Reasoning
• General reasoning

• Logical reasoning: Given premise/presumption,
draw conclusions based solely on the premise

• For example 
• 𝐾𝐵 = 𝑅𝑎𝑖𝑛 → 𝑊𝑒𝑡, 𝑅𝑎𝑖𝑛 , 𝑓 = 𝑊𝑒𝑡

• Applying Modus ponens inference rule in KB:

•
𝑅𝑎𝑖𝑛,𝑅𝑎𝑖𝑛→𝑊𝑒𝑡

𝑊𝑒𝑡

KBTell 𝑓 ?

Already knew that: entailment 𝐾𝐵 ⊨ 𝑓
Don't believe that: contradiction 𝐾𝐵 ⊨ ¬𝑓
Learned something new (update KB): contingent

KBAsk 𝑓 ?

Yes: entailment 𝐾𝐵 ⊨ 𝑓
No: contradiction 𝐾𝐵 ⊨ ¬𝑓
I don't know: contingent

𝑀(𝐾𝐵) 𝑀(𝑓)

Entailment 𝐾𝐵 ⊨ 𝑓: KB defines more specific 
knowledge (configuration) than formula f, aka, 
f added no information to KB

92



Commonsense Reasoning

• Commonsense reasoning in natural language:

• Logical reasoning: E.g., first-order IsA relations. Taxonomy reasoning. (Davis 2017)

• General natural language: Draw conclusions similar to humans’ folk psychology and naive 
physics (Davis 2015)

• Commonsense reasoning in traditional logics
• Lacks such high-quality KB to perform logical reasoning

• Can only deal with first-order logics like IsA

• KB may be noisy. Needs probabilistic reasoning

• Implicit inferential knowledge outside of the taxonomy

Davis, Ernest (25 August 2017). "Logical Formalizations of Commonsense Reasoning: A Survey". Journal of Artificial Intelligence Research. 59: 651–723. 

If X hit Y on the face, Y will be
(a) upset (b) happy

Corgi is a kind of dog.
Dog barks.
--> Corgi barks.
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Commonsense Reasoning

• Conceptualization and its compositionality in a sentence is one of the keys to 
commonsense reasoning (generalization), but there is still lack of study 

Y: Trophy does not fit in suitcase, REASON, it is big

Grounding
• Computer not fit in parcel, 

REASON, Computer is big

• Rock not fit in carrier, REASON, 
rock is big

• …

The CSKB is usually incomplete. So there is no 
direct support to entail the conclusion Y.
Simple similarity/analogy does not always work, 
especially when training data is small (see 
Winograd Schema Challenge and Winogrande)

CSKB/Training Data

Consistent

Conceptualization Instantiation

Trophy is an item; Suitcase is a container

If we instantiate all, 
it’s possible to entail

Induction

Deduction

Current deep learning models do not 
perform concept-level induction. Instead, 
they use model induction to summarize all 
they observe in the training data. That also 
means, they conceptualization ability is 
restricted to what they have seen. 94

X: Item does not fit in container, REASON, item is big



Inference with Entailment

• Commonsense reasoning in current NLP community
• Usually just textual entailment (learning an entailment classifier) and 

textual implication (Gordon et al. 2012)
• “Entailment is meant to include inferences that are necessarily true due to the 

meaning of the text fragment.”

• “Implications are inferences expected to be true, are likely causes or effects of the 
text, or are default assumptions”

• Based not only on the context, but world knowledge
• Able to leverage implicit knowledge using language models

Entailment can be done implicitly; 
this is why joint learning with NLP 
helps commonsense tasks 

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. Semeval-2012 task 7: Choice of plausible alternatives: An evaluation of commonsense causal reasoning. SemEval@NAACL-HLT, 2012.
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Reasoning Approaches and Typical Objectives (2015)

Davis, Ernest, and Gary Marcus. “Commonsense reasoning and commonsense knowledge in artificial intelligence. " Communications of the ACM 58.9 (2015): 92-103.

• Reasoning architecture: A closely related issue is the representation 
of the meaning of natural language sentences.

• Plausible inference; drawing provisional or uncertain conclusions.
• Range of reasoning modes. Incorporating a variety of different 

modes of inference, such as explanation, generalization, abstraction, 
analogy, and simulation.

• Painstaking analysis of fundamental domains. Complex reasoning 
about basic domains such as time, space, naïve physics, and naïve 
psychology.

• Breadth. Attaining powerful commonsense reasoning will require a 
large body of knowledge.

• Independence of experts. Paying experts to hand-code a large 
knowledge base is slow and expensive.

• Applications. To be useful, the commonsense reasoner must serve 
the needs of applications and must interface with them smoothly. ˲ 

• Cognitive modeling. Theories of commonsense automated reasoning 
accurately describe commonsense reasoning in people.

ASER ATOMIC/
GLUCOSE
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs
• Commonsense Knowledge Bases

• Commonsense Knowledge Generation

• Commonsense Knowledge Base Completion

• Commonsense Knowledge Base Population

• Learning and Reasoning for Downstream Tasks (CSQA)

Slides credit of this part: Tianqing Fang
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Commonsense Resources and Benchmarks

• The foundation of computational commonsense

• Why are Commonsense Knowledge Base (CSKB) needed

• 60M knowledge about the world are needed (Marvin Minsky)

• Commonsense is generally omitted in daily conversation

• Commonsense knowledge is implicit knowledge that is hard to mine directly

from existing corpora

• Crowdsourcing is needed

Dreifus C: ‘Got stuck for a moment: an interview with Marvin Minsky’, International Herald Tribune (August 1998).
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Commonsense Knowledge Bases

• ConceptNet (v5.7)
• Formalizing relations in OMCS and merge

DBPedia, WordNet, etc.

• Also incorporate multi-lingual word knowledge.

Speer, Robyn, Joshua Chin, and Catherine Havasi. "Conceptnet 5.5: An open multilingual graph of general knowledge." AAAI. 2017.
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Commonsense Knowledge Bases

• ATOMIC

• Everyday If-then commonsense knowledge

• Motivation, characteristics, and effects on agent/theme.

• GLUCOSE

• Factors/emotions that enables/causes a event from stories.

• grounded in narratives

Sap, Maarten, et al. “Atomic: An atlas of machine commonsense for if-then reasoning.” AAAI 2019.

Mostafazadeh, Nasrin, et al. “GLUCOSE: GeneraLized and COntextualized Story Explanations.” EMNLP 2020

SomeoneA possesses Something
Enables
SomeoneA moves it

If X hit Y on the face, Y will be upset
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Commonsense Resources and Benchmarks

• Scale and Comparisons of Large-scale CSKBs

#Tuple #Rel Types Node Type Construction

OMCS 40K 21 Phrase & Entity Annotation

ConceptNet 21M 36 Phrase & Entity Annotation+Auto

ATOMIC 880K 9 Free-text Annotation

ATOMIC2020 1.33M 23 Free-text, Phrase & Entity Annotation

GLUCOSE 670K 10 Free-text,Structured Rules Annotation

WebChild 4M 19 Phrase & Entity IR/IE

WebChild 2.0 18M 19 Phrase & Entity IR/IE

Quasimodo 2.26M - Phrase & Entity IR/IE

ASER (core) 52.3M 14 Eventuality (Activity, states, events) IR/IE

TransOMCS 18.5M 20 Phrase & Entity IR/IE+Annotation+Reasoning

DISCOS 3.4M 9 Eventuality IR/IE+Reasoning
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs
• Commonsense Knowledge Bases

• Commonsense Knowledge Generation

• Commonsense Knowledge Base Completion

• Commonsense Knowledge Base Population

• Learning and Reasoning for Downstream Tasks (CSQA)

Slides credit of this part: Tianqing Fang
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Commonsense Generation

• Cloze style
• LAMA

• English ConceptNet, single-token objects.

• (𝐻𝑒𝑎𝑑, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, [𝑀𝐴𝑆𝐾])

• Mining ConceptNet knowledge using PTLM
• Turning triples to sentences

• (ferret, AtLocation, pet store) -> ferret is in the pet store

• Generate tails using GPT and BERT

• A lot of prompt-based methods have been developed

Petroni, Fabio, et al. “Language Models as Knowledge Bases?.” EMNLP 2019
Davison, Joe, Joshua Feldman, and Alexander M. Rush. “Commonsense knowledge mining from pretrained models.” EMNLP 2019
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: COMmonsEnse Transformers
• Train a transformer (GPT-2) of how to generate the tail

• Can be seen as a generative knowledge base population method

• How to generate/find new heads is unclear 

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, Yejin Choi. ACL, 2019.
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Symbolic Knowledge Distillation

• Extracts the commonsense from the large, general 
language model GPT-3, into 2 forms: 

• a large commonsense knowledge graph ATOMIC10x

• a compact commonsense model COMETTIL
DIS

Symbolic Knowledge Distillation: from General Language Models to Commonsense Models Peter West, Chandra Bhagavatula, Jack Hessel, Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, 
Sean Welleck, Yejin Choi. 2021.

Prompt Heads

• A set of 100 high-quality events from 
ATOMIC20

20

• Randomly sampling 10 each time
• Generate 165K unique events using the 

175B-parameter Davinci model

Prompt Tails

For each pair of event (165K) and 
relation (7) we generate 10 inferences 
with the second largest form of GPT-3, 
Curie, resulting in 6.46M ATOMIC-style 
data triples
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs
• Commonsense Knowledge Bases

• Commonsense Knowledge Generation

• Commonsense Knowledge Base Completion

• Commonsense Knowledge Base Population

• Learning and Reasoning for Downstream Tasks (CSQA)

Slides credit of this part: Tianqing Fang
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Commonsense Knowledge Base Completion

• Commonsense Knowledge Base Completion
• Adopt the idea of KB Completion

• {(ℎ, 𝑟, 𝑡)|ℎ ∈ 𝐻, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇}, predict missing links within the set of 𝐻 and 𝑇.

• Datasets:
• ConceptNet

• ATOMIC

• Differences with Conventional Knowledge Base Completion
• Semantics matters a lot

• Commonsense KBs are generally very sparse.

107



CSKB Completion

• CSKB Completion vs Traditional KB Completion

• Need to deal with sparsity in CSKB.

• Need to encode semantics of the nodes.

#Nodes #Edges Avg In-Degree

ConceptNet 78,088 10,000 1.25

ATOMIC 256,570 610,536 2.25

FB15K-237 14,505 272,115 16.98

Malaviya, Chaitanya, et al. “Commonsense knowledge base completion with structural and semantic context.” AAAI 2020.
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CSKB Densification

• Bert-sim+GCN+Conv-TransE
• Graph densifier using BERT similarity

• GCN to encode graph structure

• Conv+a bilinear projection matrix
decoder for link prediction

Malaviya, Chaitanya, et al. “Commonsense knowledge base completion with structural and semantic context.” AAAI 2020.
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InductivE
• BERT+R-GCN+Conv-TransE (Modified)

• R-GCN

• Graph densifier using BERT similarity

• Heuristic rules, adding edges for nodes with fewer neighbors

Wang, Bin, et al. "Inductive Learning on Commonsense Knowledge Graph Completion." IJCNN, 2021.
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs
• Commonsense Knowledge Bases

• Commonsense Knowledge Generation

• Commonsense Knowledge Base Completion

• Commonsense Knowledge Base Population

• Learning and Reasoning for Downstream Tasks (CSQA)

Slides credit of this part: Tianqing Fang
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CSKB Population

• Denote the CSKB as 𝒞 = {(ℎ, 𝑟, 𝑡)|ℎ ∈ ℋ , 𝑟 ∈ ℜ, 𝑡 ∈ 𝒯}. An automatically extracted eventuality 
knowledge graph as 𝒢 = (𝒱, ℰ), which is much larger than 𝒞.

• Denote 𝒢𝒞 as the graph by aligning 𝒢 and 𝒞.

• The goal of CSKB Population is to learn a scoring function for a triple (ℎ, 𝑟, 𝑡) where plausible
triples are scored higher.

• Triples from 𝒞 are served as positive examples.

• Graph propagation

• Transductive learning

• Linked to traditional semi-supervised learning as well
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CKGC (Completion) vs. CKGP (Population)
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Commonsense Knowledge Base Population

• Different commonsense knowledge bases have different properties

• ConceptNet Population
• Selectional preference

• ATOMIC Population
• Latent variables (events and states) of commonsense

Slides credit for this part: Hongming Zhang
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ConceptNet (Speer & Havasi, 2012)
Core is OMCS (Liu & Singh 2004)

• Commonsense knowledge base
• Commonsense knowledge about noun-phrases, or entities.

Speer and Havasi. "Representing General Relational Knowledge in ConceptNet 5." LREC. 2012.
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Revisit the Correlations of 
Selectional Preference and OMCS

(sing, song) (dobj, 9.25)
(song, UsedFor, sing)

(phone, ring) (nsubj, 8.75)
(phone, CapableOf, ring)

(cold, water) (amod, 8.86)
(water, HasProperty, cold)

(create, new) (dobj_amod, 8.25)
(create idea, UsedFor, invent 
new things)

(hungry, eat) (nsubj_amod, 10.00)
(eat, MotivatedByGoal, are 
hungry) 116



Revisit the Correlations of ASER and OMCS

117



TransOMCS
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Knowledge Ranking
• Assigning confidence score to each piece of extracted commonsense

• Leverage the semantics of the original sentences
• Leverage the frequency information

Raw Input Representation after
Transformers

Representation after
Graph Attention

Plausibility Prediction

Head
Embedding

Tail
Embedding

Other
Features
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Transferring ASER to ConceptNet

Transferability from linguistic knowledge to commonsense knowledge

SP over eventualities can effectively represent interesting commonsense knowledge 120



Distribution of Relations and Accuracy

Distribution of Relations Accuracy
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Commonsense Knowledge Base Population

• ConceptNet Population

• Selectional preference

• ATOMIC Population
• Latent variables (events and states) of commonsense

Slides credit for this part: Tianqing Fang
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Transform ASER to ATOMIC
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Coverage and Implicit Edges

• Most event related commonsense relations are implicit on ASER
• ConceptNet (Event-related relations), ATOMIC, ATOMIC 2020, and GLUCOSE

Maarten Sap, et al. ATOMIC: An atlas of machine commonsense for if-then reasoning. AAAI 2019.
Jena D Hwang, et al. (Comet-) Atomic 2020: On Symbolic and Neural Commonsense Knowledge Graphs. AAAI 2021.
Nasrin Mostafazadeh, et al. Glucose: Generalized and contextualized story explanations. NAACL 2020. 
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Node Alignment with ASER

• ASER and other CSKB take different forms of representing personal entities

• Develop simple rules for aligning the two resources.
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DISCOS (DIScourse to COmmonSense): BertSAGE [WWW 2021]

• Use BERT to encode the eventuality sentences

• Use GraphSAGE (Hamilton 2017) to aggregate the neighboring information in ASER

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS. 2017.
Tianqing Fang, Hongming Zhang, Weiqi Wang, Yangqiu Song, and Bin He. DISCOS: Bridging the Gap between Discourse Knowledge 
and Commonsense Knowledge. WWW, 2021. 
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Another Model: KG-BertSAGE [EMNLP 2021]

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-Bert: Bert for knowledge graph completion. arXiv preprint arXiv:1909.03193.
Tianqing Fang, Weiqi Wang, Sehyun Choi, Shibo Hao, Hongming Zhang, Yangqiu Song, and Bin He. Benchmarking Commonsense 
Knowledge Base Population with an Effective Evaluation Dataset. EMNLP. 2021.
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Training and Testing Data

• Training: four commonsense knowledge bases
• ConceptNet (event-related relations)

• ATOMIC

• ATOMIC 2020

• GLUCOSE

• Graph Data: normalized nodes/edges in ASER

• Testing: ~30K annotated data
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Main Population Results

• We use AUC as the evaluation metric. The break-down scores for all
models are presented below.
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GPT-2 (Generative) v.s. KG-Bert (Discriminative)

• Differences in the training setting. GPT-2: maximize the likelihood of positive 
examples. KG-Bert: distinguishing positive with (randomly sampled) negative 
examples. The former has better generalization ability.
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs

• Learning and Reasoning for downstream tasks (CSQA)
• Tasks and Resources for Commonsense Question Answering

• Recent Methods for Commonsense Question Answering

Slides credit of this part: Zizheng Lin and Tianqing Fang
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Overview

• Commonsense: the knowledge about the open world possessed by 
most people. (Liu and Singh, 2004)

• Example: 
• Amy gives the cellphone back to Bob after using it to call for her parents to 

pick her up.

Liu, Hugo, and Push Singh. "ConceptNet—a practical commonsense reasoning tool-kit." BT technology journal 22.4 (2004): 211-226.

Waiting for her parents
Waiting for a new cellphone 
to be delivered

Next action of Amy

Much more likely than
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Overview

• Commonsense Question Answering (CSQA):
• Sophisticated comprehension

• Complex reasoning

• CSQA Tasks and benchmarks: 
• Focus on one particular aspect (e.g., PIQA (Bisk et, al., 2020) for physical 

commonsense)

• Covers general commonsense (e.g., CosmosQA (Huang et, al. 2020))

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In Proceedings of the AAAI 
Conference on Artificial Intelligence, volume 34, pages 7432–7439, 2020.
Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos qa: Machine reading comprehension with contextual commonsense reasoning. In 
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language 
Processing (EMNLP-IJCNLP), pages 2391–2401, 2019. 133



Overview

• Reporting bias: commonsense knowledge tends to be implicitly 
mentioned in unstructured data such as text

• CommonSense Knowledge Graphs (CSKG): 
• Provide explicit and structured commonsense knowledge

Liu, Hugo, and Push Singh. "ConceptNet—a practical commonsense reasoning tool-kit." BT technology journal 22.4 (2004): 211-226.

Hongming Zhang, Xin Liu, Haojie Pan, Yangqiu Song, and Cane Wing-Ki Leung. Aser: A large-scale eventuality knowledge graph. In Proceedings ofTheWeb

Conference 2020, pages 201–211, 2020.
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Tasks and Benchmarks

• Social commonsense 
• Physical commonsense
• Temporal commonsense
• Numerical commonsense
• Spatial commonsense
• General commonsense
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Social Commonsense
• Emotional and social intelligence required by human interactions in 

various social situations

• Example: 
• Alex spilled the food she just prepared all over the floor and it made a huge 

mess (Sap et, al., 2019).

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQA: Commonsense reasoning about social interactions. EMNLP-IJCNLP, pages 4453–4463, 2019.

(a) Mop up the floor (b) Taste the food
(c) Run around in the mess

Next action of Alex

Much more likely than
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Social Commonsense

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQA: Commonsense reasoning about social interactions. EMNLP-IJCNLP, 2019.
Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-scale adversarial dataset for grounded commonsense inference. EMNLP, 2018.

Sample Question Sample Answer Construction Method Size

Social IQA 
(Sap et, al., 
2019)

In the school play, Robin played a 
hero in the struggle to the death with 
the angry villain. How would others 
feel afterwards?

(1) sorry for the villain
(2) hopeful that Robin will 

succeed 
(3) like Robin should lose

ATOMIC,
Human annotations

37.6K

SWAG
(Zellers et, 
al., 2018)

On stage, a woman takes a seat at the 
piano. She ___

(1) sits on a bench as her sister 
plays with the doll

(2) nervously sets her fingers on 
the keys

ActivityNet Captions,
Human annotation,
Adversarial Filtering

113K
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Physical Commonsense

• The common understanding of the physical properties of objects 
existing in everyday life

• Example: 
• The procedure of making an outdoor pillow (Bisk et, al., 2020)

blow into a trash bag and 
tie with rubber band

blow into a tin can and tie 
with rubber band

Much more suitable than

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical commonsense in natural language. AAAI, 2020.
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Physical Commonsense

Sample Question Sample Answer Construction Method Size

PIQA 
(Bisk et, 
al., 
2020)

How do I find something 
I lost on the carpet?

(1) Put a solid seal on the end of your vacuum 
and turn it on.

(2) Put a hair net on the end of your vacuum and 
turn it on. 

Instructions on
everyday events

21K

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical commonsense in natural language. AAAI, 2020.
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Temporal Commonsense

• Commonsense knowledge about time

• Example: 

• taking a vacation 

takes longer time than 

taking a walk
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Temporal Commonsense

Sample Question Sample Answer Construction Method Size

MCTACO 
(Zhou et, 
al., 2019)

Mr. Barco has refused US troops or 
advisors but has accepted US military 
aid. What happened after Mr. Barco 
accepted the military aid?

(1) the aid was denied
(2) things started to progress 
(3) he received the aid 

Human annotations 13K

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth. "Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding. EMNLP/IJCNLP, 2019.

• Duration: how long an event takes
• Temporal ordering: typical order of events
• Frequency: how often an event occurs
• Stationarity: whether a state holds for a very long time or indefinitely
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Numerical Commonsense

• Commonsense knowledge about numbers and their operations 
involved in everyday life.

• Example:
• The number of days in a week

seven 

unnecessary to be explicitly mentioned in the 
communication
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Numerical Commonsense

Sample Question Sample Answer Construction Method Size

NumerSense (Lin 
et, al., 2020)

A bird usually has [MASK] legs. (1) Four
(2) Two 

Information extraction,
Human annotation

13.6K

DROP (Dua et, al., 
2019)

Before the UNPROFOR fully deployed, …, and 
captured the village at 4:45 p.m. on 2 March 
1992. The JNA … the next day.

What date did the JNA form a battlegroup to 
counterattack after the village of Nos Kalik was 
captured? 

3 March 1992 Information 
extraction,
Adversarial creation,
Human annotation

96K

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xiang Ren. Birds have four legs?! NumerSense : Probing numerical commonsense knowledge of pre-trained language models. EMNLP, 2020
Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. 
NAACL-HLT , 2019.

• Subtraction
• Comparison
• Selection
• Addition
• Count
• Coreference
• Other arithmetic
• Etc.

• There are many other math 
word problems in NLP
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Spatial Commonsense

• Cognitive process about spatial objects, relations, and transformations 
(Clements and Battista, 1992)

• Example:
• The man is riding a horse (Collell et, al., 2018)

The relative positions of the man and the 
horse

The man is above the horse

Douglas H Clements and Michael T Battista. Geometry and spatial reasoning. Handbook ofresearch on mathematics teaching and learning, pages 420–464, 1992.
Guillem Collell, Luc Van Gool and Marie-Francine Moens. Acquiring common sense spatial knowledge through implicit spatial templates. AAAI 2018.
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Spatial Commonsense

Sample Question Sample Answer Construction 
Method

Size

SPARTQA
(Mirzaee et, 
al., 2021)

Human 
annotations and 
distant supervision

140K

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang Ning, and Parisa Kordjmashidi. SpartQA:: A textual question answering benchmark for spatial reasoning. NAACL 2021.
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General Commonsense
• General knowledge involved in everyday situation (e.g., causal 

commonsense)

• Example: 
I tipped the bottle (Gordon et, al., 2012)  

The liquid in the bottle 
poured out

The liquid in the bottle frozeWhat happened as a 
RESULT

Much more likely than

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. Semeval-2012 task 7: Choice of plausible alternatives: An evaluation of commonsense causal reasoning. SemEval@NAACL-HLT, 2012.
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General Commonsense

Sample Question Sample Answer Construction 
Method

Size

COPA
(Gordon et, al., 
2012)

The man fell unconscious. 
What was the cause of this?

(1) The assailant struck the 
man on the head. 

(2) The assailant took the 
man’s wallet.

Human annotation 1k

CommonsenseQA
(Talmor et, al., 
2019)

Where can I stand on a river to see 
water falling without getting wet?

(1) waterfall, (2) bridge, 
(3) valley, (4) stream,
(5)  bottom

Extraction from 
ConceptNet,
Human annotation

12.2K

CosmosQA (Huang 
et, al., 2019)

I cleaned xxx. His parents always
throw our stuff like we were refugees.
Why did I decide to clean?

(1) I’m getting tired
(2) We gets more food and

need rooms for that.

From narrative
ATOMIC relations

35.6K

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question answering challenge targeting commonsense knowledge. NAACL , 2019.
Andrew S. Gordon, Zornitsa Kozareva, and Melissa Roemmele. Semeval-2012 task 7: Choice of plausible alternatives: An evaluation of commonsense causal reasoning. SemEval@NAACL-HLT, 
2012.
Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos QA: Machine reading comprehension with contextual commonsense reasoning. EMNLP-IJCNLP, 2019.
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs

• Learning and Reasoning for downstream tasks (CSQA)
• Tasks and Resources for Commonsense Question Answering
• Recent Methods for Commonsense Question Answering

• Pre-Trained Language Model as the Only Implicit Knowledge Source
• External Knowledge Graph as Explicit Knowledge Source
• Induce Explicit Knowledge from Pre-Trained Language Model
• Multitask Learning
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Pre-Trained Language Model as the Only Implicit 
Knowledge Source

• Pre-Trained Language Models (PTLMs) implicitly encode a certain 
amount of commonsense knowledge into its parameters by pre-
training

• LAMA probe (Petroni et, al., 2019): 
• Abundant knowledge can be induced from PTLMs via prompts

• Inspired many following works studying the mechanism of inducing explicit 
knowledge from PTLMs

• Typical workflow:
• Choose a PTLM (e.g., BERT, T5)

• Formulate target questions into the chosen PTLM’s format

• Fine-tuning(Optional)

• Prediction

Petroni, Fabio, et al. “Language Models as Knowledge Bases?.” EMNLP 2019
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Pre-Trained Language Model as the Only Implicit 
Knowledge Source

• UNICORN (Lourie et, al., 2021)
• T5-based CSQA model

• Pre-trained and fined-tuned on a multi-task benchmark – RAINBOW (Lourie 
et, al., 2021)

• Sequential training paradigm

• SOTA on various CSQA benchmarks (e.g., COSMOSQA and PIQA)

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unicorn on rainbow: A universal commonsense reasoning model on a new multitask benchmark. AAAI, 2021.
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs

• Learning and Reasoning for downstream tasks (CSQA)
• Tasks and Resources for Commonsense Question Answering
• Recent Methods for Commonsense Question Answering

• Pre-Trained Language Model as the Only Implicit Knowledge Source
• External Knowledge Graph as Explicit Knowledge Source
• Induce Explicit Knowledge from Pre-Trained Language Model
• Multi-task Learning
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External Knowledge Graph as Explicit 
Knowledge Source
• Reporting bias => PTLM alone may not be sufficient

• External knowledge graph => explicitly provide structured 
commonsense knowledge
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KagNet (Using ConceptNet)

• 1. Concept Recognition from 𝑄 and 𝐴.

• 2. Concept Matching in ConceptNet.
Prepare a concept schema subgraph.

• 3. Path pruning using KG Embedding

• 4. GCN-LSTM-Attention

Lin, Bill Yuchen, et al. KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning. EMNLP-IJCNLP. 2019.

𝑄 for Questions and 𝐴 for Answers.
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QA-GNN

• Scoring ConceptNet nodes with LMs to obtain the working graph

• Use Relational-GAT for working graph reasoning

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, Jure Leskovec . QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering. NAACL,  2021.
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ConceptNet+Wikipedia

• XLNet + Graph Reasoning
• 1. Knowledge extraction (entity-based matchin) from ConceptNet (less than 3 hops).

• 2. Knowledge extraction (SRL) from Wikipedia. Using elastic search. <s, p> and <p,
o> are added to the graph. s for subj, p for predicate, o for obj.

• 3. Graph-Based Contextual Representation Learning. GCN + XLNet

Lv, Shangwen, et al. Graph-based reasoning over heterogeneous external knowledge for commonsense question answering. AAAI 2020.
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DEKCOR (Using Wiktionary Descriptions)

• 1. Retrieve ConceptNet subgraph.

• 2. Extract context (description of entities) from Wiktionary.

• 3. Reasoning (Attention)

Xu, Yichong, et al. Fusing Context Into Knowledge Graph for Commonsense Reasoning. ACL 2021.
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Casual Reasoning 
with Event Graph

• Using a Causal Event Graph 
(CEG) constructed from 
CausalBank Corpus

• 314 million commonsense 
causal event pairs 

• Retrieving related events to 
bridge implicit causations

• Using graph reasoning to 
perform inference

ExCAR: Event Graph Knowledge Enhanced Explainable Causal Reasoning Li Du, Xiao Ding∗ , Kai Xiong, Ting Liu, and Bing Qin
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs

• Learning and Reasoning for downstream tasks (CSQA)
• Tasks and Resources for Commonsense Question Answering
• Recent Methods for Commonsense Question Answering

• Pre-Trained Language Model as the Only Implicit Knowledge Source
• External Knowledge Graph as Explicit Knowledge Source
• Induce Explicit Knowledge from Pre-Trained Language Model
• Multitask Learning
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Induce Explicit Knowledge from Pre-Trained 
Language Model

• Self-Talk (Shwartz et, al., 2020) paper pointed out LMs as knowledge 
providers suffer from various shortcomings:

• Insufficient coverage: due to reporting bias, many trivial facts might not be 
captured by LMs because they are rarely written about

• Insufficient precision: the distributional training objective increases the 
probability of non-facts that are semantically similar to true facts, as in negation 
(“birds cannot fly”)

• Limited reasoning capabilities: it is unclear that LMs are capable of performing 
multiple reasoning steps involving implicit knowledge.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised commonsense question answering with self-talk. EMNLP, 2020.
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Unsupervised Commonsense 
Question Answering with Self-Talk

• 1. Generate a question, conditioned on the context (pink) and 
question prefix (yellow)

• 2. Generate an answer, conditioned on the context, generated 
question and a corresponding answer prefix

• 3. The clarification is a concatenation of the answer prefix and 
generated text (green).

WinoGrande Task

Negative log likelihood
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COMET-DynaGen (Bosselut et, al., 2019)

• Inference in a zero-setting

Antoine Bosselut, Ronan Le Bras, and Yejin Choi. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering. arXiv preprint arXiv:1911.03876, 2019.

Generate intermediate 
nodes with COMET

Evaluate each generated 
edge with conditional 
log-likelihood using 
COMET

Evaluate each answer 
edge with approximated 
PMI using COMET: 
removing the answer 
priors regardless of path 
(e.g., happy is a common 
answer to emotional 
reactions)
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Learning and Reasoning with CSKB/CSKG

• Introduction

• Learning and Reasoning on CSKBs/CSKGs

• Learning and Reasoning for downstream tasks (CSQA)
• Tasks and Resources for Commonsense Question Answering
• Recent Methods for Commonsense Question Answering

• Pre-Trained Language Model as the Only Implicit Knowledge Source
• External Knowledge Graph as Explicit Knowledge Source
• Induce Explicit Knowledge from Pre-Trained Language Model
• Multitask Learning
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UnifiedQA

• Text-to-text unification:
• Text in: [Question] + “\n” + ([Context],

[Candidate Answers])

• Text out: Answer

• Pre-trained on 8 QA datasets, SQuAD,
NarrativeQA, RACE, ARC, etc.

• Text-to-text PTLMs, BART and T5.

• These pre-trained PTLM are then
finetuned on each individual dataset for
specific QAs.

Khashabi, Daniel, et al. “UnifiedQA: Crossing Format Boundaries With a Single QA System.” Findings of EMNLP. 2020.
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UnifiedQA

• Text-to-text unification:
• Performance of UnifiedQA (trained on all

training set) and dedicatedly finetuned
models on each individual dataset.

• Performance v.s. directly finetuning PTLMs

CommonsenseQA WinoGrande PIQA SIQA

BART-FT 62.5 62.4 77.4 74.0

UnifiedQA-BART-FT 64.0 63.6 77.9 73.2

T5-FT 78.1 84.9 88.9 81.4

UnifeidQA-T5-FT 79.1 85.7 89.5 81.4
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UNICORN

• 6 Multiple-choice based Commonsense QA datasets are merged.

• Training methods
• Multi-task training: training on all multiple datasets (including the target dataset) 

• Sequential training: first training on multiple datasets (excluding the target dataset), 
and then continuing to train on the target dataset alone

• Multi-task finetuning: first training on all datasets (including the target dataset), and 
then continuing to fine-tune on the target dataset alone

Lourie, Nicholas, et al. UNICORN on RAINBOW: A Universal Commonsense Reasoning Model on a New Multitask Benchmark. AAAI, 2021.

𝜶NLI CosmosQA HellaSWAG PIQA SIQA WinoGrande

multitask 78.4 81.1 81.3 80.7 74.8 72.1

finetune 79.2 82.6 83.1 82.2 75.2 78.2

sequential 79.5 83.2 83.0 82.2 75.5 78.7

none 77.8 81.9 82.2 80.2 73.8 77.0
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UNICORN

• Due to reporting bias, commonsense rarely appears directly in text.

• Human annotated Commonsense Knowledge Bases (ConceptNet and 
ATOMIC) may provide additional info.

• Pretrain PTLM using constructing CSKBs.

• Task: Given (ℎ, 𝑟) predict 𝑡, and given (𝑡, 𝑟) predict ℎ.

CSKG 𝜶NLI CosmosQA HellaSWAG PIQA SIQA WinoGrande

ATOMIC 78.3 81.8 82.8 79.9 75.0 78.2

ConceptNet 78.0 81.8 82.5 80.5 74.3 76.3

Both 78.0 81.8 82.7 81.1 74.8 76.6

Single Task 77.8 81.9 82.8 80.2 73.8 77.0

167



Summary of Results

• PTLMs achieve SOTA performance on five out of the six benchmarks 
• PTLMs store a sufficient amount of commonsense knowledge for many CSQA tasks 
• Pre-training giant models on large-scale corpora indeed benefits many CSQA tasks
• May not be sufficient for temporal CSQA yet 

• UNICORN is the most competitive among PTLMs
• Multi-task training followed by task-specific fine-tuning paradigm

• Self-Talk model can improve zero-shot learning
• BERT-large model has very low scores on several datasets:

• Under-trained issue 
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Timeline of Approaches

KagNet
Lin, et al 2019

UnifiedQA
Khashabi, et al, 2021

XLNet+
Reason

Lv et al 2020

DESCKER
Xu, et al, 2021

UNICORN
Lourie, et al, 2021

20212019

HyKAS 2.0
Ma, et al 2019

2020

QA-GNN
Yasunaga, et al 2020

2018 and before

Bi-Linear
KG-Embedding
Li et al, 2016, Saito et al. 2018,
Jastrzebski et al. 2018

Bert-similarity+
GCN+

Conv-TransE
Malaviya, et al, 2020

Neuro-Symbolic
KG Completion
Moghimifar, et al, 2021

BERT
Delvin, et al, 2019

RoBERTa
Liu, et al, 2019

GPT
Radford, et al, 2018

ALBERT
Lan, et al, 2020

BART
Lewis, et al, 2020

T5
Lourie, et al, 2020

DeBERTa
He, et al, 2020

PTLM

Multi-task

Knowledge-
enhanced

CSKB
Population

CSKB
Completion

TransOMCS
Zhang, et al, 2020

DISCOS
Fang, et al, 2021

Benchmarking
Fang, et al, 2021
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Abductive Natural Language Inference

• Deductive reasoning and abductive reasoning thus differ in which end, left or 
right, of the proposition “X entails Y" serves as conclusion.

• Deduction: from X to Y: e.g., All sharks have teeth, Alice is a shark  Alice has teeth

• Abduction: from Y to find a set of explanations X that is consistent with some logical theory Z

Abductive Commonsense Reasoning Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug Downey, Scott Wen-tau Yih, Yejin Choi. 
ICLR, 2020.

𝛼𝑁𝐿𝐼/𝛼𝑁𝐿𝐺Data O1: The observation at time t1
O2: The observation at time t2 > t1
h+: A plausible hypothesis that explains the two observations O1 and O2
h −: An implausible (or less plausible) hypothesis for observations O1 and O2

Difference between linear chain and fully connected model:
O1: “Carl went to the store desperately searching for flour tortillas for a recipe.”
O2: “Carl left the store very frustrated.”
h1 : “The cashier was rude” (linear chain choose this) incorrect
h2 : “The store had corn tortillas, but not flour ones.” (fully connected choose this) correct
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Commonsense Inference of Dialogues
• Annotated 19 ConceptNet relations (e.g., Capable Of, Causes, Motivated By Goal) and 6 negated 

relations (Not Causes, Not Motivated By Goal)

• 807 dialogues from Daily Dialog, MuTual, DREAM
• 5-12 utterances in each dialogue

• Several tasks: Dialogue-level Natural Language Inference, Span Extraction, Multi-choice Span Selection
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Visual Commonsense Knowledge Graphs 

Jae Sung Park, Chandra Bhagavatula, Roozbeh Mottaghi, Ali Farhadi, Yejin Choi: VisualCOMET: Reasoning About the Dynamic Context of a Still Image. ECCV, 2020.
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Conclusions and Future Works

• Commonsense acquisition: we now have larger scale of 
• Crowdsourcing
• Information extraction from the Web

• Large language models have been proven to be powerful for induction in a domain 
defined and designed by human

• Even it’s open domain
• The patterns that crowdsoucing workers annotate are supervised by the data creator
• But we don’t know yet how to perform explicit reasoning on modern datasets/tasks

• Fundamentally, we regard following things are important for the future of 
developing commonsense reasoning

• Conceptualization/abstraction: probabilistic modeling
• Partial information aggregation and typicality inference
• Larger commonsense evaluation datasets

• Especially those cannot be solved by giant language models
• Theory of mind mapped to practical computation 173



The Future of Commonsense Reasoning: 
Many are still missing!

174
Davis, Ernest, and Gary Marcus. “Commonsense reasoning and commonsense knowledge in artificial intelligence. " Communications of the ACM 58.9 (2015): 92-103.



Thank you for your attention!
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