Complex Query Answering on
 Neural Knowledge Graphs with Rich Semantics

Yangqiu Song
Department of CSE，HKUST
Slides Credit：Jiaxin Bai and Zihao Wang

Knowledge Graphs

- Large-scale knowledge graphs about entities and their attributes (property-of) and relations (thousands of different predicates)
- Developed since Google released its knowledge graph in 2012
- Millions of entities and concepts
- Billions of relationships

Google Knowledge Graph (2012)
570 million entities and 18 billion facts

Why is it still Important?

- Large language models (LLMs) tend to better memorize head (popular, more frequent) knowledge

Prompt	Frequent Emails (88)				Infrequent Emails (100)			
	\# parsed	\# correct	Acc (\%)	Hit@5 (\%)	\# parsed	\# correct	Acc (\%)	Hit@5 (\%)
DP	0	0	0.00	7.95	1	0	0.00	0.00
JP	46	26	29.55	61.36	50	0	0.00	0.00
MJP	85	37	42.04	79.55	97	0	0.00	0.00

Table 1: Email address recovery results on sampled emails from the Enron Email Dataset.

Entity/Facts as Memories

What is Missing?

- Retrieval Augmented Generation (RAG)

Large Language Models (LLMs)

Triple may not be enough

Retrieval Augmented Generation

Q: What is the effect of the Fed raising the interest rate?

https://en.wikipedia.org/wiki/Monetary policy of the United States
The Federal Reserve's main monetary policy instrument is its Federal funds rate target. By adjusting this target, the Fed affects a wide range of market interest rates and in turn indirectly affects stock prices, wealth and currency exchange rates.
https://en.wikipedia.org/wiki/Federal funds rate
Interbank borrowing is essentially a way for banks to quickly raise money.
Raising the federal funds rate will dissuade banks from taking out such inter-bank loans, which in turn will make cash that much harder to procure.

Retrieval Augmented Generation (Cont'd)

Q: What is the effect of the Fed raising the interest rate?

```
Embedding }101
Embedding }101
p(at | at-1,\ldots, a, , \boldsymbol{q},\mp@subsup{\boldsymbol{c}}{1}{},\ldots,\mp@subsup{\boldsymbol{c}}{M}{})
or
\sum
```GPT-3.5-Turbo-Instruct Poe
The effect of the Fed raising interest rates can lead to higher borrowing costs for consumers and businesses, which can slow down economic growth. It can also make it more expensive for people to take out loans, such as mortgages and car loans. However, it can also help to control inflation and stabilize the economy in the long term.

\section*{Retrieval Augmented Generation (Cont'd)}
\begin{tabular}{|l|l|l|}
\hline & Texts & Embeddings \\
\hline Match & Exact match & Semantic match \\
\hline Search space & Sparse vectors & Dense vectors \\
\hline In-context learning & Symbolic & Neural \\
\hline
\end{tabular}

\title{
Retrieval Augmented Generation (Cont'd)
}

What is the effect of the Fed raising the interest rate?
What is the effect of the Fed raising the interest rate while China dropping the rate?

What is the effect of the Fed raising the interest rate while China dropping the rate and OPEC+ reduces oil production?

What is the effect of the Fed raising the interest rate while China dropping the rate and OPEC+ reduces oil production, and the consequence of this effect?

What is the effect of the Fed raising the interest rate to more than \(6 \%\) while China dropping the rate to less than \(2 \%\) and OPEC+ reduces oil production by 1 million barrels a day, and the consequence of this effect?

\section*{Retrieval Augmented Generation (Cont'd)}

What is the effect of the Fed raising the interest rate to more than \(6 \%\) while China dropping the rate to less than \(2 \%\) and OPEC+ reduces oil production by 1 million barrels a day, and the consequence of this effect?

\section*{Retrieval Augmented Generation (Cont'd)}

What is the effect of the Fed raising the interest rate to more than \(6 \%\) while China dropping the rate to less than \(2 \%\) and OPEC+ reduces oil production by 1 million barrels a day, and the consequence of this effect?

Fed raising interest rate to > 6\%

China dropping interest rate to \(<2 \%\)

OPEC+ reducing oil production by \(1 \mathrm{M} \mathrm{B} / \mathrm{D}\)

Embedding \(\begin{aligned} & 1010 \\ & 1010\end{aligned}\)
effect

Embedding

Embedding \(\begin{gathered}1010 \\ 1010\end{gathered}\)
\[
p\left(y_{t} \mid y_{t-1}, \ldots, y_{1}, \boldsymbol{q}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{M}\right)
\]

\section*{More Generally}
- Traditional NoSQL or Graph databases
- Semantic match of strings

Can we support complex queries such as join, intersection, counting, etc., on top of that?

Embedding
1010
1010
Large Language Models (LLMs)

\section*{Neural Graph Databases}
- Graph structure + vector storage
- Leveraging the power of LLMs for textual data
- Query executor to support complex queries
- Query encoder is trainable
- Inductive method to be robust with insertion, deletion, and modification
- Fuzzy semantic search
- Generalizable to incomplete data

\section*{Complex Queries on Neuralized Knowledge Graphs}
- A working example: Tree-Formed Queries (TFQ):
- Tree-form query family contains the queries that can be converted into the computational tree

Natural Language: Find non-American directors whose movie won Golden Globes or Oscar?
Logical Formula: \(\quad q=V_{?} \exists V_{1}\). (Won \(\left(V_{1}\right.\), GoldenGlobes) \(\vee \operatorname{Won}\left(V_{1}\right.\), Oscar \(\left.)\right) \wedge \neg\) BornIn \(\left(V_{?}\right.\), America \() \wedge \operatorname{Direct}\left(\mathrm{V}_{?}, \mathrm{~V}_{1}\right)\) Set Operator Tree: DirectorOf(WinnerOf(GoldenGlobes) \(\cup\) WinnerOf(Oscar)) \(\cap\) BornIn(America) \({ }^{C}\)

\section*{The Design Space of Neural TFQ Answering}
\begin{tabular}{|c|c|c|c|}
\hline Concept & Definition & Comment & \\
\hline Entity set & \(\mathcal{E}\) & The entity set in KG & \multirow[t]{3}{*}{Converting to computational tree makes it possible to model set operations with neural networks} \\
\hline Relation set & \(\mathcal{R}\) & The relation set in KG & \\
\hline Set embedding space & \(x\) & Embedding space & \\
\hline Set embedding lookup & \(E_{\chi}: \mathcal{E} \mapsto \mathcal{X}\) & Singleton set embedding & \\
\hline Entity embedding space & \(y\) & Embedding space & \\
\hline Entity embedding lookup & \(E_{y}: \mathcal{E} \mapsto \mathcal{Y}\) & Entity embedding & Set Operators \\
\hline Set intersection & \(I: X \times \cdots \times \mathcal{X} \mapsto \mathcal{X}\) & Binary or N -ary & \(\cup\) set union set operations \\
\hline Set union & \(U: X \times \cdots \times x \mapsto x\) & Binary or N -ary & \(\cap\) set intersection \\
\hline Set complement & \(C: \mathcal{X} \mapsto \mathcal{X}\) & Replaceable with set difference & \(C\) set complement \\
\hline Set projection & P: \(\mathcal{X} \times \mathcal{R} \mapsto \mathcal{X}\) & One-hop link prediction & \\
\hline Scoring function & \(s: \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}\) & How much an entity is in a set &) set projection \\
\hline
\end{tabular}

\section*{The Design Space of Neural TFQ Answering}
\begin{tabular}{ccc}
\hline Concept & Definition & Comment \\
\hline Entity set & \(\mathcal{E}\) & Known notation \\
Relationset & \(\mathcal{R}\) & Known notation \\
Set embedding space & \(X\) & [Query Embedding: Slot 1] \\
Setembedding lookup & \(E_{X}: \mathcal{E} \mapsto x\) & Simplified \\
Entity embedding space & \(\mathcal{Y}\) & [Entity embedding: Slot 2] \\
Entityembedding lookup & \(E_{y}: \mathcal{E} \mapsto Y\) & Simplified \\
Set intersection & \(I: X \times \cdots \times X \mapsto X\) & {\([\) Slot 3] } \\
Set union & \(U: X \times \cdots \times X \mapsto X\) & [Slot 4] \\
Set complement & \(C: X \mapsto X\) & [Slot 5] \\
Set projection & \(P: X \times \mathcal{R} \mapsto X\) & [Slot 6] \\
Scoring function & \(s: X \times Y \mapsto \mathbb{R}\) & [Slot 7] \\
\hline
\end{tabular}

\section*{Embedding Space and Set Representations}

\section*{What's Still Missing to Support RAG?}

What is the effect of the Fed raising the interest rate to more than \(6 \%\) while China dropping the rate to less than \(2 \%\) and OPEC+ reduces oil production by 1 million barrels a day, and the consequence of this effect?

> The understanding of discourse (temporal, causal, etc.) relations

Join
Embedding
1010
1010

Embedding
1010 1010
\[
p\left(y_{t} \mid y_{t-1}, \ldots, y_{1}, \boldsymbol{q}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{M}\right)
\]

\section*{This Talk}
- Neural KG CQA on Entities and Numerical Values
- Neural KG CQA on Eventuality Knowledge Graphs

\section*{Numerical Complex Query Answering}
\begin{tabular}{|c|c|c|}
\hline Category & Complex Queries & Interpretations \\
\hline Numerical CQA & \[
\begin{aligned}
& q_{2}=V_{?} \cdot \exists X_{1}, X_{2}: \operatorname{Win}\left(V_{?}, \text { TuringAward }\right) \\
& \wedge \underline{\text { GreaterThan }}\left(1927, X_{2}\right) \wedge \underline{\text { BornIn }}\left(V_{?}, X_{2}\right)
\end{aligned}
\] & Find the Turing award winners that is born before the year of 1927. \\
\hline Numerical CQA & \[
\begin{aligned}
& q_{3}=V_{?} \cdot \exists X_{1}, X_{2}: \text { LocatedIn }\left(V_{?}, \text { UnitedStates }\right) \\
& \wedge \text { HasLatitude }\left(V_{?}, X_{1}\right) \\
& \wedge \text { GreaterThan }\left(X_{1}, X_{2}\right) \\
& \wedge \text { GasLatitude }\left(\text { Beijing }, X_{2}\right)
\end{aligned}
\] & Find the states in US that have a higher latitudes than Beijing. \\
\hline Numerical CQA & \[
\begin{aligned}
& q_{4} \\
& =V_{?} . \exists X_{1}, X_{2}, X_{3}: \text { LocatedIn }\left(V_{2}, \text { UnitedStates }\right) \\
& \wedge \text { HasPopulation }\left(V_{2}, X_{1}\right) \\
& \wedge \text { SmallerThan }\left(X_{1}, X_{2}\right) \wedge \text { TimesByTwo }\left(X_{2}, X_{3}\right) \\
& \wedge \text { HasPopulation }\left(\text { California }, X_{3}\right)
\end{aligned}
\] & Find the states in US that have a twice smaller population than California? \\
\hline
\end{tabular}

\section*{Number Reasoning Network}

Find the cities that have a higher latitudes than Japanese cities.
\(q=V_{?} . \exists V_{1}, X_{1}, X_{2}: \underline{\text { HasLatitude }}\left(V_{?}, X_{2}\right) \wedge \underline{\text { GreaterThan }}\left(X_{2}, X_{1}\right) \wedge\) HasLatitude \(\left(V_{1}, X_{1}\right) \wedge\) LocatedIn \(\left(V_{1}\right.\), Japan \()\)

\section*{Number Reasoning Network}
(1) Relational Projection (rp): Query Embedding \(\rightarrow\) Entity Set
(3) Numerical Projection (np):

Value Distribution \(\rightarrow\) Value Distribution
(2) Attribute Projection (ap): Query/Set Embedding \(\rightarrow\) Value Distribution
(4) Reverse Attribute Projection (rap):

Value Distribution \(\rightarrow\) Query Embedding

\section*{Number Reasoning Network}
(1) Relational Projection: Adopted from the backbones: GQE, Query2Box, Query2Particles.
(2) (3) (4) Other Projections: Gated Transitions
\[
\begin{aligned}
& p_{i}=W_{p}^{p} q^{i}+b_{p}^{p} \quad \text { Linear projection } \\
& z_{i}=\sigma\left(W_{z}^{p} e_{a}+U_{z}^{p} p_{i}+b_{z}^{p}\right) \\
& r_{i}=\sigma\left(W_{r}^{p} e_{a}+U_{r}^{p} p_{i}+b_{r}^{p}\right) \\
& t_{i}=\varphi\left(W_{h}^{p} e_{a}+U_{h}^{p}\left(r_{i} \odot p_{i}\right)+b_{h}^{p}\right) \quad \text { MLP } \\
& \theta_{i+1}=\left(1-z_{i}\right) \odot p_{i}+z_{i} \odot t_{i} \quad \text { Gate selection }
\end{aligned}
\]

(3) Numerical Projection

(4) Reverse Attribute Projection

\section*{Number Reasoning Network}

\section*{Entity embeddings:}

Adopted from the backbones: GQE, Query2Box, Query2Particles.

\section*{Input number embeddings}
- DICE
\[
\psi(v)_{d}=\left\{\begin{array}{cl}
\sin ^{d-1}(\alpha) \cos (\alpha) \\
\sin ^{D}(\alpha)
\end{array} \quad \psi(v)_{d}= \begin{cases}\sin \frac{v}{v^{d / D}}, & d \equiv 0(\bmod 2) \\
\cos \frac{v}{v^{(d-1) / D}}, & d \equiv 1(\bmod 2)\end{cases}\right.
\]

\section*{Number Reasoning Network}
- Logic Operators on Entities, adopted from the backbones:
- GQE, Query2Box, Query2Particles.
- Logic Operator on Value Distribution:
- Intersection and Union: DeepSet
\[
\begin{aligned}
& a_{i}=\operatorname{Attn}\left(W_{q} \theta_{i}^{T}, W_{k} \theta_{i}^{T}, W_{v} \theta_{i}^{T}\right)^{T} \\
& \theta_{i+1}=\operatorname{MLP}\left(a_{i}\right)
\end{aligned}
\]
- Relational Projection (rp)
- Attribute Projection (ap)
- Numerical Projection (np)
- Reverse Attribute Projection (rap)

\section*{Number Embeddings and Learning Objective}

Use maximize a posteriori probability (MAP) estimation to derive an objective function for type-aware reasoning.
\[
\begin{aligned}
\widehat{\theta}_{I}(v, t) & =\underset{\theta_{I}}{\arg \max } f\left(\theta_{I} \mid v, t\right) \\
& =\underset{\theta_{I}}{\arg \max } f\left(\psi(v) \mid \theta_{I}, t\right) g\left(\theta_{I} \mid t\right) \\
& =\underset{\theta_{I}}{\arg \min }-\log f\left(\psi(v) \mid \theta_{I}\right)-\log g\left(\theta_{I} \mid t\right)
\end{aligned}
\]
\(v\) is the positive answer value.
\(t\) is the type of this value like date, length, size etc.
\(\theta_{I}\) is the distribution parameters in the last step.
\(\psi(v)\) is number embeddings
(Bayes' Rule; Remove the denominator: a constant in argmax)
(Conditional Independent of \(v\) and \(t\) on \(\theta_{I}\))
happenedOnDate date_of_death createdOnDate date_of_birth
Set the parameteration as: \(f\left(\psi(v) \mid \theta_{I}\right)=p_{\theta_{I}}(\psi(v))\) and \(g\left(\theta_{I} \mid t\right)=\phi_{t}\left(\theta_{I}\right)\) latitude longitude
\[
L_{A}=\frac{1}{M} \sum_{j=1}^{\mathrm{M}}\left(-\log p_{\theta_{I}^{(j)}}\left(\psi\left(v^{(j)}\right)\right)-\log \phi_{t^{(j)}}\left(\theta_{I}^{(j)}\right)\right)
\]
film_release_date org.date_founded location.date_founded

\section*{Number Embeddings and Learning Objective}

\section*{End-to-end training by Joint optimization of two losses:}
\[
\begin{aligned}
& \text { The likelihood of the value } \\
& \text { The likelihood of the distribution } \\
& v^{(j)} \text { sampled from distribution of } \theta_{I}^{(j)} \text { parameter } \theta_{I}^{(j)} \text { is of type } t^{(j)} \\
& L_{E}=-\frac{1}{N} \sum_{j=1}^{N} \log _{i} p\left(q_{I}^{(j)}, v^{(j)}\right) \quad \text { The likelihood of the entity } v^{(j)} \text { is the }
\end{aligned}
\]
\(j\) is means the \(j\)-th sample, and \(I\) means the last step of distribution parameter encoding.

\section*{Sampling Data}

\section*{Data Statistics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Graphs & Data Split & \#Nodes & \#Rel. & \# Attr. & \begin{tabular}{c}
\#Rel. \\
Edges
\end{tabular} & \begin{tabular}{c}
\#Attr. \\
Edges
\end{tabular} & \begin{tabular}{c}
\#Rev. Attr. \\
Edges
\end{tabular} & \begin{tabular}{c}
\#Num. \\
Edges
\end{tabular} & \#Edges \\
\hline & Training & 25,106 & 1,345 & 15 & 947,540 & 20,248 & 20,248 & 27,020 & \(1,015,056\) \\
\hline FB15K & Validation & 26,108 & 1,345 & 15 & \(1,065,982\) & 22,779 & 22,779 & 27,376 & \(1,138,916\) \\
& Testing & 27,144 & 1,345 & 15 & \(1,184,426\) & 25,311 & 25,311 & 27,389 & \(1,262,437\) \\
\hline & Training & 31,980 & 279 & 30 & 145,262 & 33,131 & 33,131 & 25,495 & 237,019 \\
\hline DB15K & Validation & 34,191 & 279 & 30 & 161,978 & 37,269 & 37,269 & 25,596 & 262,112 \\
\hline & Testing & 36,358 & 279 & 30 & 178,394 & 41,411 & 41,411 & 25,680 & 286,896 \\
\hline & Training & 32,112 & 32 & 7 & 196,616 & 21,732 & 21,732 & 26,616 & 266,696 \\
\hline YAGO15K & Validation & 33,078 & 32 & 7 & 221,194 & 22,748 & 22,748 & 26,627 & 293,317 \\
\hline & Testing & 33,610 & 32 & 7 & 245,772 & 23,520 & 23,520 & 26,631 & 319,443 \\
\hline
\end{tabular}

\section*{Data Statistics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Graphs & Data Split & 1p & 2p & \(2 i\) & \(3 i\) & pi & ip & 2 u & up & All \\
\hline \multirow{3}{*}{FB15K} & Training & 304,633 & 138,192 & 226,729 & 288,874 & 260,057 & 233,834 & 284,301 & 284,931 & 2,021,551 \\
\hline & Validation & 8,271 & 15,860 & 23,359 & 28,836 & 25,081 & 22,930 & 29,187 & 29,210 & 182,734 \\
\hline & Testing & 7,969 & 15,431 & 23,346 & 28,865 & 24,810 & 22,232 & 29,212 & 29,274 & 181,139 \\
\hline \multirow{3}{*}{DB15K} & Training & 124,851 & 99,698 & 140,427 & 190,413 & 171,353 & 163,687 & 190,364 & 194,244 & 1,275,037 \\
\hline & Validation & 3,529 & 10,388 & 9,792 & 13,817 & 14,594 & 16,651 & 19,512 & 19,792 & 108,075 \\
\hline & Testing & 3,387 & 10,047 & 9,914 & 14,603 & 14,642 & 15,897 & 19,504 & 19,773 & 107,767 \\
\hline \multirow{3}{*}{YAGO15K} & Training & 84,014 & 76,238 & 136,282 & 183,850 & 162,712 & 145,994 & 183,963 & 183,459 & 1,156,512 \\
\hline & Validation & 2,833 & 7,986 & 10,757 & 16,884 & 13,485 & 13,899 & 18,444 & 19,105 & 103,393 \\
\hline & Testing & 2,713 & 7,949 & 10,935 & 17,171 & 13,481 & 13,526 & 18,433 & 18,997 & 103,205 \\
\hline
\end{tabular}

Main Results on Three KGs
\begin{tabular}{|c|c|c|c|c|c|}
\hline Query Encoding & Attribute & Hit@1 & Hit@3 & Hit@10 & MRR \\
\hline \multirow[b]{3}{*}{GQE} & Baseline & 10.33 & 18.19 & 27.91 & 16.29 \\
\hline & NRN + DICE & 11.03 & 19.18 & 29.01 & 17.15 \\
\hline & NRN + Sinusoidal & 11.14 & 19.39 & 29.23 & 17.31 \\
\hline \multirow[b]{3}{*}{Q2P} & Baseline & 10.22 & 17.35 & 26.61 & 15.81 \\
\hline & NRN + DICE & 11.86 & 19.70 & 29.46 & 17.84 \\
\hline & NRN + Sinusoidal & 12.25 & 20.16 & 29.96 & 18.28 \\
\hline \multirow[b]{3}{*}{Q2B} & Baseline & 11.81 & 20.93 & 31.19 & 18.41 \\
\hline & NRN + DICE & 12.52 & 22.09 & 32.34 & 19.34 \\
\hline & NRN + Sinusoidal & 12.75 & 22.22 & 32.46 & 19.51 \\
\hline
\end{tabular}

\section*{This Talk}
- Neural KG CQA on Entities and Numerical Values
- Neural KG CQA on Eventuality Knowledge Graphs

\section*{CQA on Eventuality Knowledge Graph}

Complex query on eventuality graphs are different from the entity-relation graph

\section*{Whether and when the} eventualities occur are important
\begin{tabular}{|c|c|c|}
\hline Queries & Type & Interpretations \\
\hline \[
\begin{aligned}
& q_{1}=V_{p} \cdot \exists V: \text { Interact }\left(V_{?}, V\right) \\
& \wedge \text { Assoc }(V, \text { Alzheimer }) \wedge \text { Assoc }(V, \text { MadCow })
\end{aligned}
\] & Entity & Find the substances that interact with the proteins associated with Alzheimer's and Mad cow disease. \\
\hline \(q_{2}=V_{\text {? }}\). Precedence (Food is bad,PersonX add soy sauce) \(\wedge\) Reason(Food is bad, \(V_{\text {? }}\)) & Eventuality & Food is bad before PersonX add soy sauce. What is the reason for food being bad? \\
\hline \(q_{3}=V_{\text {p }}\). Precedence (\(V_{\text {? }}\), PersonX go home) \(\wedge\) ChosenAlternative(PersonX go home,PersonX buy an umbrella) & Eventuality & Instead of buying an umbrella, PersonX go home. What happened before PersonX go home? \\
\hline
\end{tabular}

\section*{ASER (Activities, States, Events, and their Relations)}

Principle 1: Comparing semantic meanings by fixing grammar (Katz and Fodor, 1963)
Principle 2: The need of language inference based on 'partial information' (Wilks, 1975)

\section*{Conceptualization and Normalization}

Conceptualized ASER

https://github.com/HKUST-KnowComp/ASER
Hongming Zhang, Xin Liu, Haojie Pan, Haowen Ke, Jiefu Ou, Tianqing Fang, Yangqiu Song: ASER: Towards large-scale commonsense knowledge acquisition via higher-order selectional preference over eventualities. Artif. Intell. 309: 103740 (2022)
https://github.com/HKUST-KnowComp/AbsPyramid
Zhaowei Wang, Haochen Shi, Weiqi Wang, Tianqing Fang, Hongming Zhang, Sehyun Choi, Xin Liu, Yangqiu Song: AbsPyramid: Benchmarking the Abstraction Ability of Language Mổels with a Unified Entailment Graph. CoRR abs/2311.09174 (2023)

\section*{Discourse Relations and Implicit Constraints}
- PersonX did not eat anything because PersonX was full

Reason(PersonX did not eat anything, PersonX was full)

Occurrence Constraint
\(\eta\) (PersonX did not eat anything) \(\wedge \eta(\) PersonX was full) ^ \(\wedge \eta(\) PersonX did not eat anything \() \leftarrow \eta(\) PersonX was full)

Temporal Constraints
\(\tau(\) PersonX did not eat anything \()>\tau(\) PersonX was full)
\(\eta(A)=1\) if and only if it occurs \(\tau(A)>\tau(\mathrm{B}): \mathrm{A}\) happens after B

\section*{Discourse Relations and Implicit Constraints}
- Food is bad before PersonX add soy sauce

\section*{Precedence(Food is bad, PersonX adds soy sauce)}

Occurrence
Constraint

Temporal
Constraints
\(\eta(\) Food is bad) \(\wedge \eta(\) Person \(X\) adds soy sauce \()\)
\(\tau(\) Food is bad \()<\tau(\) Person \(X\) adds soy sauce \()\)
\[
\begin{aligned}
& \tau(A)<\tau(\mathrm{B}): \text { A happens before B } \\
& \eta(A)=1 \text { if and only if it occurs }
\end{aligned}
\]

\section*{Discourse Relations and Implicit Constraints}
- Instead of buying an umbrella, PersonX go home

ChosenAlternative(Person \(X\) go home, Person \(X\) buy an umbrella)

Occurrence
Constraint
\(\eta(\) PersonX go home \() \wedge \neg \eta(\) PersonX buy an umbrella)
\(\eta(A)=1\) if and only if it occurs

\section*{Logical Constraints behind Discourse Relations}

KnowComp
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Discourse Relations} & \multirow[t]{2}{*}{Semantics} & \multicolumn{2}{|l|}{Implicit Constraints} \\
\hline & & Occurrence Constraints & Temporal Constraints \\
\hline Precedence(A, B) & A occurs before B. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & \(\tau(\mathrm{A})<\tau(\mathrm{B})\) \\
\hline Succession(A, B) & \(A\) occurs after B happens. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & \(\tau(\mathrm{A})>\tau(\mathrm{B})\) \\
\hline Synchronous(A, B) & \(A\) occurs at the same time as B. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & \(\tau(\mathrm{A})=\tau(\mathrm{B})\) \\
\hline Reason(A, B) & \(A\) occurs because \(B\). & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B}) \wedge(\eta(\mathrm{A}) \leftarrow \eta(\mathrm{B}))\) & \(\tau(\mathrm{A})>\tau\) (B\()\) \\
\hline Result(A, B) & A occurs as a result B. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B}) \wedge(\eta(\mathrm{A}) \rightarrow \eta(\mathrm{B}))\) & \(\tau(\mathrm{A})<\tau\) (B\()\) \\
\hline Condition(A, B) & If \(B\) occurs, \(A\). & \(\eta(\mathrm{A}) \rightarrow \eta(\mathrm{B})\) & \(\tau(\mathrm{A})>\tau\) (B\()\) \\
\hline Concession(A, B) & \(B\) occurs, although A. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & - \\
\hline Constrast(A, B) & \(B\) occurs, but A. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & - \\
\hline Conjunction(A, B) & \(A\) and \(B\) both occur. & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & - \\
\hline Instantiation(A, B) & \(B\) is a more detailed description of \(A\). & \(\eta(\mathrm{A}) \wedge \eta(\mathrm{B})\) & - \\
\hline Restatement(A, B) & \(A\) restates the semantics of \(B\). & \(\eta(\mathrm{A}) \leftrightarrow \eta(\mathrm{B})\) & - \\
\hline Alternative(A, B) & \(A\) and \(B\) are alternative situations. & \(\eta(\mathrm{A}) \vee \eta(\mathrm{B})\) & - \\
\hline ChosenAlternative(A, B) & Instead of B occurs, A. & \(\eta(\mathrm{A}) \wedge \neg \eta(\mathrm{B})\) & - \\
\hline Exception(A, B) & \(A\), except \(B\). & \(\neg \eta(\mathrm{A}) \wedge \eta(\mathrm{B}) \wedge(\neg \eta(\mathrm{B}) \rightarrow \eta(\mathrm{A}))\) & - \\
\hline
\end{tabular}

\title{
Logical Query with Implicit Constraints
}

Question: Food is bad before PersonY adds soy sauce. Instead of adding vinegar, PersonY adds ketchup. PersonX complains after V. PersonX leaves the restaurant after V. The reason V is V'?. What is V'?

Query on Graph: \(q=V_{?} . \exists V\) : Succession(PersonX complains, \(V\)) \(\wedge\) Succession(PersonX leaves restaurant, \(V) \wedge\) Reason \(\left(V, V_{?}\right) \wedge\) Precedence(Food is bad, PersonY adds soy sauce) \(\wedge\) ChosenAlternative \((\) Person \(Y\) adds ketchup, PersonY adds vinegar)

\section*{Query Encoding with Constraint Memory}

(1) \(s_{i, m}=<q_{i}, c_{h}^{(m)}>\) Computes the relevance of query embedding to the head of the memory key at position \(m\).
(2) \(v_{i}=\sum_{m=1}^{M} s_{i, m}\left(c_{r}^{(m)}+c_{t}^{(m)}\right)\)

Computes the aggregated memory values across \(M\) memory cells with the importance weighted by relevance scores.
(3) \(q_{i}=q_{i}+\operatorname{MLP}\left(v_{i}\right)\)

Computes the query embedding with memory values with the help of a MLP layer.

\section*{Complex Eventuality Queries on ASER}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{ Query with Occurrence Constraints } & \multicolumn{2}{|c|}{ Query with Temporal Constraints } \\
\hline & & & & \#Contr. & & & & \# Contr. \\
\hline Data Split & Types & \#Queries & \#Answers & Answers & \#Queries & \#Answers & Answers \\
\hline Train Queries & 6 & 58,797 & 4.74 & 1.44 & 18,033 & 4.37 & 1.09 \\
\hline Validation Queries & 15 & 22,320 & 7.20 & 1.63 & 19,637 & 8.85 & 1.41 \\
\hline Test Queries & 15 & 24,466 & 7.93 & 1.68 & 20,788 & 10.88 & 1.46 \\
\hline
\end{tabular}
- The tables shows the types and number queries;
- The number of answers on ASER;
- The number of logically contradictory answers.

\section*{The MEQE Combined with Various QE methods knomicimp}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Models} & \multicolumn{3}{|l|}{Occurrence Constraints} & \multicolumn{3}{|c|}{Temporal Constraints} & \multicolumn{3}{|c|}{Average} \\
\hline & Hit@1 & Hit@3 & MRR & Hit@1 & Hit@3 & MRR & Hit@1 & Hit@3 & MRR \\
\hline GQE & 8.92 & 14.21 & 13.09 & 9.09 & 14.03 & 12.94 & 9.12 & 14.12 & 13.02 \\
\hline + MEQE & 10.20 & 15.54 & 14.31 & 10.70 & 15.67 & 14.50 & 10.45 & 15.60 & 14.41 \\
\hline Q2P & 14.14 & 19.97 & 18.84 & 14.48 & 19.69 & 18.68 & 14.31 & 19.83 & 18.76 \\
\hline + MEQE & 15.15 & 20.67 & 19.38 & 16.06 & 20.82 & 19.74 & 15.61 & 20.74 & 19.56 \\
\hline Nerual MLP & 13.03 & 19.21 & 17.75 & 13.45 & 19.06 & 17.68 & 13.24 & 19.14 & 17.71 \\
\hline + MEQE & 15.26 & 20.69 & 19.32 & 15.91 & 20.63 & 19.47 & 15.58 & 20.66 & 19.40 \\
\hline FuzzQE & 11.68 & 18.64 & 17.07 & 11.68 & 17.97 & 16.53 & 11.68 & 18.31 & 16.80 \\
\hline + MEQE & 14.76 & 21.12 & 19.45 & 15.31 & 21.01 & 19.49 & 15.03 & 21.06 & 19.47 \\
\hline
\end{tabular}

\section*{Conclusions}
- Complex query answering on neural knowledge graphs/bases has great potential to support retrieval augmented generation (RAG)
- Two things are missing
- Number and attribute understanding
- Discourse relation modeling for logical queries
- We implemented models that can handle numbers and discourse relations

\section*{Future Work}
- Incorporating complex query answering into retrieval augmented generation
- Exploring more strategies for complex query answering with rich semantics to handle Open World Problems

\section*{The Challenge of the Open World Problem}

\section*{Neural strategy: End-to-end Training}

\section*{Symbolic Strategy: Completion and Search}

\section*{Other Works on CQA}

\author{
Benchmarking EFO-1 (Existential First-
}

EFO-1 queries with cycles

\(\exists x_{1} \exists x_{2} \exists x_{3}\), Award \(\left(\right.\) OutstandingPaper, \(\left.x_{1}\right) \wedge\) CorrespondingAuthor \(\left(x_{1}, y\right) \wedge\)
Cite \(\left(x_{1}, x_{2}\right) \wedge\) PublishIn \(\left(x_{2}, x_{3}\right) \wedge\) Author \(\left(x_{2}, y\right) \wedge\) FirstAuthor \(\left(x_{2}, y_{1}\right)\)

O Constant Entity
- Existential Variable
- Free Variable

EFO-K more than one variables

Models
Query encoder with OT

\section*{ACL Findings'23}
\(\exists x_{1}\). Award (Fields, \(\left.y_{1}\right) \wedge \neg\) Award (Fields \(\left.y_{2}\right) \wedge\) Born \(\left(y_{1}, x_{1}\right)\)
\(\wedge\) Born \(\left(y_{1}, x_{2}\right) \wedge \operatorname{Colleague}\left(y_{1}, y_{2}\right) \wedge \operatorname{Co}\)-author \(\left(y_{1}, y_{2}\right)\)

Learning in the inference step as a GNN (one-hop logical inference based MPNN)

Sequence encoder of queries

ICLR'23

Jiaxin Bai*, Tianshi Zheng*, Yangqiu Song. Sequential Query Encoding For Complex Query Answering on Knowledge Graphs. Transactions of Machine Learning Research. 2023

\section*{Thank you for your attention ©}```

