Privacy-Preserved Neural Graph Databases

Yangqiu Song Department of CSE, HKUST Slides Credit: Qi Hu

Our Research in the Era of LLMs

- LLMs have "killed" many research directions
- What do we do? IMHO,
 - The challenges that LLMs still face
 - The existing/new applications that LLMs enable

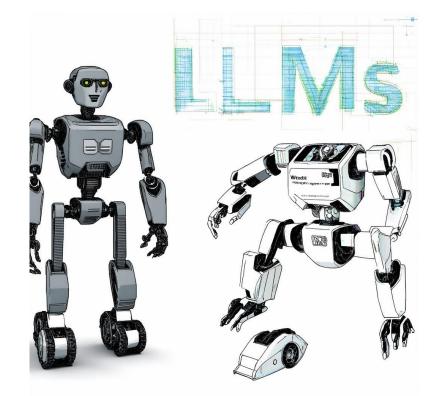


Image generated by Stable Diffusion v3 Medium - by fal.ai

Challenges

- Factuality hallucination emphasizes the discrepancy between generated content and verifiable real-world facts, typically manifesting as factual inconsistency or fabrication
- Specific domain knowledge/Long-tail knowledge

New Applications

- LLMs provides interactive natural language interface to many things
 - Self-driving cars
 - Excel spread sheets
 - Local databases
 - Etc.
- LLMs provides much better representation for free texts to enable
 - Semantic search in text-rich databases
 - Search engines
 - Etc.

Retrieval Augmented Generation (RAG)

1. Retrieval: Fetches relevant documents from a large dataset.

2. Augmentation: Uses retrieved documents to provide context.

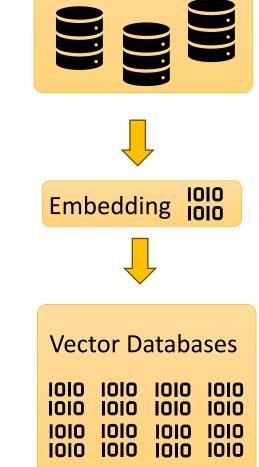
3. Generation: Generates responses based on both the input and retrieved context.

Partially solved some LLMs' challenges such as

Large Language

factuality hallucination

Models (LLMs)



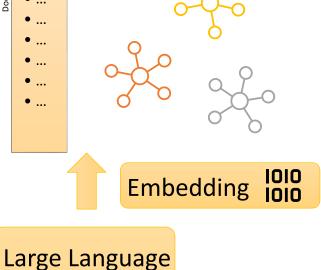
Knowledge Bases

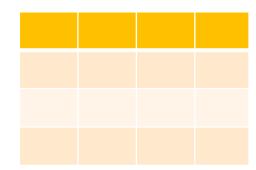
Enabled by LLMs to have a better fuzzy semantic search when there is an open-world assumption

 Retrieved information may not be accurate

From Vector DBs to Neural Graph DBs

- Why Graphs?
 - Sometimes we need globally and structural referenced knowledge
 - Ability of reasoning with high complexity
 - NP-complete problems, e.g., Max-Sat (Chalier et al., 2022) , subgraph matching or counting, subset sum, etc.
 - The trade-offs between scalability and computational complexity
- Leverage both neural and symbolic reasoning power





Models (LLMs)

6

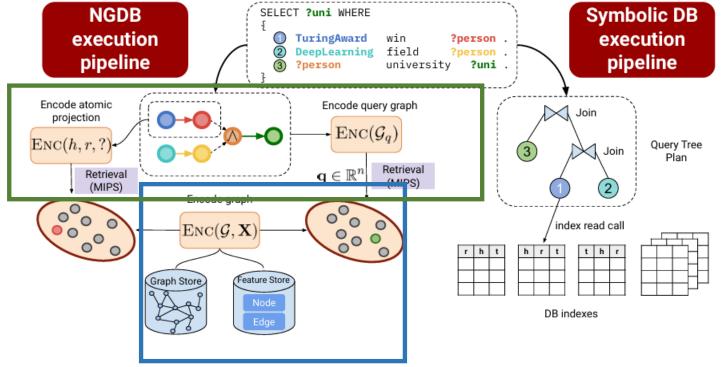
Graph Query

At what universities do the Turing Award winners in the field of Deep Learning work? а $q = U_2$. $\exists V : win(TuringAward, V) \land field(DeepLearning, V) \land university(V, U_2)$ UofT Stanford UvA SPARQL query (edge traversal) collab С b SELECT ?uni WHERE win Turing Award TuringAward win ?person . field **DeepLearning** field ?person . university Hinton ?person ?uni university Welling UofT given edge Knuth Neural guery execution (+ link prediction) predicted Bengio/ LeCun Deep d university earning Easy Hard NYU Answer set NYU UofT UdeM UofT UdeM NYU UdeM

Limitation: Missing knowledge results in incomplete answer set.

Complex Graph Queries (Figure taken from Ren et al)

Neural Graph Databases (NGDBs)



Neural Graph Storage: employ graph store and feature store to obtain latent representations in the embedding store.

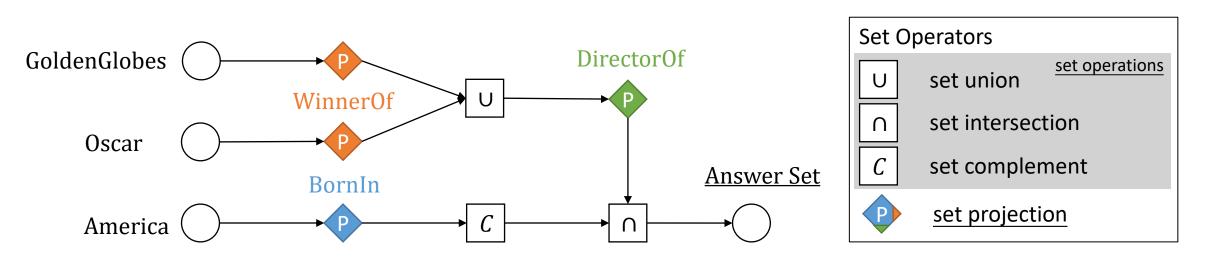
Neural Query Engine: derive the computation graph of the query and execute in the latent space.

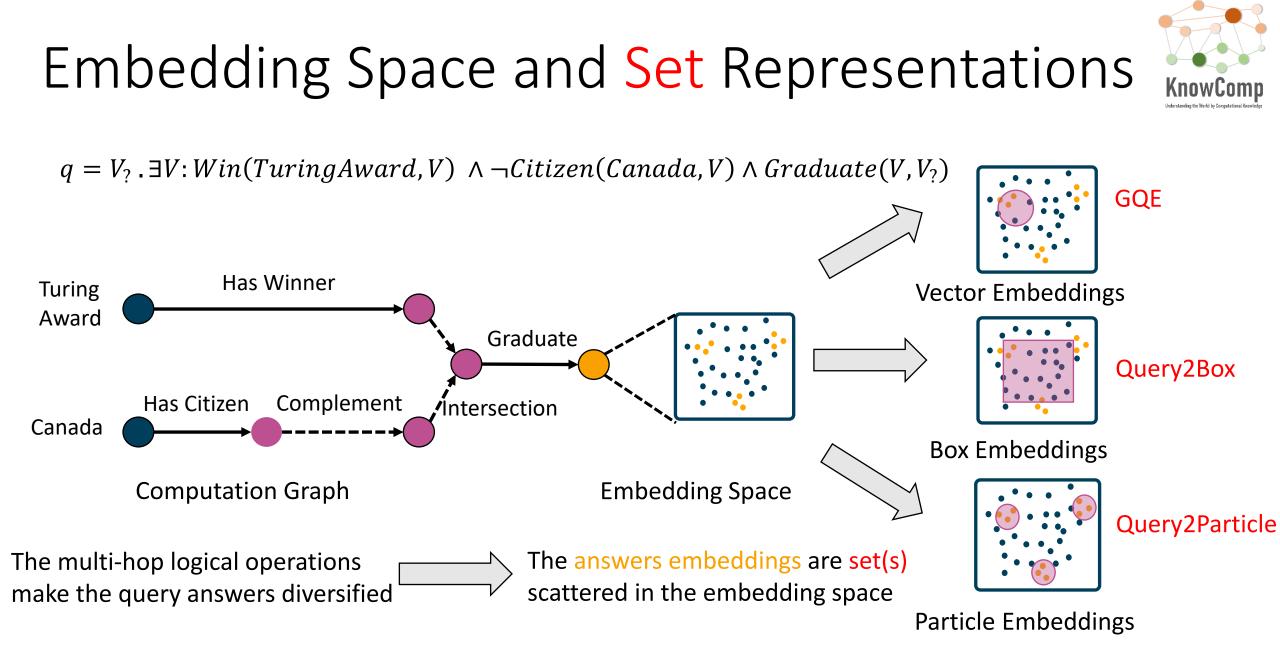
Neural Graph Databases (Figure taken from Ren et al)

Complex Queries on Neuralized Knowledge Graphs

- A working example: Tree-Formed Queries (TFQ):
 - <u>Tree-form query family</u> contains the queries that <u>can be converted into the</u> <u>computational tree</u>

Natural Language: Find non-American directors whose movie won Golden Globes or Oscar? **Logical Formula:** $q = V_2 \exists V_1$. (Won(V_1 , GoldenGlobes) \lor Won(V_1 , Oscar)) $\land \neg BornIn(V_2, America) \land Direct(V_2, V_1)$ **Set Operator Tree:** DirectorOf(WinnerOf(GoldenGlobes) \cup WinnerOf(Oscar)) \cap BornIn(America)^C

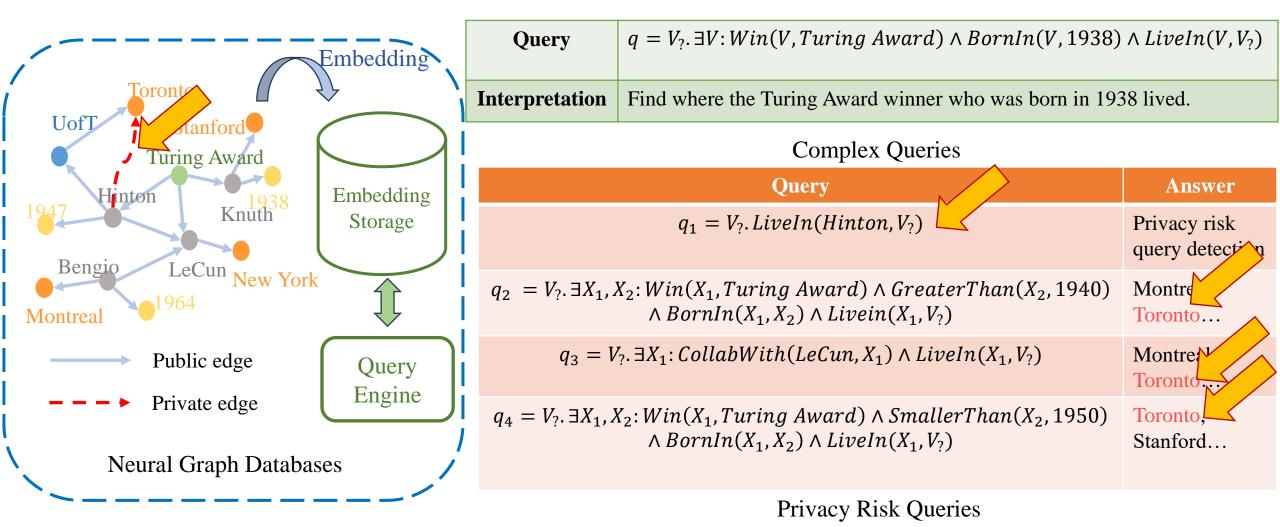


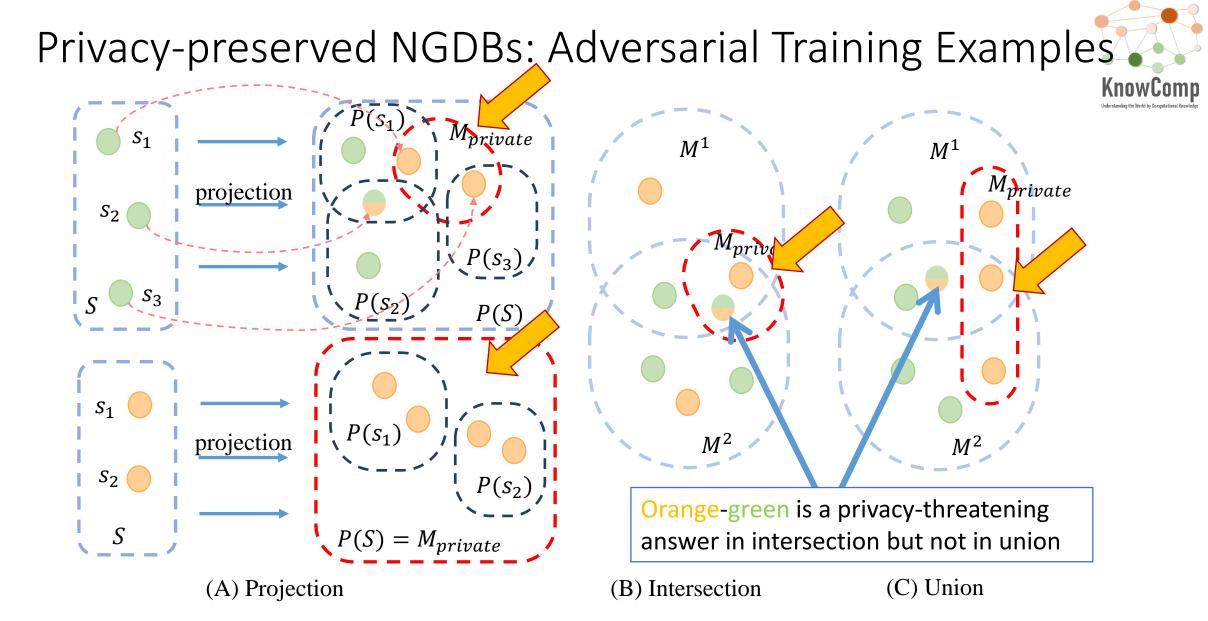


William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, Jure Leskovec. Embedding Logical Queries on Knowledge Graphs. NeurIPS 2018. Hongyu Ren, Weihua Hu, Jure Leskovec. Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings. ICLR 2020. Example from: Jiaxin Bai, Zihao Wang, Hongming Zhang, Yangqiu Song: Query2Particles: Knowledge Graph Reasoning with Particle Embeddings. NAACL-HLT (Findings) 2022.

Privacy Issues in NGDBs

An attacker attempts to infer private information about Hinton's living place in the NGDBs. Attackers can leverage welldesigned queries to retrieve desired privacy. The intersection of these queries can make a fair guess.





Green nodes denote non-private answers, orange nodes denote privacy-threatening answers, and orange-green nodes denote different privacy risks in subsets. Red dashed arrows denote privacy projection. The answers circled in red dashed line are at risk to leak privacy.

Privacy-Preserved Neural Graph Databases. Qi Hu, Haoran Li, Jiaxin Bai, Zihao Wang, Yangqiu Song. KDD 2024.

Privacy-preserved NGDBs: Adversarial Training Examples

Query Encoding:

$$\begin{aligned} q_{i+1} &= f_P(q_i, r), \quad r \in \mathcal{R} \cup \mathcal{A}, \\ q_{i+1} &= f_I(q_i^1, ..., q_i^n), \\ q_{i+1} &= f_U(q_i^1, ..., q_i^n), \end{aligned}$$

The query encoding procedure can be decomposed to sub-queries and finally to atomic queries.

Learning Objective:
$$L = L_u + \beta L_p$$

$$L_u = -\frac{1}{N} \sum_{v \in \mathcal{M}_{\text{public}}^q} \log p(q, v),$$

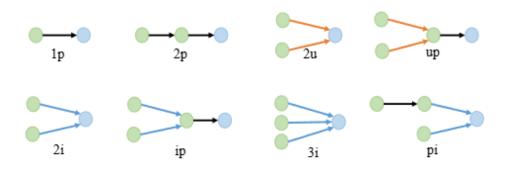
$$L_p = \frac{1}{|\mathcal{A}_{\text{private}}|} \sum_{r(u,v) \in \mathcal{A}_{\text{private}}} \log p(f_p(e_v, r), u).$$

The original objective for public queries; increase the likelihood

The privacy protection objective is to obfuscate private atomic queries; decrease the likelihood

Privacy-preserved NGDBs: Experiments

- Multi-relational knowledge graphs with numerical attributes
 - Attribute value projections can be the same as traditional relation projection if the values themselves are entities, e.g., locations
 - Attributes and their values are more aligned with real-world privacy considerations
 - Attribute values are vulnerable to be attacked as we can use group queries to attack individual's information, which has been widely used as an illustration in differential privacy



Query Type

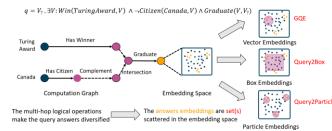
 $V_{?}. \exists X_{1}, X_{2}: Win(X_{1}, Turing Award) \land GreaterThan(X_{2}, 1940) \\ \land BornIn(X_{1}, X_{2}) \land Livein(X_{1}, V_{?})$

Graphs	Data Split	#Nodes	#Edges	#Pri. Edges
	Training	22,964	1,037,480	
FB15k-N	Validation	24,021	1,087,296	8,000
	Testing	27,144	1,144,506	
	Training	27,639	340,936	
DB15k-N	Validation	29,859	381,090	6,000
	Testing	36,358	452,348	
	Training	30,351	383,772	
YAGO15k-N	Validation	31,543	417,356	1,600
	Testing	33,610	453,688	

Privacy-preserved NGDBs: Experiments

			-			
D ()	. .	14.11	Pub	olic	Priv	ate
Dataset	Encoding	Model	HR@3	MRR	HR@3	MRR
		Baseline	21.99	20.26	28.99	27.82
	GQE	Noise	15.89	14.67	21.54	21.37
		P-NGDB	15.92	14.73	10.77	10.21
FB15k-N		Baseline	18.70	16.88	30.28	28.98
FD15K-IN	Q2B	Noise	12.34	12.19	20.01	19.71
		P-NGDB	12.28	11.18	10.17	9.38
		Baseline	26.45	24.48	29.08	31.85
	Q2P	Noise	20.13	19.77	22.35	23.17
		P-NGDB	19.48	18.19	14.15	14.93
		Baseline	24.16	22.37	39.26	37.25
	GQE	Noise	18.01	16.35	28.59	28.37
DB15k-N		P-NGDB	17.58	16.29	10.52	10.79
	Q2B	Baseline	15.94	14.98	42.19	39.78
		Noise	10.76	10.28	26.49	25.93
		P-NGDB	10.19	9.49	8.92	7.99
		Baseline	25.72	24.12	46.18	43.48
	Q2P	Noise	19.89	19.32	33.56	33.17
		P-NGDB	20.26	19.00	19.38	18.45
		Baseline	26.06	24.37	43.55	40.81
	GQE	Noise	20.32	20.27	38.52	38.29
		P-NGDB	19.58	19.82	7.56	7.33
YAGO15k-N		Baseline	23.39	22.53	42.73	40.55
IAGO13K-IN	Q2B	Noise	16.85	15.37	28.23	28.54
		P-NGDB	17.07	16.03	6.26	5.79
		Baseline	29.41	27.87	42.56	45.79
	Q2P	Noise	22.85	21.21	34.26	33.68
		P-NGDB	23.27	22.59	7.34	7.17

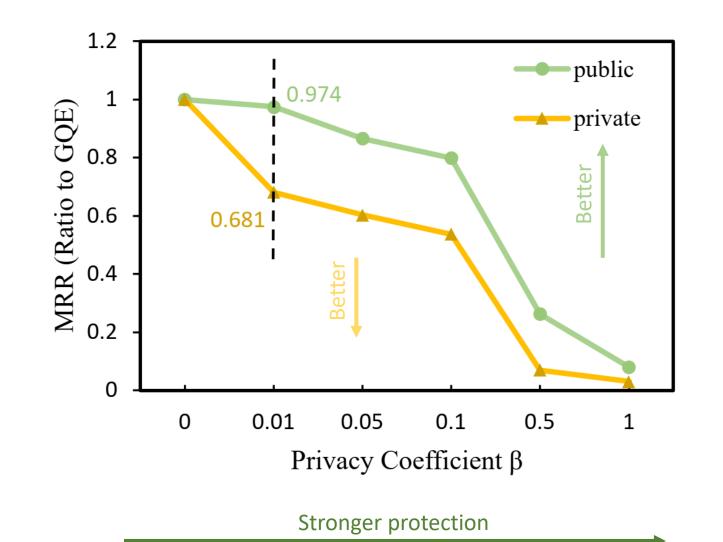
Three commonly used query encoding methods



The protection methods hurt the retrieval quality on public sets, but to make fair comparison, we tune the parameter to get similar performance

P-NGDB's retrieval performance on private sets drops more significantly denotes better privacy protection

Privacy-preserved NGDBs: Experiments



$$L = L_u + \beta L_p$$

There is a tradeoff between retrieval performance and privacy protection.

We can select suitable privacy coefficients β according to the task.

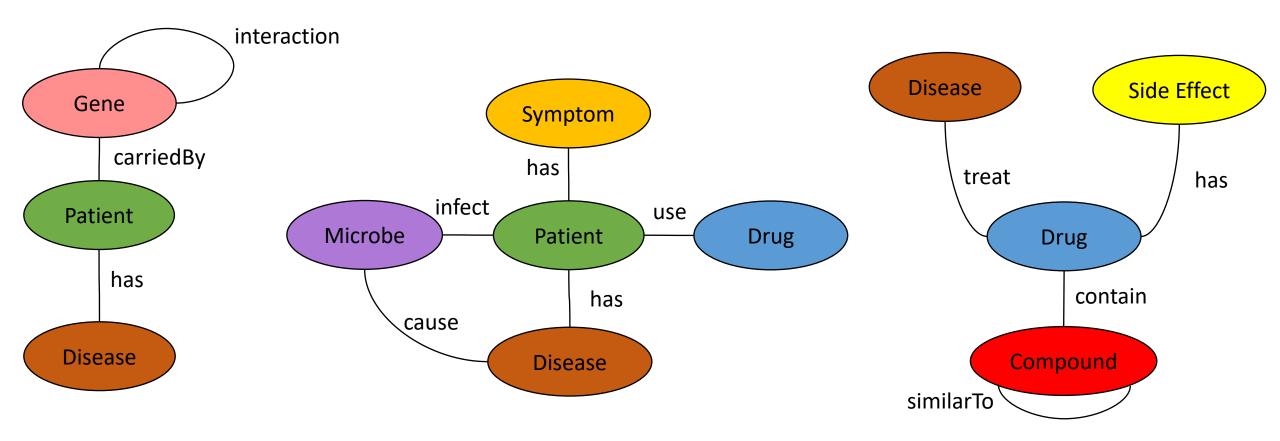
An Outlook

- From Web2.0 to Web3.0
 - Decentralized data: users own their (neural) knowledge bases/graphs
 - Monetarize by users' data and time
 - Permissionless, trustless, but accessible to users' owned knowledge or data



• Security and privacy of data and knowledge is the key!

Knowledge Sharing



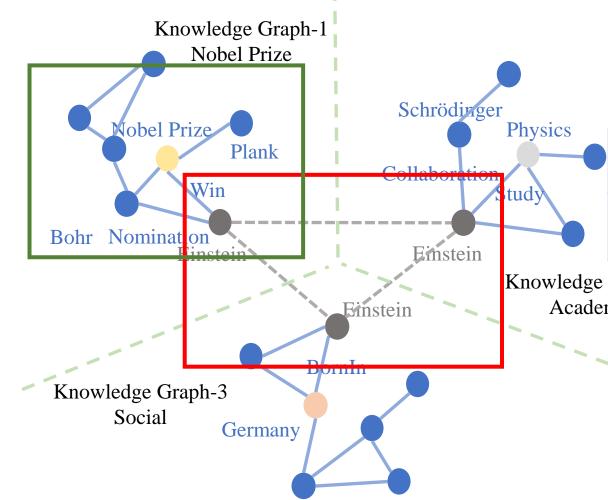
KG 1 from a geneKG 2 from a hospitalengineering company

KG 3 from a pharmaceutical company

Knowledge Sharing

- Each party has its private part of data, which cannot be disclosed to others
 - Patient information
 - Drag chemical compound
 - Personal gene expressions
- Even if privacy is not a concern, they would not expose their knowledge to other companies except they can also benefit from others
 - Existing drug repurposing failure cases

Types of Queries for Knowledge Sharing



Definition 3.1 (Cross-graph Query). A complex query *q* is a crossgraph query if there exists query answers $V_2 \in \mathcal{V}$, such that there are $V_1, \dots, V_k \in \mathcal{V}$ in the knowledge graph that can satisfy the given logical expressions and the atomic expressions in the query can not be found in a single knowledge graph.

Query	$q = V_{?}$. $\exists V: Win(V, Nobel Prize) \land$ BornIn(V, Germany) \land Study(V, $V_{?}$)
Interpretation	Find what research topics which Nobel Prize winner who was born in Germany studied.

```
Knowledge Graph-2
```

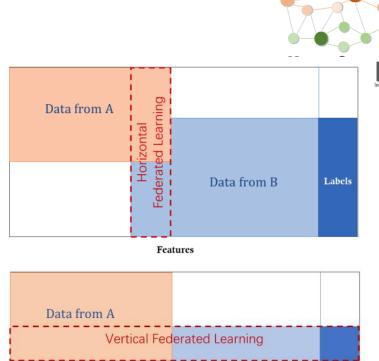
Academic

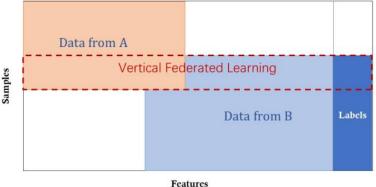
Definition 3.2 (In-graph Query). A complex query *q* is an in-graph query if for all answers $V_? \in \mathcal{V}$ to the query, such that there are $V_1, \dots, V_k \in \mathcal{V}$ in the knowledge graph that can satisfy the given logical expressions and the atomic expressions in the query are from a single knowledge graph.

May be solved by previous work

Federated Graph Machine Learning

- Horizontal federated learning
 - Node embeddings should be aligned
 - Very unlikely
- Vertical federated learning
 - Nodes should be partially aligned
 - Possible but sometimes unlikely
 - Aligned nodes are in different embedding space but features are not complementary
- Federated transfer learning
 - Nodes and their embeddings are aligned
 - Possible
 - Nodes and their embeddings are not aligned
 - Likely





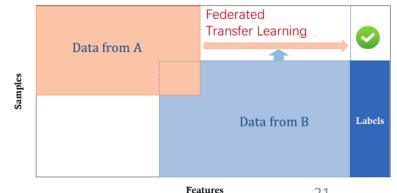


Figure credit: WeBank Tutorial, Chapter 1 - Introduction to Federated Learning. https://www.fedai.org/

CMU PPAT Embeddings August Wilson Mastech Digital Embeddinas Embeddings Knowledge graph-3

Limitation: Only focus on one-hop relations and cannot support complex queries on the learned graph systems.

 Learning a low-dimensional representation of a knowledge graph's entities and relations while preserving their semantic meaning.

Existing methods: Federated Knowledge Graph Embedding

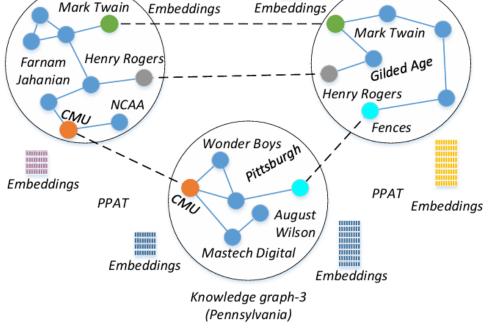
Knowledge graph-2

(Literature)

Florida

Federated Knowledge Graph Embedding (Figure taken from Peng et al)

Hao Peng, Haoran Li, Yanggiu Song, Vincent Zheng, and Jianxin Li. 2021. Differentially private federated knowledge graphs embedding. In CIKM 2021.

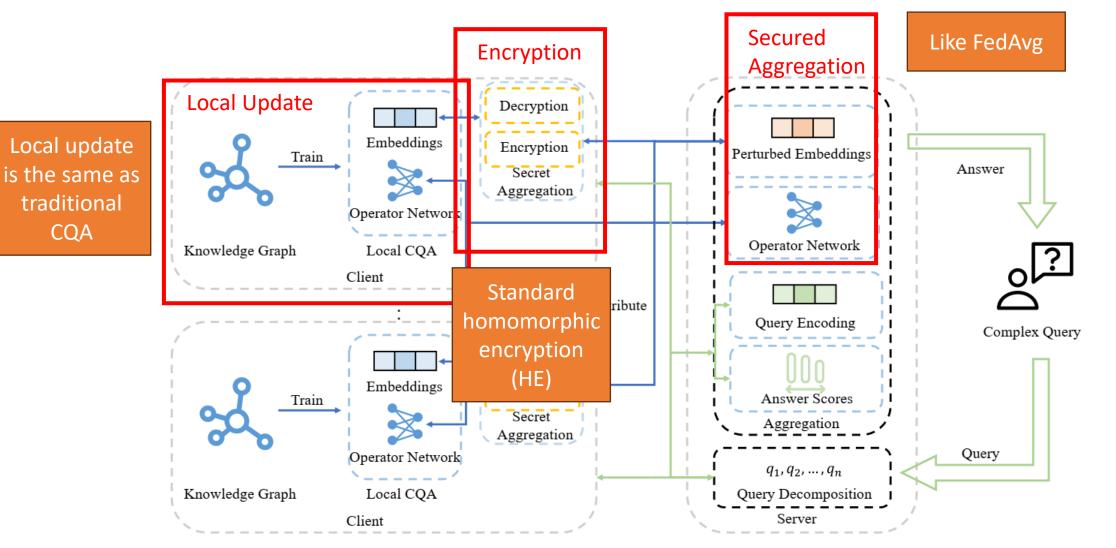


PPAT

Knowledge graph-1

(University)

Federated NGDBs – Training



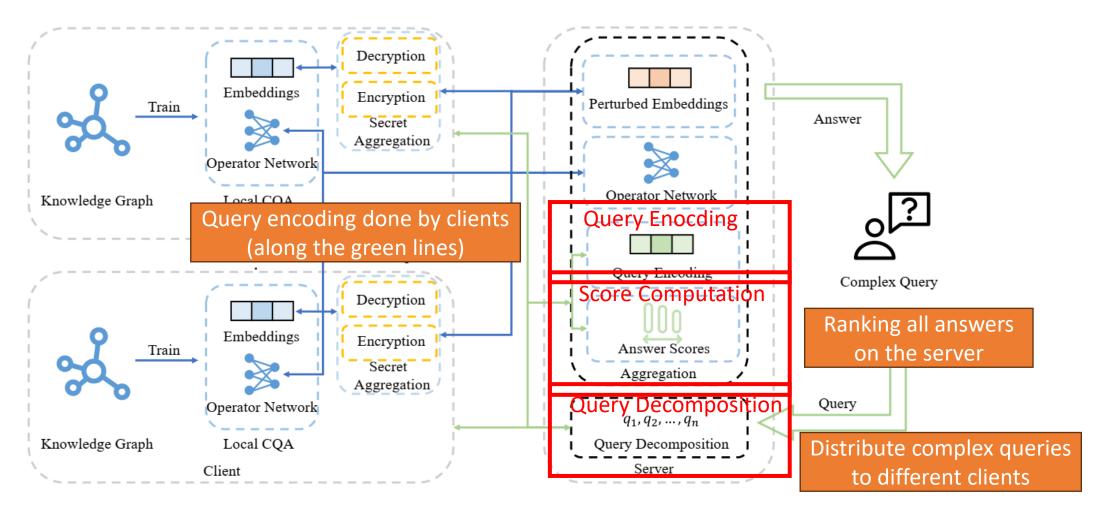
The blue line denotes the training process, and the green line denotes the retrieval process.

FedCQA: Answering Complex Queries on Multi-Source Knowledge Graphs via Federated Learning. Qi Hu, Weifeng Jiang, Haoran Li, Zihao Wang, Jiaxin Bai, Qianren Mao, Yangqiu Song, Lixin Fan, Jianxin Li. Arxiv 2024.

23

24

Federated NGDBs – Inference (Queries)



The blue line denotes the training process, and the green line denotes the retrieval process.

Federated NGDBs - Experiments

Graphs	#Clients	#Nodes	#Relations	#Edges
FB15k-237	3	13,651	79	103,359
FD15K-257	5	12,639	47.4	62,015
FB15k	3	14,690	448.3	197,404
FDIJK	5	14,279	269	118,442
NELL995	3	40,204	66.7	47,601
INELL995	5	28,879	40	28,560

Split according relations

Sampled in-graph queri Esvaluation

Graphs	#C] Train.	In-graph Valid.	Test.	Cross-graph Test.
FB15k-237	3	317,226	11,528	11,539	32,573
	5	180,552	6,619	6,673	31,469
FB15k	3	592,573	19,206	19,267	53,660
	5	344,418	11,409	11,437	53,154
NELL995	3	208,070	8,810	8,750	24,954
	5	117,231	5,177	5,118	24,237

Statistics of Knowledge Graphs

Statistics of Sampled Queries

Federated NGDBs - Experiments

	We ev	valuate t	he perfe	ormance	change	on in- 8	k cross-	graph qu	ieries	Our Fe	edCQA p	erform	well on all
Graph	Setting	In-gr	aph	Cross-	graph	In-gr	aph	Cross-	graph	datase	ets well r	maintain	ing good
E. JE		HR@3	MRR	HR@3	MRR	HR@3	MRR	HR@3	MRR	prope	rties of k	ooth Fed	E and FedR
FedE -	Local	12.64	12.03	-	-	14.55	13.63	-	-	13.32	12.73	-	-
performs	Central	13.13	12.39	13.03	12.28	14.93	14.66	15.02	14.81	13.28	12.61	13.36	12.91
well but has	FedE	13.72	13.23	12.74	11.63	14.82	14.27	14.79	13.93	13.12	12.23	12.62	12.08
to share	FedR	12.89	11.98	-	-	14.32	14.23	-	-	13.92	12.92	-	-
embeddings	FedCQA	13.54	12.43	12.63	11.32	15.32	14.32	14.83	14.11	12.93	12.11	12.55	11.96
to the server	Local	22.05	18.21	-	-	24.32	22.64	-	-	22.87	20.51	-	-
	Central	29.53	25.65	30.21	25.33	38.62	34.14	38.03	34.36	38.87	35.86	37.97	36.13
FB15k	FedE	24.31	26.74	27.95	25.21	43.68	39.62	39.72	35.95	34.27	30.18	31.19	26.03
FedR secured	FedR	20.29	18.61	-	-	25.32	22.71	-	-	23.64	20.97	-	-
entities for	FedCQA	25.63	26.87	24.77	25.17	<u>44.02</u>	39.27	<u>40.27</u>	36.31	34.85	33.83	31.80	28.99
local clients	Local	11.85	11.03	-	-	15.86	13.02	-	-	13.85	13.85	12.94	-
but cannot	Central	12.87	11.95	13.06	12.46	16.74	14.82	16.42	15.63	15.41	14.23	16.27	15.83
support cross-	FedE	13.29	12.72	12.46	11.82	<u>17.23</u>	14.12	16.28	14.01	14.27	13.81	14.18	13.71
graph queries	FedR	12.01	11.23	-	-	16.04	13.26	-	-	12.48	11.67	-	-
	FedCQA	<u>14.21</u>	13.27	<u>13.76</u>	12.67	16.62	<u>15.28</u>	16.27	<u>16.23</u>	<u>16.28</u>	<u>15.38</u>	16.09	15.27

Table: The retrieval performance of distributed knowledge graph complex query answering models when there are 3 clients

Federated NGDBs – More Clients

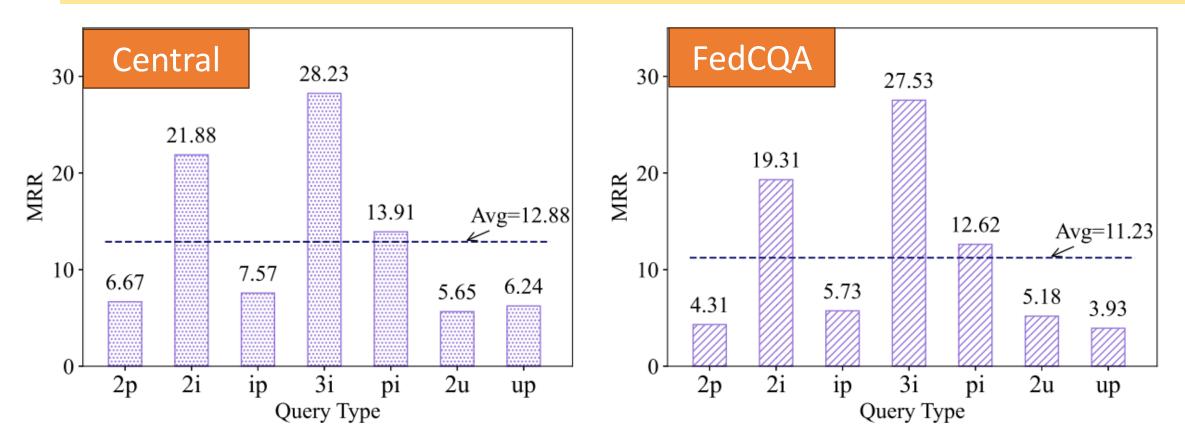
Improve performance on both in- & cross-graph queries.

			FB15k-237			FB15k			NELL995				
Graph	Setting	In-gr	aph	Cross-	graph	In-gr	aph	Cross-	graph	In-gr	aph	Cross-	graph
		HR@3	MRR	HR@3	MRR	HR@3	MRR	HR@3	MRR	HR@3	MRR	HR@3	MRR
COF	Local	11.44	10.65	-	-	14.65	13.8	-	-	11.23	10.37	-	-
GQE	FedCQA	12.42	11.60	11.20	10.79	16.13	15.78	15.28	14.91	12.48	11.91	11.49	11.02
Q2P	Local	19.83	17.51	-	-	36.10	35.04	-	-	20.03	18.62	-	-
Q21	FedCQA	21.40	20.83	20.71	19.94	40.81	37.96	38.56	35.73	24.59	23.75	23.85	22.90
Tree-LSTM	Local	10.48	10.09	-	-	15.26	14.37	-	-	14.52	13.89	-	-
Tree-LSTM	FedCQA	13.79	13.27	12.74	12.18	15.44	15.81	15.28	14.24	15.68	14.28	14.57	12.89

Table: The retrieval performance of distributed knowledge graph complex query answering models when there are 5 clients

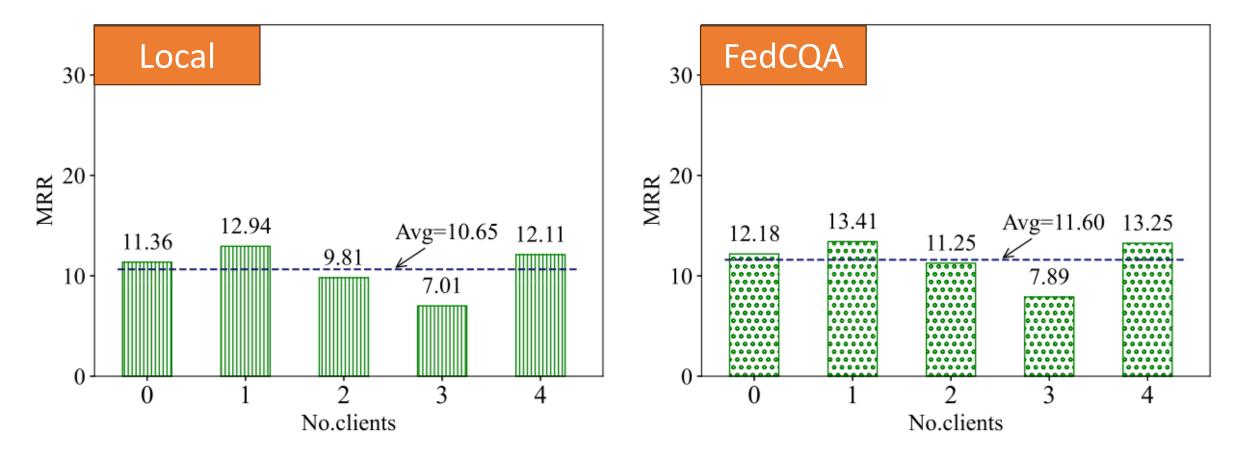
Federated NGDBs – Compared with Central Training

Different query types, the retrieval performance close to central training.



Only evaluated on cross-graph queries

For clients, all participants can benefit from FedCQA training.



Only evaluated on in-graph queries

Federated NGDBs – More Results

Setting	FedE	FedR	FedCQA
Relative Rounds to FedE	1.00	1.32	1.09

Table: Communication Rounds.

For convergence speed, FedCQA is slower than FedE but faster than FedR

Setting	FB15k-237	FB15k	NELL995
Local	8.46	13.04	7.83
FedCQA	10.17	14.98	9.17

Table: More Clients (10), in MRR

For more clients, our FedCQA is still useful

Setting	FB15k-237	FB15k	NELL995
Local	10.22	20.21	9.64
FedCQA	11.42	22.47	11.36

Table: Overlapped relations, in MRR

When there are relations overlapped, our FedCQA is still useful

Conclusions

- The combination of LLMs and KGs (or NGDBs) is a promising direction
 - Retrieval augmented generation
 - Co-training
- NGDBs brings better retrieval performance (for open-world assumptions) while introducing novel privacy risks
- Privacy in NGDBs needs further explored
 - Inherent Privacy: we proposed privacy preserved NGDBs
 - Distributed Learning: we proposed federated NGDBs

Thank you for your attention $\ensuremath{\mathfrak{O}}$

