
Dordis: Efficient Federated Learning
with Dropout-Resilient Differential Privacy

Zhifeng Jiang1, Wei Wang1, Ruichuan Chen2

1HKUST 2Nokia Bell Labs

Federated Learning (FL) Distributed Differential Privacy (DP) for FL

Pipeline-Parallel Acceleration Dropout-Resilient Noise Enforcement

Code available at:

FL allows distributed clients to train a shared
model without exchanging their private data.

Reference

2. Local training

[1] Gradient Obfuscation Gives a False Sense of Security
in Federated Learning. Security, 2023

[2] The Skellam Mechanism for Differentially Private
Federated Learning. NeurIPS, 2021

[3] The Distributed Discrete Gaussian Mechanism for
Federated Learning with Secure Aggregation. ICML 2021
[4] Practical Secure Aggregation for Privacy-Preserving
Machine Learning, CCS 2017

[5] Secure Single-Server Aggregation with (Poly)
Logarithmic Overhead, CCS 2020

Accepted to appear in the proceedings

Contact: Zhifeng Jiang (zjiangaj@cse.ust.hk)

1. Participant selection

3. Model aggregation

Iterative process

Local updates can still leak
private information.

e.g., data reconstruction attacks1 are
shown to be feasible in FL practice

Higher privacy can be achieved by

Distributed DP2,3 = secure aggregation + DP

① Local
update w/
low DP noise

② Masked
noisy local
update

secure aggregation

③ Masks cancel out
④ Aggregated
update w/ high
enough DP noise

Local update

cannot be seen

by the server

Aggregated update is insensitive

to the removal of any clients

Privacy Issue Caused by Client Dropout

secure
aggregation

Clients
drop out…

Orig: noise lost
degraded privacy

→ Simple
fixes

Early: stop when budgets runs out—hurts utility

ConX: add more noise for X0% cases—inflexible

XNoise: Add-Then-Remove Scheme to Enforce Minimum Necessary Noise

CIFAR10 testbed CIFAR100 testbed

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

① Add excessive additive noise

Toy example: # sampled clients = 4, dropout tolerance = 2, necessary noise level = 1

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

② Then remove unnecessary noise precisely

If 0 client drops If 1 client drops

Empirical Effectiveness in the Presence of Simulated Client Dropout

Enforce target privacy ()

(Also theoretically provable)

ϵ = 6

Preserve model utility

FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19

Induce acceptable runtime overhead ()≤ 34 %

Example: no dropout

Preprint available at:

Inefficiency of Operations in Secure Aggregation

Expensive cryptographic primitives in SecAgg4 dominates run time

SecAgg+5 improves little in the common small-scale FL practice

Pipelining Chunk-Aggregation
① Identify dominant resources at each step &

group consecutive steps that use the same resource

Secure
aggregation

server computation

client computation

communication

② Pipelining chunk-aggregation with optimal # chunks

Time

Chunk 1

Chunk 2

Chunk 3

1 (c-comp)Stage 2 (comm) 3 (s-comp) 4 (comm) 5 (c-comp)

Example w/

chunks = 3

Empirically Achieving Up to 2.4 Speedup ×

Case study:

CIFAR10 @ VGG19,
dropout rate = 30%

w/ or w/o pipelining

Implemented using SecAgg
or SecAgg+

Performance gain
in general:

① Grows with model size

② Scales with # participants

③ Insensitive to client dropout

mailto:zjiangaj@cse.ust.hk

