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Federated Learning (FL)

Distributed Differential Privacy (DP) for FL

FL allows distributed clients to train a shared Local updates can still leak Higher privacy can be achieved by
model without exchanging their private data. private information. Distributed DP2:3 = secure aggregation + DP
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3. Model aggregation shown to be feasible in FL practice

Pipeline-Parallel Acceleration Dropout-Resilient Noise Enforcement

Privacy Issue Caused by Client Dropout

Inefficiency of Operations in Secure Aggregation
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SecAgg+° improves little in the common small-scale FL practice XNoise: Add-Then-Remove Scheme to Enforce Minimum Necessary Noise

Pipelining Chunk-Aggregation Toy example: # sampled clients = 4, dropout tolerance = 2, necessary noise level = 1
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> Time (Also theoretically provable)

Induce acceptable runtime overhead ( < 34 %)

Empirically Achieving Up to 2.4X Speedup

Preprint available at: Code available at:
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