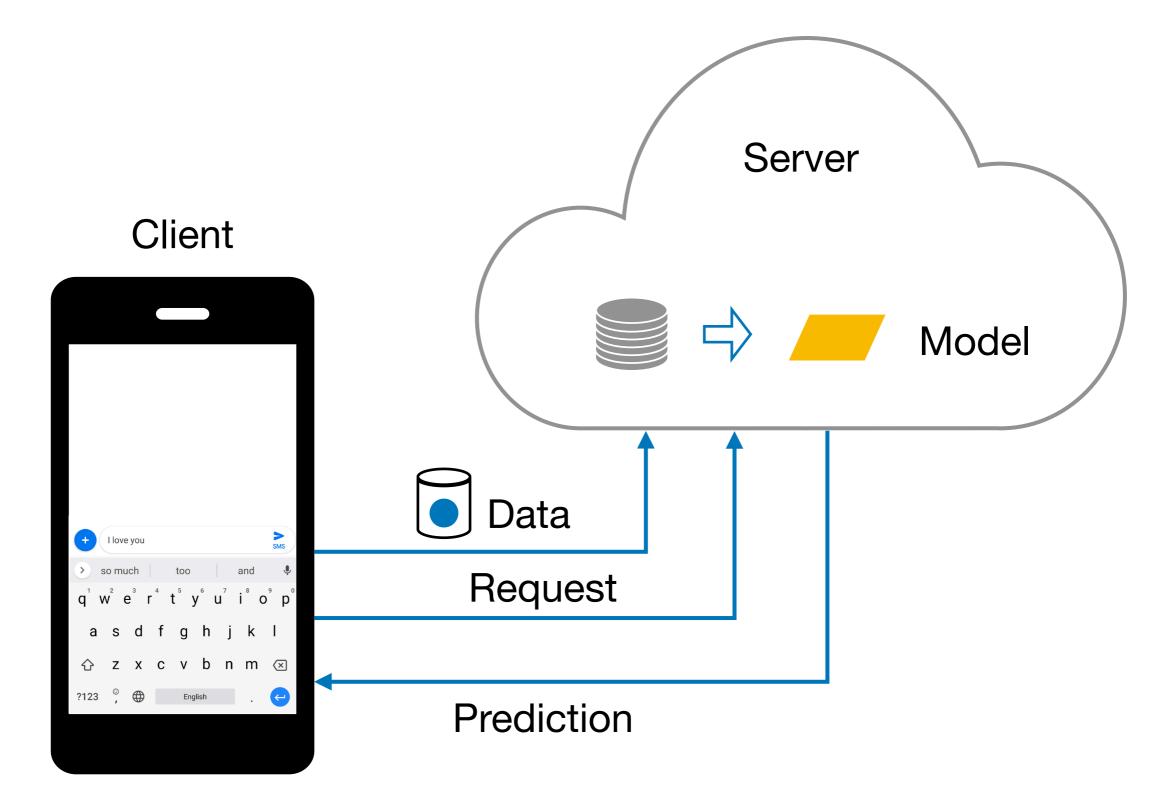
Dordis

Efficient Federated Learning with Dropout-Resilient Differential Privacy

Zhifeng Jiang, Wei Wang, Ruichuan Chen

Centralized learning



Centralized learning hurts privacy

Data breaches...

Clearview AI, The Company Whose Database Has Amassed 3 Billion Photos, Hacked

Forbes

Centralized learning hurts privacy

Data breaches...

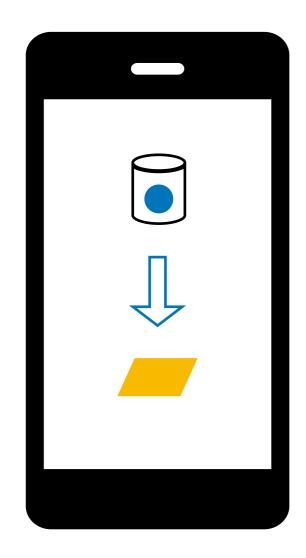
Clearview AI, The Company Whose Database Has Amassed 3 Billion Photos, Hacked

Potential abuse...

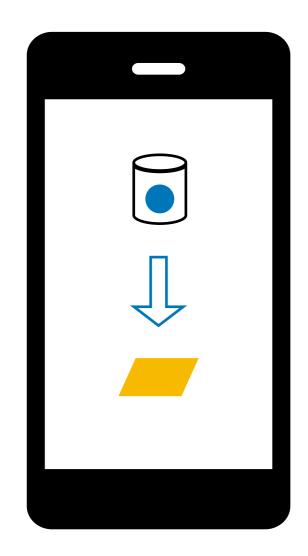
theguardian Facebook halts use of WhatsApp data for advertising in Europe

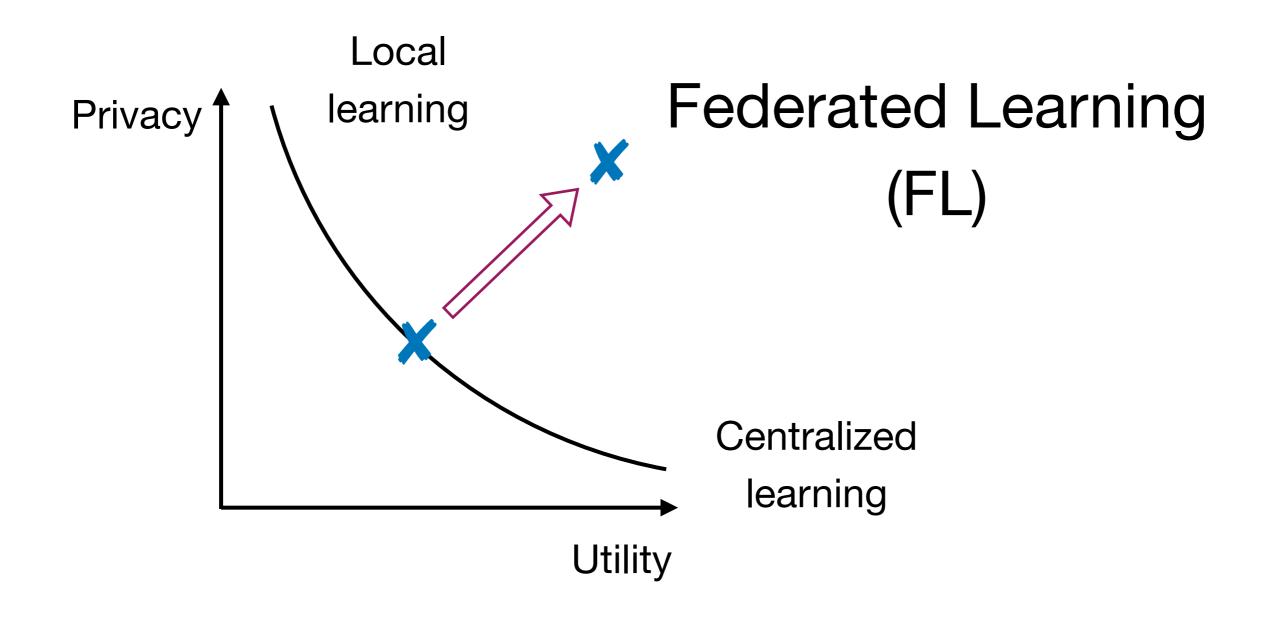
Forbes

Local learning

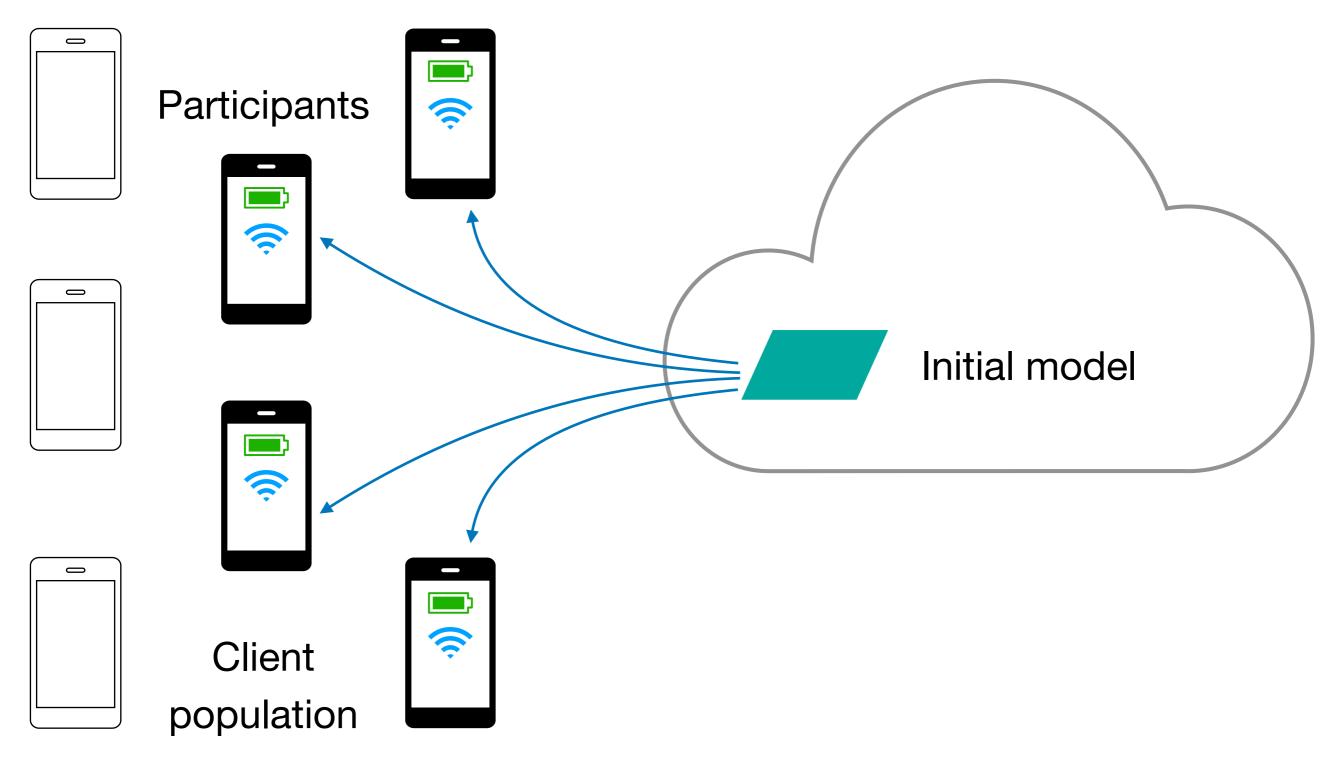


Local learning suffers from low utility



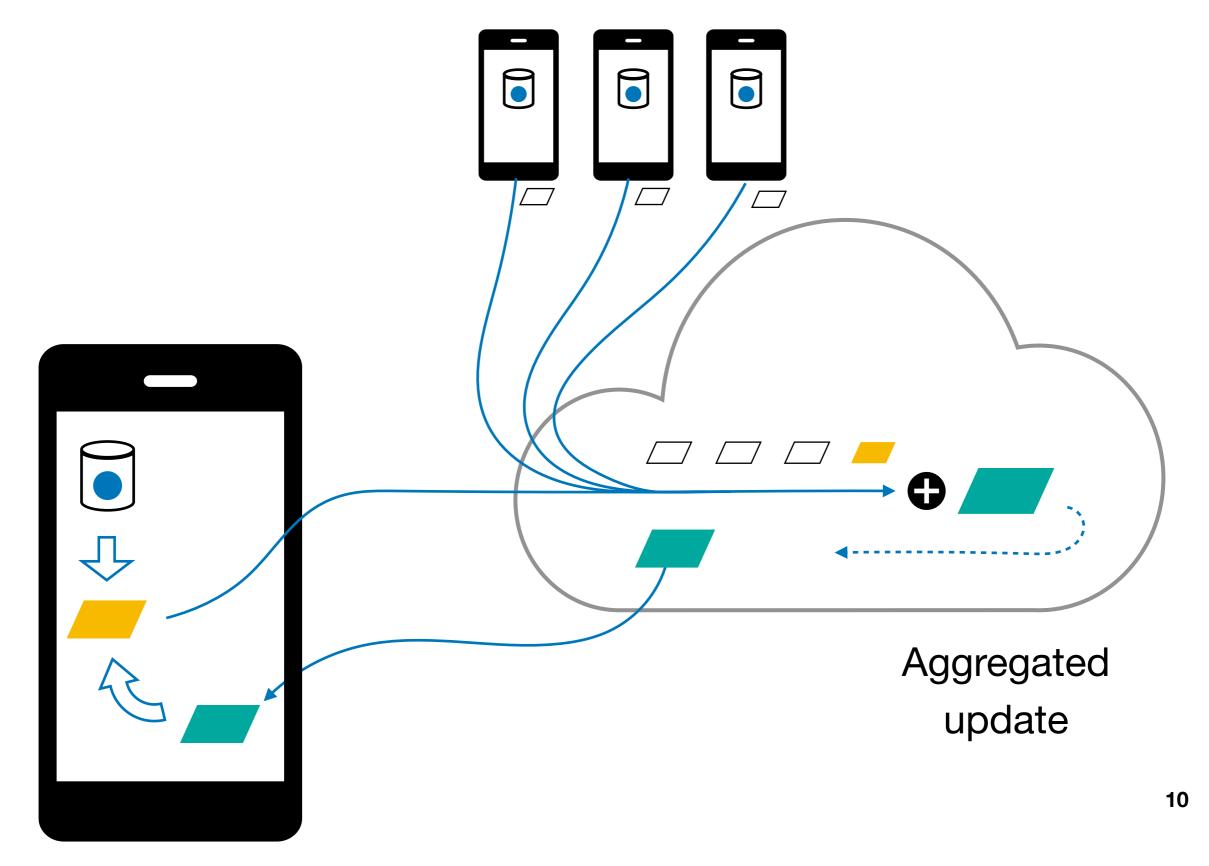


FL Step 1: Participant Selection

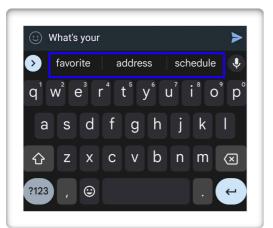


FL Step 2: Local Training Local model update Initial model

FL Step 3: Model Aggregation



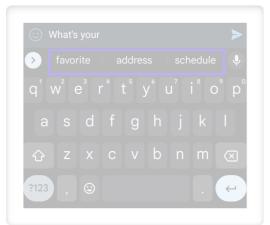
FL Applications



Mobile

Google's Keyboard

FL Applications



Google's Keyboard

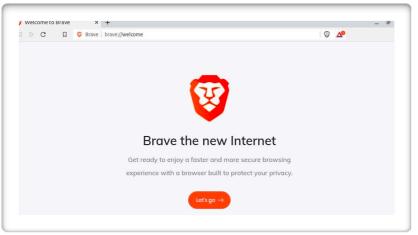
Mobile

IoT

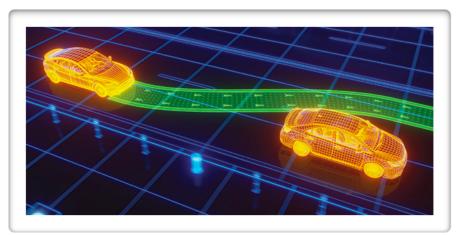
Apple's speaker recognition

Huawei's ads recommendation

🗊 😇 💷 » 😑



Brave's news recommendation



Volvo's trajectory prediction

New Tab

Ch

Q hacker news

Hacker News

Y Hacker News

Cisco's 3D printing

Leveno's clogging detection

Firefox's URL bar suggestion

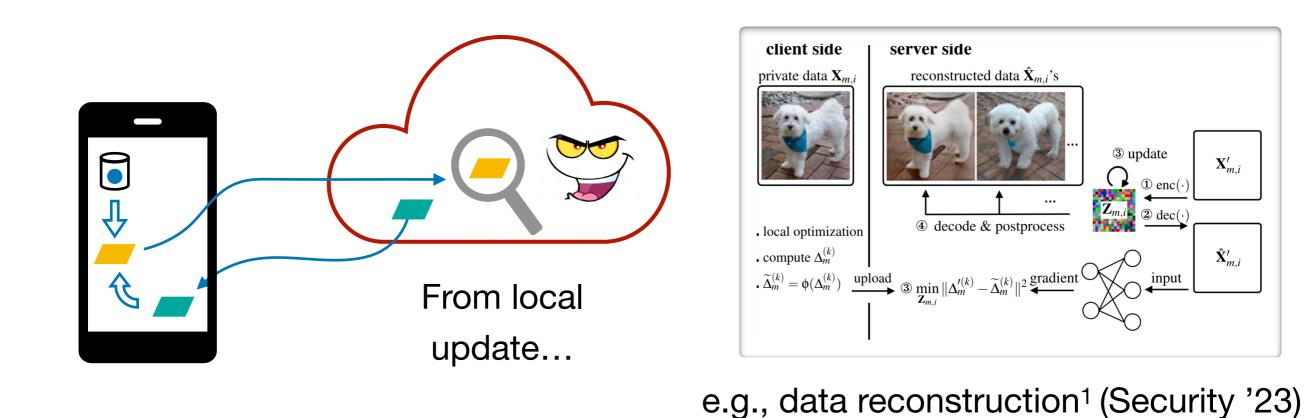
Machine Teaching: Building Machine Learni... — https://news.ycombi

Y Redefine statistical significance | Hacker N... — https://news.ycor

× +

Ask HN: What is your favorite CS paper? | ... — https

Q hacker news — Search with Google



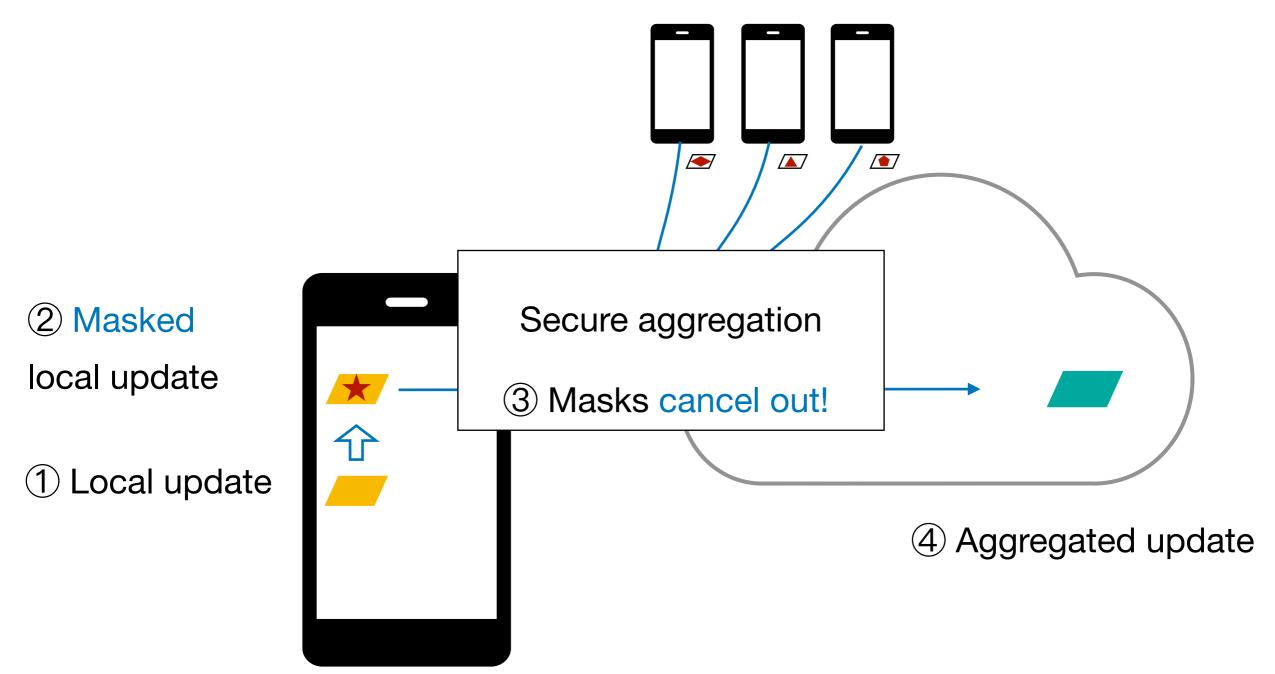
To conceal local updates?

Secure aggregation¹² (CCS '17, '20)

[1] Practical secure aggregation for privacy-preserving machine learning

[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

To conceal local updates?



To conceal local updates?

To also perturb the aggregated update?

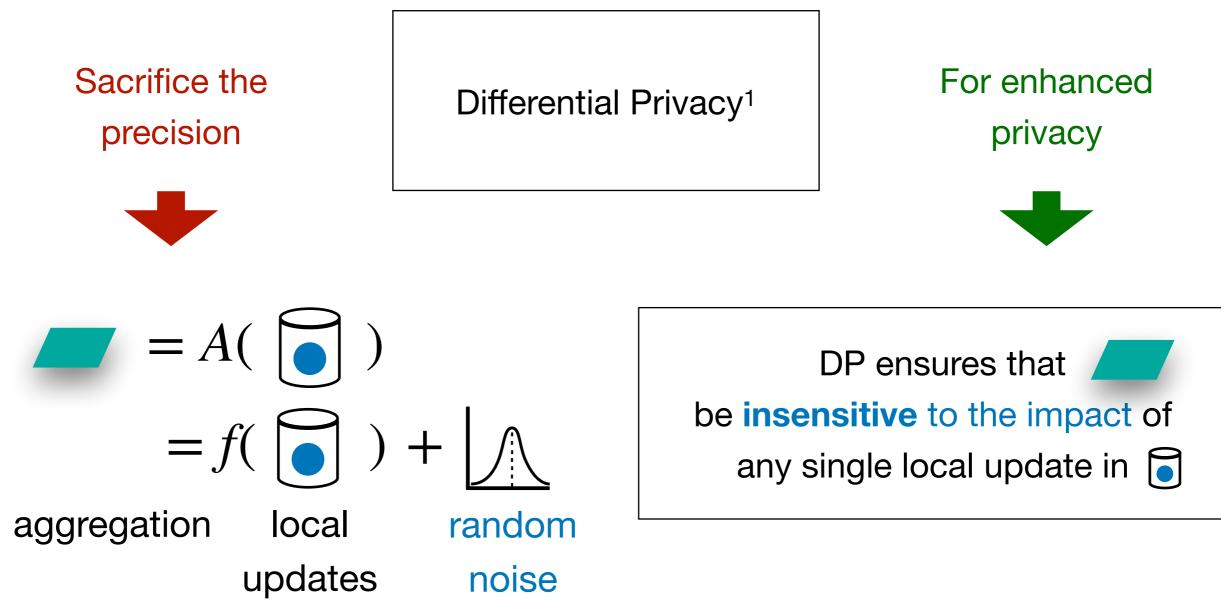
Sacrifice the precision

Differential Privacy¹

For enhanced privacy

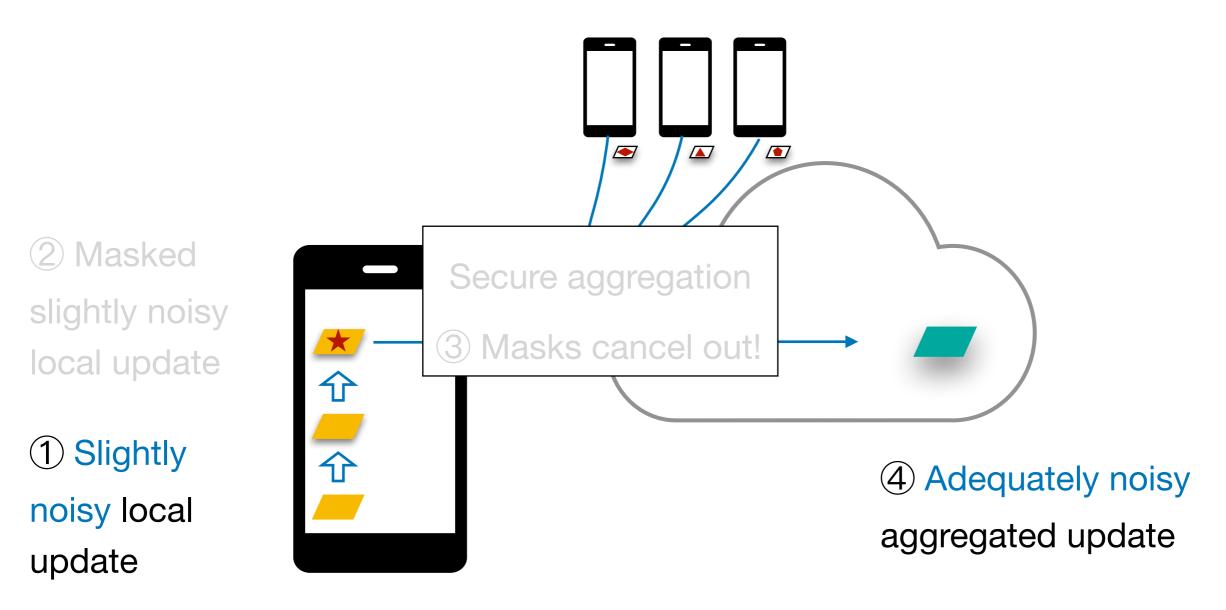
To conceal local updates?

To also perturb the aggregated update?



To conceal local updates?

To also perturb the aggregated update?

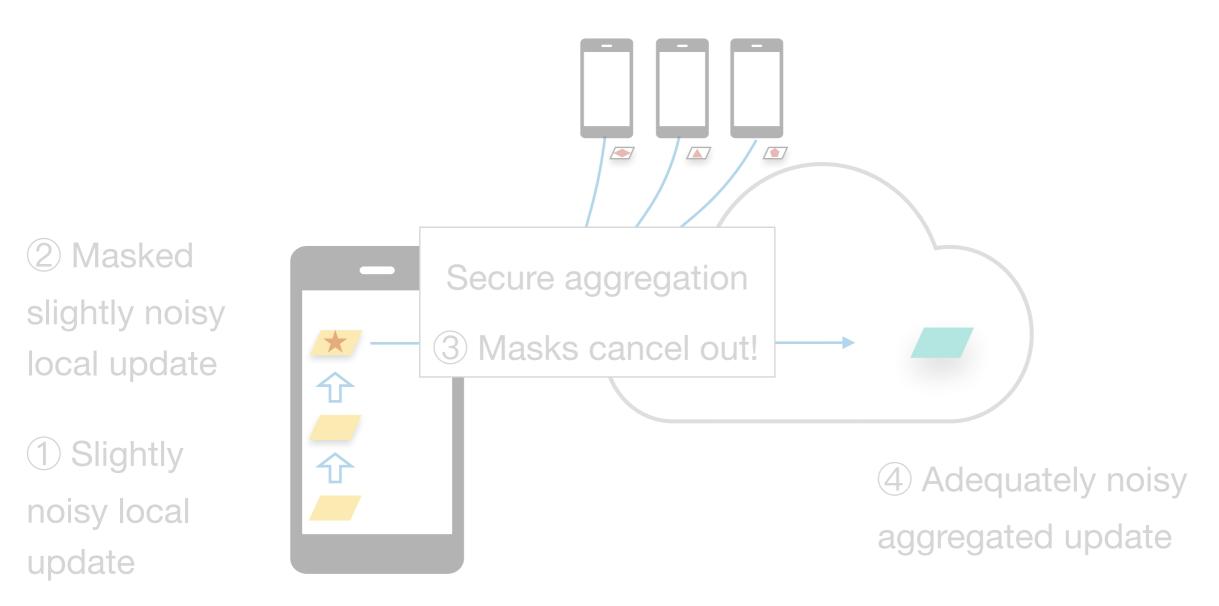


(1) Global privacy budget $\epsilon \rightarrow$ Calculate the minimum required noise

Distributed DP = SecAgg + DP

To conceal local updates?

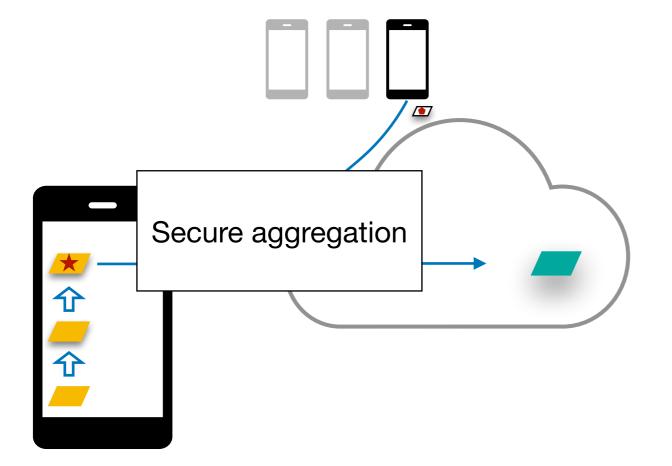
To also perturb the aggregated update?



(1) Global privacy budget $\epsilon \rightarrow$ Calculate the minimum required noise

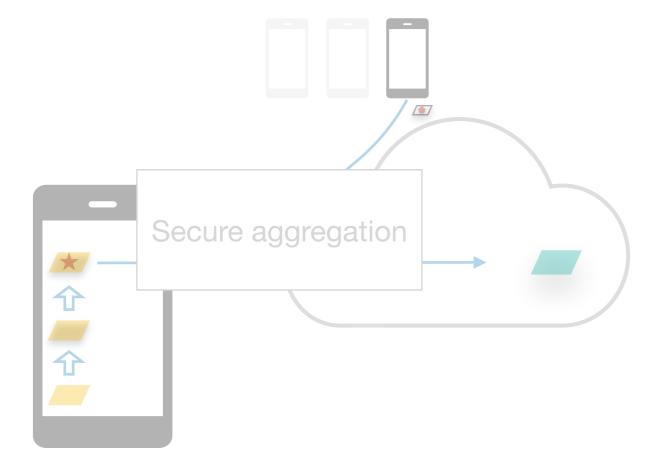
Distributed DP Has Two Practical Issues

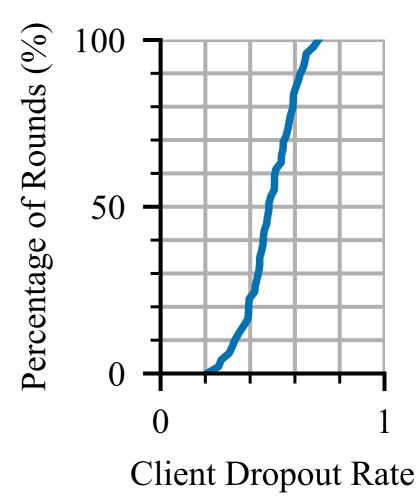
1. Privacy Issue: caused by client dropout



Privacy Issue Caused by Client Dropout

Client dropout can occur anytime

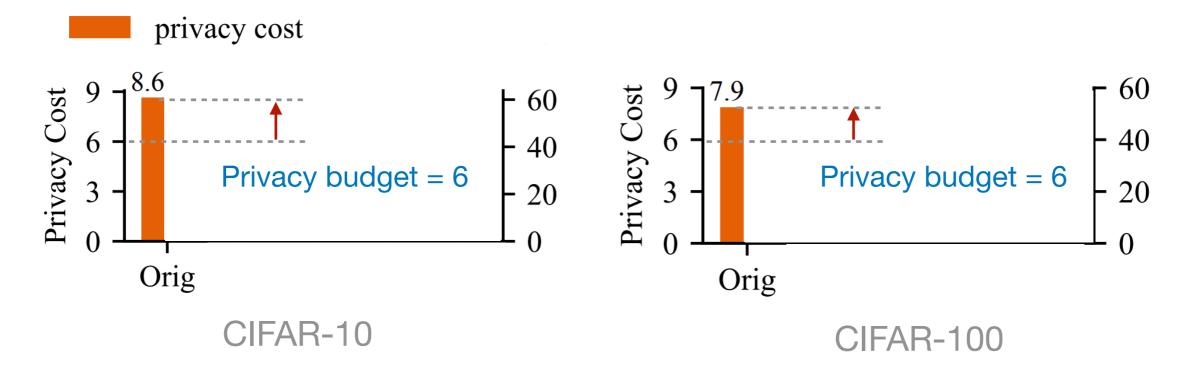




Client behaviors simulated with 100 volatile users from the FLASH dataset¹ (WWW '21)

Privacy Issue Caused by Client Dropout

Client dropout can occur anytime Insufficient noise for target privacy



Goal: always enforce the target noise level

Goal: always enforce the target noise level

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

Goal: always enforce the target noise level

Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example

Sampled clients |S| = 4

Minimum necessary noise level $\sigma_*^2 = 1$

Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example

Add

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level $\sigma_*^2 = 1$

Each client adds noise $n_i \sim \chi(1/2)$ to tolerate up to 2 clients to drop

$$\begin{array}{ll} n_{1,0} \sim \chi(1/4) & n_{1,1} \sim \chi(1/12) & n_{1,2} \sim \chi(1/6) \\ n_{2,0} \sim \chi(1/4) & n_{2,1} \sim \chi(1/12) & n_{2,2} \sim \chi(1/6) \\ n_{3,0} \sim \chi(1/4) & n_{3,1} \sim \chi(1/12) & n_{3,2} \sim \chi(1/6) \\ n_{4,0} \sim \chi(1/4) & n_{4,1} \sim \chi(1/12) & n_{4,2} \sim \chi(1/6) \end{array}$$

Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example

λd	
Ad	U

		Clients		to tolerate up to 2 clients to drop				
44	Sampled clients $ S = 4$	$oldsymbol{\left(\begin{array}{c} n_{1,0} \end{array}{} \right)}$		$n_{1,1} \sim \chi(1/12)$				
aa	Dropout tolerance $t = 2$,	`		$n_{2,1} \sim \chi(1/12)$	/			
	Minimum necessary noise level $\sigma_*^2=1$	$\bigcirc n_{3,0}$ ~	$\sim \chi(1/4)$	$n_{3,1} \sim \chi(1/12)$	$n_{3,2} \sim \chi(1/6)$			
		$\bigcirc n_{4,0}$ ~	$\sim \chi(1/4)$	$n_{4,1} \sim \chi(1/12)$	$n_{4,2} \sim \chi(1/6)$			

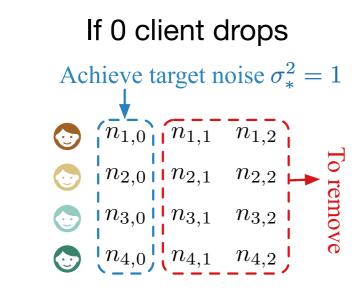
Each alignt adds noise $n \cdot q \cdot \chi(1/2)$

Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example

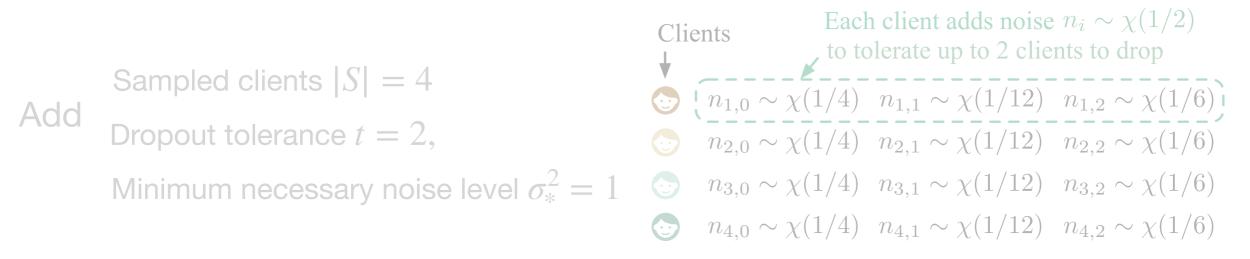
		Clie	ents		client adds noise lerate up to 2 clie	
Add	Sampled clients $ S = 4$					$n_{1,2} \sim \chi(1/6)$
Auu	Dropout tolerance $t = 2$,				$n_{2,1} \sim \chi(1/12)$	
	Minimum necessary noise level $\sigma_*^2=1$		$n_{3,0} \sim \chi($	(1/4)	$n_{3,1} \sim \chi(1/12)$	$n_{3,2} \sim \chi(1/6)$
			$n_{4,0} \sim \chi($	(1/4)	$n_{4,1} \sim \chi(1/12)$	$n_{4,2} \sim \chi(1/6)$

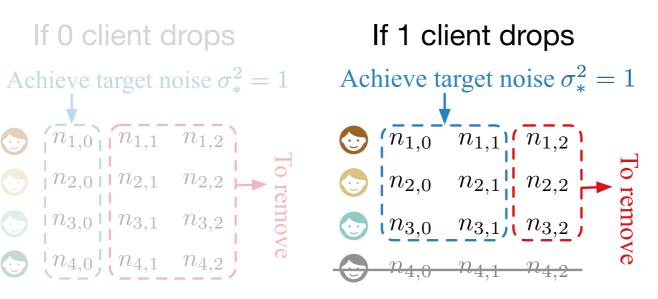
Remove



Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example



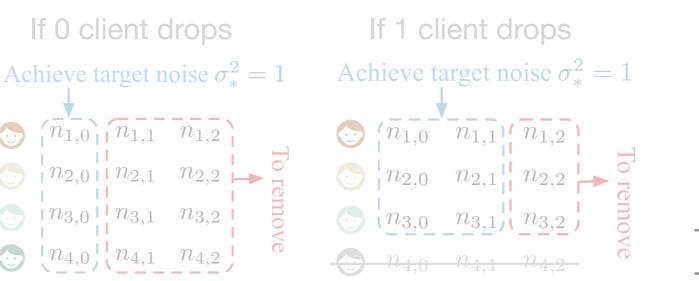


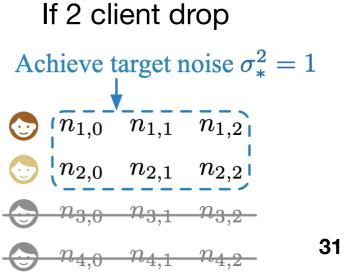
Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example

Add
Sampled clients
$$|S| = 4$$

Dropout tolerance $t = 2$,
Minimum necessary noise level $\sigma_*^2 = 1$
Clients
Clients
Each client adds noise $n_i \sim \chi(1/2)$
to tolerate up to 2 clients to drop
 $n_{1,0} \sim \chi(1/4)$ $n_{1,1} \sim \chi(1/12)$ $n_{1,2} \sim \chi(1/6)$
 $n_{2,0} \sim \chi(1/4)$ $n_{2,1} \sim \chi(1/12)$ $n_{2,2} \sim \chi(1/6)$
 $n_{3,0} \sim \chi(1/4)$ $n_{3,1} \sim \chi(1/12)$ $n_{3,2} \sim \chi(1/6)$
 $n_{4,0} \sim \chi(1/4)$ $n_{4,1} \sim \chi(1/12)$ $n_{4,2} \sim \chi(1/6)$





Goal: always enforce the target noise level Intuition: add-then-remove

Concrete example

Formal definition: XNoise

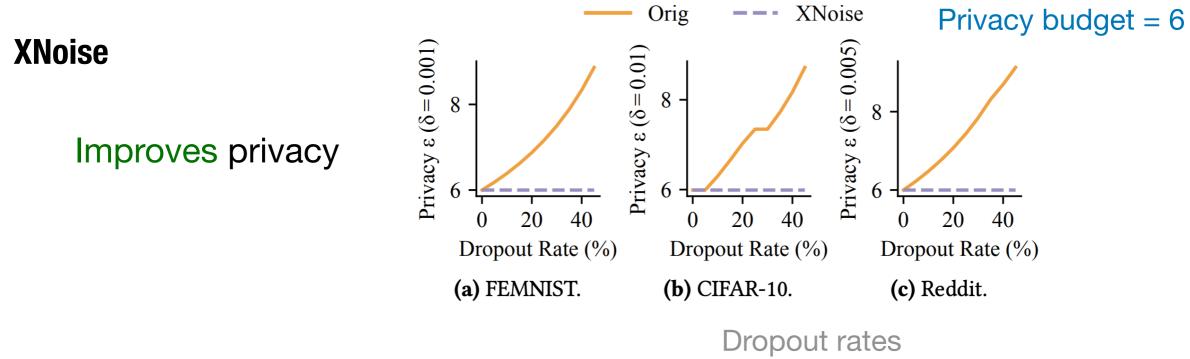
Add: decompose *i*'s added noise $n_i \sim \chi\left(\frac{\sigma_*^2}{|S|-t}\right)$ into t+1 components:

$$n_{i} = \sum_{k=0}^{t} n_{i,k}, n_{i,0} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|}\right), \text{ and } n_{i,k} \sim \chi\left(\frac{\sigma_{*}^{2}}{(|S| - k + 1)(|S| - k)}\right) (k \in [t])$$

- Remove: when there are |D| clients dropping out, the noise components $n_{i,k}$ contributed by the surviving clients $i \in S \setminus D$ with the index k > |D| becomes excessive and is removed by the server

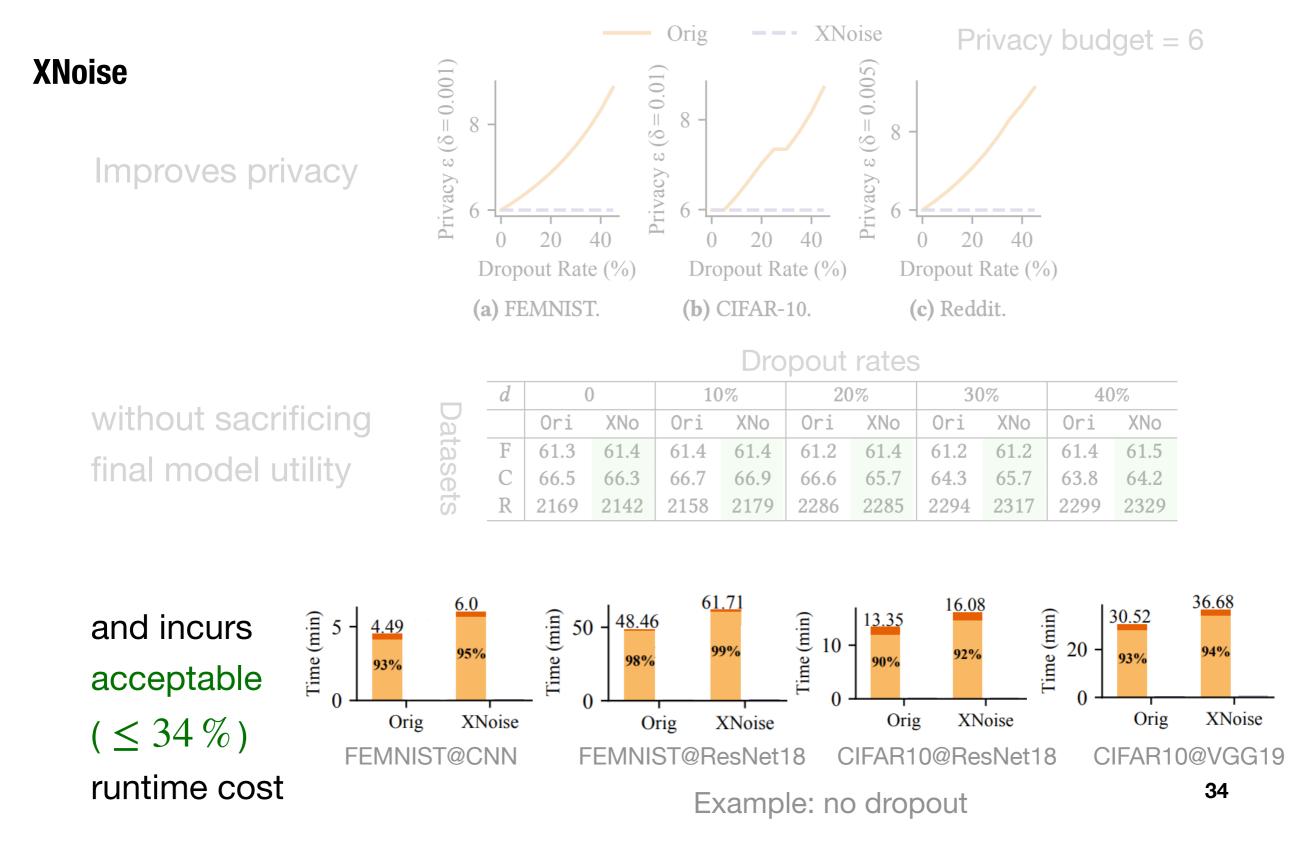
Practical Design:

- Avoiding cascading dropout: secret sharing
- Integrity of the dropout outcome: secure signature



without sacrificing final model utility

	d	0 10%)%	20%		30%		40%		
a		Ori	XNo	Ori	XNo	Ori	XNo	Ori	XNo	Ori	XNo
ta:	F	61.3	61.4	61.4	61.4	61.2	61.4	61.2	61.2	61.4	61.5
9S	C	66.5	66.3	66.7	66.9	66.6	65.7	64.3	65.7	63.8	64.2
ets	R	2169	2142	2158	2179	2286	2285	2294	2317	2299	2329



Distributed DP has Two Issues

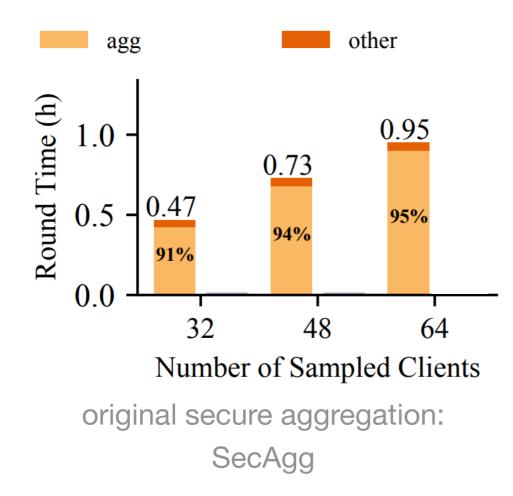
- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation

Performance issues with SecAgg

Extensive use of secret sharing and pairwise masking

Performance issues with SecAgg

Extensive use of secret sharing and pairwise masking **Dominates** the training time (at least 91%)



Performance issues with SecAgg

Extensive use of secret sharing and pairwise masking Dominates the training time (at least 91%)

Follow-up solutions

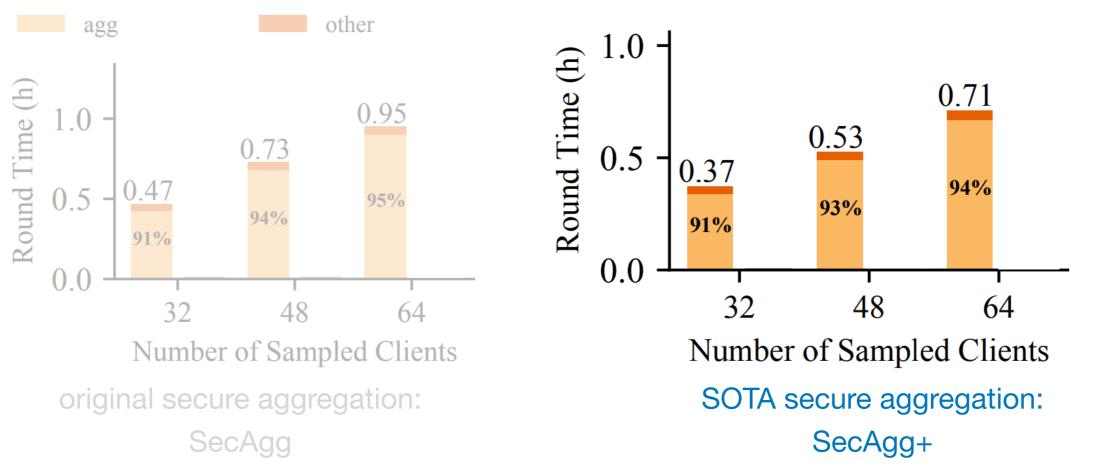
- e.g. SecAgg+: improves asymptotically

Performance issues with SecAgg

Extensive use of secret sharing and pairwise masking Dominates the training time (at least 91%)

Follow-up solutions have inefficiencies

- e.g. SecAgg+: improves asymptotically, but help little in small-scale practice¹



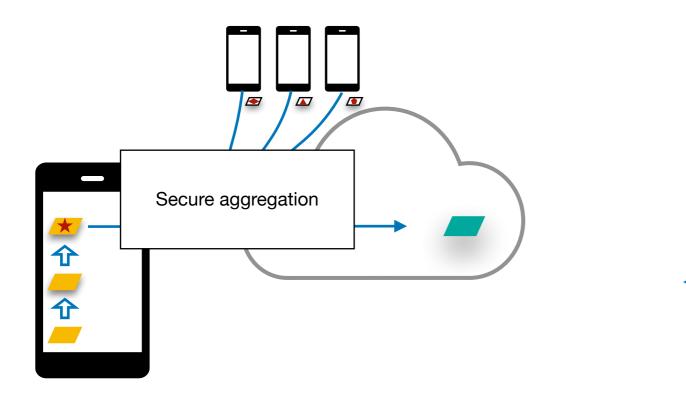
[1] Towards federated learning at scale: system design, MLSys '19

Goal: leverage the underutilized resources in the system level

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources



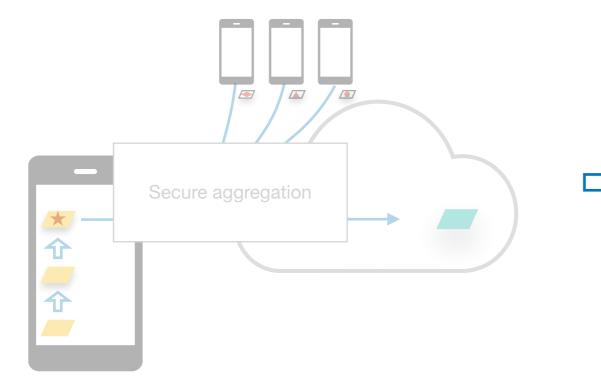
s-comp: the compute resources (e.g., CPU, GPU, and memory) of the server

- **c-comp**: the compute resources of clients
- **comm**: the network resource used for server-client communication

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources
- Step 2: Group consecutive operations that use the same system resources

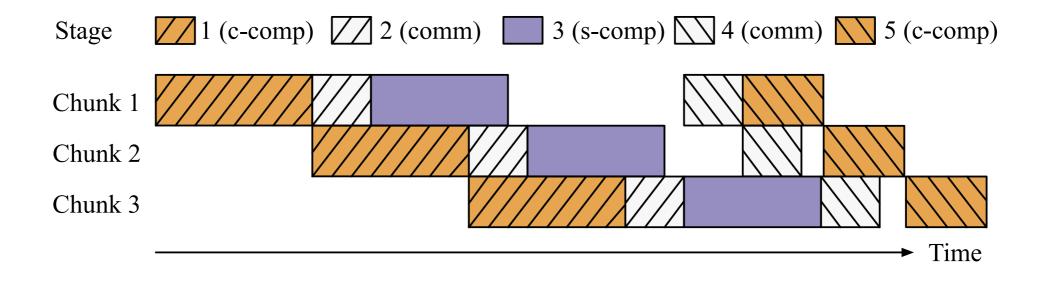


Step	Operation	Stage (Resource)
1	Clients encode updates.	
2	Clients generate security keys.	1 (c-comp)
3	Clients establish shared secrets.	
4	Clients mask encoded updates.	
5	Clients upload masked updates.	2 (comm)
6	Server deals with dropout.	
7	Server computes aggregate update.	3(s-comp)
8	Server updates the global model.	
9	Server dispatches the aggregate.	4 (comm)
10	Clients decode the aggregate.	5 (c-comp)
11	Clients use the aggregate.	

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources
- Step 2: Group consecutive operations that use the same system resources
- Step 3: Evenly partition each client's update into chunks and pipeline them



Goal: leverage the underutilized resources in the system level

Approach:

S

- Step 1: Identify the types of system resources
- Step 2: Group consecutive operations that use the same system resources
- Step 3: Evenly partition each client's update into chunks and pipeline them
 - Optimize to determine the optimal number of chunk, *m**

$$m^{*} = \arg \min_{m \in N_{+}} f_{a,m}$$

$$.t. \quad f_{s,c} = b_{s,c} + l_{s}$$

$$b_{s,c} = \max\{o_{s,c}, r_{s,c}\}$$

$$Definition of the finish time of$$

$$chunk m at Stage a$$

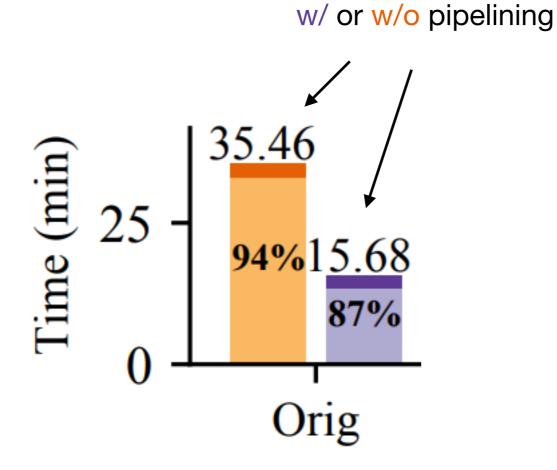
$$r_{s,c} = \begin{cases} 0, & \text{if } s = 0 \text{ and } c = 0, \\ f_{q,m} \text{ or } \bot, & \text{if } s \neq 0 \text{ and } c = 0, \\ f_{s,c-1}, & \text{otherwise} \end{cases}$$

$$Exclusive allocation$$

$$\& \text{ Inter-chunk sequential execution}$$

Effectiveness:

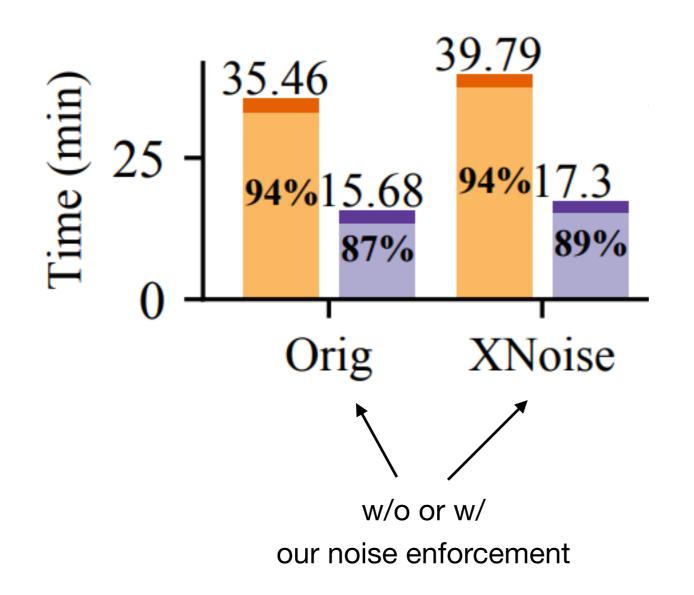
(1) A maximum speedup of $2.4\times$



Case study: CIFAR10 @ VGG19, dropout rate = 30%

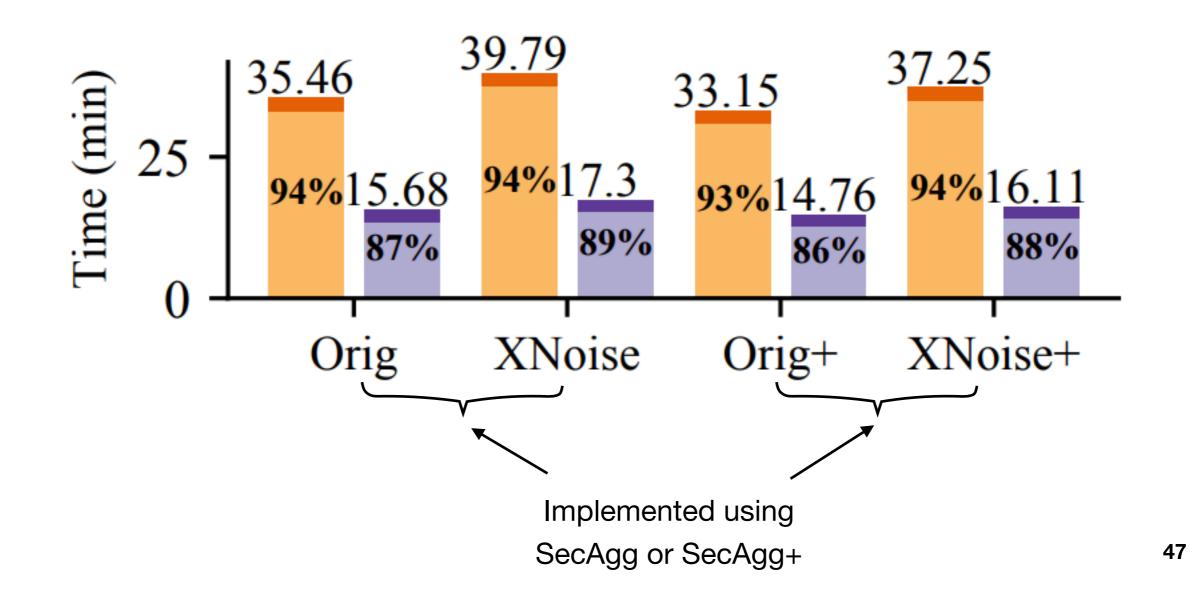
Effectiveness:

(1) A maximum speedup of $2.4\times$



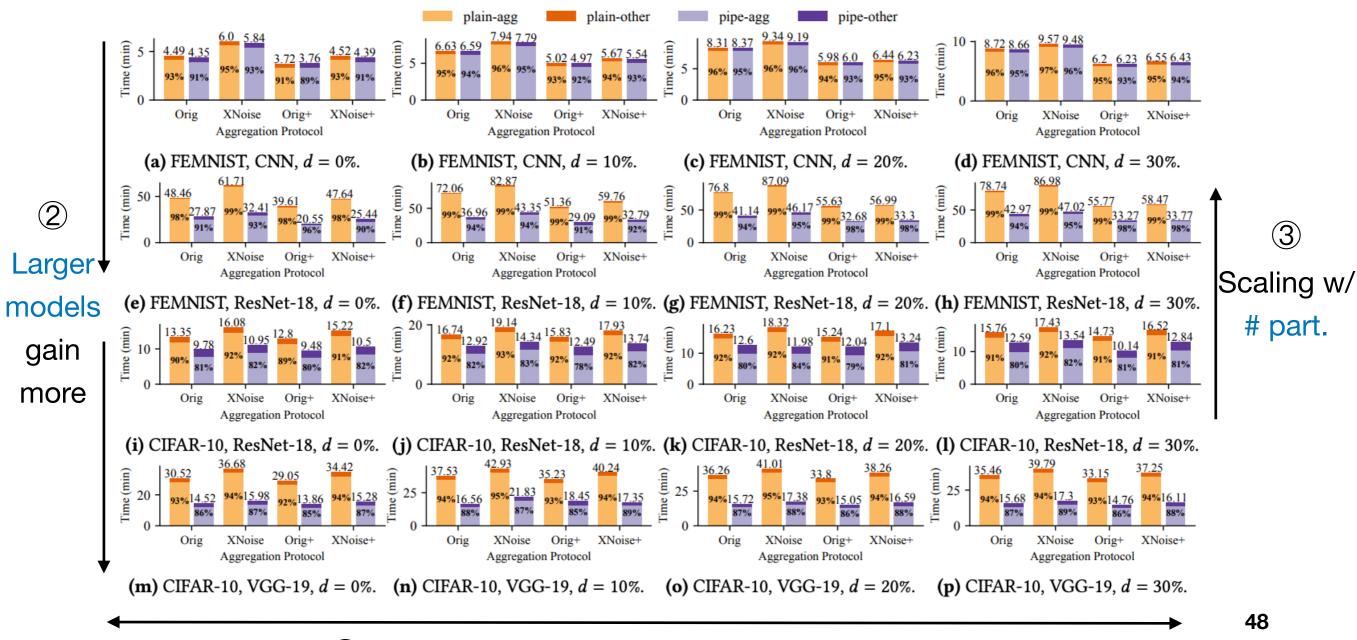
Effectiveness:

(1) A maximum speedup of $2.4\times$



Effectiveness:

(1) A maximum speedup of $2.4 \times$



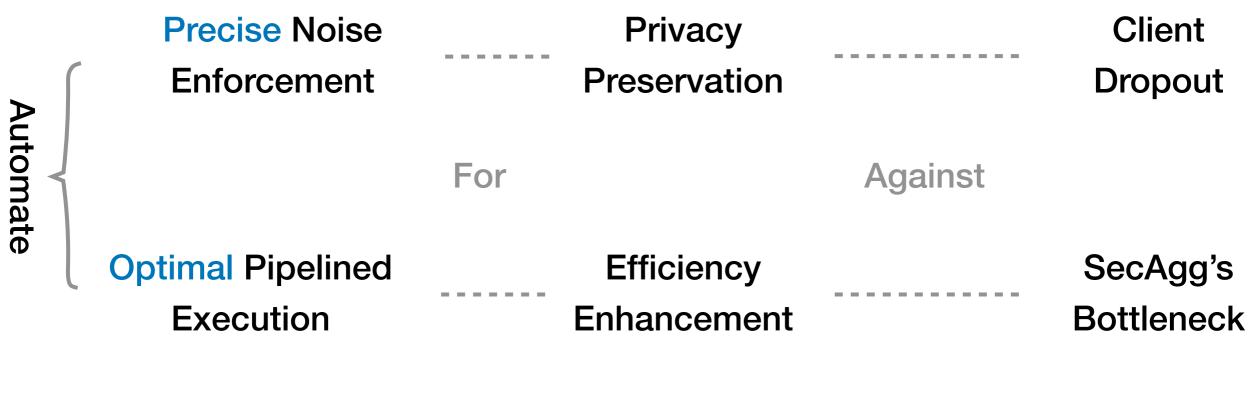
Gains are consistent across different dropout rates

https://github.com/SamuelGong/Dordis

A distributed DP framework for

NOKIA Bell Labs

- Privacy
- Efficiency
- in FL training



Thank you!

