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Centralized learning hurts privacy
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Centralized learning hurts privacy

guardian

Facebook halts use of WhatsApp data
for advertising in Europe

Potential abuse...




Local learning




Local learning suffers from low utility
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FL Step 1: Participant Selection
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FL Step 2: Local Training

Local model update
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FL Step 3: Model Aggregation

1L

Aggregated
update

10



FL Applications
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FL Applications
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Data Leakage Remains in FL

client side server side
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e.g., data reconstruction? (Security '23)
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[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning



Data Leakage Remains in FL

To conceal local updates?

Secure aggregationt2
(CCS ’17, ‘20)

[1] Practical secure aggregation for privacy-preserving machine learning
[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead
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Data Leakage Remains in FL
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Secure aggregation

To conceal local updates?
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Data Leakage Remains in FL

To also perturb the aggregated update?

Sacrifice the
precision

Differential Privacy’

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

For enhanced
privacy



Data Leakage Remains in FL

To also perturb the aggregated update?

Sacrifice the

o Differential Privacy’
precision
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For enhanced
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[1] Calibrating Noise to Sensitivity in Privacy Data Analysis
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Data Leakage Remains in FL

To also perturb the aggregated update?
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Distributed DP = SecAgg + DP
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Distributed DP Has Two Practical Issues

1. Privacy Issue: caused by client dropout

]
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Secure aggregation
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Privacy Issue Caused by Client Dropout

Client dropout can occur anytime
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[1] Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data 21



Privacy Issue Caused by Client Dropout

Insufficient noise for target privacy

B privacy cost
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Dropout-Resilient Noise Enforcement

Goal: always enforce the target noise level
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Dropout-Resilient Noise Enforcement

Intuition: add-then-remove
- Each client first adds excessive noise as separate components

Excessive Level
«

Noise - I
Addition




Dropout-Resilient Noise Enforcement

Intuition: add-then-remove

- After aggregation, unnecessary ones are removed by the server

Excessive Level

. - -
Noise - I
Addition @
Noise NN
Removal AN
{} | Noise
Result | — = 1 Negation

- P i
Necessary Level '— —1 of Noise
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Dropout-Resilient Noise Enforcement

Concrete example

Sampled clients |S| = 4

Minimum necessary noise level 62 =1
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Dropout-Resilient Noise Enforcement

Concrete example

Each client adds noise 7; ~ x(1/2)
to tolerate up to 2 clients to drop

Sampled clients |S| = 4
Adad

Dropout tolerance t = 2,

Minimum necessary noise level 62 =1
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Dropout-Resilient Noise Enforcement

Concrete example

Each client adds noise 7; ~ x(1/2)

Clients :
V o to tolerate up to 2 clients to drop
Sampled clients |S| = 4 ek ettt N
Add " > O T ¥ x(/4) m > x(1/12)_ms > x(1/6))
Dropout tolerance t = 2, ng.o ~ x(1/4) ngq ~ x(1/12) ngo ~ x(1/6)
Minimum necessary noise level 67 = 1 ngo ~ x(1/4) n31 ~ x(1/12) ng2 ~ x(1/6)
O nao~x(1/4) nay ~x(1/12) ngz ~ x(1/6)
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Dropout-Resilient Noise Enforcement

Concrete example

If O client drops

Achieve target noise 02 = 1
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Dropout-Resilient Noise Enforcement

Concrete example

If 1 client drops
Achieve target noise 02 = 1

Remove O [no main
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Dropout-Resilient Noise Enforcement

Concrete example

If 2 client drop

Achieve target noise 02 = 1

y

Remove @:ﬁl,o ni1 M1,2,

|
M2,0 M2,1 N2l
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Dropout-Resilient Noise Enforcement

Formal definition: XNoise

o?

_ Add: decompose i's added noise n, N;(( ) into r + 1 components:

S| —1
i (03) o}
= ) Nihiog~x ,andn; ;. ~ Z( )(k € [1])
k=0 S| (IS] =&k + 1)(|S] — k)

- Remove: when there are | D | clients dropping out, the noise components
n; , contributed by the surviving clients i € S\D with the index k > | D|

becomes excessive and is removed by the server
Practical Design:
- Avoiding cascading dropout: secret sharing

- Integrity of the dropout outcome: secure signature "



Dropout-Resilient Noise Enforcement

Org  —==- XNoise Privacy budget = 6
XNoise = = 2
() { ()
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2 6_I___I___I- E 6-I-__I___I- 2 6_I___I___I-
~ 0 20 40 T 0 20 40 = 0 20 4
Dropout Rate (%) Dropout Rate (%) Dropout Rate (%)
(a) FEMNIST. (b) CIFAR-10. (c) Reddit.

Dropout rates

d 0 10% 20% 30% 40%

Ori XNo | Ori XNo | Ori XNo | Ori XNo | Ori  XNo
61.3 614 | 614 614 | 61.2 614 | 61.2 61.2 | 61.4 61.5
66.5 66.3 | 66.7 66.9 | 66.6 65.7 | 643 65.7 | 63.8 64.2
2169 2142 | 2158 2179 | 2286 2285 | 2294 2317 | 2299 2329

without sacrificing
final model utility
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Dropout-Resilient Noise Enforcement

XNoise
' £ R £l ‘e £ 'S R E
and incurs £ 5744 £ 50 {4846 Bl CEENE
Py 95% = - 99% 3 10 92% 2 201 30 94%
g 939, 0:9 98% g 90% = °
acceptable £ - Nl | - | |
( < 3 4 %) Orig  XNoise Orig  XNoise Orig  XNoise Orig  XNoise
— FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19
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runtime cost Example: no dropout



Distributed DP has Two Issues

2. Performance Issue: expensive use of secure aggregation
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Performance issues with SecAgg

Extensive use of secret sharing and pairwise masking
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Performance issues with SecAgg

Dominates the training time (at least 91%)

agg B other
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32 48 64

Number of Sampled Clients

original secure aggregation:
SecAgg
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Performance issues with SecAgg

Follow-up solutions
- e.g. SecAgg+: improves asymptotically
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Performance issues with SecAgg

Follow-up solutions have inefficiencies
- e.g. SecAgg+: improves asymptotically, but help little in small-scale practice’

@ 10 .
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[1] Towards federated learning at scale: system design, MLSys ‘19



Pipeline-Parallel Acceleration

Goal: leverage the underutilized resources in the system level
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Pipeline-Parallel Acceleration

Approach:
- Step 1: Identify the types of system resources

s-comp. the compute resources

e.qg., CPU, GPU, and memory) of
the server
& 7 &7
D c-comp. the compute resources of
— Secure aggregation Clients
— AN

comm: (he network resource used
for server-client communication

ol o *
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Pipeline-Parallel Acceleration

Approach:

- Step 2: Group consecutive operations that use the same system resources

>

Step Operation

Stage (Resource)

1
2
3
4
5
6
7
8
9

10
11

Clients encode updates.

Clients generate security keys.
Clients establish shared secrets.
Clients mask encoded updates.

Clients upload masked updates.
Server deals with dropout.

Server computes aggregate update.

Server updates the global model.
Server dispatches the aggregate.

Clients decode the aggregate.
Clients use the aggregate.

1 (c-comp)

2 (comm)

3 (s-comp)

4 (comm)

5 (c-comp)
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Pipeline-Parallel Acceleration

Approach:

- Step 3: Evenly partition each client’s update into chunks and pipeline them

Stage

vk (Y0000
v

Chunk 2
Chunk 3

1 (c-comp)

/

2 (comm) [] 3 (s-comp)

4 (comm)

RN

5 (c-comp)

\\\\
\

\\\\

» Time
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Pipeline-Parallel Acceleration

Approach:

- Optimize to determine the optimal number of chunk, m*

m* =arg min f,
meN, [

0, ifs=0andc =0,
S.r. fs,czbs,c+ls

— or L, ifs#0andc =0,
Definition of the finish time of Fs.c ) fq’m

Chunk m at Stage a Jse—1> otherwise
b, .= max{o, 7, .} J .
0 fo=0 | Exclusive allocation
0 = ’ &=, Intra-chunk sequential & Inter-chunk sequential execution
$,€ fictie execution
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Pipeline-Parallel Acceleration

Effectiveness: @M A maximum speedup of 2.4x

w/ or w/o pipelining

/

O R

&

g 23 94%15.68
= 87%

S

Orig

Case study: CIFAR10 @
VGG19, dropout rate = 30%
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Pipeline-Parallel Acceleration

Effectiveness: @M A maximum speedup of 2.4x

3546 O

94%15.68 94%17.3
87% 89%

Time (min)
N
N

-

Orig XNoise

\

w/0 or w/
our noise enforcement
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Pipeline-Parallel Acceleration

Effectiveness: @M A maximum speedup of 2.4x

3546 2 a3 312

94%15.68 4%173 93041476 94%16.11
87% 89% 86% 88%

Time (min)
N
N

-

Orig XNoise  Origt  XNoise+
(& —— J \§ —— J

N e

Implemented using
SecAgg or SecAgg+
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Pipeline-Parallel Acceleration

Effectiveness:

@
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Aggregation Protocol
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(e) FEMNIST, ResNet-18, d = 0%.
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Aggregation Protocol

(i) CIFAR-10, ResNet-18, d = 0%.

Aggregation Protocol

(b) FEMNIST, CNN, d = 10%.

Aggregation Protocol

(c) FEMNIST, CNN, d = 20%.
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Aggregation Protocol

(f) FEMNIST, ResNet-18, d = 10%. (g) FEMNIST, ResNet-18, d = 20%. (h) FEMNIST, ResNet-18, d = 30%.

Aggregation Protocol
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(j) CIFAR-10, ResNet-18, d = 10%. (k) CIFAR-10, ResNet-18, d = 20%. (1) CIFAR-10, ResNet-18, d = 30%.
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(m) CIFAR-10, VGG-19, d = 0%.

Aggregation Protocol

(n) CIFAR-10, VGG-19, d = 10%.

Aggregation Protocol

(o) CIFAR-10, VGG-19, d = 20%.
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(p) CIFAR-10, VGG-19, d = 30%.
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@ Gains are consistent across different dropout rates

©)

Scaling w/
# part.
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A distributed DP framework for
® Privacy
® Efficiency

in FL training

Precise Noise Privacy Client
g Enforcement Preservation Dropout
z
= < For Against
8
@ . . . ,
_ Optimal Pipelined Efficiency SecAgg’s
Execution Enhancement Bottleneck
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https://github.com/SamuelGong/Dordis

