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Centralized learning hurts privacy

Data breaches…
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Data breaches…

Potential abuse…

Centralized learning hurts privacy
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Local learning
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Local learning suffers from low utility
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Federated Learning

(FL)

Utility

Privacy

Centralized 
learning

Local 
learning
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FL Step 1: Participant Selection

Initial model

Participants

Client 
population
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FL Step 2: Local Training

Initial model

Local model update
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FL Step 3: Model Aggregation

Aggregated 
update
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FL Applications

Google’s Keyboard
Mobile
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Google’s Keyboard
Mobile

Apple’s speaker recognition

IoT

Volvo’s trajectory prediction Cisco’s 3D printing Leveno’s clogging detection

Brave’s news recommendation

Huawei’s ads recommendation

Firefox’s URL bar suggestion

FL Applications
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Data Leakage Remains in FL

From local 
update…

e.g., data reconstruction1 (Security ’23)

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning



14

Secure aggregation12 

(CCS ’17, ‘20)

[1] Practical secure aggregation for privacy-preserving machine learning

[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

To conceal local updates?

Data Leakage Remains in FL
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① Local update

② Masked 
local update

④ Aggregated update

Secure aggregation 
 

③ Masks cancel out!

Data Leakage Remains in FL
To conceal local updates?
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Differential Privacy1 

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

To conceal local updates?

To also perturb the aggregated update?

Data Leakage Remains in FL

For enhanced 
privacy

Sacrifice the 
precision
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  DP ensures that          

be insensitive to the impact of 


any single local update in 
local 

updates

= A( )

random 
noise

= f( ) +

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

aggregation

Differential Privacy1 

Data Leakage Remains in FL
To conceal local updates?

To also perturb the aggregated update?

For enhanced 
privacy

Sacrifice the 
precision
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① Slightly 
noisy local 
update

② Masked 
slightly noisy 
local update

④ Adequately noisy 
aggregated update

Secure aggregation

 ③ Masks cancel out!

⓪ Global privacy budget   Calculate the minimum required noiseϵ →

Data Leakage Remains in FL
To conceal local updates?

To also perturb the aggregated update?
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Distributed DP = SecAgg + DP

① Slightly 
noisy local 
update

② Masked 
slightly noisy 
local update

④ Adequately noisy 
aggregated update

Secure aggregation

 ③ Masks cancel out!

⓪ Global privacy budget   Calculate the minimum required noiseϵ →

To conceal local updates?

To also perturb the aggregated update?
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1. Privacy Issue: caused by client dropout

Secure aggregation

Distributed DP Has Two Practical Issues
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Client behaviors simulated

with 100 volatile users


from the FLASH dataset1 (WWW ‘21)

[1] Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data

Secure aggregation

Privacy Issue Caused by Client Dropout
Client dropout can occur anytime
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Client dropout can occur anytime

Insufficient noise for target privacy

CIFAR-10 CIFAR-100

Privacy budget = 6 Privacy budget = 6

Privacy Issue Caused by Client Dropout



23

Goal: always enforce the target noise level

Dropout-Resilient Noise Enforcement
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Goal: always enforce the target noise level

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

Excessive Level

Necessary Level

Noise

Negation 
of Noise

Noise 
Addition

Noise 
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-Resilient Noise Enforcement
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Goal: always enforce the target noise level

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Excessive Level

Necessary Level

Noise

Negation 
of Noise

Noise 
Addition

Noise 
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-Resilient Noise Enforcement
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Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Dropout-Resilient Noise Enforcement

Sampled clients |S| = 4

Minimum necessary noise level σ2
* = 1
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     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

Add
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Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Add
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Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Remove

Add

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

If 0 client drops
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Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

Dropout-Resilient Noise Enforcement

Remove

Add

Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

If 0 client drops If 1 client drops

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1
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Remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

If 1 client drops If 2 client drop

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

Add

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example
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Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Formal definition: XNoise


- Add: decompose ’s added noise  into  components: 

, , and 


- Remove: when there are  clients dropping out, the noise components 
 contributed by the surviving clients  with the index  

becomes excessive and is removed by the server

Practical Design:


- Avoiding cascading dropout: secret sharing

- Integrity of the dropout outcome: secure signature

i ni ∼ χ( σ2
*

|S| − t ) t + 1

ni =
t

∑
k=0

ni,k ni,0 ∼ χ( σ2
*

|S| ) ni,k ∼ χ( σ2
*

(|S| − k + 1)(|S| − k) )(k ∈ [t])

|D |
ni,k i ∈ S∖D k > |D |

Dropout-Resilient Noise Enforcement
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Improves privacy

Privacy budget = 6
XNoise

Dropout-Resilient Noise Enforcement

without sacrificing 
final model utility

Dropout rates

Datasets
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and incurs 
acceptable 
( ) 
runtime cost
≤ 34 %

Example: no dropout
FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19

Dropout-Resilient Noise Enforcement
Privacy budget = 6

Dropout rates

Datasets

without sacrificing 
final model utility

Improves privacy

XNoise
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

Distributed DP has Two Issues
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Extensive use of secret sharing and pairwise masking

Performance issues with SecAgg
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Extensive use of secret sharing and pairwise masking

Dominates the training time (at least 91%)

Performance issues with SecAgg

original secure aggregation: 
SecAgg
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Extensive use of secret sharing and pairwise masking

Dominates the training time (at least 91%)

Follow-up solutions

- e.g. SecAgg+: improves asymptotically

Performance issues with SecAgg

original secure aggregation: 
SecAgg
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Extensive use of secret sharing and pairwise masking

Dominates the training time (at least 91%)

Follow-up solutions have inefficiencies

- e.g. SecAgg+: improves asymptotically, but help little in small-scale practice1

SOTA secure aggregation: 
SecAgg+

[1] Towards federated learning at scale: system design, MLSys ‘19

Performance issues with SecAgg

original secure aggregation: 
SecAgg
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Goal: leverage the underutilized resources in the system level

Pipeline-Parallel Acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

Secure aggregation

s-comp: the compute resources 
(e.g., CPU, GPU, and memory) of 
the server 

c-comp: the compute resources of 
clients 

comm: the network resource used 
for server-client communication

Pipeline-Parallel Acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

Secure aggregation

Pipeline-Parallel Acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline them

Time

Chunk 1

Chunk 2

Chunk 3

1 (c-comp)Stage 2 (comm) 3 (s-comp) 4 (comm) 5 (c-comp)

Pipeline-Parallel Acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline them


- Optimize to determine the optimal number of chunk, m*

m* = arg min
m∈N+

fa,m

fs,c = bs,c + ls Definition of the finish time of 
Chunk  at Stage m a

s . t .

Intra-chunk sequential 
executionos,c = {0, if s = 0,

fs−1,c

bs,c = max{os,c, rs,c}

rs,c =
0, if s = 0 and c = 0,
fq,m or  ⊥ , if s ≠ 0 and c = 0,
fs,c−1, otherwise

Exclusive allocation 
& Inter-chunk sequential execution

Pipeline-Parallel Acceleration
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Effectiveness:
① A maximum speedup of 2.4×

w/ or w/o pipelining

Pipeline-Parallel Acceleration

Case study: CIFAR10 @ 
VGG19, dropout rate = 30%
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w/o or w/

our noise enforcement

Pipeline-Parallel Acceleration
① A maximum speedup of 2.4×Effectiveness:
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Implemented using 
SecAgg or SecAgg+

Pipeline-Parallel Acceleration
① A maximum speedup of 2.4×Effectiveness:
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② 
Larger 
models 

gain 
more

③

Scaling w/ 


# part.

④ Gains are consistent across different dropout rates

Pipeline-Parallel Acceleration
① A maximum speedup of 2.4×Effectiveness:



Dordis
https://github.com/SamuelGong/Dordis

A distributed DP framework for 
• Privacy  
• Efficiency 
in FL training

Thank you!

Autom
ate

Precise Noise 
Enforcement

Optimal Pipelined 
Execution

For

Privacy 
Preservation

Efficiency 
Enhancement

Against

Client 
Dropout

SecAgg’s 
Bottleneck

https://github.com/SamuelGong/Dordis

