
Efficient Federated Learning
with Dropout-Resilient Differential Privacy

Zhifeng Jiang,

Wei Wang,

Ruichuan Chen

Dordis

2

Centralized learning

Client

Data

Request

Prediction

Server

Model

3

Centralized learning hurts privacy

Data breaches…

4

Data breaches…

Potential abuse…

Centralized learning hurts privacy

5

Local learning

6

Local learning suffers from low utility

7

Federated Learning

(FL)

Utility

Privacy

Centralized
learning

Local
learning

8

FL Step 1: Participant Selection

Initial model

Participants

Client
population

9

FL Step 2: Local Training

Initial model

Local model update

10

FL Step 3: Model Aggregation

Aggregated
update

11

FL Applications

Google’s Keyboard
Mobile

12

Google’s Keyboard
Mobile

Apple’s speaker recognition

IoT

Volvo’s trajectory prediction Cisco’s 3D printing Leveno’s clogging detection

Brave’s news recommendation

Huawei’s ads recommendation

Firefox’s URL bar suggestion

FL Applications

13

Data Leakage Remains in FL

From local
update…

e.g., data reconstruction1 (Security ’23)

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning

14

Secure aggregation12

(CCS ’17, ‘20)

[1] Practical secure aggregation for privacy-preserving machine learning

[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

To conceal local updates?

Data Leakage Remains in FL

15

① Local update

② Masked
local update

④ Aggregated update

Secure aggregation

③ Masks cancel out!

Data Leakage Remains in FL
To conceal local updates?

16

Differential Privacy1

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

To conceal local updates?

To also perturb the aggregated update?

Data Leakage Remains in FL

For enhanced
privacy

Sacrifice the
precision

17

 DP ensures that

be insensitive to the impact of

any single local update in
local

updates

= A()

random
noise

= f() +

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

aggregation

Differential Privacy1

Data Leakage Remains in FL
To conceal local updates?

To also perturb the aggregated update?

For enhanced
privacy

Sacrifice the
precision

18

① Slightly
noisy local
update

② Masked
slightly noisy
local update

④ Adequately noisy
aggregated update

Secure aggregation

 ③ Masks cancel out!

⓪ Global privacy budget Calculate the minimum required noiseϵ →

Data Leakage Remains in FL
To conceal local updates?

To also perturb the aggregated update?

19

Distributed DP = SecAgg + DP

① Slightly
noisy local
update

② Masked
slightly noisy
local update

④ Adequately noisy
aggregated update

Secure aggregation

 ③ Masks cancel out!

⓪ Global privacy budget Calculate the minimum required noiseϵ →

To conceal local updates?

To also perturb the aggregated update?

20

1. Privacy Issue: caused by client dropout

Secure aggregation

Distributed DP Has Two Practical Issues

21

Client behaviors simulated

with 100 volatile users

from the FLASH dataset1 (WWW ‘21)

[1] Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data

Secure aggregation

Privacy Issue Caused by Client Dropout
Client dropout can occur anytime

22

Client dropout can occur anytime

Insufficient noise for target privacy

CIFAR-10 CIFAR-100

Privacy budget = 6 Privacy budget = 6

Privacy Issue Caused by Client Dropout

23

Goal: always enforce the target noise level

Dropout-Resilient Noise Enforcement

24

Goal: always enforce the target noise level

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

Excessive Level

Necessary Level

Noise

Negation
of Noise

Noise
Addition

Noise
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-Resilient Noise Enforcement

25

Goal: always enforce the target noise level

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Excessive Level

Necessary Level

Noise

Negation
of Noise

Noise
Addition

Noise
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-Resilient Noise Enforcement

26

Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Dropout-Resilient Noise Enforcement

Sampled clients |S| = 4

Minimum necessary noise level σ2
* = 1

27

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

Add

28

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Add

29

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Remove

Add

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

If 0 client drops

30

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

Dropout-Resilient Noise Enforcement

Remove

Add

Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

If 0 client drops If 1 client drops

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

31

Remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

If 1 client drops If 2 client drop

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4
Dropout tolerance t = 2,
Minimum necessary noise level σ2

* = 1

Add

Dropout-Resilient Noise Enforcement
Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

32

Goal: always enforce the target noise level

Intuition: add-then-remove

Concrete example

Formal definition: XNoise

- Add: decompose ’s added noise into components:

, , and

- Remove: when there are clients dropping out, the noise components
 contributed by the surviving clients with the index

becomes excessive and is removed by the server

Practical Design:

- Avoiding cascading dropout: secret sharing

- Integrity of the dropout outcome: secure signature

i ni ∼ χ(σ2
*

|S| − t) t + 1

ni =
t

∑
k=0

ni,k ni,0 ∼ χ(σ2
*

|S|) ni,k ∼ χ(σ2
*

(|S| − k + 1)(|S| − k))(k ∈ [t])

|D |
ni,k i ∈ S∖D k > |D |

Dropout-Resilient Noise Enforcement

33

Improves privacy

Privacy budget = 6
XNoise

Dropout-Resilient Noise Enforcement

without sacrificing
final model utility

Dropout rates

Datasets

34

and incurs
acceptable
()
runtime cost
≤ 34 %

Example: no dropout
FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19

Dropout-Resilient Noise Enforcement
Privacy budget = 6

Dropout rates

Datasets

without sacrificing
final model utility

Improves privacy

XNoise

35

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

Distributed DP has Two Issues

36

Extensive use of secret sharing and pairwise masking

Performance issues with SecAgg

37

Extensive use of secret sharing and pairwise masking

Dominates the training time (at least 91%)

Performance issues with SecAgg

original secure aggregation:
SecAgg

38

Extensive use of secret sharing and pairwise masking

Dominates the training time (at least 91%)

Follow-up solutions

- e.g. SecAgg+: improves asymptotically

Performance issues with SecAgg

original secure aggregation:
SecAgg

39

Extensive use of secret sharing and pairwise masking

Dominates the training time (at least 91%)

Follow-up solutions have inefficiencies

- e.g. SecAgg+: improves asymptotically, but help little in small-scale practice1

SOTA secure aggregation:
SecAgg+

[1] Towards federated learning at scale: system design, MLSys ‘19

Performance issues with SecAgg

original secure aggregation:
SecAgg

40

Goal: leverage the underutilized resources in the system level

Pipeline-Parallel Acceleration

41

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

Secure aggregation

s-comp: the compute resources
(e.g., CPU, GPU, and memory) of
the server

c-comp: the compute resources of
clients

comm: the network resource used
for server-client communication

Pipeline-Parallel Acceleration

42

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

Secure aggregation

Pipeline-Parallel Acceleration

43

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline them

Time

Chunk 1

Chunk 2

Chunk 3

1 (c-comp)Stage 2 (comm) 3 (s-comp) 4 (comm) 5 (c-comp)

Pipeline-Parallel Acceleration

44

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline them

- Optimize to determine the optimal number of chunk, m*

m* = arg min
m∈N+

fa,m

fs,c = bs,c + ls Definition of the finish time of
Chunk at Stage m a

s . t .

Intra-chunk sequential
executionos,c = {0, if s = 0,

fs−1,c

bs,c = max{os,c, rs,c}

rs,c =
0, if s = 0 and c = 0,
fq,m or ⊥ , if s ≠ 0 and c = 0,
fs,c−1, otherwise

Exclusive allocation
& Inter-chunk sequential execution

Pipeline-Parallel Acceleration

45

Effectiveness:
① A maximum speedup of 2.4×

w/ or w/o pipelining

Pipeline-Parallel Acceleration

Case study: CIFAR10 @
VGG19, dropout rate = 30%

46

w/o or w/

our noise enforcement

Pipeline-Parallel Acceleration
① A maximum speedup of 2.4×Effectiveness:

47

Implemented using
SecAgg or SecAgg+

Pipeline-Parallel Acceleration
① A maximum speedup of 2.4×Effectiveness:

48

②
Larger
models

gain
more

③

Scaling w/

part.

④ Gains are consistent across different dropout rates

Pipeline-Parallel Acceleration
① A maximum speedup of 2.4×Effectiveness:

Dordis
https://github.com/SamuelGong/Dordis

A distributed DP framework for
• Privacy
• Efficiency
in FL training

Thank you!

Autom
ate

Precise Noise
Enforcement

Optimal Pipelined
Execution

For

Privacy
Preservation

Efficiency
Enhancement

Against

Client
Dropout

SecAgg’s
Bottleneck

https://github.com/SamuelGong/Dordis

